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Components are modular units (e.g., objects, modules, or programs) that interact by ex-

changing data. Two or more components interoperate when they exchange information

[16]. It is conservatively estimated that the cost of programming errors in component inter-

operability just in the capital facilities industry in the U.S. alone is $15.8 billion per year.

A primary driver for this high cost is fixing flaws in incorrect data exchanges between in-

teroperating components [17]. Interoperating components are difficult to design, build, and

evolve.

We propose an approach for the design and analysis of interoperating components.

The core of our approach is an abstraction in which foreign objects (i.e., objects that are not

defined in a host programming language) are abstracted as graphs and abstract operations

access and manipulate them. These operations navigate to data elements, read and write

data, add and delete data elements, and load and save data.

We offer different uses for the proposed abstraction. We build a framework called

Reification Object-Oriented Framework (ROOF) which uses our abstraction to reduce the
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multiplicity of platform API calls to a small set of operations on foreign objects that are

common to all platforms [48]. With ROOF, we hide the tremendously ugly, hard-to-learn,

hard-to-maintain, and hard-to-evolve code that programmers must write or generate today,

i.e., we simplified code of interoperating components, making it scalable and easier to write,

maintain, and evolve.

Our abstraction makes the task of static checking of interoperating components

tractable by reducing the multiplicity of platform APIs to a small set of operations on for-

eign objects that are common to all platforms. By introducing a simple extension to gram-

mars of object-oriented languages, we enable the collection of information about foreign

objects at compile time. Static type checking uses this information to find possible errors

that could otherwise be detected only at the runtime. We designed Foreign Object REifica-

tion Language (FOREL), an extension for object-oriented languages that provides a general

abstraction for foreign component access and manipulation based on ROOF. FOREL type

checking coupled with a conservative static analysis mechanism reports potential errors

when referencing foreign components.

While ROOF and FOREL offer new approaches for developing interoperating com-

ponents, many components are still written using low-level platform API calls. We use our

abstraction to design and build a tool called a Verifier for Interoperating cOmponents for

finding Logic fAults (Viola) that finds errors in components exchanging XML data. Vi-

ola creates models of the source code of components by extracting abstract operations and

computing approximate specifications of the data (i.e., schemas) that these components ex-

change. With these extracted models, Viola’s static analysis mechanism reports potential

errors for a system of interoperating components.
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Chapter 1

Introduction

Components are modular units (e.g., objects, modules, or programs) that interact by ex-

changing data. Components are hosted on a platform, which is a collection of software

packages. These packages export Application Programming Interface (API) functions through

which components invoke platform services to access and manipulate data. For example,

an eXtensible Markup Language (XML) [4] parser is a platform for XML data; it exports

API functions that different components invoke to access and manipulate XML documents.

Two or more components interoperate when they exchange information [16]. It is

conservatively estimated that the cost of programming errors in component interoperability

just in the capital facilities industry1 in the U.S. alone is $15.8 billion per year. A primary

driver for this high cost is fixing flaws in incorrect data exchanges between interoperating

components [17].

Software companies concentrate a lot of effort into software interoperability and

developing interoperable solutions for customers [3]. The problem of making software

1A capital facility is a structure or equipment which generally costs at least $10,000 and has a useful life of
ten years or more.
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interoperable is difficult and pervasive. After giving a talk at Intel, I was approached by a

manager who expressed his bewilderment at the complexity of this problem. He said that his

programmers managed to write software components that were correct with respect to their

specifications; however, these components did not function properly when integrated into

a system. With utter frustration he exclaimed: “Why do I get a chemical compound with

exact properties that I predicted from its constituent chemical components, and I cannot do

the same with a system of interoperating software components?”

There is no silver bullet for software interoperability. The proliferation of different

programming languages, operating systems and various virtual machines (e.g., CORBA,

EJB, and .Net), databases and semistructured data (e.g., HTML and XML) parsers exacer-

bates the problem of seamless integration of software applications. Partial advances can be

achieved through frameworks and static analysis techniques for finding errors in interoper-

ating components. This thesis is a step towards building interoperating components with

higher quality and at a lower cost.

1.1 A Motivating Example

We consider a primary mode of exchanging information for interoperating components by

using XML data. An example is shown in Figure 1.1 in which fragments of Java (Fig-

ure 1.1a) and C++ code (Figure 1.1d) for two respective components that interoperate using

XML data (Figure 1.1b-c). Block arrows show the flow of XML data between compo-

nents. Variations of these code fragments are used in many open source and commercial

applications. The Java component uses Xerces DOM parser API to read in and modify

XML data that is shown in Figure 1.1b. This XML data describes the attributes of a book

that include the author and title. The Java component modifies the structure of the XML

2



DOMParser parser = new DOMParser();
parser.parse( “book.xml” );
Document doc = parser.getDocument();
Element book = doc.getDocumentElement();
book.appendChild( authors );
NodeList authorList = book.getChildNodes();
for( i = 0; i < authorList.getLength(); i++ ) {

Node item = authorList.item( i );
if( item.getName() == getAuthorName() ) {

item.getParentNode().removeChild( item );
authors.appendChild( item );

}
}
new XMLSerializer().serialize( doc );

root->selectNodes(“book”,&list);
list->get_item((long)0, &book);
if( flag ){

book->selectNodes(“title”,&list);
list->get_item( (long)0, &node);

} 
else 
{

int i = getNodeSequence();
book->get_ChildNodes(&list);
list->get_item((long)i,&node);

}
char *value;
node->getNodeValue( &value );

<book>
<author>Name</author> 
<title>Some Title</title>

</book>

<book>
<authors>Single

<author>Name</author> 
</authors>
<title>Some Title</title>

</book>

a) c) d)

b)

Figure 1.1: Java (a) and C++ (d) components that interoperate using XML data (b) and (c).

component by adding the tag authors as a child element of the root element book and

moving the author element under the tag authors. The resulting XML data is shown

in Figure 1.1c.

The C++ component shown in Figure 1.1d reads in the XML data shown in Fig-

ure 1.1b-c, and depending on the value of the boolean variable flag, returns the title or

the name of the author of a book. The writer of this component assumes that a book has a

single author, and the structure of XML data corresponds to the one shown in Figure 1.1b.

When the Java component modifies this data, the C++ component code may throw a run-

time exception because the element author is not present in the XML data under the root

element book.

Currently, there are various projects that address this problem by making XML a

first-class data type at the language level (e.g., XJ, XLinq, Xact, and Cω) [49][29]. While

some success has been demonstrated, these projects have three major problems. First, they

impose additional type systems and new coding practices on programmers, and these addi-

tions serve as inhibiting factors for their adoption. Second, for these languages to be sound

3



(i.e., to ensure the absence of bugs if the compiler reports no errors) programmers should

not compute names of XML data elements at runtime. If names of data elements are not

known at compile time, then type systems cannot be applied to ensure the absence of errors

in interoperating components. This constraint limits programmers to a small class of appli-

cations. Third, given the large number of legacy systems that have been written using API

calls exported by XML parsers, it is unlikely that these systems will be rewritten any time

soon using these approaches.

In our example, schemas are not used to validate the XML data at runtime. If they

were, then exceptions would be thrown during runtime validation of XML data either in the

the Java component after it modified the data, or in the C++ component before it reads the

data. If XML data is not validated at runtime, then exceptions will be thrown when certain

API functions are called to access data elements. Either way, runtime errors occur whether

XML data is validated or not.

Suppose that parser validators are not used. It is possible for an XML document to

fail validation against a schema, however, components may never throw runtime exceptions.

It happens when different interoperating components do not access and modify the same

data elements (and do not validate XML data with its schemas). For example, the Java

component modifies the element author by moving it as a child of the inserted element

authors, and the path to the element title remains the same. Even though the XML

data shown in Figure 1.1b and Figure 1.1c are different, the C++ component will not throw

a runtime error when the value of its variable flag is true returning the title of the book.

Even with this simple example it takes a considerable amount of time to find errors.

Several factors are involved: knowing the structure of the input data and how changes made

by components affect it, using platform API calls correctly and translating API calls at com-
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pile time into changes that would be made to XML data, and knowing the order in which

components execute. The temporal dependency between the order of component execution

and the visibility of errors makes catching errors especially difficult. If the C++ component

executes before the Java component, then it would operate on the correct XML data shown

in Figure 1.1b. However, if the Java component executes before the C++ component, then it

would modify the data into an instance shown in Figure 1.1c, and thus make it incompatible

for the C++ component. These factors add to the complexity of interoperating components,

and make it difficult to catch errors at compile time.

1.2 A Model of Interoperability

We use a basic model shown in Figure 1.2 throughout this thesis. In this model, J and C are

components (say a Java and C++ components respectively) that interact using XML data

D2. Component J reads in data D1, modifies it, and passes it as data D2 to the component C.

Data is described using schemas, which are sets of artifact definitions in type systems that

define the hierarchy of elements, operations, and allowable contents. Component C reads in

the data D2 expecting it to be an instance of some schema S. Since J outputs data D2 before

C accesses it, concurrency is not relevant. However, because of design or programming

errors, the component J outputs the data D2 as an instance of a different schema S’, which

is not explicitly stated in any design document. Since S’ is different from S, a runtime

J D2
modify CD1

read read

Figure 1.2: A model of component interoperability.
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error may be issued when C reads in D2.

There are different reasons why programmers make mistakes when they write the

components J and C. Based on our participation in large-scale projects, we observe that

programmers often make wrong assumptions about schemas. Given that many industrial

schemas contain thousands of elements and types, it is easy to make mistakes about names

of elements and their locations in schemas. Other source of errors lie in the complexity of

platform API calls that programmers use to access and manipulate XML data. XML parsers

export dozens of different API calls, and mastering them requires a steep learning curve.

Often, programmers lack the knowledge of the impact caused by changing the code

of some component on other components that interoperate using XML data. This lack of

knowledge is an effect of the Curtis’ law that states that application and domain knowledge

is thinly spread and only one or two team members may possess the full knowledge of a

software system [37]. The effect of this law combined with the difficulty of comprehending

large-scale XML schemas and high complexity of platform API calls result in components

producing XML data that is incompatible for use by other components.

Another source of errors is the disparity in evolving XML schemas and components.

Database administrators usually maintain schemas, and programmers maintain components

that interoperate using XML data that should be instances of these schemas. If a database

administrator modifies some schemas and does not inform all programmers whose compo-

nents are affected by this change, then some components will keep modifying XML data

according to the obsolete schemas.
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1.3 A Big Picture

A big picture of this thesis is shown in Figure 1.3. The core of our approach is an ab-

straction in which foreign objects (i.e., objects that are not defined in a host programming

language) are abstracted as graphs and abstract operations allow programmers to access

and manipulate data. These operations are for navigating to data elements, reading and

writing data, adding and deleting data elements, and loading and saving data, designated as

Navigate, Read, Write, Add, Delete, Load, and Save respectively. We use these

abstract operations as a basis for the framework and bug finding approaches proposed in

this thesis.

This thesis offers two uses for the proposed abstraction. First, we build a frame-

work called Reification Object-Oriented Framework (ROOF) which uses our abstraction to

reduce the multiplicity of platform API calls to a small set of operations on foreign ob-

jects that are common to all platforms [48]. With ROOF, we hide some of the tremendously

ugly, hard-to-learn, hard-to-maintain, and hard-to-evolve code that programmers must write

or generate today, i.e., we simplify code of interoperating components, making it more scal-

able and easier to write, maintain, and evolve.

Second, our abstraction makes the task of static checking of interoperating compo-

nents tractable by reducing the multiplicity of platform APIs to a small set of operations

on foreign objects that are common to all platforms. By introducing a simple extension

to grammars of object-oriented languages, we enable the collection of information about

foreign objects at compile time. This information is used to perform static type checking

in order to determine possible errors that could otherwise be detected only at the runtime. I

designed Foreign Object REification Language (FOREL), an extension for object-oriented

languages, that provides a general abstraction for foreign component access and manipu-
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lation based on ROOF. FOREL type checking coupled with a conservative static analysis

mechanism reports potential errors when referencing foreign components.

While ROOF and FOREL offer new approaches for developing interoperating com-

ponents, many components are still being written using low-level platform API calls. It is

not likely that millions of lines of legacy software would be replaced in the near future using

ROOF and FOREL (although we hope that it will!). In the meantime, we use our abstrac-

tion to design and build a tool called a Verifier for Interoperating cOmponents for finding

Logic fAults (Viola) that finds errors in components exchanging XML data. Viola creates

models of the source code of components by extracting abstract operations and computing

approximate specifications of the data (i.e., schemas) that these components exchange. With

these extracted models, Viola’s static analysis mechanism reports some potential errors for

a system of interoperating components.

1.4 Scalability

Quality of the code of interoperating components and their scalability are critical for large-

scale applications. Weaving interoperability into the fabric of enterprise-level architec-

tures often decreases the scalability of the resulting system. In this section, we analyze the

sources of nonscalability for systems of interoperating components.

We extend the model of component interoperability shown in Figure 1.2. Consider

an architecture for systems of interoperating components as shown in the directed graph

in Figure 1.4. Graph nodes correspond to components P1, P2, . . ., Pn that are written in

different languages and may run on different platforms. Each edge Pi → Pj denotes the

ability of the component Pi to access objects of some other component Pj. Pi →Pj is usually

implemented by a complex API that is specific to the language of the calling program Pi,
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Abstraction

Figure 1.3: A big picture of this thesis.
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the platform Pj runs on, and the language and platform Pj to which it connects. (In fact,

there can be several different tools and APIs that allow Pi to access objects in Pj). Note that

the APIs that allow Pi to access objects in Pj may be different than the APIs that allow Pj

to access objects in Pi.

The complexity of a system of interoperating components is approximately the

number of edges in Figure 1.4 that it uses. That is, when the number of edges (i.e., platform

APIs needed for interoperability) is minuscule, the complexity of a system of interoperating

components is manageable; it can be understood by a programmer. But as the number of

edges increases, the ability of any single individual to understand all these different APIs

and the system itself rapidly diminishes. In the case of clique of n nodes (Figure 1.4), the

complexity of a system of interoperating components is O(n2). This is not scalable. Of

course, it is hard to find actual systems that have clique architectures. In fact, people want

them, but these systems are too complex to build, maintain, and evolve.

