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Abstract. Multicore, multithreaded processors are rapidly becoming the plat-
form of choice for high-throughput request-processing applications (RPAs). We
refer to this class of modern parallel platforms as multi-? systems. In this pa-
per, we describe the design and implementation of Lagniappe, a translator that
simplifies RPA development by transforming portable models of RPAs to high-
throughput multi-? executables. We demonstrate Lagniappe’s effectiveness with
a pair of stateful RPA case studies.

1 Introduction

Moore’s law and the accompanying improvements in fabrication technologies (90nm to
65nm and beyond [7]) have significantly increased the number of transistors available to
processor designers. Rather than use these transistors by further extending the depth of
processor pipelines, designers are developing processors with multiple, multithreaded
cores. This class of modern parallel platforms, called multi-? systems, are the standard
for constructing high-performance and high-throughput computing clusters.

Sadly, the ubiquity of multi-? systems has not led to breakthroughs in easing the
core burdens of parallel programming:

1. It is the responsibility of programmers to map components of an application to
available parallel resources manually, in order to maximize performance or effi-
ciency. Further, the computational needs of an application may change during run-
time, requiring mapping decisions to change dynamically based on both application
and workload characteristics [17].

2. Many applications have persistent, mutable state. Accessing state with multiple ex-
ecution threads, if done naı̈vely, can cause contention for locks and reduce perfor-
mance [23]. As multi-? systems grow larger, application mappings become more
difficult as the cost of sharing state between processing elements grows.

3. Different systems utilize different types of parallel resources. Platform-specific
code should never be embedded in an application because the application may run
on different hardware configurations over time (portability for code reuse) and be-
cause multi-? systems are often heterogeneous comprising different hardware types
(portability for heterogeneity).
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Request-processing applications (RPAs) are an important class of applications on
multi-? systems given their traditionally high amounts of both task parallelism (i.e.
different parts of the application can run in parallel [31]) and data parallelism (i.e.
the same part of the application can process different requests at the same time [30]).
RPAs are a directed graph of components called streaming [28] or pipe-and-filter [2,25]
architectures. Multi-? concerns of these architectures (e.g. component coordination,
access to persistent state, and mapping the application to multi-? hardware) are non-
trivial. Even worse, programmers implement RPAs using traditional, low-level method-
ologies that strain development, testing, component reuse, and maintenance. While
tools [1,6,11,16,28,29] do allow programmers to create high-performance applications—
even parallel ones—the programming task remains daunting and error-prone.

Our research improves the state-of-the-art tools in RPA development for multi-?
systems by automating the difficult, tedious, and error-prone tasks that lie at the heart
of parallel RPA programming. We built Lagniappe3, a translator that maps a model of
an RPA to a C++ module; effectively it implements a sophisticated model-to-text (M2T)
transformation. Lagniappe was our first step in understanding the domain of RPAs and
its engineering requirements. It helped us to test the correctness of our RPA abstrac-
tions and demonstrated that we could derive efficient multi-? implementations of RPAs
from these abstractions. But we now see Lagniappe as a precursor to a more sophisti-
cated model driven engineering (MDE) tool where a model of an RPA is progressively
mapped to more complex models using model-to-model (M2M) transformations that ex-
pose task and data parallelism. The most refined model is then translated to a C++ mod-
ule via a simple M2T transformation. Parallelism mappings are present in Lagniappe
now, but are hardcoded in its M2T implementation.

In this paper, we present the design and implementation of Lagniappe from this
more advanced MDE perspective. An RPA is specified by a graph of interacting com-
ponents where each component is implemented in an imperative language (C++ in
our case). The model captures application features that are relevant for execution on
multi-? systems. Lagniappe automatically transforms this model of an RPA—actually
a single-? description that can only execute on a single processing element (proces-
sor, core, thread, etc.4)—into a model that is optimized for multi-? execution. These
transformations determine custom and optimized policies for run-time adaptation and
load-distribution. Lagniappe automatically creates an application that meets the four
challenges of multi-? programming: dynamic resource assignment, efficient state ac-
cess, portability, and parallelism. We demonstrate experimentally the effectiveness of
Lagniappe’s mappings with two stateful RPA case studies.

