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Abstract. We reinterpret MDE from the viewpoint of relational databases to
provide an alternative way to teach, understand, and demonstrate MDE using
concepts and technologies that should be familiar to undergraduates. We use (1)
relational databases to express models and metamodels, (2) Prolog to express
constraints and M2M transformations, (3) Java tools to implement M2T and
T2M transformations, and (4) OO shell-scripting languages to compose MDE
transformations. Case studies demonstrate the viability of our approach.

1 Introduction

Model Driven Engineering (MDE) is a standard technology for program specification
and construction. We believe it is essential to expose undergraduates to MDE concepts
(models, metamodels, M2M, M2T, T2M transformations, constraints, and bootstrapping),
so that they will have an appreciation for MDE when they encounter it in industry. Our
motivation was experience: unless students encounter an idea (however immature) in
school, they are less likely to embrace it in the future. Further, teaching MDE is intimately
related, if not inseparable, to the tools and languages that make MDE ideas concrete.

Our initial attempt to do this (Fall 2011) was a failure. We used the Eclipse Modeling
Tools® and spent quite some time creating videos for students to watch, both for instal-
lation and for tool usage. For whatever reason, installation for students was a problem.
A version of Eclipse was eventually posted that had all the tools installed. The results
were no better when students used the tools. A simple assignment was given to draw
a metamodel for state diagrams (largely something presented in class) using Eclipse,
let Eclipse generate a tool for drawing state diagrams, and to use this generated tool to
draw particular state diagrams. This turned into a very frustrating experience for most
students. 25% of our upper-division undergraduate class got it right; 50% had mediocre
submissions, and the remaining just gave up. Another week was given (with tutorial help)
to allow 80% to “get it right”, but that still left too many behind. The whole experience
left a bitter taste for us, and worse, our students. We do not know if this is a typical
situation or an aberration, but we will not try this again.

3 Specifically EMT, Graphical Modeling Tooling Framework Plug-in, OCL Tools Plug-in, and
Eugenia for Eclipse 3.6.2.



In retrospect we found many reasons, but basically Eclipse MDE tools are the
problem. (1) The tools we used were unappealing—they were difficult to use even
for trivial applications. (2) The tools fostered a medieval mentality in students to use
incantations to solve problems. Point here, click that, something happens. From a
student’s perspective, this is gibberish. Although we could tell them what was happening,
this mode of interaction leaves a vacuum where a deep understanding should reside. (3)
With the benefit of years of hindsight, we concluded that the entry cost of using, teaching,
and understanding these tools was too high for our comfort. (Whether students agree
with this or not is the subject of an empirical study targeted for this fall). We sought an
alternative and light-weight way to understand and demonstrate MDE, leveraging tools
and concepts undergraduates should already know.

In this paper, we present an evolutionary rather than revolutionary approach to
understand and teach core MDE concepts (models, metamodels, M2M, M2T, T2M
transformations, constraints, and bootstrapping). We tried this approach with a new class
of undergraduates in Fall 2012 with many fewer problems. (Again, we carefully avoid
words like “better” or “more successful” until the results of our empirical study are in;
the appropriate word to use is “interesting’). This paper concentrates on the technology
we used and the case studies in its evaluation). It is our hope that others in MDE may
benefit from the simplicity of our approach.
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Manufactured tuple identifiers eliminate virtually all of the complexities of relational
table design (c.f. [8,12]). There are only five simple rules to map metamodels to table
definitions and one rule for tuple instantiation:

1. Every metaclass maps to a distinct table. If a metaclass has k attributes, the table
will contain at least 1 4k columns: one for the identifier and one for each attribute.

2. n:m associations are valid in metamodels [17], but not in ours. Every association
must have an end with a 0..1 or 1 cardinality. Figure 2 shows how n : m associations
are transformed into a pair of 1 : n and 1 : m associations with an explicit association
class. The reason for this is the next rule.
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i

/
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Fig. 2. Transformation That Removes n : m Associations.