A large-scale system of interoperating components is a system where the number of

edges (API calls) is excessive. Such systems are notoriously difficult to develop, maintain,

and evolve. Current approaches do not support large-scale systems of interoperating com-

P1

P2

P3

P4

…

Pn

Figure 1.4: Architecture of a system of interoperating components.
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ponents well. They are often limited to specific languages (e.g., typical CORBA platforms

allow Java, C++, etc. programs to interoperate, but there are no facilities for accessing

HTML or XML data or objects in C# programs). This leads to a proliferation in tools and

their API calls, which noticeably increases the accidental complexity of the resulting code

[30]. The loss of uniformity in the way programs are written renders resulting systems

extremely difficult to maintain and evolve.

1.5 Safety Properties

Type checking algorithms enable proofs of the absence of certain program behavior stati-

cally [73]. However, there are many situations where the static type checking of interop-

erating components is not attempted, resulting in the run-time discovery of errors. For ex-

ample, programmers may use platform API calls incorrectly in the component source code,

and modify XML data so that it becomes incompatible for use by some other components.

Currently, no tool checks interoperating components for potential flaws in their source code

that lead to incorrect data exchanges and runtime errors, even when components are located

within the same application.

The problem of mismatch between XML data and schemas is typically addressed

by using schema validators that are parts of many XML parsers. In our model shown in

Figure 1.2, an XML parser can validate that the data D2 is an instance of the schema S

when J produces this data. If the data is not an instance of this schema, then the parser

throws a runtime exception. Obviously, it is better to predict possible errors at compile time

rather than to deal with them at runtime.

In reality, the situation is even more complicated. Using schemas for validating

XML data is often not attempted because it degrades components’ performance [74][67],
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and it even leads to throwing exceptions when there may not be any runtime errors. Suppose

that the component J deletes all instances of some data element thus violating the schema S

that requires at least one instance of this element be present in D2. If either of components

J and C validates this incorrect data D2 against the schema S, then a runtime error will be

issued. However, when executed, the component C may never attempt to access the deleted

data element, and therefore, no exception will be thrown if the validation step is bypassed.

It is important to know what data elements components J and C access and modify, and if

no data element accessed by C is modified by J, then components J and C may still interact

safely even if the data D2 is not an instance of the given schema S.

Although it is known in advance that components exchange data, it is not clear

how to detect at compile time operations that lead to possible runtime errors. Using API

calls exported by XML parsers remains the primary mode of XML access and manipula-

tion. Various language extensions and type systems were proposed to address this problem

[29][59][49]. Some of these approaches require programmers to map XML types to types

from the proposed type systems, and that adds complexity to developing interoperating

components. Other approaches propose type systems that are not sound or have constraints

(e.g., structural modification to XML data are prohibited) that reduce their practicality. It

is not clear whether these approaches are suitable for use in commercial or open source

projects.

Many errors can be avoided if certain properties hold in components that inter-

change XML data. These properties are main and secondary safety properties. Given in-

teroperating components J and C producing and exchanging data D2 at runtime which is an

instance of the schema S, the main safety property (MSP) is defined as ensuring that D2 is

an instance of S.
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The secondary safety property (SSP) is defined as the same data elements in S

should not be accessed by one and modified by some other interoperating components pro-

vided that specifications are not used at runtime to validate XML data. Since the MSP

and SSP ensure stronger guarantees that no runtime exception will be thrown, using XML

parsers to validate data against schemas is irrelevant to a problem of finding errors at com-

pile time.

1.6 Contributions

The contributions of this dissertation are the following:

Abstraction. We propose an abstraction in which foreign objects (i.e. objects that are not

defined in a host programming language) are abstracted as graphs and abstract oper-

ations allow programmers to access and manipulate data. These operations navigate

to data elements, read and write data, add and delete data elements, and load and

save data. These abstract operations are implemented in components using low-level

platform API calls. We use these abstract operations as a basis for the framework and

bug finding approaches proposed in this thesis.

Reification Object-Oriented Framework (ROOF). We define a framework based on the

proposed abstraction that presents a single API for component interoperability. In

ROOF we implement abstract operations by dynamically converting foreign objects

into first-class host language objects so that we enable access to and manipulation of

their instances. This is the concept of reification. Reification by reflection eliminates

the need for generating potentially huge numbers of conversion classes, and allows

us to access and manipulate semi-structured data that have no schemas.
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Language Extension. We present Foreign Object REification Language (FOREL), an ex-

tension for object-oriented languages that enables programmers to use abstract oper-

ations to enable interoperating components to exchange information. FOREL type

checking coupled with static analysis algorithms enable developers to reason more

effectively about interoperating components.

Bug Finding Tool. In order to ensure safety properties for interoperating components, we

developed a Verifier for Interoperating cOmponents for finding Logic fAults (Viola)

that finds some errors in components exchanging XML data. Viola helps test engi-

neers to validate reported errors. Viola is a helpful bug finding and testing tool whose

static analysis mechanism reports potential errors for a system of interoperating com-

ponents.

Empirical Validation. We implemented the ROOF framework, a Viola bug finding tool,

and a FOREL compiler. We applied ROOF to a real-time component-based semi-

conductor overlay analysis and control system as well as conducted controlled ex-

periments to evaluate how effective ROOF is. We tested Viola and FOREL on open

source and commercial systems, and we detected a number of known and unknown

errors in these applications with good precision thus proving the effectiveness of our

approaches.

1.7 Thesis Statement

Our thesis can be stated as follows:

An effective and practical approach can be used to design, analyze, and implement

systems of interoperating components, and this approach can lead to lightweight and prac-
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tical frameworks and tools for creating large-scale systems of components and ensuring

their safety properties.

The next chapter describes the ROOF and its implementation, and presents results

of its evaluation. Chapter 3 presents FOREL, describes its type system, implementation,

show the proof of the soundness of the FOREL type system, and give our type checking

algorithm. Chapter 4 presents Viola, shows its architecture, and describes its implemen-

tation. Chapter 5 compares our approaches to related work, and Chapter 6 concludes this

dissertation by discussing our solutions and mapping future work.
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Chapter 2

Reification Object-Oriented

Framework (ROOF)

Building software systems from existing applications is a well-accepted practice. Appli-

cations are often written in different languages and provide data in different formats. An

example is a C++ application shown in Figure 1.1a that parses XML data, and passes the

data to an Enterprise JavaBean (EJB) program. We can view these applications in differ-

ent ways. We can view them as Components-Off-The-Shelf (COTS) integration applications

where a significant amount of code is required to effect that integration. Or we can view

them as instances of architectural mismatch, specifically as mismatched assumptions about

data models [43]. Or we can view them, as we do in this thesis, as instances of interoperable

[28] components that manipulate data in foreign type systems (FTSs) i.e., type systems that

are different from the host language in which a component is written.

We showed in Section 1.4 that the complexity of a system of interoperating compo-

nents with a clique-like architecture is approximately the number of edges in Figure 1.4 that
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it uses. Object-oriented researchers have developed frameworks as a technique for elimi-

nating this kind of complexity. A framework is an abstraction that underlies a number of

similar programs, and is represented by a set of abstract classes. A particular implementa-

tion of this framework is a set of concrete classes that customizes the frameworks abstract

classes for a designated application. The benefit of a framework is that it defines a single

platform that all programmers can use; so instead of having O(n2) possible API platforms

for achieving component-to-component communication, a single, standard, and clear API

is used 1. New framework implementations are easy to add, and consequently, this is a

scalable approach.

In this chapter, we define a framework that presents a single API platform for the

interoperability of components in a software system. Our idea is to abstract instances of

an FTS as a graph of objects and to provide language-neutral specifications based on path

expressions, coupled with a set of basic operations, for traversing this graph to access and

manipulate its objects. We implement traversals by dynamically converting foreign types

into first-class host language objects so that we enable access to and manipulation of their

instances. This is the concept of type reification. Reification by reflection eliminates the

need for generating potentially huge numbers of conversion classes, and allows us to ac-

cess and manipulate semi-structured data that have no schemas. In this respect, we claim

it is superior to existing approaches because it does not require programmers to generate

potentially large number of corresponding types, explicitly define common interfaces us-

ing an IDL language, or use different low-level API platforms.We call our approach the

Reification Object-Oriented Framework (ROOF).

1We distinguish between platform APIs and API calls. The latter are methods exported by the former.
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2.1 Principles of Interoperability

A framework for the analysis and design of interoperable systems is given in [55][80]. This

framework has two objectives. First, developers should not be constrained in using the type

system provided by the host programming language. For example, if a programmer wants

to share a Java object, then (s)he should be able to do it directly in Java without resorting to

some other type system such as an Interface Definition Language (IDL). Second, the design

of interoperating components should not be affected by a decision to share them. It means

that the structure of classes and their interfaces should not be a function of sharing their

instances.

Both these objectives define a foundational principle in the design of interoperating

components, called seamlessness [80]. This principle states that developers of systems of

interoperating components need not be aware of language differences between interoper-

ating components. For example, interoperating components that include special platform-

dependent functions that facilitate interactions between the host and foreign type systems,

are not seamless. Violations of this principle of seamlessness lead to complex and nonuni-

form code that is difficult to understand and reason about and subsequently difficult to

maintain and evolve.

When analyzing and designing interoperating components it is equally important to

address three additional requirements. The first is naming. Sharing objects among FTSs

often requires elaborate name management mechanism. Suppose that an XML type name

(e.g., friend or union) is a keyword in a host programming language, for example, C++.

Then this XML type name cannot be used directly when defining a corresponding class in

C++. Even worse, if we have an XML and HTML schemas that have identical type names,

then what is a naming scheme that resolves this ambiguity when defining corresponding
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types to C++? Serious effort is dedicated to offering effective name management strategies,

however, most carry a significant overhead.

A second requirement is the time when a decision is made to share objects. The

decision time is defined by three intervals: earliest time when a decision to exchange in-

formation is made before any component is written, common time of making an informa-

tion sharing decision when only a part of an interoperating component is developed, and

megaprogramming time when information sharing decision is made after the entire system

is developed. Clearly, allowing programmers to make components share information at the

megaprogramming stage is both attractive and quite difficult because it requires changing

existing code.

The third requirement is type checking of shared and native objects to ensure that

they have compatible types. Different approaches that provide effective type checking can

only be used at the earliest stage. Thus, the design and development of interoperating

components is the science of trade-offs among objectives and concepts described above.

2.2 Our Solution

ROOF is designed in light of principles for systems of interoperating components described

in Section 2.1. The goals of our solution is to enable easily maintainable and evolvable inter-

operability by removing the need for elaborate name management solutions and allowing

programmers to make decisions about exchanging information at the megaprogramming

stage. The maintainability and evolvability of interoperating components are achieved by

using foreign components by their names as they are defined in FTSs thereby eliminating

the need for creation of isomorphic types in a host programming language and enabling

programmers to exchange information at the megaprogramming stage. We also provide a
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comprehensive mechanism for type checking that allows programmers to verify semantic

validity of operations on foreign types both statically and dynamically, which is described

in Chapter 3.

Our solution is based on three assumptions. First, we deal with recursive type sys-

tems. Even though it is possible to extend our solution to higher-order polymorphic types,

such as dependent types [82], we limit the scope to recursive types and imperative languages

to make our solution clearer. Second, we rely on reflection mechanisms to obtain access

to FTSs. Third, the performance penalty incurred by using reflection is minimal since the

low-level interoperating mechanisms such as transmission, marshaling and unmarshaling

network data has the largest overhead common to all interoperable solutions.

2.3 Type Graphs

Schemas can be represented as graphs whose nodes are composite types, leaves are primi-

tive or simple types, and parent-child relationships between nodes or leaves defines a type

containment hierarchy [21]. In order to operate on such graphs, a programmer must be

able to reach nodes at arbitrary depth. This is accomplished via path expressions that are

queries whose results are sets of nodes. A path expression is a sequence of variable identi-

fiers or names of subordinate (or containment) types that define a unique traversal through

a schema.

Suppose we have a handle to an object that is an instance of a foreign type. We

declare this handle as an instance R of a ReificationOperator class shown in Fig-

ure 2.1. R enables navigation to an object in the referenced type graph by calling its method

GetObject with a path expression as a sequence of type or object names t1, t2, . . ., tk as

parameters to this method: R.GetObject(t1)...GetObject(tk).
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class ReificationOperator
{

public:
ReificationOperator &GetObject( string t );
int Count( void );

};
...
ReificationOperator R;

Figure 2.1: Declaration and instantiation of ReificationOperator class in C++.

Consider a schema that describes the organizational structure of a company shown

in Figure 2.2. It is a directed graph where each node is named after an organizational entity

within a company and edges describe the subordination of one entity to the other. Each

node has attributes shown as line connectors with filled circles followed by the names of

the attributes. The CEOs subordinate is the CTO who in turn supervises two departments

shown as Test and Geeks. An instance of this schema may be given in existing markup

languages such as HTML, XML, or SGML.

We simplify the notation for the ReificationOperator class by introducing

array access operators [] that replaces the GetObjectmethod. For example, if R denotes

an instance of the schema shown in Figure 2.2, we can write the C++ program that counts

the number of employees in the Geeks department as:

int n = R["CEO"]["CTO"]["Geeks"].Count().

The method Count returns the number of child nodes under a given path. Such

notation is useful since a single line of lucid code is used to replace a lot of hand-written or

generated code. No additionally defined types and operations are required.

Path expressions symbolize simplicity and uniformity. These are the properties

that we inherit from path expressions and they enable programmers to uniformly navigate
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Figure 2.2: A schema of the organizational structure of a company.

through instances of foreign types. Further, since type names are used as they are defined in

foreign schemas, there is no need to redefine them again in the host language. That is, we

use the existing names of foreign types; we do not create corresponding types in the host

language! We will show how this is accomplished shortly.

FTS-based components often change each other’s structures. A common example

is a C++ application that changes the structure of an XML document. These modifications

are complex and require carefully crafted software called transformation engines. However,

since all type systems can be represented as graphs, these modifications can be reduced

to transformations on graph structures. Thus, we reduce the task of manipulating FTS

structures to that of manipulating graphs. A comprehensive set of basic operations used to

manipulate FTS graph structures includes copying or moving a node to its new location,

appending and removing a node, and logic set and relational operations on graphs.