We begin with a review of the key traits of the RPA domain, followed by an MDE-
description of how Lagniappe parallelizes RPAs by transformations.

3 Lagniappe is a Cajun-French word meaning “a little something extra.” If programmers give us
a small amount of extra information, we can give them much added benefit.

4 When we refer to a processor we are referring to one chip. A processor may have several cores,
a core being a fully functional processing element with its own low-level cache. Operating
systems typically see all cores as separate “processors.”



2 Request-Processing Application Domain

2.1 General Structure

An RPA is specified by a directed graph of A Operators (also known as components,
filters, and stages [16,25,27]). Each A Operator may contain multiple inputs and out-
puts, and may generate zero, one, or multiple requests when processing an incoming
request. Requests flow through A Connectors between A Operators. A Connectors are
typed by the messages they carry and Ports are typed by the messages they send or
receive. A request enters the application at the head of the graph and passes from one
A Operator to the next until an A Operator either drops the request (i.e. the system
reclaims the resources it assigned to request) or the request exits the graph.

Classifier Inspect Service
StateFileNStateSrcDst

Fig. 1. The AttackDetector Application

Figure 1 depicts a model of an RPA
we call the AttackDetector that exam-
ines incoming requests for patterns that
would suggest a network attack.5 The
AttackDetector has three A Operators:
Classi f ier, Inspect, and Service.

The behavior of AttackDetector is
straightforward: requests enter Classi f ier
and are marked as either good or bad.
Bad requests are dropped immediately. Good requests move to Inspect where it per-
forms a test to determine if the request is part of an attack. If the request is not an attack,
Inspect forwards the request untouched to Service. If Inspect thinks the request may
be part of an attack, the request is dropped and Classi f ier is notified to drop all future
related requests. Requests that pass Inspect are processed by Service which represents
any service, such as a webserver or database engine. AttackDetector processes two dif-
ferent types of requests: dotted lines represent notifications of suspicious activities and
solid lines are normal paths of requests.

2.2 Request Flows and Flow Signatures

The processing of a request may have no impact on processing other requests in a sys-
tem. At other times, A Operators may process related requests. A flow is any sequence
of requests (not necessarily adjacent in arrival time) that share some property, for ex-
ample a source and destination network address pair. A flow signature is a function that
maps a request to a flow identifier. All requests that map to the same flow identifier are
said to be in the same flow.

An application may exploit several different flow signatures. In AttackDetector,
there are two flow signatures: SrcDst and FileN. Classi f ier uses (source, destination)
address pairs to identify flows while Service uses file names contained in the request.

5 By attack we could mean worm propagation, distributed denial of service, or simple “hacking.”
The exact definition is not important for this example.



2.3 Persistent A Operator State

Unlike classic pipe-and-filter architectures where filters are stateless [25], many request-
processing applications maintain persistent state—state that exists beyond the process-
ing of any one request. Accesses to persistent state can dominate the time it takes an
A Operator to process a request [20] and naı̈ve concurrent access can introduce con-
tention for locks [23]. Persistent state is essential in many RPAs because the logic of an
A Operator may depend on the requests it has previously processed.

Persistent state falls into two classes. The first assumes no relationship between re-
quests. The second uses flow identifiers as keys to data associated with a flow, which we
refer to as flow state. In AttackDetector, Classi f ier maintains a mapping of flow identi-
fiers to state representing the status (good/bad) of the flow. Service contains application
state (such as webpages) and uses a different flow identifier.