3. Each association is represented by a single attribute on the “0 : 1 or “1” side of the
association. Usually an association adds an attribute to both tables that it relates. The
“n” side would have a set-valued attribute which is disallowed in normalized tables.
The “1” side has a unary-valued attribute (a tuple identifier) which is permitted.
As both attributes encode exactly the same information, we simply drop the set-
valued attribute. Figure 3a illustrates the application of the last three rules: the dept
table has two columns (# and name) and the student table has three (#, utid, and
enrolledIn). Column enrolledIn, which contains a dept# value, represents the

student — dept association. The mapping of Figure 1a to 1b is another example.

dept table student table

depti# name student# utid enrolledin

dept -enrolledin -has student

-name : String -utid : String

Fig. 3. Diagram-to-Table Mapping.
4. For classes that are related by inheritance, all attributes of superclasses are propa-
gated into the class tables. The identifier of the root class is shared by all subclasses.
Tables need not be produced for abstract classes. See Figure 4.

member member Mmember#  fname Iname
frame table
-Iname
faculty member#  fname Iname rank
table
facult taff
acuty i staff member#  fname Iname position
-rank -position
table

Fig. 4. Inheritance Diagram-to-Table Mapping.

5. Only objects of a class that are not instances of subclasses populate the tuples of a
table. This rule is is discussed in more detail in Section 4.



6. Tuple identifiers can manufactured (e.g. el and e3 in Figure 1d) or they can be
readable single-column keys (e.g. nReady and nDrink). Keys are preferred for
hand-written assignments; manufactured identifiers are preferred in tools.

Note that relational tables have always been able to encode data hierarchies. We see the
elegance of normalized or “flat” tables to be an important conceptual simplicity.

3 Model Constraints

OCL is the standard language for expressing model constraints. Given the connection to
relational databases, we can do better. Prolog is a fundamental language in Computer
Science (CS) for writing declarative database constraints. It is Turing-complete and is
a language that all CS students should have exposure. Figure 5a shows how to express
tuples of a relational table as Prolog facts. The first fact in Figure 5a defines the schema
of the node table of Figure 1b: it has three columns {id, name, type}.

(a) table (node, [id,name, type]) . (b) g endsAt - end ransition
-startsAt -start
1 *

node (nstart, 'start',start).
node (nReady, 'ready',state) . 45 1
node (nDrink, 'drink', state) .
node (nEat, 'eat’',state) .

node (nPig, 'pig',state) . start normalState stop
node (nstop, 'stop',stop) . fname

Fig. 5. A Prolog Table and Target MetaModel.

Here are three constraints to enforce on a FSM:

cl All states have unique names,
c2 All transitions must start and end at a state, and
c3 There must be precisely one start state.

Their expression in SWI-Prolog [19] is given below; error(Msg) is a library call that
reports an error. al1Constraints is true if there are no violations of each constraint.

cl :- node(A,N,_),node(B,N,_),not (A=B),error ('non-unique names’).

c2 :- edge(_,S,E), ( not(node(_,S,_)) ; not(node(_,E,_)) ), error(’'bad edge’).
c3a :- not(node(_,_,start)), error('no start state’).

c3b :- node(A,_,start),node(B,_,start),not (A=B),error ('multiple start states’).
allConstraints :- not(cl),not(c2),not (c3a),not (c3b).

4 Model-to-Model Transformations

Fundamental activities in MDE are model-to-model (M2M) transformations. Instead of
using languages that were specifically invented for MDE, Prolog can be used to write
database-to-database (or M2M) transformations declaratively.

Suppose we want to translate the database of Figure 1d to a database that conforms
to the metamodel of Figure 5b. (We shade abstract classes to make them easier to
recognize.) The Prolog rules to express this transformation are:



start (I,A) :- node(I,A,start).
stop(I,A) :- node(I,A,stop).
normalState(I,A) :- node(I,A,state).
transition(A,B,C) :- edge(A,B,C).

Another example: The tuples of the staff and faculty tables of Figure 4 do not
appear in the member table. To propagate tuples from subclass tables into superclass
tables, the following transformations can be used:

newMember (I,F,L) :- member(I,F,L).
newMember (I,F,L) :- staff(I,F,L,_).
newMember (I,F,L) :- faculty(I,F,L,_).
newStaff(I,¥F,L,R) :- staff(I,F,L,R).
newFaculty(I,F,L,P) :- faculty(I,F,L,P).

As Prolog is Turing-complete, database transformations can be arbitrarily complex.