By implementing these operations using a standardized notation we achieve unifor-

mity of FTS-based code. Indeed, interoperating components written in different languages
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that perform the same operation on the same schema will look the same. This very im-

portant property of uniformity enables effective program evolution and maintenance of and

automated reasoning about systems of interoperating components.

2.4 Reification

In this section we show how to reify types. We first explain reification concepts, then their

abstraction as reification operators, and then present detailed notes on implementation.

2.4.1 Reification Concepts

Reflection. Reflection is a powerful and common mechanism in contemporary program-

ming languages and programming infrastructures (e.g., reflection in virtual machines). Re-

flection exposes the type of a given object; it reveals the public data members, method

names, type signatures of method parameters and results, and superclasses (if any) of an

object’s class. Further, reflection enables a program to invoke methods of objects whose

classes were not statically known at the time the program was compiled. It also allows

a program to navigate a graph of interconnected instances without statically knowing the

types of these objects. All of this information and power is available to a program at run-

time.

Connectors. A reification connector (RC) is an example of an architectural connector

[72][71]; it is a communication channel between a host language application and an ap-

plication with a foreign type system. At the host language end, there are one or more

classes corresponding to reification classes which accepts navigation instructions starting

from a given foreign object. These instructions are transmitted via the RC to one or more

classes in the foreign application, which executes these instructions and returns a reference
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to the resulting object. This is similar to the way methods of remote objects are executed in

CORBA and the result is returned to the calling language. The difference is that there is no

need to define explicit CORBA interfaces between the host (or client) application and the

foreign (or server) application. Internally, we use a low-level API calls to transmit names

of object attributes, names of methods, and primitive values to execute in the foreign appli-

cation, and use reflection (on the foreign application side) to invoke the appropriate method

call.

Combining. Using reflection and reification connectors, a host program in one type system

can navigate a graph of objects in a foreign type system. Suppose we are given a foreign

object x and a path expression x.a.b. That is, starting with foreign object x, we access

its “a” attribute to obtain some object y, and then we access the “b” attribute of y, as the

result of the path expression. Given x, we transmit “a” to the foreign executable. Using

reflection, we can validate that “a” is indeed a public member of x, and by invoking the

appropriate get method (or simply variable access), we can access the “a” value of x. We

return the handle of the resulting object y back to the host language, and repeat the process

for attribute “b”. This is the essence of our implementation.

2.4.2 Reification Operators

We mentioned in the previous section that a host application has a set of classes that hide

the details of our implementation. In fact, the handle to a foreign object is the object R

of Figure 2.1. R implements a reification operator (ROPE) that provides access to objects

in a graph of foreign objects. We give all ROPEs the same interface (i.e., the same set

of methods) so that its design is language independent; reification operators possess gen-

eral functionality that can operate on type graphs of any FTS. By implementing R as an
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object-oriented framework that is extended to support different computing platforms, we

allow programmers to write interoperating components using a uniform language notation

without having to bother about peculiarities of each platform. That is, for Java we have

separate extensions of the framework that allow Java programs to manipulate C# objects,

another extension to manipulate XML documents, etc. Similarly, for C# we have separate

extensions of an equivalent framework that allows C# programs to manipulate Java objects,

another extension to manipulate XML documents, etc.

We write ROPEs as RIJ, where the subscript I denotes a component to which for-

eign objects are reified from the component denoted with the subscript J. Reification oper-

ators are nonsymmetrical, that is, reifying types from FTSI to FTSJ is not the same as the

converse. ROPE has the transitive property, that is by applying ROPE RIJ to an instance of

FTSI we reify it to the FTSJ. Then by applying ROPE RJK to an instance of FTSJ we reify

it to the FTSK. The same result is achieved by applying ROPE RIK directly to an instance

of FTSI. This property is useful since it enables the composition of reification operators to

obtain a new ROPE. Finally, an identity ROPE reifies FTS types to the same type system,

and interestingly, this function is useful. Consider a Java program that needs to analyze its

own structure. The identity ROPE enables such a reflective capability and extends it to all

systems of interoperating components.

2.4.3 Reification of Methods

So far, we have described how host programs can navigate a graph of foreign objects. But

in addition to navigation, we would like to invoke methods on foreign objects as well.

In order to reify methods, we instruct ROPE to set all parameters for a desired

method and execute it in its native type system, and then reify the returned result.
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We propose a reification model where operators << and >> set and get values of

reified type instances, and constitute the basis for operations on reified types. In the notation

shown below, we use parentheses to specify attribute name ar of type tk.

RIJ[tk]. . .[tk](ar ) << EJ

RIJ[tk]. . .[tk](ar ) >> EJ

The operation << takes the value of a variable EJ and instructs the ROPE to set the

particular attribute of a foreign object to this value; conversely the operation >> instructs

the ROPE to obtain the value of the particular attribute of a foreign object and assign it to

some variable EJ.

Consider setting the Salary attribute of the CTO to the value of the integer salary

and retrieving the value of the Bonus attribute of the type CEO into the variable bonus

for an instance of the organizational schema shown in Figure 2.2.

int salary = 10000, bonus;

R["CEO"]["CTO"]("Salary") << salary;

R["CEO"]("Bonus") >> bonus;

Our notation can also be used to reify methods in FTSs. Since a method has a unique

type determined by its name, its signature types, and its return type, we treat a method name

as a type tk and its parameters as a set of attributes ar. We set the value for each parameter

using the operation <<. Then by applying the ROPE to the typed operation tk we execute

it. The result of the execution is an instance of some type that is stored in some internal

representation of the reification operator.

A fragment of C++ code that provides an example of reification of a Java method is

shown in Figure 2.3. A declaration for the reified Java method is shown in Figure 2.4.

We declare ROPE rj that reifies Java type instances to C++. The method mthd
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int j, rv;
string s;
RO_Java rj;
.....................................
rj[SomeClass][mthd](ip) << j;
rj[SomeClass][mthd](sp) << s;
rj[SomeClass][mthd] >> rv;

Figure 2.3: Example of a method reification.

declared as a member of Java class SomeClass has two parameters. We navigate to the

method mthd and set the values of its parameters using the attribute semantics. Then we

call this method, retrieve the return value and set it to the local variable rv.

2.4.4 Implementation Details

Here is how a reification operator RO Java that reifies Java types to C++ programs can be

created. A C++ program uses low-level API calls to invoke a JVM and load it in the memory

as shown in Figure 2.5 with a block arrow. Then, using the Java Native Interface (JNI)

API calls: FindClass, GetStaticMethodID and CallStaticVoidMethod. The

JVM loads then a Java class, executes it, and returns the results of its execution to the C++

program. The interaction between the JVM and the Java class is shown in Figure 2.5 with

dashed arrows.

class SomeClass
{

public:
int mthd( int ip, String sp ) {...}

}

Figure 2.4: Declaration of a Java class.

27



C++ 
program

Java class

JVM

Low-level API

Figure 2.5: A C++ program interacting with a Java class via JVM low-level API.

An example of ROPE RO Java is implemented as a C++ class declared and in-

stantiated in Figure 2.6. For example, if we want to load a Java class called j.class and

execute its method A with the parameter In set to integer value 5, we write the statement

below:

rj.Load("j").GetMethod("A").SetParam("In", 5);

This notation is different from the one shown in Figure 2.3 because Java does not al-

low programmers to overload operators, specifically, [] and (). Because of this limitation,

the operator [] is replaced with the GetMethod method and the operator () is replaced

with the SetParam method. Other languages (e.g., C++ and C#) allow us to overload the

class RO_Java
{

public:
RO_Java &Load( string name );
RO_Java &GetMethod( string name );
RO_Java &SetParam( string name, int v );

};
RO_Java rj;

Figure 2.6: Declaration and instantiation of ROPE RO Java.
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Figure 2.7: A Java program interacting with a C++ library via Java Native Interface (JNI).

bracket and parentheses operators, and thus use the default notation shown in Figure 2.3.

Now consider a ROPE RO CPP that reifies C++ types to Java. It is an inverse

operator to RO Java. Using JNI, an instance of RO CPP in a Java program invokes a C++

library and executes methods as shown in Figure 2.7. Even though the implementation of

these operations is different from the ones of RO Java, the class declaration is pretty much

the same as shown in Figure 2.8.

The implementation of RO Java is based on the concept of a shared stub [62], a

native method that dispatches to other native functions and is responsible for locating and

loading libraries, passing arguments, calling native functions, and returning results.

Finally, consider a ROPE RO XML that reifies XML types to C++. Using a Doc-

class RO_CPP
{

public:
RO_CPP Load( string name );
RO_CPP GetMethod( string name );
RO_CPP SetParam( string name, int v );

};

Figure 2.8: Declaration and instantiation of ROPE RO CPP.
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Figure 2.9: A C++ or a Java program interacting with an XML data instance using DOM.

ument Object Model (DOM) XML parser low-level API we load and parse XML data as

shown in Figure 2.9. We can access any type or collection of types and change the structure

of this data. We can also execute any method defined in an XLS document associated with

any XML type. In this respect a declaration and implementation of RO XML does not differ

fundamentally from RO Java or RO CPP shown in Figure 2.8 and Figure 2.6 respectively.

The inverse ROPE to RO XML that allows an XML instance to access C++ programs

can be implemented as a C++ component that is loaded via XSL commands by a DOM

parser and serves as a bridge between XML and C++ FTSs.

At this point we can introduce a generic reification operator GenericROPE shown

in Figure 2.10 that uses [] and () operator overloading to provide uniform syntax and

semantics to FTS-based programs. The operator [] allows programmers to access typed

objects in FTS programs, for example, XML types and Java member variables and methods,

and the operator () provides access to type attributes, for example, method parameters.

Using this syntax we can rewrite the statement that loads Java class called j.class and

execute its method A by setting its parameter In to integer value 5 as following:

rj[j][A](In) << 5;

The generality of ROPE GenericROPE operator enables us to introduce a plat-
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form that uses this operator as an abstract parent class to implement different ROPEs de-

rived from it. This way we provide uniformity to programmers and remove the use of

low-level API calls thereby reducing complexity of systems of interoperating components.

2.4.5 Organization of ROOF

ROOF targets FTS-based applications and provides a reification model. This model is in-

tended for programmers writing interoperating components. Unlike many existing frame-

works that require a steep learning curve to understand the semantics of hundreds or even

thousands of classes and collaborations among them, ROOF effectively eliminates most of

the classes and collaborations that programmers would otherwise have to develop or learn.

ROOF reifies types by providing a framework that is a collection of reusable classes

that implement the following functionality:

• establish a channel between FTSs. This channel may be different from interprocess

communication channels because it uses a low-level API to initialize a FTS environ-

ment and establish denotation of its control and data structures;

• retrieve a collection of instances of a desired type;

class GenericROPE
{

public:
GenericROPE &operator[]( string name );
GenericROPE &operator()( string name );
GenericROPE &operator<<( int i );

};
GenericROPE ro;

Figure 2.10: Declaration and instantiation of GenericROPE.
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• retrieve a specific instance of the given type;

• set and retrieve values from an instance of the given type;

• invoke operations on type instances, and

• implement polymorphic/overloaded operations on the structures of interoperating

components.

Our goal in designing ROOF was to reduce the number of interfaces exposed to

programmers to a bare minimum. A single class for each subscript I and J of reification

operator RIJ implements operations on reified type instances and structures of FTS-based

applications.

A layered view of the reification framework is shown in Figure 2.11. Applications A

and B are based on FTSs I and J respectively. For example, A may be based on C# and B is

an XML instance. The access to these applications and FTSs is provided by low-level API

calls, some C# API and some XML parser API respectively, that provide both control and

reflective capabilities. ROOF unifies FTSs by providing uniform polymorphic operations

that are based on their low-level APIs. Foreign Object REification Language (FOREL) is

a user interface provided by ROOF to enable programmers to write interoperable compo-

nents. FOREL is presented in Chapter 3.

2.5 Evaluation of ROOF

Informally, the research question that we address is, “How does ROOF compare to lower-

level API libraries?” More formally, we wish to evaluate the following hypotheses:

Cost: Using ROOF decreases the development time for interoperating components.
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Quality: Using ROOF decreases the number of bugs in components;

Performance: The performance of programs written using ROOF does not differ signifi-

cantly from programs written using low-level API libraries.

To test our hypotheses we designed a controlled experiment, and we applied ROOF

to a commercial real-time component-based semiconductor overlay analysis and control

system. A controlled experiment is described in Section 2.5.1, and the experience with

using ROOF for a commercial system is described in Section 2.5.2.

2.5.1 Controlled Experiment

We conducted a controlled experiment to evaluate ROOF at the department of computer sci-

ence of the Texas State University at San Marcos. As part of a graduate course on software

engineering, students were asked to write C++ programs that accessed and manipulated

XML data. We divided students in two groups, each consisted of five students. Students

from the first group were given thirty-minute presentation on how to use ROOF, and stu-

dents from the second group were given two-hour lecture on how to use Xerces API calls.

The difference in the length of instruction lectures is the result of the complexity

Foreign Object REification Language (FOREL)

ROOF

Type system I Type system J

Low-level API library Low-level API library

Application A Application B

Figure 2.11: Abstraction layers for a type reification framework.
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of Xerces API calls. Initially, both lectures were designed to be half-hour long. However,

students asked many more questions about using Xerces API calls. These questions were

about sequences in which API calls are made and parameters that should be passed to them.

Some API calls return intermediate objects that should be used when making other API

calls, and understanding of these dependencies required more time that learning how to use

ROOF.

One student from the second group had prior programming experience working

with Xerces DOM XML parser, and no students had prior exposure to ROOF. All students

had basic knowledge of C++. A special lecture was given to all students participating in the

experiment on XML. Response variables in this case study are times it takes participants to

develop programs, execution time and memory consumption for developed programs.

Data

We used an XMark benchmark XML document [76][75] for our experiments. The schema

[75] for this XML document is shown in Figure 2.12. While this schema was not used to

validate the XML document, students consulted the schema to understand how to access

data elements. Since the XML document was not related to any specific domain, students

were not given any explanation on the semantics of data.

Program

The specification for the program consists of five items:

• Create a new XML file called “new.xml” with the root sites, and copy all data

elements that have attributes from the XMark data under this root element.