2.4 Application Guarantees

Application designers create RPAs to meet specific throughput or latency guarantees.
Such guarantees are often defined by a business-driven service level agreement (SLA).
Programmers may not care to maximize performance (e.g. maximize throughput or
minimize latency) but rather to just meet the throughput or delay guarantees of an SLA.
For example, a company may sell different levels of service. Different applications run-
ning “in the cloud” may receive different amounts of resources and achieve different
levels of performance based on the fee paid by their customers.

3 Model and Transformations of RPAs

Lagniappe identifies two types of parallelism in an application: task parallelism (break-
ing the application into pipeline stages) and data parallelism (replicating a stage during
runtime to process different requests in parallel). Programmers specify an RPA as a
single-? model that conforms to the basic application structure presented in Section 2
with no knowledge of underlying multi-? hardware. That is, the model in Figure 1 con-
forms to a domain defined by a metamodel A (“A” being short for Application). Two
other models are used as input to Lagniappe: W is the metamodel of typical A Operator
workloads, and M is the metamodel of multi-? systems. The input to Lagniappe is a
model from each of these three domains.

The Lagniappe translator is depicted in Figure 2. Lagniappe is currently a pair of
M2T transformations A2C : A,W,M→C, which maps a (A,W ,M) triple to a C++ mod-
ule, and M2C : M→C, which maps M to another C++ module. In the next sections, we
offer a more advanced description of Lagniappe by decomposing the A2C transforma-
tion as a series of M2M transformations (REP •PIPE •PROF) followed by a simple
M2T transformation R2C. That is, A2C = R2C •REP•PIPE •PROF . We explain our
work using metamodel instances. The details of our metamodels are given in [24].

3.1 A: The Single-? Application Model

Figure 1 is a model of AttackDetector that conforms to A. Beyond what we presented
earlier, Classi f ier is stateful and uses the Flow Signature SrcDest to map requests to
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Fig. 2. The Lagniappe Translator

flow identifiers. Service is also stateful and uses the Flow Signature FileN to map the
names of files contained in the request payload to a flow identifier. The input/output
ports of all A Operators have the data-request type except for the A Connector from
Inspect to Classi f ier that reports attacking flows (the dashed arrow in Figure 1). A
key property of an A model is that no two A Operators can access the same persistent
state; doing so forces programmers to model task parallelism in the application as each
A Operator can now run independently with no contention for shared state.

3.2 Performance Estimates (PROF Transformation)

The PROF : A,W,M→ E transformation uses the application, workload, and platform
models to produce an annotated application model in domain E (for Estimate). Meta-
model E is a minimal extension to A: E preserves all of the objects and relationships in
A, and adds one attribute to each A Operator to provide elementary performance infor-
mation. The programmer provides an average case workload (W ) for each A Operator
and Lagniappe determines the A Operator’s average execution time on platform M
through profiling. These estimates are added to the A model to produce an E model
and are used in the transformations that we discuss next.

3.3 Task Parallelism (PIPE Transformation)

PO1

Classifier Inspect Service
StateFileNStateSrcDst

Queue

Call

Fig. 3. P Model of AttackDetector

Lagniappe parallelizes an application in
two ways. The first identifies pipeline
stages (i.e. task-parallel computations).
We call these pipeline stages P Oper-
ators for pipelined A Operators. One or
more A Operators are contained in a
P Operator.

A Connectors are mapped to P Conn-
ectors, which are one of two types: Call
or Queue. An A Connector is mapped to
a Call if it is internal to a P Operator. A
Call implements a P Connector by method calls. All other P Connectors are Queues.
Queues provide an asynchronous FIFO abstraction between P Operators.



P is the metamodel that defines the domain of pipelined applications using P Operators
and P Connectors. Figure 3 shows the result of transforming the AttackDetector in Fig-
ure 1 to its P model counterpart (note that the performance information of E is not
shown). We refer to this transformation as PIPE : E→ P.