Observations. There is an intimate connection between database design and metamodel
design. Presenting MDE in the above manner reinforces this connection. Further, students
do not have to be familiar with databases to understand the above ideas. Normalized
tables are a fundamental and simple conceptual structure in CS. Undergraduates may
already have been exposed to Prolog in an introductory course on programming lan-
guages. (When one deals with normalized tuples and almost no lists, Prolog is indeed a
simple language). We chose Prolog for its obvious database connection, but suspect that
Datalog, Haskell, Scala, or other functional languages might be just as effective.

5 Model-to-Text Transformations

A key strength of MDE is that it mechanizes the production of boiler-plate code. This is
accomplished by Model-to-Text (M2T) transformations. There are many text template
engines used in industry. Apache Velocity is a particularly easy-to-learn and powerful
example [4]. We made two small modifications to Velocity to cleanly integrate it with
Prolog databases. Our tool is called Velocity Model-2-Text (VM2T).

First, we defined Velocity variables for tables. If the name of a table is “table” then
the table variable is “tableS” (appending an “S” to “table”). This enables a Velocity
foreach statement to iterate over all tuples of a table:

#foreach ($tuple in S$tableS)
#end

Second, a Velocity template directs its output to standard out. We introduced markers
to redirect output to different files during template execution. The value of the MARKER
variable defines the name of the file to which output is directed; reassigning its value
redirects output to another file. An example of MARKER is presented shortly.

Figure 6a shows a metamodel for classes. Two instances of this metamodel, city and
account, are shown in Figure 6b. The database containing both instances is Figure 6c¢.



Figure 7a is a VM2T template. When the non-MARKER statements are executed,
Figure 7b is the output. Perferably, the definition of each class should be in its own file.
When all statements are executed, the desired two files are produced (Figure 7c).

Given VM2T, it is an interesting and straightforward assignment to translate the
FSM database of Figure 1d to the code represented by the class diagram of Figure 8.

class -ofClass attribute table(class, [cid,name]) .
(a) Chame -name class(cl,city) .
. . -type class(c2,account) .
table (attribute, [aid,name, type,ofclass]) .
attribute (al,name,string,cl) .
attribute (a2,state,string,cl) .
city account attribute (a3,number, integer,c2) .
b -name : String -number : Integer attribute (a4,balance,double,c2) .
(b) state : String -balance : Double
(c) data.pl

Fig. 6. A Class Metamodel, a Model, and its Prolog Database.

#set(SMARKER="//--"")
#foreach($c in $classS)
${MARKER}src/${c.name}.java
class ${c.name} {
#Fforeach($a in $attributeS)
#if ($c.cid==$a.ofclass)

${a.type} ${a.name};
#end

(b)

class city {
string name;
string state;

b

class account {
integer number;
double balance;

class city {
string name;
string state;

(c)

}

src/city.java

class account {
integer number;

?end 3 double balance;
stdout b
#end gen.vm src/account.java

Fig.7. A VM2T Template and Two Outputs.

Observations. The benefits of Velocity seem clear: students use an industrial tool
that is not-MDE or Eclipse-specific; it is stable, reasonably bug-free, and has decent
documentation. In our opinion, it is easy to learn and relatively painless to use.
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Fig. 8. Class Diagram of FSM Code Output.



6 Text-to-Model Transformations

Given the above, it is not difficult for students to understand Figure 9: an application
engineer specifies a FSM using a graphical tool, the tool produces a set of tables, the
tables are transformed, and VM2T produces the source code for the FSM.

database — vm2t script ﬁ ﬁ ﬁﬁ ﬁ =
o FSM FSM initial to final translates —
Application o FSMtool  graphin relational database relational to code application source code

Engineer tables  mappings tables

Fig. 9. FSM Application Engineering in MDE.

What is missing is a Text-to-Model (T2M) transformation (the dashed arrow in
Figure 9) that converts grossly-verbose XML output of a graphics tool into a clean set
of Prolog tables. It is easy to write a simple Java program that reads XML, parses it,
and outputs a single text file containing a Prolog database. Using a more general tool
that parses XML into Prolog may be preferable, but loses the advantage a hands-on
understanding of the inner workings of T2M transformations.

Finding suitable graphical editor GE is a three-fold challenge:

(a) its XML must simple to understand,
(b) its XML is stable, meaning its XML format is unlikely to change anytime soon, and
(c) its palette* is customizable.