• Insert the attribute “rich” with the value “yes” to all elements person whose in-
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Figure 2.12: XML schema for XMark benchmark documents.

come is greater than $10,000. The path to the element person is site→people→person,

and the path to the element income is site→people→person→profile→income.

• Delete closed auctions whose price is less than $3.

• Add category with value “category10000” under the path site→categories,

and add the corresponding edge from this category to the category “category99’

under the path site→catgraph→edge.

• Create new data element EducatedPeople under the path site→people. Move

all data elements personwhose attribute Education in the child element profile

has the value “Graduate School” under the added element.

Students were given two hours to write this program. Each student had a template of a C++

program and a makefile that was used to compile it, so that students did not have to spend
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time to learn how to locate necessary include files and to what libraries to link.

Results

The results of our case study are summarized in Table 2.1. The first column specifies case

study participants by assigned unique numbers and platforms they use (X stands for Xerces

and R stands for ROOF). The second column shows the time it took for participants to write

programs. If by the end of the experiment a participant said that the program was not ready,

then we marked this program as “unfinished”. The third column shows the number of

lines of code (LOC) in programs that participants wrote not including LOC that are a part

of the template program code. After running each submitted program, the resulting XML

data was examined with respect to the expected structure defined by the specification. Each

deviation from the specification in the XML data was counted as a bug, and a total number

of bugs was put into the fourth column of the table. If a program crashed, we marked it

with “crash”. When running submitted programs we measured their execution times and

the maximum amount of memory their occupy. We report these results in the columns five

and six respectively.

The average number of LOC is 250 for programs that use Xerces and 43 for pro-

grams that use ROOF. That is, using low-level API calls requires programmers to write six

times more code than when they use ROOF. ROOF-based programs have on average 0.8

bugs, and Xerces-based programs have 2.7 bugs. With respect to performance, the average

execution time of ROOF-based programs is 388 seconds versus 356 seconds for Xerces-

based programs, and average memory consumptions are 780 and 540Mb respectively. That

is, ROOF imposes nine percent overhead in execution time and 44% in memory usage.
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Participant Time to write No of bugs Size, LOC Exec time, sec Memory, Mb
Student 1-X 96 mins 2 228 387 535
Student 2-X 120 mins 2 276 319 561
Student 3-X unfinished 4 294 362 524
Student 4-X unfinished crash 323 - -
Student 5-X unfinished crash 329 - -
Student 6-R 42 mins 1 35 394 782
Student 7-R 47 mins 0 49 421 823
Student 8-R 55 mins 0 43 371 793
Student 9-R 62 mins 1 57 388 811
Student 10-R 108 mins 2 31 367 692

Table 2.1: The results of the case study.

Threats to Validity

We discuss internal and external threats to the validity of our case study, and how these

threats can be minimized.

Internal Validity. Internal validity establishes that the values of the dependent variables

are solely the result of the manipulations of the independent variables. Dependent

variables are the response variables. A major threat to internal validity would be

the stimulus variables in our experiment. Students should be given sufficient stimuli

to make the best effort to write quality code, without this stimuli they are likely to

walk away from the experiment when encountering any difficulties. To address this

concern, we told participants that they would be graded based on the overall quality

of their work.

All participants were given the same C++ compiler (gcc) and a template for C++

program in order to reduce the effect of confounding variables (whose effects on

response variables cannot be distinguished from each other). They were given full
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access to the Xerces documentation and code samples as well as ROOF. However,

students were prevented from using any libraries or tools other than the gcc compiler,

an XML viewer, and the XML schema.

External Validity. External validity establishes the extent to which the results support the

claims of ROOF generalizability. A major threat to the external validity is that the

results of the case study with the XMark-based programs may not be representative

of large-scale commercial systems of interoperating components. Since programs

written in our case study are small (less than 300 lines of code), we address this

threat with an additional study described in our experience report in Section 2.5.2.

2.5.2 Experience Report

We applied our approach to a real-time component-based semiconductor overlay analysis

and control system. The Archer Analyzer (AA) is a software package geared for Archer

10 optical overlay metrology systems manufactured by the California-based KLA-Tencor

Corporation [10][9].

The purpose of optical overlay measurements is to detect and fix misalignments

between layers of semiconductor chips that were put on a silicon wafer using microlithog-

raphy processes. Overlay or misregistration is a vector quantity defined at every point on

the wafer. Ideally, the value of overlay should be zero. When nonzero overlay is detected

the tool is stopped and the error is corrected as soon as possible.

The first attempt was started by KLA-Tencor in 1997. A team of forty specialists

was assembled; the original system was written in a programming language REXX in the

beginning of 80s and became obsolete. The design for the first release of the product was

done carefully. The management allocated more than a year to hire people, educate them
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about the company and existing systems and processes, and to produce design documen-

tation. Each group planned high-level design, functionality and interfaces in great detail.

The approach to design of this system of interoperating components was IDL-based with

CORBA and DCOM used as the underlying distributed object middleware platforms. The

number of classes, data structures, and various methods and functions was in the thousands,

and the complexity of the system grew to such a degree that communication overhead be-

tween groups became excessive. Clearly, the selected approach was not scalable. This

situation was compounded by the conflicting and overlapping terminology that led to many

syntactically similar types serving different purposes. When the size of code grew to two

hundred thousand lines the project became unmanageable.

It took four years and more than $3 million to design and develop the software and

take it to beta test at Texas Instruments Corporation. The test failed with the Mean Time to

Failure (MTF) approximately two hours despite the initial requirement for MTF ≈ 2,000

hours. Each time the system went down it was virtually impossible to determine the cause

of breakdown since each group claimed that its components performed internal algorithms

properly and the algorithms themselves were correct. The management tried to hire more

people who would handle the inter-component connectivity, but it realized soon that the

project would require significant additional investment as the number of failures increased

the further testing went. Therefore, management decided to start from scratch.

The second attempt was started in January 2001. The author of this thesis was hired

as a consultant to define the strategy for the implementation of AA. He saw that it was

very difficult to extract full and correct information about all aspects of communications

among different modules of the existing system. Each group member of the first implemen-

tation could clearly explain the programming logic of his/her code and had a clear picture
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of a schema of data pertinent to the part of the project the s/he owned. However, the un-

derstanding of the overall structure of the project, relations among modules and data was

vague. When programmers followed the process of creating structures that map FTS types,

they created a system based on many wrong assumptions that was extremely difficult to

trace in the resulting code. When brought together these group members could not agree

upon all details of the big picture of the project.

We applied our approach to target the key problems of the project. The first was

to make each member of the team think about a common schema. The second was to

introduce uniformity and reduce the complexity of code. The way to do it was to eradicate

the thousands of explicit mappings between FTS types.

The first problem was addressed with the type graph solution explained in Sec-

tion 2.3. A single schema and its instance were created by an engineer whose job was to

maintain the schema and serve as a single point of reference to define every term. The

second problem was solved by enabling programmers to reference each type exactly as it

was defined in the schema. This required a common platform that subsumed all other FTSs

used in the project. Thus, ROOF was created. Each team member was given a thirty minute

presentation of the basic structure of ROOF and its operations. Moreover, each programmer

was told that if s/he found the concept and implementation of the ROOF difficult to under-

stand and use they may go back to low-level APIs that they originally planned on using.

They did not go back.

The architecture of the AA is based on many FTSs. AA is created as an open system

and is integrated in the production environment and communicates with many other FTSs,

such as EJBs, CORBA, and .Net assemblies. The components for AA are created using

C++ and different low-level APIs were used for a variety of tasks such as parsing XML
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data and forming matrices. Since we did not generate or create mapped types in the host

programming language it is not difficult to see how we achieved the reduction of code close

to 80% for this project. The size of the code that handled interoperability and that was

created during the successful second attempt was measured with respect to the size of the

corresponding code (by functionality) written during the first failed attempt.

The results exceeded expectations. The system was much easier to write and the

resulting code was clear. It took over a year with a team of six programmers using our

approach to deliver this project to beta test at AMD Corp. that was successfully passed in

2002. This software has since been successfully commercialized [10][9].

2.6 Summary

In today’s enterprise environment it is desirable to make each program interoperate with

other programs. However, existing solutions have the significant accidental complexity as

there are potentially O(n2) possible APIs for achieving communication among n programs.

We have solved the problem of enabling all-connected architecture graph of systems of

interoperating components by providing a single framework called ROOF with a set of

standard and clear API calls

ROOF is a simple and effective way to develop easily maintainable and evolvable

systems of interoperating components by reifying foreign type instances and their oper-

ations into first-class language objects and enabling access to and manipulation of them.

By doing so we hide the tremendously ugly, hard-to-learn, hard-to-maintain, and hard-to-

evolve code that programmers must write or generate today, i.e., we simplified code of

interoperating components, making it scalable and easier to write, maintain, and evolve.

The capability to write uniform and compact programs that work with applications
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based on different type systems enables faster development of complex systems at a fraction

of their cost. Indeed, if developers concentrate on reasoning about properties of applications

without the need to master many low-level API calls that operate on type system elements

then it significantly improves their productivity and the quality of the resulting system. We

came to this conclusion based on using our approach for a complex commercial software

system and for a case study.
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Chapter 3

Type Checking and Type Inference

For Interoperating Components

An abstract view of a component is a graph of interconnected objects. An XML document,

when “hosted” by an XML parser, is a tree of Document Object Model (DOM) objects. A

Java program, when “hosted” by a JVM, becomes a graph of Java objects. Path expressions

can be used to navigate from one object to another in such graphs. The expression “a.b”

means to start at object named a and traverse to b, where b is the name of the member field

of a that references some object. More generally, methods can replace field names in a path

expression enabling computations to be performed enroute.

Type checking is an important mechanism to guarantee the safety of ROOF-based

programs and improve programmers productivity. When components are written in the

same language, conventional type checking algorithms can be used to verify the correctness

of path expressions statically. Contemporary programming languages handle these common

situations with great success. However, there are many other situations where the static
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type checking of path expressions is not attempted, resulting in the run-time discovery of

type errors. This arises when a (native) component references a foreign component, which

is written in a different language or that is hosted on a different platform. Consider the

following examples.

A C program can manipulate Java objects by invoking Java Virtual Machine (JVM)

API calls. (For example, a static method can be located in a Java object by calling the JVM

API GetStaticMethodID with the name of the method passed as a parameter. Broadly,

JVM API calls take a string of a path expression as input, and the JVM interprets that string.

If a member name is incorrect, or a method call has the wrong number of parameters, then

these errors are discovered only at run-time. None of these errors will be detected by the

type system of a C compiler.

Another example is accessing databases via Java DataBase Connectivity (JDBC).

SQL statements are passed as strings to JDBC APIs. At run-time, these strings are parsed

and matched to a given database schema. If the target relation does not exist or attribute

names are misspelled, the error is reported at run-time. A third example is a Java program

accessing data from an XML document. The program uses DOM API calls to navigate a

parsed XML document, where navigation methods take string names of desired XML nodes

as parameters. If a name is incorrect, the error is discovered at run-time.

In each example, there is enough information to detect these errors statically at

compile-time, as the Java/C executables or database/XML schemas are readily available.

The problem is that the type systems for different components (e.g., a Java program, a C

program, a database, an XML document) are not the same. While there is prior work to

perform such static checks on the interaction of specific pairs of components (e.g., Java

and databases) [45], there is no general approach to accomplish the static type checking of
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references to arbitrary foreign components. We need a compiler that is capable of checking

reified objects against foreign type systems.

In this chapter, we describe and evaluate Foreign Object REification Language

(FOREL), an extension for object-oriented languages that provides a general abstraction

for foreign component access and manipulation. Traversal strategies, borrowed from adap-

tive programming [63], are used in FOREL to simplify foreign component navigation and

manipulation. As shown in Figure 2.11, Foreign Object REification Language (FOREL) is

a user interface provided by ROOF to enable programmers to write interoperating compo-

nents.

FOREL type checking coupled with a conservative static analysis mechanism re-

ports potential errors when referencing foreign components. We formalize the type check-

ing rules of FOREL, present its operational semantics, and prove the soundness of its type

system. We define a static analysis of FOREL expressions that is based on the combination

of algorithms defined in adaptive programming, the formal type system of FOREL, and our

type inference algorithm. We tested FOREL on Archer Analyzer, a real-time semiconductor

overlay analysis and control system geared for the optical overlay metrology tool Archer 10

manufactured by California-based KLA-Tencor Corporation, and a number of smaller sys-

tems with interoperating components. We detected a number of known and unknown errors

in these applications with high precision and a low false-positive rate thus demonstrating

the effectiveness of our approach.

3.1 Language Description

In this section, we present FOREL as a type system for object-oriented programs that

provides a common abstraction for interoperating components. We describe the FOREL
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language through a series of examples. A more precise description of the type system is

provided in Section 3.3.

3.1.1 Overview

FOREL is based on ROOF which abstracts the common functionality of different platforms

by presenting a small set of operations for navigating and manipulating foreign objects

[48]. These operations are navigating to foreign objects, setting and getting their values,

modifying their structures, and invoking their methods. The ROOF abstraction makes the

task of static checking of interoperating components tractable by reducing the multiplicity

of platform API calls to a small set of operations on foreign objects that are common to all

platforms. By introducing a simple extension to grammars of object-oriented languages we

enable the collection of information about foreign objects at compile time. This information

is used to perform static type checking in order to determine possible errors that could

otherwise be detected only at the runtime.

Reification OPErator (ROPE) is a basic type in FOREL that denotes a communi-

cation channel between components through which they interact when running on different

platforms. Its purpose is to make foreign objects first-class entities in native components

(i.e., to reify them), and to enable programmers to perform operations on these objects the

same way they work with native objects (i.e., by addressing them directly without the use of

complicated platform API calls). ROPEs store the structures of foreign components in an

intermediate format, and their abstraction enables programmers to concentrate on high-level

operations on foreign components without getting bogged down in the low-level platform

API calls.
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3.1.2 A Concrete Example

ROPE objects are declared using the ro keyword followed by the location of the schema

describing foreign components. In Figure 3.1, at line 1 ROPE x denotes a foreign object

whose schema is given in the file orgstr.xsd. Line 2 navigates to the field stock of the

foreign component CEO, obtains its value and stores it in the local variable stockOptions

of type int. If one of the navigated objects does not exist, it is created automatically and

an exception is thrown informing programmers about the situation. Line 3 sets the value of

the field salary of the foreign object CTO that is contained in the foreign object CEO to

the result of an expression that multiplies the value of the local variable stockOptions

by real number 15.2 that is assumed to be the price of a single share.