Policy Discussion. A first thought is simply to use A Operators as pipeline stages and
not go through the trouble of forming P Operators. While pipelining has its benefits, it
also comes with overhead. Every time a request moves from one processing element to
another it has to be enqueued and dequeued. As queueing overheads can be significant,
it is important to keep the number of pipeline stages to a minimum. Given an equal
number of parallel processing elements, we would rather have fewer pipeline stages
with more chances to replicate stages than to execute separate pipeline stages on their
own. This minimizes the overhead per request and provides more replication opportuni-
ties. We show in Section 4.2 that these are both desirable properties. With this in mind,
we greedily form P Operators and minimize the number of P Operators to maximize
replication possibilities.

Situations exist where an application may have A Operators that cannot be repli-
cated for correctness reasons (the FT application in Section 4.1 is one). Thus, we allow
application programmers to mark A Operators with a “Do Not Replicate” flag in A
models, information that is preserved in PROF and PIPE transformations. If PIPE en-
counters an A Operator with this flag, it is put into its own P Operator. While we cannot
take advantage of data parallelism by replicating such a P Operator, we can take advan-
tage of task parallelism by running these “Do Not Replicate” P Operators on different
processors at the same time. We show in Section 4.2 pipelining the application in this
situation improves throughput.

Flow-Based Composite Policy. The formation of P Operators proceeds as follows:

1. Start at incoming request sources.
2. Absorb A Operators into a P Operator along the application graph until an A Operator

with the “Do Not Replicate” flag is found or the only available output Port has a
different data type than the input.6

3. Do not absorb A Operators that have already been included in a P Operator (i.e.
check for cycles).

4. After a depth first search is finished, collect remaining A Operators into P Operators
based on flow signatures. These are A Operators that process control data and
are most likely off of the application fast-path. Combining them usually does not
impact performance and saves system resources (i.e. a smaller number of overall
pipeline stages equals a smaller number of processing resources initially needed).

Applying the above heuristic to Figure 1 produces one P Operator, shown in Fig-
ure 3. That is, Classi f ier, Inspect, and Service are put into P Operator PO1. The in-
coming A Connector for the P Operator PO1 is now a Queue. All of the A Connectors
internal to PO1 are Calls.

6 A Port with a different data type implies a control-data path through the application, and one
that will not be externally visible.
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We could have used other policies. For example, memory may be limited in embed-
ded platforms. Any one P Operator may have an upper bound on its code size [4]. For
the class of RPAs that motivated our work, code size was not an issue and flow state
was prevalent. If we needed to support another pipelining policy i, we would implement
a different transformation PIPEi : E→ P. More on this later.

3.4 Data Parallelism (REP Transformation)

Lagniappe’s second parallelizing transformation takes advantage of data parallelism in
an application. Individual pipeline stages are transformed to support processing mul-
tiple requests at the same time. Let R be the metamodel that defines the domain of
applications that support replication and let transformation REP : P→ R map a P repre-
sentation of an application to an R representation. The first step in REP is to transform
P Operators into R Operators.

An R Operator contains platform-independent implementations of two mechanisms.
The first is the data structures that map R Operator replicas to individual processing
elements. The second is an adaptation trigger that requests more processing resources
from the system when an R Operator becomes overwhelmed by its current workload.
The processing element mapping is, at this point, underspecified as we have not yet
finished pairing the application with a specific multi-? platform and we do not repli-
cate any R Operators until the workload requires it at runtime. We use the execution
time annotations in E (which have been copied into P) to create an adaptation trigger
implementation; we discuss our specific policy later in this section.

The next step in REP is to replace all Queues in the application with LD Queues
(the “LD” stands for load distributing). LD Queues implement a queue abstraction that
distributes incoming requests amongst the replicas of an R Operator according to a
policy (we use a policy based on flows and discuss alternatives later in this section).

The REP transformation is completed with the addition of a special R Operator
(Monitor) to the application graph. Monitor tracks resource usage across the application
and makes decisions to allocate more processing elements to R Operators that request
more resources. The Monitor is also underspecified because the amount of available
resources is not yet known.