MS Visio is easy to use and its palette is easily customizable, but its XML files are
incomprehensible and MS periodically modifies the format of these files. Simpler G Es,
such as Violet [21], yUML [22], UMLFactory [20], satisfy (a) and (b); it is not difficult
to write T2M tools for them.

We have yet to find a G that satisfies all three constraints. Violet is typical: all
palettes are hardwired—there is one per UML diagram. One cannot define a set of icons
(with graphic properties) to draw customized graphs. All one can do is to translate XML
documents that were specifically designed for a given UML diagram to Prolog tables.
This isn’t bad; it just isn’t ideal. Until a flexible GE is found, bootstrapping MDELite (to
build customized G ‘Es for target domains, a key idea in MDE) is difficult to demonstrate.
More on this in Section 9.

Observations. MDE tools (such as the FSM tool) could be structure editors. That is, a
tool should immediately label incorrect drawings or prevent users from creating incorrect
drawings. GEs can be stupid—they let you draw anything (such as edges that connect
no nodes). To provide immediate feedback would require saving a design to an XML
document, translating the document into Prolog tables, evaluating Prolog constraints,
and displaying the errors encountered. Modifying existing tools to present this feedback
could be done, but this is not high-priority.

4 The icons/classes that one can drag and drop onto a canvas to create instances.



7 MDELite and its Applications

MDELite is a small set of tools (SWI Prolog, VM2T) that are loosely connected by a tiny
Java framework that implements the ideas of the prior section. An MDELite application
uses this framework and is expressed as a category [5,16]. A category is simply a directed
multigraph; nodes are domains and arrows are functions (transformations) drawn from
the function’s domain to its codomain. Many of the interesting ideas about categories,
like functors and natural transformations, are absent in the MDE applications of this
paper, so there is nothing to frighten students. Nonetheless, it is useful to remind students
that categories are a fundamental structure of mathematics, they are a core part of MDE
formalisms (e.g., [9]), and they define the structure of an MDE application.’

As an example of an MDELite application, consider the tool chain that allows users
to draw FSMs and generate their corresponding Java source (Figure 9). This tool chain is
a category with four domains (Figure 10): the domain of XML documents that are output
by the FSM tool, a domain of database instances that a T2M tool creates, another domain
of database instances that results from a restructuring of T2M-produced databases, and a
domain of Java Source Code whose elements are FSM programs.

Init Final Java
T2M Prolog M2M Prolog M2T- Source
Jables, Jables Code

Fig. 10. Category of a FSM Tool.

When this category is written in Java, each domain is a class and each arrow is a method
(see Figure 11a). Unlike most UML class diagrams, MDELite designs typically have no
associations, but can have inheritance relationships.

To perform an action of the FSM tool (i.e. a method in Figure 11a), one writes a
straight-line script to invoke the appropriate transformations and checks. Figure 11b
shows the sequence of method calls in an MDELite program to translate an FSMXML
file—an XML file produced by the FSM drawing tool—into a Java program. Any error
encountered during translation or conformance test simply halts the MDELite application
with an explanative message.

(a) FSMXML InitPrologTables (b) | JavaSourceCode tool (FSMXML x)
-xmlFile -prologFile throws RunTimeException {
+T2M() : InitPrologTables +M2M() : FinalPrologTables ipt = X.T2MQ);

+conform() : Boolean ipt_conformQ);

fpt = itp.M2MQ);
fpt.conform();

FinalPrologTables JavaSourceCode Jsc = f1_:p.M2T();
" " " return jsc;
-prologFile -javaDirectory 3
+M2T() : JavaSourceCode

+conform() : Boolean

Fig. 11. MDELite Encoding of the Category of Figure 10.

5 Also known as megamodels [7] and tool chain diagrams [15].



Observations. MDE lifts metamodel design to the level of metaprogramming—programs
that build other programs. The objects of MDE are programs (models) and the methods
of MDE are transformations that yield or manipulate other programs (models). The
elements of each domain are file system entities—an XML file, a Prolog file that encodes
a database, or a directory of Java files—not typical programming language objects [6].
Each MDELite method is literally a distinct executable: a T2M or M2T arrow is a
Java program and an M2M arrow (and conformance test) is a Prolog program. Perhaps
MDELite needs to be written in an OO shell scripting language, such as Python. We
used Java to implement the MDELite framework (and may reconsider this decision—we
figured Prolog is enough for undergraduates to absorb). MDELite is clearly a multi-
lingual application.