Lines 4, 5, and 6 depict ROPEs inserting and deleting foreign objects. The VPEng

component of the type VPEngineering is created and aggregated in the CEO object at

line 4 by invoking method InsertPart on the ROPE x. In line 5 field salary of the

type float is created and inserted in the object VPEng, and in line 6 the object CTO with

all of its fields is deleted.

The syntax of FOREL is different from the syntax of ROOF operations described in

1: ro ["orgstr.xsd"] x = new ro;
2: int stockOptions=x["CEO"]["stock"];
3: x["CEO"]["CTO"]["salary"]=stockOptions*15.2;
4: x["CEO"].InsertPart("VPEngineering","VPEng");
5: x["CEO"]["CFO"].InsertField("Salary","float");
6: x["CEO"].DeletePart( "CTO" );
7: ro ["orgstr.class"] y = new ro;
8: int newShares = y["CEO"]["IncreaseStock"].
9: Invoke(<"annual"=1><"percent"=10>);

Figure 3.1: A fragment of FOREL program.
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Chapter 2. The latter was designed and implemented in 2001 using generics and overload-

ing operators in languages that allow programmers to do it (e.g., C++, C#). FOREL was

designed few years later by extending grammars of object-oriented languages, and its new

syntax reflected our experience using ROOF for different projects.

3.1.3 Operations

FOREL operations include navigating to foreign components, reading their values into local

variables, writing values from local variables into foreign components, and changing them

by inserting, deleting, and copying fields. Invoking foreign methods using ROPEs and

returning their results and storing them in local variables are also discussed.

Navigations

In FOREL, names of foreign components are specified as strings. Brackets [] and paren-

theses () are used to guard these names to prevent possible naming conflicts between

names of foreign objects and names of native object and language keywords. Parenthe-

ses are used to denote attributes in XML components.

Invoking Foreign Methods

In FOREL navigating to a function in a foreign component results in its invocation and

the retrieval of the resulting return value, if any. Currently, FOREL deals only with the

exchange of primitive values. At line 7 ROPE y is declared pointing to the Java class

orgstr.class. At lines 8 and 9 foreign method IncreaseStock of the component

CEO is invoked to increase the number of shares owned by the CEO, and its return value

specifying the resulting number of shares is put in the local variable newShares. The first
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parameter of this foreign method is named annual for an annual increase in stock options,

and the second parameter is percent specifying the percentage of the increase.

3.2 Checking FOREL Expressions

Using FOREL expressions programmers can navigate and manipulate foreign objects whose

names are specified as parameters to these expressions. If these parameters are constants,

then the names of foreign objects are known at compile time, and FOREL expressions can

be type checked statically. Otherwise, the names of foreign objects are computed at runtime,

and it is an undecidable problem in general to check the type safety of these expressions.

We use a combination of compile time type checking and type inference in order

to check the correctness of FOREL expressions. In this section we use a toy example to

illustrate the algorithm used to check the correctness of FOREL expressions. Recall that

the input to this algorithm is a native object written using FOREL and a schema describing

foreign objects with which this native object interoperates. The schema is shown in Fig-

ure 3.2 as a graph whose nodes are foreign objects and the edges are the references between

them. Consider the FOREL expression x["s"][e1][e2]["d"], where x is a ROPE

object navigating from the foreign object named "s" to the foreign object named "d".

Expressions e1 and e2 compute values of the intermediate nodes in the traversal path at

runtime. If constant strings are specified in place of e1 and e2, for example, “a” and “f”,

then typing rules can be applied to the path expression “s.a.f.d” to determine its correct-

ness. We given these typing rules in Section 3.3.5. However, when values of expressions

e1 and e2 can be determined only at runtime, then an inference algorithm is invoked on

this strategy to compute sets of values for these expressions.

The gist of the algorithm is in deciding which foreign objects should be visited from
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Figure 3.2: Navigation paths from the source object named s to the destination object
named d.

the node s in the graph in order to reach the destination node d given a strategy S (i.e., a

path expression). We check for possible paths from source to destination nodes, but we

do not instantiate a FOREL program to check for active bindings of the expressions that

compute names of foreign objects. By finding all paths leading to the destination node

d starting with the source node s we can conclude whether the navigation expression is

correct. If no path exists, then this expression is incorrect. Alternatively, if there are paths

leading from s to d by traversing two objects, then this expression is correct provided that

expressions e1 and e2 evaluate to the names of the nodes in the discovered paths. Our type

inference algorithm infers possible names computed by expressions e1 and e2 at compile

time. We describe this algorithm informally in this section. Its formal description will be

given in Section 3.3.

Expressions e1 and e2 are replaced with the object name variables α and β cor-

respondingly, and the original expression is converted into traversal strategy S = s →
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α → β → d. We introduce the function first(s) computing a set of edges that can

be traversed from node s. These edges lead to a set of objects designated by the vari-

able α. Function first(s) is computed using a graph reachability algorithm, and it

returns edges that could lead to the target node. According to Figure 3.2, α = {a, b,

c}. Then for each element of α, function first is computed. As a result we obtain

β = {e, f, g}, where first(a) = {e, g}, first(b) = {e}, and first(c)

= {f}. Proceeding to the next step we obtain first(e) = {®}, first(f) = {d},

and first(g) = {d}. From the computed node values a worklist W is formed contain-

ing a set of all computed paths, W = {(s, a, e), (s, a, g, d), (s, b, e),

(s, c, f, d)}. Each path is taken from W and checked to see whether it contains nodes

s and d. If both nodes are present in the path as its source and target, then a valid path is

obtained. If no paths exist, then an error is issued and the algorithm terminates.

An example of an incorrect FOREL expression is x["s"][e1][e2][e3]["d"].

All paths between nodes s and d have at most two objects. Therefore no matter what values

are computed at runtime for expressions e1, e2, and e3 they cannot represent objects in a

valid path between the source and the destination objects. The other example of an incorrect

FOREL expression is x["s"]["b"][e1]["d"]. In this case there is no value for the

expression e1 that makes it a valid path, and the FOREL compiler will issue a warning.

3.3 Formalization

A key property of FOREL is the compatibility of operations on foreign types. If a native

program accesses objects that do not exist in foreign programs or attempts to set a value

of a foreign object that is not compatible with its type, then it violates constraints imposed

on interoperating components. A FOREL compiler type checks foreign systems and guar-
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antees that incorrect operations cannot be executed. We now precisely define type graphs,

paths, and traversals and use these definitions for the formalization of FOREL. These defi-

nitions enable us to reason about not only the operations on the types directly specified in

the operations of FOREL, but also infer type information about objects that are present in

some path in a foreign program and whose presence is not explicitly defined in the ROPE

expressions navigating through this path.

3.3.1 Classes in FOREL

When navigating to foreign objects in FOREL we throw away inheritance and subtyping

relations between classes of these objects, and we enhance the concept of class to include

hierarchical containments (e.g., program scopes and system hierarchies). Classes desig-

nate namespaces and methods, and they can also define external environments for program

scopes. For example, in order to access a field in a Java class one should load a JVM, locate

the package that contains the Java class (i.e., to navigate through a sequence of directories),

locate the file that contains the Java class, instantiate it by loading this class into the JVM

using a classloader, and finally access the desired field. Examples of classes in FOREL

are also markup language types (e.g., elements, tags and attributes) and relational database

objects (e.g., tables and stored procedures).

3.3.2 Type Graphs, Paths, and Traversals

The basic notions of adaptive programming are class and object graphs [64]. We replace

the notion of class with a more general notion of type since we apply FOREL to values that

are not necessarily instances of classes. For example, we reify markup language objects

that are not always instances of classes to the type systems of OO languages, and we need
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a theoretical abstraction that treats all objects uniformly.

We distinguish between complex and simple types. Complex types contain fields

while simple types do not. Let T be finite sets of type names and F of field names or labels,

and two distinct symbols this ∈ F and ¦ ∈ F. Type graphs are directed graphs G = (V,

E, L) such that

• V ⊆ T, the nodes are type names;

• L ⊆ F, edges are labeled by field names, or “¦” if fields do not have names. We

call edges that are labeled by “¦” aggregation edges, and edges that are labeled by

field names reference edges. The difference between aggregation and reference edges

becomes clear with the following example. Fields of classes in object-oriented lan-

guages designate instances of some classes, and these fields have names that are used

to reference them. It means that each field of a class is defined by its name and the

name of the class (type) that this field is an instance of. The name of a field is the

label of the corresponding reference edge in the type graph.

When a class designates a directory and the other class designates a file that is con-

tained in this directory, the type graph has two nodes, one for the directory and the

other for the file it contains. The names of the directory and the file serve as their

types. The file is an instance of the class that represents it, and this file is also a field

of the directory class, however, this file field does not have a name. The relation

between the directory and the file type is represented using the edge labeled with the

“¦” in the type graph.

• E ⊆ L×V×V, edges are cross-products of labels and nodes;

• for each v ∈ V, the labels of all outgoing edges with the exception of “¦” are dis-
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tinct;

• for each for each v ∈ V, where v represents a concrete type, v this−−−→v∈E.

An object graph is a labeled directed graph O = (V’, E’, L’) that is an in-

stance of a type graph G = (V, E, L) under a given function Class that maps objects

to their classes, if the following conditions are satisfied:

• for all objects o ∈ V’, o is an instance of the concrete type given by function

Class(o);

• for each object o ∈ V’, the labels of its outgoing reference edges are exactly those

of the set of labels of references of Class(o) including edges and their labels in-

herited from parent classes;

• for each edge o e−→o’∈E’, Class(o) has a reference edge v e−→u such that v is a

parent type of Class(o) and u is a parent type of Class(o’).

An object graph is a model of the objects, represented in the heap or elsewhere, and

their references to each other. A collection of fields in an object graph is a set of edges

labeled by field names. A collection of aggregated objects in an object graph is a set of

edges labeled by “¦”. A path in a type graph G = (V, E, L) is a sequence of nodes

and labels pG = 〈v0e1,v1e2, . . .envn〉, where vi ∈ V and vi
ei+1−−→ vi+1 for 0 ≤ i ≤ n. We

define a concrete path to be an alternating sequence of type names and labels designating

reference edges. In general a concrete path pc is a subset of the corresponding type path

pG, i.e. pc⊆pG. Since some classes are compiled away and are not present in the object

graphs (e.g., namespaces in C++ are not a part of object representations), the paths in object

graphs are subsets of the corresponding type graphs.
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An object graph has the special object or ∈ V’, or is a collection of root ob-

jects or ⊆ V’ in the object graph O given by function root: O→ or. This object

has type Class(or)=ro and its relation with objects in its collection is expressed via

or
¦−→o’∈E’.

3.3.3 Example of a Type Graph

An example of the type graph of the organizational structure of a company is shown in

Figure 3.3. A FOREL program based on this graph is shown in Figure 3.1. CEO is a root

type that has the field stock of type int and aggregates type CTO. CTO is a type that

has fields salary of type Check and boss of type CEO. Type Check has in turn fields

amount of type float and issuer of type CEO. Instances of this type graph can be

equally implemented in XML, Java, and other languages. For example, consider a possible

implementation of this graph in Java: the aggregation of objects is done by instantiating

them in the scope of the object that contains them (i.e., an instance of CTO is included in the

scope of the type CEO), or by creating Java packages using the corresponding type names

in separate directories. We can navigate to the field salary of type CTO by executing

FOREL expression x["CEO"]["CTO"]("salary"), where x is an instance of ROPE.

Figure 3.3: Type graph of the organizational structure of a company.
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3.3.4 Formalization of a Traversal Problem

Given an object o of some type we wish to find all reachable objects that satisfy certain cri-

teria. This task is equivalent to determining whether FOREL statements that describe nav-

igation paths through foreign programs are correct. Navigation paths specified in FOREL

ROPE statements can be thought of as specifications of constraints for the object reacha-

bility problem. Finding reachable objects is done via traversals. The traversal of an edge

labeled e corresponds to retrieving the value of the e field. Every edge in the object graph

is an image of a has-part edge in the type graph: there is an edge e(o1, o2) in O only

when there exist types v1 and v2 such that object o1 is of type v1, v1 has an e-part of type

v2, and o2 is of type v2.

The first node of a path p is called the source of p and the last node is called the

target of p. A traversal of an object graph O started with an object vi and guided by paths

from a set of paths p is done by performing depth-first search on O with p used to prune

this search. The resulting traversal history is a depth-first traversal of the object graph along

object paths agreeing with the given concrete path set. We formalize the problem of finding

all reachable objects from a given object o that satisfy certain criteria as follows. For each

pair of classes c and c’, we need to find a set of edges e by computing FIRST(c, c’)

iff it is possible for an object of type c to reach an object of type c’ by a path beginning

with an edge e. More precisely, FIRST(c, c’)=e∈E, such that there exists an object

graph O of C and objects o and o’ such that:

1. Class(o) = c,

2. Class(o’) = c’, and

3. o e* o’.
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The last condition, o e* o’ says that there is (∃) a path from o to o’ in the object

graph, consisting of an edge labeled e, followed by any sequence of edges in the graph.

Our lack of information about the actual graph is represented by the existential operator ∃.

3.3.5 FOREL

We formalize the FOREL language based on the type graph model. We present the syntax

of FOREL, give its operational semantics and type checking rules, and prove the soundness

of its type system.