Figure 4 shows the AttackDetector after REP is applied. REP maps PO1 to an
R Operator. Queues are replaced by LD Queues and Rep adds the Monitor R Operator.
Bidirectional communication is added between Monitor and PO1.



Policy Discussion. LD Queues distribute load among replicas using a policy based on
flow signatures of their respective R Operators. Specifically, we pin flows to replicas.
When a request is enqueued, an LD Queue uses the flow signature to generate a flow
identifier. The LD Queue sends all requests from a flow to the same replica. The value
of flow pinning is performance: load distribution policies are based on flow signatures.
Flow pinning guarantees that all lock acquisitions based on flow identifiers will never
block, thereby increasing RPA performance.7

If an R Operator has no flow signature attached to it, then the LD Queue uses a
simple round-robin scheme for load-distribution. If an R Operator comprises multiple
P Operators then we choose the Flow Signature from the A Operator with the largest
execution time. The reasoning here is that using that Flow Signature will reduce con-
tention for shared state the most within the R Operator if the R Operator is replicated
during runtime.

REP also adds an adaptation trigger to R Operators. This trigger uses the policy
of Kokku et al. [18]. The application has a maximum latency value that all requests
must observe. This latency is specified by an SLA. We split that latency amongst the
R Operators and determine the maximum amount of time a request can spend in an
LD Queue and not violate the delay guarantee. We translate this slack value to queue
depth using Kokku et al.’s methodology. If the queue depth violates this determined
value, the R Operator requests more resources.

An LD Queue repins flows when the number of processing elements assigned to a
R Operator changes. Our case studies have long-lived flows, so repinning was benefi-
cial. Other polices do exist for load distribution, and are dependent on workload [8,9]
and system properties [23].

Lagniappe presently hard-wires the above policy to implement REP : P→ R. A
different policy j would be implemented by different transformation, REPj : P→ R.
Choosing the best REP transformation is discussed later.

3.5 Code Generation (R2C Transformation)

Lastly, Lagniappe performs a simple M2T transformation to map an R model to a C++
module that is platform-independent. The binding of the application code to a particular
multi-? system implementation is done at runtime (which we discuss in Section 3.7).
The Lagniappe library allows us to generate platform-independent code as it acts as an
adaptor between the generated C++ module and the multi-? system.

3.6 System Models

Let M (for multi-? system) denote the domain/metamodel of system models that sup-
port fully parallel (pipelined and replicated) applications. An M model consists of four
entities: Elements, Channels, Mutexes, and Groups. Elements, short for processing ele-
ments, represent an abstraction that can support independent computation. They can be

7 When locks are acquired based on flow identifiers, and all requests from the same flow go to
the same replica, then two requests from the same flow will never be processed simultaneously
guaranteeing a replica will never block waiting to acquire a lock.



software threads (such as classic UNIX pthreads) or actual hardware contexts (such as
hardware threads of an embedded system). Channels allow data to flow between El-
ements. A Channel must support multiple queues per Element to allow load sharing
between R Operators (and the separate incoming ports of R Operators) assigned to the
Element. Mutexes provide a way to ensure consistency when multiple Elements execute
a replicated R Operator at the same time. Finally, Groups signify relative data sharing
costs amongst Elements (for example, the cores of one physical CPU are in a Group,
but the cores of two separate physical CPUs are not).

The Lagniappe translator maps an M model to a C++ module by the M2T trans-
formation M2C : M→C. By separating the modeling of the multi-? systems (M) from
that of the RPAs (A), RPA models are portable because they do not have to be modi-
fied for different multi-? systems. With changes to M models, we have run Lagniappe
applications on Linux, Mac OS X, and OpenSolaris.

3.7 Run-Time Binding of Applications to Platforms

To recap, Lagniappe uses transformation A2C to map a model a of an RPA to a C++
module ma and transformation M2C to map model m of a multi-? system to another
C++ module mm. Once ma and mm are compiled, they are linked with a module mbind
in the Lagniappe run-time library to produce a multi-? executable of a.