8 Evaluation: A Case Study of MDELite

Our first application of MDELite was quite instructive. We found several free UML
tools that we wanted to (i) draw UML class diagrams, (ii) apply the ideas of the previous
sections, and (iii) integrate.

The integration of the Violet, UMLFactory, and yUML tools (as they existed in
June 2012) is expressed by the category of Figure 12a.° We could draw UML class
diagrams in each of these tools and have them displayed in any other tool. So a script
that translated a Violet class diagram into a YUML class diagram is Figure 12b and vice
versa is Figure 12c. Figure 13 shows the translation of a specific Violet class diagram (an
XML file) into an SDBPL database and then into a yYUML class diagram (a yUML file).

YUML Violet2yUML(VioletXML v){
vpl = v.toPLQ);
vpl.conform(Q);
sdb = vpl.toSDB(Q);

OUMLF: sdb.conform();

ypl = sdb.toYUMLQ);

ypl.conformQ);

return ypl._toYUMLQ);

toPL: toSDB

VioletXML yUML2Violet(yUML y){
ypl = y.toPLQ);
ypl.conformQ);
sdb = ypl.toSDB(Q);
sdb.conformQ);

d = sdb.toDOT(Q);
dk = d.kielerQ;
roshs sdbl = dk.toSDBQ);

sdb2 = sdb.projectXY(Q);
sdb3 = sdb2.merge(sdbl);
upl = sdb3.toUMLFQ);
upl.conformQ);

a return upl.toXMLQ);
(@ ,

toVi o\ et

toYUM
toPL-

toXML-

Fig. 12. A Category for an MDELite Application.

The category of Figure 12a is produced by a process that is similar to global schema
design in databases that integrates database schemas of different tools [10]. Each tool
exports and imports a distinct data format (read: database). A global schema (a Prolog

% The only oddity of Figure 12a is the domain SDBPL x SDBPL, which is the cross-product of
the SDBPL domain with itself. The merge arrow composes two SDBPL databases into a single
SPBPL database (i.e. merge : SDBPL X SDBPL — SDBPL).
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Library |, . Book table (class, [id, "name","fields", "methods",superid]) .
name — T class('classnode0', 'Library', 'name','getName()',null).
getName() getTitle() class('classnodel', 'Book','title','getTitle()',null).

(a) Violet Class Diagram table (association, [cidl,"rolel",arrowl,
\\ cid2,"role2",arrow2]) .
. association('classnodel','*', 'agg',

'classnode0','1',"'").

.| table(interface, [id, "name", "methods"]) .
:- dynamic interface/3.

table (classImplements, [cid,iid]) .

//’/” :- dynamic classImplements/2.
v table (interfaceExtends, [id,idx]) .
) :- dynamic interfaceExtends/2.
I ]
table rosition,(1d,x,5)).
position('classnode0',333,259).
(c) Corresponding yUML Class Diagram | position('classnodel',599,264). (b) SDBPL database

Fig. 13. A Violet Diagram mapped to an SDBPL database mapped to a yUML Diagram.

database, SDBPL, to which all tool-specific databases are translated) stores data that is
shared by all tools. The hard part is manufacturing data that is not in the global database
that is needed for tool-specific displays. An example is given shortly.

This application required all kinds of T2M, M2T, and M2M transformations. Fig-
ure 14 shows the size of MDELite framework and this application in lines of Prolog,
Velocity, and Java code. As the tables indicate, the framework is tiny; the application
numbers indicate the volume of “code” that was needed to write this application.

[LOC| LOC [LOC Java
Concern Prolog|Velocity| Java
MDELite Framework| 84 0 581
MDELite Application| 506 654 2532
Total 590 654 3093

Fig. 14. Size of MDELite Framework and Application: Lines of Prolog, Velocity, and Java Code

Observations. You can try this for any set of tools that satisfies constraints (a) and (b)
of Section 6. Doing so, you will likely discover that your set of selected tools were
never designed for interoperability. Ideally, interoperability should be transparent to
users. Unfortunately, this is not always achievable. We found UMLFactory to be flakey;
most tools had cases that we simply couldn’t tell if they worked correctly. Hidden
dependencies lurked in XML documents about the order in which elements could appear
and divining these dependencies to produce decent displays was unpleasant (as there was
no documentation). But it is a great lesson about the challenges of tool interoperability,
albeit on a small-scale.
Interesting technical problems also arise. A yUML spec for Figure 13c is:

[Library|name|getName () ]
[Book|title|getTitle()]
[Book]<>*-1[Library]

Translating a yUML spec to the XML document of another tool requires graphical (x,y)
positioning information about each class (i.e. where each class is to appear on a canvas).
yUML computes this information, but never returns it. Lacking positioning information,
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Violet simply draws all the classes on top of each other, yielding an unreadable mess.
We looked for tools to compute node positioning information for a graph and found the
Kieler Web Service [13]. We translated an SDBPL database into a DOT graph, transmited
the DOT file to the Kieler server, and it returned a new DOT graph with the required
positioning information. A simple T2M tool mapped the positioning information to a
Prolog table, and this table was merged with a SDBPL database that lacked positioning
information (as indicated in the Figure 12c script). Only then was a usable Violet file
produced. Figure 15a shows the generated DOT file, Figure 15b the DOT file returned
by the Kieler server, and Figure 15c the T2M extracted position table.

digraph { digraph {
// classes
cl; // classes

c0;
cl [pos="50.0,20.0", width="0.14", height="0.14"];

// interfaces c0 [pos="20.0,20.0", width="0.14", height="0.14"];
S c1->c0 [pos="45.0,20.0 25.0,20.0"];
// class Implements ya bb=0,0,70.0,40.0";
/
/ s
// interface Extends | / . .
(b) Kieler-Returned DOT file
// class Extends
// associations \ table(position, [id,x,y]).
cl->c0; . position(c1,50,20).
H position(c0,20,20).
(a) Generated DOT file (c) Extracted Position Table

Fig. 15. DOT File Transformations.

9 Towards Bootstrapping

Although we have not fully bootstrapped MDELite for reasons discussed earlier, there

are two basic steps to produce the FSM tool or any other domain-specific MDE tool.
First, we need to specify how meta-

class instances are to be drawn by the

GE. The simplest way is to allow the startsAt 1 Y start
GE to set properties of each metaclass / Py p—
to provide the necessary information. covaState Transition

-name : String

For example, Figure 16 uses stereotypes
to declare that a State is to be drawn as genr

an oval, except a Start state is a solid- ! -end
circle and a Stop state is a double-circle
(c.f. Figure 1). Other ways to encode this
information are also possible.

Second, look at Figure 17. A FSM
domain architect would (1) draw the
FSM metamodel using a Metamodel Fig.16. FSM Metamodel with Graphical
Drawing Tool (MDT), which mechanizes Stereotypes
the rules of Section 2 to produce Prolog table definitions for the input metamodel and a
palette of icon-metaclass pairings to customize the GE, (2) write the Prolog metamodel
constraints, the Prolog M2M transformations, and a Velocity M2T file, and (3) run a
build script that integrates these inputs with a MDE Tool Shell to generate the FSM tool.

«SolidCircle» «DoubleCircle»
Start Stop
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ToolBuild.xml
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MetaModel prolog table
Drawing Tool schemas +
(MDT) palette file

Fig. 17. Generating a MDE FSM Tool.

To bootstrap MDELite requires an MDEGod to build the two tools (MDT and
MDE Tool Shell) and script (ToolBuild.xml) that a Domain Architect (Einstein) in-
vokes (see Figure 17). Specifically, MDEGod writes the ToolBuild.xml script and
purchases or outsources the writing of the MDE Tool|Shell (which includes the GE).
Initially the MDEGod hacks a MetaModel Drawing Tool (MDT). MDEGod then re-
lies on a fundamental MDE constraint that the MDELite meta-meta-model must be an
instance of itself. So, the MDE God plays the role of a MetaModel Domain Architect,
replacing Einstein in Figure 17 with him/herself. MDEGod (1) draws the metamodel of
all class diagrams, (2) writes its Prolog metamodel constraints, Prolog M2M transforma-
tions, and a VM2T file (which produces Prolog table schemas and a palette for drawing
class diagrams from the Prolog database), (3) runs the build script to produce the MDT to
complete the bootstrap, thereby building an MDT to replace the hacked MDT. Again, all of
this hinges on finding a palette-customizable GE.