Syntax

Figure 3.4 presents a ClassicJava-based syntax of FOREL. FOREL-based rules are

represented with a bold font. The metavariable C ranges over class names; field and

fd range over field declarations and field names respectively; t ranges over types; meth

ranges over methods; ρ ranges over reification operators; ROPE ranges over methods of

reification operators; T ranges over variants that are used to specify values of parameters

when invoking foreign methods, and defn ranges over class definitions. A component in

FOREL, P, is a pair (defn, e) of class definitions and an expression. FOREL extends

ClassicJava in several ways. Reification operators that designate dynamic connectors

between programs are represented by objects of type ro. To reason about structures of

programs connected by ROPEs, attribute L is added that points to a schema that describes a

foreign program. Therefore, a ROPE ρ maps objects and fields of foreign programs and data

sources designated by their locations L to variables in native programs: objects and their

fields. T ranges over navigation and access expressions in ROPEs. An error expression is

also included, representing failed casts and null dereferences.
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P ::= defn e
defn ::= class C extends C { field meth }

| interface i extends i { meth }
field ::= t fd
meth ::= t md( arg ) { body }
arg ::= t var
body ::= e | abstract
e ::= new C | new ρ | new ρ constraint [L]

| null | fd | fd = e | e.md(e)
| view t e | let var = e in e | e N
| valueOf(e) | ROPE

N ::= [e] | (e) | (T)
ROPE ::= e.InsertPart(e.e)

| e.InsertField(e.e)
| e.DeletePart(e.e)
| e.DeleteField(e.e) | e.Store(e)

ρ ::= ro | [L] ro
t ::= C | i | ρ
T ::= <var = e>
var ::= a variable name or this
C ::= a class name or Object
i ::= interface name or Empty
fd ::= a field name
md ::= a method name

Figure 3.4: ClassicJava-based grammar of FOREL

Operational Semantics

A program in a system of interoperating components is a running instance of a binary

executable file, which consists of a set of locations and a set of values. The state, S, of a

system of interoperating components, PS, that comprises interoperating programs P1, P2,

. . ., Pn is the union of the states of these programs S=
S
n
Pn . The state of a program is

obtained via mapping function ProgramState: PS×P→ SP. When we write SP in

the reduction rules, we mean it as shorthand for the application of the ProgramState

function to obtain the state S of some program P. The evaluation relation, defined by the

reduction rules in Figure 3.5, has the form PS ↪→ PS’, where PS=〈P,e,SP〉∗, read “A

collection of programs in a system of interoperating components PS, executing expression

e with the initial state SP transitions to a new set of programs, producing the new state S
′
P.”

In these rules P is a program and S is a state. Transition ↪→⊆ 〈P,e,SP〉×〈P,e,SP〉.
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RO-NEW
〈®,e,S®〉 ∈ PS getObjectGraph(®) = G 〈®,S®〉 ` root(G) = or

〈P,E[new ro],SP〉,PS ↪→ 〈P,E[oP],SP[oP 7→ (ro,object 7→ or)]〉,PS

RO-LOCNEW
〈Q,e,SQ〉 ∈ PS getObjectGraph(Q) = G 〈®,S®〉 ` root(G) = or

〈P,E[new [Q] ro],SP〉,PS ↪→ 〈P,E[oP],SP[oP 7→ (ro,object 7→ or)]〉,PS

RO-OLGET
〈Q,e,SQ〉 ∈ PS SP(oP) = (ro, object 7→ oQ) t ∈ String 〈Q,SQ〉 ` parts(oQ,t) = o

〈P,E[oP[t]],SP〉,PS ↪→ 〈P,E[oP],SP[oP 7→ (ro,object 7→ o)]〉,PS

RO-ONGET
〈Q,e,SQ〉 ∈ PS SP(oP) = (ro, object 7→ oQ) n ∈ N 〈Q,SQ〉 ` part(oQ,n) = o

〈P,E[oP[n]],SP〉,PS ↪→ 〈P,E[oP],SP[oP 7→ (ro,object 7→ o)]〉,PS

RO-FLGET
〈Q,e,SQ〉 ∈ PS SP(oP) = (ro, object 7→ oQ) t ∈ String 〈Q,SQ〉 ` fieldByName(oQ,t) = o

〈P,E[oP(t)],SP〉,PS ↪→ 〈P,E[oP],SP[oP 7→ (ro,object 7→ o)]〉,PS

RO-FNGET
〈Q,e,SQ〉 ∈ PS SP(oP) = (ro, object 7→ oQ) n ∈ N 〈Q,SQ〉 ` fieldBySeqNum(oQ,n) = o

〈P,E[oP(n)],SP〉,PS ↪→ 〈P,E[oP],SP[oP 7→ (ro,object 7→ o)]〉,PS

RO-FOSET
SP(oP) = (ro, object 7→ oQ) o’= Ω(o)

〈Q,e,SQ〉 ∈ PS,〈P,E[oP.fd=o],SP〉,PS ↪→ 〈P,E[oP],SP[oP 7→ (ro,object 7→ o)]〉,〈SQ[oQ 7→ (fd 7→ o’)]〉,PS

RO-CALL
〈Q,oQ.m(o

′
1, . . . ,o

′
n),SQ〉,PS ↪→∗ 〈Q,o,S

′
Q〉,PS

〈P,E[oP[m](〈p1 = o1〉, . . . ,〈pn = on〉)],SP〉,〈Q,e,SQ〉,PS ↪→ 〈P,E[oP],SP[oP 7→ (ro,object 7→ o)]〉,〈Q,e,S
′
Q〉,PS

RO-VALUE
〈P,E[valueOf(oP)],SP〉,PS ↪→ 〈P,E[o],SP[oP 7→ (ro,object 7→ o)]〉,PS

RO-INSPRT
oQ /∈ dom(SQ) SP(oP) = (ro, object 7→ oQ) t,s ∈ String

〈P,E[oP.InsertPart(t,s)],SP〉,〈Q,e,SQ〉,PS ↪→ 〈P,E[oP],SP[oP 7→ (ro,object 7→ o
′
Q)]〉,〈Q,e,SQ[o

′
Q 7→ (t,F 7→ null)]〉,PS

where S[o 7→ (C,¦ 7→ S∪o′Q)]is applied to both RO-INSPRT and RO-INSFLD

RO-INSFLD
oQ /∈ dom(SQ) SP(oP) = (ro, object 7→ oQ) t,s ∈ String

〈P,E[oP.InsertField(t,s)],SP〉,〈Q,e,SQ〉,PS ↪→ 〈P,E[oP],SP[oP 7→ (ro,object 7→ o
′
Q)]〉,〈Q,e,SQ[o

′
Q 7→ (t,F 7→ null)]〉,PS

RO-DELPRT
parts(oQ,t) = o

′
Q ∈ dom(SQ) SP(oP) = (ro, object 7→ oQ) t ∈ String

〈P,E[oP.DeletePart(t)],SP〉,〈Q,e,SQ〉,PS ↪→ 〈P,E[oP],SP[oP 7→ (ro,object 7→ oQ)]〉,S[o 7→ (C,¦ 7→ S\o′Q)],PS

RO-DELFLD
fieldByName(oQ,t) = o

′
Q ∈ dom(SQ) SP(oP) = (ro, object 7→ oQ) t ∈ String

〈P,E[oP.DeleteField(t)],SP〉,〈Q,e,SQ〉,PS ↪→ 〈P,E[oP],SP[oP 7→ (ro,object 7→ oQ)]〉,S[o 7→ (C,¦ 7→ S\o′Q)],PS

Figure 3.5: Reduction rules of FOREL.
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A ROPE statement executed by one program changes not only the state of this

program, but also states of other programs to which this ROPE instance is connected. We

write ↪→∗ for the reflexive, transitive closure of ↪→. Most of the rules are standard; the

interesting features are how they manipulate the FOREL type system. The RO-NEW rule

reduces a new expression into a ROPE reference to object or that is a collection of root

objects or ⊆ V’ in an object graph O that describes a foreign program. When the RO-NEW

rule is applicable the foreign program to which the connection is established is unknown

and object or has an empty collection of root objects. When the location of a schema that

describes a foreign program is known, we use the RO-LOCNEW rule and object or has a

nonempty collection of root objects.

There are five rules for navigating objects in foreign programs. The RO-OLGET rule

returns a collection of objects using helper function parts, and the names of the objects in

the returned collection match the name that is supplied as a parameter to this function. The

RO-ONGET rule returns an object in the collection of objects by the order sequence number

using helper function part. The RO-FLGET and RO-FNGET rules produce similar effects

on fields using helper functions fieldByName and fieldBySeqNum. The RO-FOSET

rule is straightforward, updating the field of the foreign object with the value o written to

field fd. The helper function Ω maps value o from a native program to a corresponding

value o’ in a foreign program. When applying this rule the state of native program P,

stays unchanged while the foreign program Q switches to a new state . The invocation rules

use the helper functions to determine the object, fields, and type values and names as well

as the conversion of values between foreign and native programs. The full semantics of

the language include other rules including error rules representing casts that fail and null

pointer dereferences. A set of congruence rules (such as if e → e’ then e.f → e’.f)
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allows reduction to proceed in the order of evaluation defined by ClassicJava.

Typing Rules

Typing judgments, shown in Figure 3.7, are of the form Γ ` e:T , read ”In the type envi-

ronment Γ, expression e has type T”. The T-FLGET and T-FNGET rules obtain the type

of a reification expression in Γ, replacing the grammar expression e(e) with its value of

some type. The expression in the parenthesis may evaluate to a string or a number vari-

able. Similarly, the T-OLGET1, T-OLGET2 and T-ONGET rules looks up the type of an

object in a foreign program, producing its equivalent type in the native program. There

are also four typing rules for modifications of foreign objects-the insertion rules T-IORT

and T-IFLD, which insert fields and parts into foreign programs, and the deletion rules

T-DPRT and T-DFLD, which remove parts and fields in foreign programs. FOREL fol-

lows ClassicJava’s lookup rules for method types and method bodies. Type lookup

rule matchType performs a lookup of type δ in the native program that corresponds to a

type in the foreign program described by its name that is a parameter to this function.

Helper Functions

Most of the helper functions are straightforward. The root function returns the root ob-

ject or in a given program as defined in Section 3.3.2. Helper functions part, parts,

fieldByName, and fieldBySeqNum are shown in Figure 3.6. In a foreign program

the parts function maps an object and the name of a child object or part to an object that

represents a list of children objects or parts that have this name. The part function maps

a list of objects of different types and a sequence number to an object or part of some type

that occupies the position in the collection defined by the sequence number. Correspond-
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〈Q,SQ〉,getObjectGraph(Q)=G ` root(G) = oR

SQ = (ok = (C,F)) t ∈ String
〈Q,SQ〉 ` parts(oQ,t) = ok,Class(ok) = t

SQ = (o1 = (C1,F1), . . . ,ok = (Ck,Fk)) 1≤ n≤ k n,k ∈ N

〈Q,SQ〉 ` part(oQ, n) = oi

SQ = (C,F{f1 7→ o1, . . . ,fk 7→ ok}) t ∈ String 1≤ i≤ k t= fi

〈Q,SQ〉 ` fieldByName(oQ,t) = oi

SQ = (C,F{f1 7→ o1, . . . ,fk 7→ ok}) n ∈ N 1≤ i≤ k n= i

〈Q,SQ〉 ` fieldBySeqNum(oQ,n) = oi

Figure 3.6: Helper functions used in foreign programs.

ingly, field lookup functions perform retrievals of fields and their types by their names

or sequence numbers in the collection of fields for a given object.

Type Soundness

We can show the type soundness of FOREL through two standard theorems, preservation

and progress. Type soundness implies that the language’s type system is well behaved. In a

type-safe language like ClassicJava, well-typed programs do not get stuck, that is they

pass the type checking algorithm successfully or halt with errors (progress). If a well-typed

expression is evaluated, then the resulting expression is also well typed (preservation).We

state the progress and preservation theorems and give their proofs below.

Theorem 1 (Preservation). If ® ` e:T, and e ↪→ e’, then ® ` e’:T.

Proof. Preservation is proved by induction on the rules defining the transition system for
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T-FLGET
Γ ` e : τ E ` τ f−→ δ

Γ ` e( f ) : δ

T-FNGET
Γ ` e : τ Γ ` n : N

Γ ` e(n) : τ

T-OLGET1
Γ ` e : τ E ` τ ¦−→ δ matchType(t) = δ

Γ ` e[t] : δ

T-OLGET2
Γ ` e : τ E ` τ f−→ δ

Γ ` e[ f ] : δ

T-ONGET
Γ ` e : τ Γ ` n : N

Γ ` e[n] : τ

T-INVK
Γ ` e : σ1, . . . ,σn → τ for each i ∈ N,Γ ` pi : σi ∧vi : σi

Γ ` e(〈p1 = v1〉 . . .〈pn = vn〉) : τ

T-IORT
matchType(d) = δ Γ ` e : τ Γ ` InsertPart : t×δ→ δ

Γ ` e.InsertPart(t,d) : δ E ` τ ¦−→ δ

T-IFLD
matchType(d) = δ Γ ` e : τ Γ ` InsertField : f ×δ→ δ

Γ ` e.InsertField(f,d) : δ E ` τ f−→ δ

T-DPRT
matchType(d) = δ Γ ` e : τ Γ ` DeletePart : d→ τ E ` τ ¦−→ δ

Γ ` e.DeletePart(d) : τ E 0 τ ¦−→ δ

T-DFLD
Γ ` e : τ Γ ` DeleteField : f→ τ E ` τ f−→ δ

Γ ` e.DeleteField(f) : τ E 0 τ f−→ δ

T-RONEW
Γ ` new ro: ro

T-ROLNEW
Γ ` new [L] ro: ro

T-ERROR
Γ ` error ` ERROR

T-NULL
Γ ` null ` NULL

Figure 3.7: FOREL typechecking.
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step-by-step evaluation of ROPE expressions.

FLGET By induction let us assume that if e:τ, then e’:τ. Assume that e(f):δ. From

the typing rule we have e:τ. By induction e’:τ and E` τ f−→ δ, so by typing rule

T-FLGET e’(f):δ.

FNGET By induction let us assume that if e:τ, then e’:τ. Assume that e(n):τ. From

the typing rule we have e:τ. By induction e’:τ and n∈ N, so by typing rule

T-FNGET e’(n):τ.

OLGET1 By induction let us assume that if e:τ, then e’:τ. Assume that e[t]:δ. From

the typing rule we have e:τ. By induction e’:τ and E` τ ¦−→ δ, so by typing rule

T-OLGET1 e’[t]:δ.

OLGET2 By induction let us assume that if e:τ, then e’:τ. Assume that e[f]:δ. From

the typing rule we have e:τ. By induction e’:τ and E` τ f−→ δ, so by typing rule

T-OLGET2 e’[f]:δ.