The library module mbind defines a generic way to map R Operators and LD Queues
to multi-? Elements and Channels at run-time. This mapping has two parts:

1. The Monitor R Operator now has a complete list of system resources and knows
which Elements have been assigned to which R Operators and which Elements are
free to assign during runtime when an R Operator requests more resources.

2. Locking calls in the R Operator modules are mapped to Mutex implementations.

4 Case Studies

We use two different applications to show the versatility and performance of Lagniappe:
1) a concrete version of our running AttackDetector example and 2) a fault-tolerant
replicated-state machine, called FT . AttactDector is now familiar; we next discuss FT .

4.1 The FT Application

FT is the part of a replicated-state machine that decides the order in which requests
are processed by a server (such as our AttackDetector application). We reengineered
a hand-coded state-of-the-art prototype of a replicated-state machine for fault-tolerant
servers [5]. Our motivation to do so was to show that Lagniappe is suitable for complex
applications as well as simple ones. Figure 5 shows a model of the FT application.

FT attaches to three separate networks: the clients submitting requests, the servers
that execute requests, and copies of FT on different machines that together decide upon
the execution order of requests. FT is part of a much larger distributed-application run-
ning across many machines that make up the abstraction of one always available and
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Fig. 5. The application model for the FT application.

correct server. Clement, et al. give a full description of their version of the applica-
tion [5]; we describe its key details below.

Requests from clients arrive at the orderProtocol A Operator, where they are sent
to the cleaner to have their digital signatures verified. If the signature is valid, the re-
quest is returned to orderProtocol.8 orderProtocol then initiates the actual agreement
protocol with FT copies on other machines. The application copies run a three-phase
protocol where the next message to be processed is proposed, accepted as a valid pro-
posal, and then voted upon. If enough FT copies agree, the message is marked as the
next message to be executed.

orderProtocol then sends the request to the logRequest where the request is logged
to stable storage for purposes of failure recovery and asynchronous network support.
After the write completes, logRequest sends the request onto the network to execution
servers that process the request. The logRequest also alerts the orderProtocol that the
logging has completed to disk.

Both the orderProtocol and the logRequest A Operators have persistent state, and
share a flow identifier that is the sequence number of the incoming requests. Different
from AttackDetector, FT does not have multiple flows in flight at the same time. The
entire purpose of the FT application is to serialize incoming requests from multiple
clients. FT assigns each request a sequence number that denotes that request’s place
in the order. The sequence number defines the only flow. The cleaner A Operator is
stateless and could be replicated during runtime. Given the specific requirements of the
FT application, each A Operator in Figure 5 is transformed into its own R Operator.

4.2 Experimental Results

Attack Detector. Figure 6(a) shows the results of scaling the number of clients for
AttackDetector using three different policies for forming P Operators and R Operators.
The x-axis is the number of simultaneous clients and the y-axis is average throughput.
The Service Operator performs work to simulate a significant web real-world web ser-
vice. Each client sends an HTTP request for a file and waits until it gets a response to
send another request. AttackDetector was executed on a 16-core server running Linux
2.6.16. The clients were distributed over several 4-core servers running the same version
of Linux.

8 While it may seem we could model the application as more of a pipeline, with the before-
cleaner and after-cleaner portions of orderProtocol as their own A Operators, both of these
A Operators would access the same state. As mentioned earlier, a key constraint of A models
is that different A Operators are not allowed to share state.
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Fig. 6. Experimental Results for AttackDetector and FT .

The results of three different policies are shown: (1) using the programmer-provided
Operators as P Operators, (2) using the P Operator heuristic with the first Operator’s
Flow Signature as the load-balancing policy, and (3) our P Operator heuristic with the
most expensive Operator’s Flow Signature as the load-balancing policy. The pipelined
version scales the worst as it introduces latency between the stages, unnecessarily in-
creasing the amount of time each request takes to process. Heuristic (2) scales better,
but as the client load increases the lock contention in the Service Operator takes its toll,
limiting the throughput gains from replication. Finally, the heuristic using the Service
Flow Signature (3) scales the best as it eliminates lock contention by using flow pinning,
but still replicates the execution taking more advantage of the available parallelism.