10 Personal Experiences, Insights, and a Small Second Case Study

We created MDELite as an alternative to Eclipse MDE tools to understand and teach
MBDE concepts. Our work begs for an empirical study to evaluate the benefits of teaching
MDELite; we intend to conduct such a study later this year. MDELite is an interesting
technical contribution in its own regards, and that is what we focus on in this paper.

We used MDELite in a Fall 2012 undergraduate course on “Introduction to Soft-
ware Design”, giving an assignment more ambitious than what we tried in Fall 2011.
Specifically, we asked students to:

1. Given a simple metamodel of class diagrams, manually produce the schemas of the
metamodel’s underlying Prolog tables;

2. Write a T2M transformation in Java using Java reflection to extract information
about classes, methods, and fields from .class files and present this information as
tuples in their tables;

3. Write Prolog constraints to evaluate the correctness of the tables they produced;
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4. Write a Velocity M2T transformation that maps their tables into stubbed Java source;

5. Write another T2M transformation that converts Java reflection information to
produce a yUML specification, which is then translated into a Violet diagram by
MDELite; and

6. Extend the MDELite category (Figure 12) with the domains and arrows of Figure 18
by implementing the required classes and methods to script their transformations.

We can report many fewer difficulties with this assignment than the simpler assignment of
the previous year that used Eclipse MDE tools. Still, there are some practical difficulties
that we are obliged to alert readers.

@TZMTZMMZT
SOURCE
Fig. 18. Additional Domains and Arrows to Figure 12.

Multi-Paradigm Programming. We are Java programmers and novices to Prolog. Pro-
log and Java have two very different mind-sets, and flipping between paradigms can be
confusing. Trivial things like Prolog rules ending in (Java) semicolons instead of (Prolog)
periods was a mistake we constantly made. Prolog inequalities (=<) are syntactically
reversed in Java (<=). In SWI-Prolog, when something is mistyped, a question-mark
prompt (?) is produced and the usual Windows/Linux character escapes to reset to the
command prompt simply do not work. Problems like these disappear once familiarity
with Prolog sets in—they clearly are not fundamental, but are jolting to students in
a first, quick immersion into Prolog. For this reason, recommend that MDELite be a
pair-programming project: one person concentrating on Prolog, the other on Java, to
minimize cross-world confusion.

Many-Columned Tables. When there are many columns, it can be daunting in Pro-
log to correctly reference a table and account for each of its columns in a predi-
cate. In such cases, one can M2M transform such tables into RDF 3-tuple format of
(tupleid, columnName, value) or a 4-tuple format (tableName, tupleid, column-
Name, value) for easy attribute referencing.

Transformation Debugging. MDELite
provides a microcosm of the challenges
of debugging transformations. Even - — = —
though a transformation takes an object Vf % x ‘f @ ‘f x
(a model) as input and produces an ob-  veer DB vomeL o
ject (a model) as output, objects are Pro-
log databases that are not simple values Fig. 19. Debugging Transformation Scripts
and can have complex structures. Writing transformations in any language is not sim-
ple—it is easy to forget a case or miss-write a translation. Our hunch is that the simpler
a transformation’s specification, the easier it will be to track down errors. This remains,
however, a conjecture.

A technique that we found useful—perhaps motivated by the “shape” of the category
of Figure 12a—was to define a transformation T and then its inverse T~%, so that we
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could test whether -7~ was an identity or an equivalence.” This helped, but obviously
did not eliminate all bugs.

Nonetheless, the fundamental challenge in debugging transformations becomes
clearly evident: an error is detected in a database (far right of Figure 19). Upon exami-
nation, we discovered that the transformation that produced it was correct, but its input
database was incorrect. This unwinds backwards until we discover a correct database
that was input to a transformation that produced an incorrect database. Surely results
on debugging Prolog programs and debugging database transactions—studied long
ago—might be useful to MDELite. This too remains a conjecture.

Preparatory M2M Transformations. When Velocity templates have many loops and if
statements, it is easy to lose track of loop and if-then-else boundaries, thereby creating
incorrect templates. One reason why loops and if-statements are used is to join tables. For
example, consider the following Class table rows, where class Customer is connected
to class Address via a * —* association:

class(cl,’Customer’, "’ ,"","").
class(c2,’Address’, """, """, "").
association(cl,’*’,none,c2,’1’,arrow).