ONGET By induction let us assume that if e:τ, then e’:τ. Assume that e[n]:τ. From

the typing rule we have e:τ. By induction e’:τ and n∈ N, so by typing rule

T-ONGET e’[n]:τ.

INVK By induction let us assume that if e:σ1, . . . ,σn → τ, then e’:σ1, . . . ,σn → τ. As-

sume that e(〈p1 =v1〉 . . .〈pn =vn〉):τ. From the typing rule we have e:σ1, . . . ,σn→
τ. By induction e’:σ1, . . . ,σn → τ and , so by typing rule T-INVK e’(〈p1 =

v1〉 . . .〈pn = vn〉):τ.

IORT By induction let us assume that if e:τ, then e’:τ. Assume that e.InsertPart:t×
δ → δ. From the typing rule we have e:τ. By induction e’:τ so by typing rule
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T-IORT e’.InsertPart:t×δ→ δ.

IFLD By induction let us assume that if e:τ, then e’:τ. Assume that e.InsertField: f×
δ → δ. From the typing rule we have e:τ. By induction e’:τ so by typing rule

T-IFLD e’.InsertField: f ×δ→ δ.

DPRT By induction let us assume that if e:τ, then e’:τ. Assume that e.DeletePart:d→
τ. From the typing rule we have e:τ. By induction e’:τ so by typing rule T-DPRT

e’.DeletePart:d → τ.

DFLD By induction let us assume that if e:τ, then e’:τ. Assume that e.DeleteField: f →
τ. From the typing rule we have e:τ. By induction e’:τ so by typing rule T-DFLD

e’.DeleteField: f → τ.

Theorem 2 (Progress). If Γ ` e:T, then either e is an irreducible value, contains an error

subexpression, or else ∃ e’ such that e ↪→ e’.

Proof. The proof is by induction on the rules of the type checking. We consider the follow-

ing cases.

T-FLGET Let e’=e(f) and assume that e’:τ. Since e’ is not a value, we must show that

∃e’’ such that e’ ↪→ e’’. By induction we have that either e is a value or ∃ε such that

e↪→ ε. In the latter case it follows that e(f)↪→ ε(f). In the former we have v(f)↪→v.

T-FNGET Let e’=e(n) and assume that e’:τ. Since e’ is not a value, we must show that

∃e’’ such that e’ ↪→ e’’. By induction we have that either e is a value or ∃ε such that

e↪→ ε. In the latter case it follows that e(n)↪→ ε(n). In the former we have v(n)↪→v.
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T-OLGET Let e’=e[t] and assume that e’:δ. Since e’ is not a value, we must show that

∃e’’ such that e’ ↪→ e’’. By induction we have that either e is a value or ∃ε such that

e↪→ ε. In the latter case it follows that e[t]↪→ ε[t]. In the former we have v[t]↪→v.

T-ONGET Let e’=e[n] and assume that e’:τ. Since e’ is not a value, we must show that

∃e’’ such that e’ ↪→ e’’. By induction we have that either e is a value or ∃ε such that

e↪→ ε. In the latter case it follows that e[n]↪→ ε[n]. In the former we have v[n]↪→v.

T-INVK Let e’=e〈(p1 = v1 . . .pn = vn)〉 and assume that

e’:σ1, . . . ,σn → τ. Since e’ is not a value, we must show that ∃e’’ such that e’ ↪→ e’’.

By induction we have that either e is a value or ∃ε such that e↪→ ε. In the latter case it

follows that e〈(p1 = v1 . . .pn = vn)〉 ↪→ ε〈(p1 = v1 . . .pn = vn)〉. In the former we have

v〈(p1 = v1 . . .pn = vn)〉 ↪→v〈(p1 = v1 . . .pn = vn)〉.

T-IORT Let e’=e.InsertPart(t,d) and assume that e’:δ. Since e’ is not a value,

we must show that ∃e’’ such that e’ ↪→ e’’. By induction we have that either e is a

value or ∃ε such that e↪→ ε. In the latter case it follows that e.InsertPart(t,d)↪→
ε.InsertPart(t,d).

In the former we have v.InsertPart(t,d)↪→v.

T-IFLD Let e’=e.InsertField(f,d) and assume that e’:δ. Since e’ is not a value,

we must show that ∃e’’ such that e’ ↪→ e’’. By induction we have that either e is a

value or ∃ε such that e↪→ ε. In the latter case it follows that e.InsertField(f,d)↪→
ε.InsertField(f,d).

In the former we have v.InsertField(f,d)↪→v.

T-DPRT Let e’=e.DeletePart(d) and assume that e’:τ. Since e’ is not a value, we

must show that ∃e’’ such that e’ ↪→ e’’. By induction we have that either e is a value
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or ∃ε such that e↪→ ε. In the latter case it follows that

e.DeletePart(d) ↪→ ε.DeletePart(d).

In the former we have v.DeletePart(d)↪→v.

T-DFLD Let e’=e.DeleteField(f) and assume that e’:τ. Since e’ is not a value,

we must show that ∃e’’ such that e’ ↪→ e’’. By induction we have that either e is a

value or ∃ε such that e↪→ ε. In the latter case it follows that e.DeleteField(f)↪→
ε.DeleteField(f).

In the former we have v.DeleteField(f)↪→v.

3.4 Type Inference

The task of static checking of FOREL programs is greatly simplified when the names of

foreign components names are defined as string constants. In this case type checking rules

shown in Figure 3.7 are applied directly to ROPEs to validate their correctness. However,

if the names of some foreign components are specified using string expressions, then the

values of these expressions may or may not be determined at compile time. A string analysis

framework (e.g., Soot) may be used to recover the names of foreign components using an

algorithm for string expression analysis, and if this attempt is successful, then the type

system is used to perform type checking on the recovered names. However, if the names of

foreign components are not known at compile time, then type graphs are used to perform

the last step of the analysis to infer types of expressions or variables that hold the names of

foreign components. This analysis is based on the Traversal Graph Analysis (TGA) defined

in adaptive programming [64].
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3.4.1 Strategies

An adaptive strategy S=(R, π, δ) represents paths in an object graph, where R={s, d},

where s and d are the source and target objects (components) of a path in an object graph,

and R ⊆ O, where O is the set of objects in a type graph, π = {e, α}, where e is a set of

fields and α is a set of variables that designate a set of some edges α⊆ e, and δ = {⇀,⇁}
is a set of transition edges representing objects and attributes respectively. Each element in

a strategy S is either the name of some foreign object or a variable designating some foreign

object or attributes.

We write π(o, o’) to designate a set of objects {o’}, such that each object

o’ of this set is a part of the object o expressed by some edge e ∈ π such that e(o,

o’). The basic idea of transforming reification statements into strategies is in defin-

ing strategy graph edges a⇀b and a⇁b for reification statements x["a"]["b"] and

x["a"].attribute("b") respectively. Thus, a strategy is an abstraction of reifica-

tion statements, and it is also an abstraction of a set of paths in the type graphs.

For example, strategy CEO ⇀ α1 ⇀ α2 ⇁ amount for reification expression

x["CEO"][strexp1][strexp2].attribute("amount") for the type graph shown

in Figure 3.3 designates strategy S, where s=CEO, d=amount, α1 is a variable designat-

ing objects computed via string expression strexp1, and α2 is a variable designating

attribute object computed via string expression strexp2. Computing π(CEO, o’) we

obtain {CTO}, and computing π(CTO, o’) we obtain {CEO,check}.

Each node in a strategy is assigned a distinct sequence number, and nodes are ex-

pressed as pairs (i, π). We introduce functions ∆i : N×N→ δ and ∆π : π× π → δ.

Given two sequential natural numbers k and k+1, the function ∆i computes the transition

edge between nodes that are assigned these numbers in S, or® if there is no transition edge.
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Correspondingly, given two nodes πq and πr in some type graph, function ∆π computes the

transition edge between nodes, or ® if there is no transition edge.

3.4.2 The Algorithm

When the values of string expressions in reification statements cannot be computed at

compile time, they can be inferred using the TGA-based algorithm BuildPathTree.

It takes a set of reification statements and type graphs as its inputs and transforms each

reification statement into an adaptive strategy with variables replacing string expressions.

BuildPathTree computes possible values for each variable and generates traversal paths

for each strategy. If no path exists between the source and the destination objects, then a

type error is reported. If at least one path is generated, then the FOREL compiler issues

warnings, since values of expressions that compute names of foreign objects may not be in

the computed paths.

The TGA-based algorithm BuildPathTree for computing valid paths for reifi-

cation expressions and statements is shown in Algorithm 1. The basic idea of this algorithm

is to compute the set of edges e for each pair of classes c and c’, by computing FIRST(c,

c’) iff it is possible for an object of type c to reach an object of type c’ by a path begin-

ning with an edge e. Recall from Section 3.3.4 that FIRST(c, c’)=e∈E, such that

there exists an object graph O of C and objects o and o’ such that:

1. Class(o) = c,

2. Class(o’) = c’, and

3. o e* o’.

The last condition, o e* o’ says that there is (∃) a path from o to o’ in the
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object graph, consisting of an edge labeled e, followed by any sequence of edges in the

graph. The method FIRST is implemented using two procedures: BuildPathTree and

ComputePath.

Procedure BuildPathTree takes the set R of source and target components in S

and set π as input parameters. The output of this procedure is a tree of valid paths in a type

graph that satisfy a given strategy. Some of the input components may not make it into the

path tree because they do not start any valid paths.

Procedure BuildPathTree calls procedure ComputePath, which in turn re-

cursively calls itself. ComputePath takes three parameters: a component o that is a

potential current node in the path, sequence number i of the node in the strategy S, and

the transition edge δ between nodes in S that are assigned two sequential natural numbers

i and i+1. The goal of this procedure is to color the potential current node o in the path

as either red or blue. When colored red object o is considered a dead end on the path

in the type graph that does not lead to the designated target nodes. Otherwise, it is colored

blue and this color is propagated up to the source nodes which are subsequently included

in the path tree.

The termination condition for procedure ComputePath is defined as the sequence

number i being equal to or greater of the number of nodes in the strategy, |π|, or if there

is no transition edge from the current node. When reaching the termination condition we

color the current node blue and return from the procedure. In the calling procedure we

check the color of the node, and if it is blue, then we attach this node to its parent node in

the path tree.
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Algorithm 2 ComputePath procedure

BuildPathTree( R ∈ S, π ∈ S )
for all s ∈ R do

ComputePath(s, 0, ∆i(0,1))
if color(s) = red then

remove s from R
end if

end for

ComputePath(o ∈ O, i ∈ N, ∂ ∈ δ)
if i≥ |π| or ∂ =® then

color(o) 7→ blue
else

for all o’ ∈ πi(o, o’) do
if ∆π(o,o’) = ∂ then

ComputePath(o’, i+1, ∆i(i, i+1))
if color(o’) = blue then

AddChildToTree(o, o’)
end if

end if
end for
if children(o) = ® then

color(o) 7→ red
else

color(o) 7→ blue
end if

end if

3.4.3 Pruning and Generating Paths

The algorithm BuildPathTree shown in Algorithm 1 computes the set of edges e for

each pair of classes c and c’, if it is possible for an object of type c to reach an object of

type c’ by a path beginning with an edge e. This algorithm is applied individually to each

ROPE expression in which foreign objects are specified using string expressions whose

values are not known at compile time. This algorithm infers possible names of foreign
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objects that string expressions make compute at runtime.

As it often happens, the same string expressions are used in different ROPE expres-

sions in the same program scope. Clearly, the same expressions compute the same values

if they are located in the same scope provided that the values of the variables used in these

expressions are not changed. Using program analysis techniques it is possible to detect

expressions at compile time whose variables are not changed at runtime. After running the

algorithm BuildPathTree, it computes possible names of foreign objects that string ex-

pressions can take at ROPE statements. Given the same expression used in different ROPE

statements in the same program scope, and provided that the values of the variables used

in these expressions are not changed by other expressions executed between these ROPEs,

it is possible to give more precise set of names of foreign objects computed by these string

expressions. This more precise set is obtained by taking the intersection of the sets of names

computed by the algorithm BuildPathTree. We explain this process below.

Consider the strategy graph S1 CEO ⇀ α1 ⇀ α2 ⇁ amount for reification ex-

pression x["CEO"][strexp1][strexp2].attribute("amount") for the type

graph shown in Figure 3.3. By applying our algorithm we compute values for type scheme

variables α1 = {CTO} and α2 = {boss, salary}. Suppose we have different strategy

graph S2, Programmer ⇀ α2 ⇁ bonus for reification expression

y["Programmer"][strexp2].attribute("bonus") for some other type graph.

String expression variable strexp2 is the same in both reification statements, and be-

cause of that it is designated by the same type scheme variables in the strategy graphs.

Suppose that by applying BuildPathTree algorithm values for type scheme variable α2

= {salary} are computed. In order to determine the value of variable α2 that satisfies

both S1 and S2 we take the intersection of the sets of values of α2 computed for these two
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strategies. The resulting set α2 = {salary} is the result of pruning the navigation paths.

This example illustrates the idea of pruning navigation paths using context-sensitive

dataflow analysis. By determining definitions and uses of a variable that designate names of

foreign objects in a given scope, sets of values are computed for each reification statements

in which this variable is used. Then the intersection of these sets is taken to determine

common values that this variable can take in the scope considered.

3.4.4 Communication Integrity

Communication integrity is an important criterion for architectural conformance [65]. In

the context of interoperating components it specifies that each component in the implemen-

tation may only communicate directly with the programs to which it is connected in the

architecture of a system of interoperating components. Compositions of ROPEs should not

violate communication integrity.

Our solution ensures the communication integrity of interoperating components by

analyzing compositions of ROPEs to build the transitive relations between programs in

polylingual systems. For example, reification statement in program P, x["y"]["z"]

navigates to the field z of foreign object y in program Q denoted by ROPE x. However,

object y is an instance of a ROPE defined in program Q that denotes some foreign object in

program R whose field z is accessed. Thus, we may violate the communication integrity by

implicitly interoperating programs P and R via program Q even though this communication

may be prohibited by the constraints of a given architecture.