Figure 6(b) shows the benefit of pipelining an application when the Operators have
the “Do Not Replicate” flag set in the application model. We change the AttackDetector
application to have heavy-weight computation in both Classi f ier and Service as well to
set the “Do Not Replicate” flag in both. As the number of clients on the x-axis increases,



the pipeline version scales throughput better. This shows that when replication is not an
option, pipelining can still be beneficial.

Figure 6(c) shows how the properties of the underlying multi-? system affect the
choice of P Operators during the PIPE transformation. We strip the A Operators to
their minimum functionality so that overhead of the Channel implementation is sig-
nificantly more than any of the A Operators. In this case, pipelining introduces more
latency than that of the A Operators, and thus a better solution is to combine all the
A Operators into a single P Operator. Even in the situation where all A Operators
are marked “Do Not Replicate,” keeping them together is the better option when the
A Operator cost is small.

FT. Figure 6(d) summarizes our experiments with the FT application. For these experi-
ments we ran the application on an 8-core system running Linux 2.6.16. The clients and
servers ran on 4-core systems running the same version of Linux. We ran three copies
of the FT application, each on their own machine. The x-axis shows throughput in
kreqs/s and the y-axis shows latency in ms. We scale the number of clients as we move
along the line to push the systems to their maximum throughput. Lagniappe performs
comparably (within 15%) to the hand-coded and highly-optimized Java version.

We posit that this slowdown is acceptable. Our version is based on a C++ translation
of the original highly-tuned Java application, and the system implementation (threads,
queues, etc.) in the original were written specifically for the demands of the application.
These custom built mechanisms take advantage of deep application information, over-
whelming any performance advantage of switching from Java to C++. By separating
the application from the system code (unlike the way that the Java version is coded) it
is now trivial to upgrade to more efficient queueing or processing mechanisms with the
Lagniappe version.

The results here point towards us developing a next-generation MDE tool that works
with Java components. An extensible, Java-based tool would allow us to use the orig-
inal, supported FT implementation that is continually being updated and extended.
Furthermore, a Java-based tool would make supporting the application servers in this
domain (i.e. web services such as Hadoop [14]) possible as well as the predominant
language of these services is Java.

5 Extensibility of Lagniappe

We initially developed Lagniappe using a single PIPE and REP transformation. Our
case study experiences soon made it clear that alternatives were needed.

Instead of generalizing our existing PIPE transformation, bundling the decision of
which P→ R mapping to use and applying that mapping, we chose to separate these
concerns into two distinct mappings: ChoosePipe and PIPEi. ChoosePipe : (A,W,M)→
(A→ P) is a higher-order transformation that selects a particular PIPEi transformation
given an application model (A), workload (W ), and a multi-? system (M). If the ex-
ecution time of the pipelining infrastructure (queues, load-distribution, etc.) is more
than the overall execution time of the P Operators then it is not worth forming pipeline
stages, and a trivial (A→ P) map suffices. However, if a system were to offer a hard-



ware queueing mechanism, pipeline stages would incur small overhead relative to even
the fastest P Operators encouraging the use of yet another (A→ P) mapping.

Similar arguments apply to supporting multiple REPj transformations and the selec-
tion of an appropriate REPj by a ChooseRep : (A,W,M)→ (P→R) transformation. For
example, different workload, system, and application characteristics affect which load-
distribution policy is optimal [8,9,23]. We know that there can be many different PIPEi
and REPj transformations, and factoring out the selection of which transformation to
use makes it easier to extend Lagniappe in the future.