In a M2T transformation, the class table must be joined (twice) with the association
table to convert class identifiers (c1 and c2) into class names (Customer and Address).
Similarly, other computations can arise to convert atoms (like ‘arrow’ above) into
rendering text (in this case, the character ‘>’ to denote an arrow). Such translations
significantly complicate Velocity templates—it would not be so bad if one could indent
Velocity statements to pair up the start and end of loops and if-statements:

#forall ($a in S$associationS)
#forall (Sc in SclassS)
#if (Sa.id = $c.id)
#set ($classname=S$c.name)
#end
#end
#end
Indenting, however, generates extra spaces, which is not always desirable. The alternative
is to produce a table of association declarations that render Velocity printing trivial:

yumlAssociation(’Customer’,’*’,’’,'Billing Address’,’1’,’'>").

Using M2M transformations can reduce the size (read: complexity) of Velocity files
substantially. Although this is not a hard-and-fast heuristic, our experience is that keeping
Velocity templates as simple as possible is worth the extra stage in Prolog translation.

11 Related Work

A paper by Favre inspired our work [11]. He warned against adding complex technologies
on top of already complex technologies, and advocated a back-to-basics approach,

7 Two documents d; and do can differ in whitespace, ordering of declarations, etc. and still
represent equivalent class diagrams.
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specifically suggesting that MDE be identified with set theory and the use of Prolog to
express MDE relationships among models and their meta-model counterparts.

In searching the literature, we found many papers advocating Prolog-database inter-
pretations of MDE. For lack of space, we concentrate on the most significant, although
we feel none are quite as compact or as clean as MDELite. Almendros-Jiménez and Irib-
arne advocated Prolog to write model transformations and model constraints [2,3]. The
difference between our work and theirs is orientation: our goal is to find a simple way to
demonstrate and teach MDE to undergraduates. Their goal is to explore the use of logic
programming languages in MDE applications. For example, PTL is a hybrid of the Atlas
Transformation Language and Prolog for writing model transformations [1]. In another
paper, OWL files encode MDE databases and OWL RL specifies constraints in terms
of Description Logics. For teaching undergraduates, the use of OWL and Description
Logic is overkill and obscures the simplicity of MDELite. How M2T transformations
are handled and MDE applications (categories) are encoded are not discussed.

Storrle’s Model Manipulation Toolkit uses unnormalized (set-valued) relational
tables as the basic Prolog data representation and uses Prolog to query these tables [18].
Although M2M transformations seem not to be discussed, the obvious implication is
present. MDELite goes beyond this work also integrating M2T and T2M transformations,
as well as exposing the bigger picture of MDE applications as categories.

Oetsch et. al. advocate Answer-Set Programming (ASP) to express a limited form
of MDE [14]. Entity-Relationship models represent meta-models (drawn using Eclipse
MDE tools); and their tool allows one to enter ASP facts (similar to Prolog facts)
manually that conform to the input meta-models; ASP queries are used to validate meta-
model constraints expressed in the ER model.® MDELite is more general than this: M2M,
M2T, and T2M mappings need to be defined in addition to model constraints. Further,
how MDE applications are defined (as in MDELite categories) is not considered.

12 Conclusions

MDELite reinterprets MDE from the viewpoint of relational databases. A model is a
database of tables; (meta-)model constraints and M2M transformations are expressed
by Prolog. M2T and T2M transformations rely on simple Java programs. Categories, a
fundamental structure in mathematics, integrates these concepts to define MDE applica-
tions. MDELite leverages (and maybe introduces or refreshes) core undergraduate CS
knowledge to explain, illustrate, and build MDE applications without the overhead and
complexity of Eclipse MDE tools. Our case studies indicate MDELite is feasible; a user
study to evaluate the benefits of MDELite in teaching is a next step in our work.

We believe MDELite is a clarion way to explain MDE to undergraduate students. It
is our hope that others may benefit, and indeed improve, our ideas. MDELite is available
athttp://www.cs.utexas.edu/schwartz/MDELite.html

8 The Eclipse OCL tool plugin is similar in that one has to manually enter tuples beforehand
before OCL queries can be executed. This is impractical, even for classroom settings.
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