6 Related Work

Dataflow programming can be recast in today’s MDE technology as mapping models
of dataflow applications to executables. While we are aware of pioneering MDE work
in signal processing that is similar to RPAs [26], the most well-known work on par-
allelizing dataflow applications is largely outside the MDE literature [15]. Lagniappe
differs from these traditional coarse-grain dataflow models as its operators do not need
to wait for all its incoming ports to have data to execute. Also, RPAs can be expressed
by coordination languages [22], which also can be recast in an MDE setting.

Labview [21] and Weaves [12] are among the earliest environments for program-
ming RPAs on multi-threaded platforms (automatic pipelining and replication was not
a focus of these systems). Click [16] is the most well-known packet-processing pro-
gramming environment, allowing programmers to specify applications in terms of a
connected graph of elements. Click supports task parallelism [3], but not data paral-
lelism, and is written as a Linux module, tying it to a specific platform (while user-mode
Click exists, programmers are forced to use the kernel for serious development).

The SAI architectural style [10] provides an elegant metamodel for RPA construc-
tion. SAI supports both persistent and volatile state, but does not provide mechanisms
for creating an executable. Further, the application is taken as is, and no transformations
are applied to further extract parallelism out of the application.

Flux [1] is a programming environment in which the dataflow aspects of a system
are modeled separately from its request processing. Flux can use any multithreaded
software library for its underlying execution. Flux has pipelining parallelism and has
limited read-only replication parallelism. More recent environments, such as Aspen [29]
and Merge [19], mainly focus on side-effect free applications, ignoring the difficulties
that persistent state introduces to mapping and adaptation.

Stream environments (such as Streamit [28] and Streamware [13]) provide program-
mers with new languages that focus on stream processing. Stream programs are written
in a fashion similar to standard programming, i.e., no separation between coordina-
tion and execution. Stream compilers determine how to separate the functionality of
the program (usually with keyword help from the programmer) into tasks that are then
scheduled on the multi-? resources of the system. This is a much more fine-grained
approach to parallelism. Stream languages work well in signal-processing applications
and low-level network programs that are more computationally bound and traditionally
side-effect free.



Finally, the issue of extensibility is largely absent in all of the above works. Exten-
sibility is, we believe, the key to highly-adaptable and general RPA programming tools.
Lagniappe captures this extensibility in terms of higher-order transformations, selecting
transformations to use based on input models.

7 Conclusions

RPAs are an important class of applications in multi-? systems. Existing tools do not
adequately support the task and data parallelism that is inherent in RPAs. Further, some
tools force programmers into the operating system kernel for serious development. The
need for a better approach lead us to design and implement Lagniappe, a translator that
transforms simple models of RPAs to high-throughput multi-? executables. Lagniappe
addresses the major challenges of RPA programming: portability (RPA models are
portable in that they do not have to be modified for different multi-? systems), effi-
cient state access (load distribution policies are based on flow signatures, guaranteeing
that all lock acquisitions based on flow identifiers will never block), dynamic resource
assignment (accomplished by Lagniappe run-time libraries), and effective support for
task and data parallelism.

Although the current version of Lagniappe is a sophisticated model-to-C++-text
translator, we found it invaluable to explain the mappings of Lagniappe in a more
advanced MDE-style which uses multiple model-to-model transformations prior to a
simple model-to-C++-text transformation. Further our experience with Lagniappe re-
veals the importance of transformation extensibility: effective policies that map higher-
level models to lower-level models may be influenced by platform, workload, and
application-specific details. We have realized transformation extensibility through the
use of higher-order transformations, which can select appropriate mappings to use.

Two case studies were presented that show Lagniappe’s effectiveness. The first was
a custom-built RPA that detects generic network attacks. It demonstrated the efficacy of
our policy generation for parallelism. The second reengineered a hand-crafted state-of-
the-art replicated state machine. It demonstrated Lagniappe’s ability to support compli-
cated applications with minimal performance impact.

We now understand the transformations necessary to produce high-performance,
parallel RPAs automatically and mechanically. Lagniappe is our first step towards a
more general MDE tool for parallelizing RPAs on multi-? systems.
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