We encode architectural constraints when defining instances of ROPEs in FOREL

using the keyword constraints as part of the ROPE expressions that instantiate reifi-

cation operators. These constraints define applications with which a given program can
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interoperate. An example is a statement that specifies a constraint is ro ["P"] x =

new ro constraints ["Q"]. This constraint effectively prohibits the program P to

communicate with other programs but Q, explicitly or implicitly. Our static analysis al-

gorithm ensures that such constraints hold by keeping a table of constraints imposed on

interoperating programs and issuing errors when these constraints are violated.

3.4.5 Computational Complexity

The time complexity of BuildPathTree algorithm is exponential to the size of the type

graph for each reification statement in a FOREL program. Since the algorithm involves

the search of all nodes and edges in the type graph that contains cycles for each node in

the strategy, its complexity is O((V+E)max(|π|)) where V is the number of nodes, E is the

number of edges in the type graph, and max(|π|) is the maximum number of nodes in

strategies. The operations of putting successors in the table of variables take O(1).

In general, the number of nodes max(|π|) in strategies is much smaller than the

number of nodes in type graphs. It is also rare that all graph nodes have to be explored for

each node in a strategy. The theoretical limit on computational complexity ofBuildPathTree

algorithm is exponential. However, our experimental evaluation showed that in practice the

running time of the algorithm is small and does not exceed one minute for large schemas

because typically path expressions are short.

3.5 The Prototype Implementation

Our prototype implementation included the FOREL compiler and our static checking algo-

rithms. We wrote the FOREL compiler in C++. We extended the C++ and Java grammars

with FOREL syntax with the ProGrammar visual environment for building parsers that
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are platform-independent, programming language-independent and reusable [12]. Our im-

plementation contains less than 3,000 lines of code. Its analysis routines detect errors in

foreign components using type checking rules and static analysis algorithms as specified in

Section 3.3.5 and Section 3.4.

Since it puts additional burden on programmers to create formal descriptions of for-

eign components, we automated this process by extracting type graphs and XML schemas

from programs automatically using different tools [70][22]. These tools accept instances of

foreign components and output type graphs or XML schemas that are used by the FOREL

compiler. The latter interfaced with these tools and used the extracted type graphs and

schemas to performed its functions.

Navigation through an object structure can be done with and without meta infor-

mation (schema) about the structure. With the schema known, we get the benefits of type

checking but also the benefit of faster execution of the navigation expressions.

3.6 Experimental Evaluation

Our goal in evaluating FOREL is to determine how effective FOREL type checking is. We

applied FOREL to a real-world commercial project, to a program written by a student, and

to two commercial programs that used large-scale schemas in two different domains. We

report the results of these evaluations in this section.

3.6.1 Archer Analyzer

We applied our approach to the Archer Analyzer (AA), a software package geared for the

Archer 10 optical overlay metrology systems manufactured by California-based KLA-

Tencor Corporation [10][9]. The purpose of optical overlay measurements is to detect and
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fix misalignments between layers of semiconductor chips that were put on a silicon wafer

using microlithography processes.

AA is created as an open system and its interoperating components are hosted by

such platforms as EJB, CORBA, and .Net assemblies. The components for AA are created

using C++ and different low-level APIs were used for parsing XML and HTML data, in-

voking Java methods using Java Native Interface (JNI), and interoperating with CORBA

and .Net components.

The first release of AA occurred in June, 2001, and its testing continued through

the September of 2001. FOREL compiler was not created at that time, and ROPEs were

implemented as a library using C++ templates. Bugs were detected during the testing phase

manually by a group of test engineers. Found bugs for AA representative programs are

shown in Table 3.1. For example, DbDataAdapter.cpp is a program that contains

2,151 lines of code. It interoperates via three ROPEs with other programs and data whose

schemas collectively contain 826 types. DbDataAdapter.cpp contains 295 ROPE

statements that reference 147 foreign objects.

Manual testing of the first release uncovered fourteen bugs in this program that

could be grouped in seven categories:

• Wrong names of referenced foreign component;

• Wrong operations on foreign components;

• Wrong assumptions about types of foreign components;

• References to wrong parts of schemas;

• Violations of communication integrity;
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Size Analysis Time, sec Bugs Detected
C++ Program Prog- Schema, No. of No. of For- Gene- Semant. Testing With Con-
(A) Archer Analyzer ram, No. of ROPE Refd eign rating, Ana- Phase FOREL firmed
(S) Student Work LOC Types Stmts Objs Progs Type Gr. lysis Errors
(R) Reengineered
DbDataAdapter (A) 2151 826 295 147 3 3.6 2.8 14 53 26
FindRecipeView (A) 754 49 32 50 5 0.2 2.3 5 12 11
RecipeManager (A) 913 826 114 68 17 3.6 5.2 1 9 6
CDBQueueSettings (A) 224 16 35 24 2 0.03 0.8 12 12 12
CXMLOverlayLotData (A) 453 669 72 181 8 3.1 3.7 3 18 9
DataTestGenerator (S) 338 1653 31 115 12 11.2 1.2 8 13 8
papiNet (R) 7938 1653 313 853 1 11.2 7.8 - 49 31
MetaLex (R) 13128 66 25 19 1 0.3 2.2 - 5 2

Table 3.1: Experimental results

• Violations of schema constraints.

Last violation requires an additional explanation. Suppose that a schema specifies that

some XML object may not contain more than certain number of children of some type.

We found that this constraint was frequently violated, and these violations led to dangerous

consequences. Instead of programs failing right away, they continued to run and produce

incorrect data leading to failures in different components that used this data. This separation

of cause and effect both temporally and spatially made it very difficult to localize these bugs

and fix it.

Two and half years later the FOREL compiler was completed and applied to the

first release of AA. Since we already knew what bugs were discovered during the testing,

we were interested to see how our FOREL compiler performs with respect to human effort.

While approximately three months of manual regression testing of DbDataAdapter.cpp

revealed fourteen bugs, FOREL compiler in less than seven seconds discovered 53 bugs,

26 of which were confirmed including those found through testing. Similar results were

obtained for other programs thus confirming the viability of our approach.
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3.6.2 papiNet and Metalex

While the results of the evaluation of our approach proved successful for AA, we wanted

to evaluate FOREL on systems from different domains, in order to answer the following

experimental questions:

• Is the FOREL typechecking practical on industrial large schemas that contain over

1,000 different types?

• Does the FOREL abstraction make it easier to reengineer existing applications?

Methodology. We performed a case study during which we reengineered existing

applications for legal and paper supply chain domains. The former application was written

for a legal office, and it used Metalex schema [51]. MetaLex is an open XML standard

for the markup of legal sources. The latter application was written by a now defunct startup

company for papiNet, a transaction standard for the paper and forest supply chain [52]. The

combined source code of both applications was about 30,000 lines of C++ code.

The intention of this study is to manually reengineer legacy systems with interop-

erating components to evaluate the effort and to see whether our FOREL compiler can find

bugs in the reengineered code that were not found in the original legacy code.

Results. The study took about fifty hours for the author of this thesis to reengineer

the source code to use FOREL. The process involved locating fragments of code that used

MSXML parser and replace it with FOREL ROPE statements. The size of the code was

reduced by 30% simply by replacing repetitive use of MSXML API with concise ROPE

expressions and statements. More complex systems would probably require more time for

reengineering with unknown reduction of source code in size, if any.
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Type graph generation took a little over eleven seconds for a schema that contains

1,653 types and elements. FOREL type checking algorithm took 7.8 and 2.2 seconds

for papiNet and Metalex applications respectively. For the papiNet application 49

bugs were detected, 31 of which were confirmed through manual code inspection, and for

the Metalex application five bugs were detected two of which were confirmed later.

3.7 Summary

The contributions of this chapter are the following:

• a type system that enables the verification of foreign objects via encapsulated strate-

gies in FOREL;

• an implementation in C++ that uses static analysis and algorithms from adaptive pro-

gramming;

• a formalization of our FOREL type system using a formal model of ClassicJava and

a proof of its soundness;

• a novel algorithm for inferring types of foreign objects for FOREL encapsulation

strategies; and

• as a result of an empirical evaluation of FOREL we find bugs in a real-world com-

mercial program.

Our experience suggests that FOREL is practical, and its type checking algorithm

is efficient.
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Chapter 4

Finding Errors In Interoperating

Components

While ROOF and FOREL offer new approaches for developing interoperating components,

many components are still written using low-level platform API calls. It is not likely that

millions of lines of legacy software would be replaced in the near future using ROOF and

FOREL (although we hope that it will!). Currently, there is no approach that can detect

a situation at compile time when one component modifies XML data so that it becomes

incompatible for use by other components, delaying discovery of errors to runtime.

Our solution is a Verifier for Interoperating cOmponents for finding Logic fAults

(Viola) that finds errors in components exchanging XML data and helps test engineers

to validate reported errors. Viola creates models of the source code of components and

computes approximate specifications of the data (i.e., schemas) that these components ex-

change. The input to Viola is the component’s source code, schemas for the XML data

used by these components, and Finite State Automata (FSAs) that model abstract opera-
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tions on data with low-level platform API calls. Abstract operations include navigating to

data elements, reading and writing them, adding and deleting data elements, and loading

and saving XML data. These FSAs are created by expert programmers who understand

how to use platform API calls to access and manipulate XML data.

Viola uses control and data flow analyses along with the provided FSAs to extract

abstract operations from the component source code. Next, these operations are symboli-

cally executed to compute approximate schemas of the data that would be output by these

components. That is, given the schema of the input data, Viola reengineers the approximate

schema of the data that would be output by some component from its source code.

The reengineered and expected schemas are compared to determine if they match

each other. If a mismatch between them is found, it means that some component modifies

the data incorrectly so that runtime exceptions may be thrown by other components using

this incorrect data. To confirm this, Viola analyzes paths to data elements accessed and

modified by these components to determine whether the schema mismatch results in actual

errors. Sequences of operations leading to some potential errors are reported to help test

engineers validate and reproduce errors.

Viola is a helpful bug finding tool whose static analysis mechanism reports some

potential errors for a system of interoperating components. We tested Viola on open source

and commercial systems, and detected a number of known and unknown errors in these

applications with good precision thus showing the potential of this approach.

4.1 The Problem Statement

Our goal is create a tool for finding errors in interoperating components that exchange XML

data. This tool should report some potential errors when evidence of violating some prop-
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erties is found. A sound approach ensures the absence of errors in components if it reports

that no errors exist, and a complete approach reports no errors for correct components. Our

approach is neither sound nor complete, that is, it may miss some errors or report errors that

do not exist in components (i.e., false positives). However, the precision of error reporting

should be sufficient to find actual errors in interoperating components in practical settings.

There are different reasons why programmers make mistakes when they write inter-

operating components. Based on our participation in large-scale projects, we observe that

programmers often make wrong assumptions about schemas. Given that many industrial

schemas contain thousands of elements and types, it is easy to make mistakes about names

of elements and their locations in schemas. The other source of errors lies in the complex-

ity of platform API calls that programmers use to access and manipulate XML data. XML

parsers export dozens of different API calls, and mastering them requires a steep learning

curve.

Often, programmers lack the knowledge of the impact caused by changing the code

of some component on other components that interoperate using XML data. This lack of

knowledge is an effect of the Curtis’ law that states that application and domain knowledge

is thinly spread and only one or two team members may possess the full knowledge of a

software system [37]. The effect of this law combined with the difficulty of comprehending

large-scale XML schemas and high complexity of platform API calls result in components

producing XML data that is incompatible for use by other components.

The other source of errors is the disparity in evolving XML schemas and com-

ponents. Database administrators usually maintain schemas, and programmers maintain

components that interoperate using XML data that should be instances of these schemas.

If a database administrator modifies some schemas and does not inform all programmers
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DOMParser parser = new DOMParser();
parser.parse( “book.xml” );
Document doc = parser.getDocument();
Element book = doc.getDocumentElement();
book.appendChild( authors );
NodeList authorList = book.getChildNodes();
for( i = 0; i < authorList.getLength(); i++ ) {

Node item = authorList.item( i );
if( item.getName() == getAuthorName() ) {

item.getParentNode().removeChild( item );
authors.appendChild( item );

}
}
new XMLSerializer().serialize( doc );

root->selectNodes(“book”,&list);
list->get_item((long)0, &book);
if( flag ){

book->selectNodes(“title”,&list);
list->get_item( (long)0, &node);

} 
else 
{

int i = getNodeSequence();
book->get_ChildNodes(&list);
list->get_item((long)i,&node);

}
char *value;
node->getNodeValue( &value );

<book>
<author>Name</author> 
<title>Some Title</title>

</book>

<book>
<authors>Single

<author>Name</author> 
</authors>
<title>Some Title</title>

</book>

a) c) d)

b)

Figure 4.1: Java (a) and C++ (d) components that interoperate using XML data (b) and (c).

whose components are affected by this change, then some components will keep modifying

XML data according to the obsolete schemas.

Our goal is to design a tool that ensures that certain properties hold in components

interacting using XML data. These properties are the main and secondary safety proper-

ties. Recall that the main safety property (MSP) is defined as ensuring D2 conforms to S.

The secondary safety property (SSP) is defined as the same data elements in S should not

be accessed by one and modified by some other interoperating components provided that

specifications are not used at runtime to validate XML data.

Since the MSP and SSP ensure stronger guarantees that no runtime will be thrown,

using XML parsers to validate data against schemas is irrelevant to our problem. The prob-

lem is to find and report some situations at compile time in which interoperating compo-

nents violate both safety properties. Currently, no tool checks interoperating components

for violating these properties, even when components are located within the same applica-

tion. Viola should output descriptions of execution scenarios that lead to potential errors,

and test engineers should be able to follow these scenarios to validate the reported errors.
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4.2 Errors

We classify errors that Viola catches in interoperating components into the following gen-

eral categories:

• Path-Path (P2) errors occur when a component accesses elements that may be deleted

by some other components.

P2 errors occur in components that access data elements that are deleted by some

other components (P2-1) and by components that read or write wrong elements

(P2-2). P2-1 errors are execution-order-dependent and therefore are difficult to find

using testing or manual code inspection. If some component deletes data elements

after some other component accesses these elements, then the execution proceeds

correctly. However, if the order of the execution is reversed, then an exception will

be thrown by a component that accesses a previously deleted element.

P2-2 errors occur when one component navigates to a wrong data element and reads

its value by using sequence numbers of elements for navigating rather than their

names. Consider a component that reads the value of the first element located un-

der the root “book” in the XML data shown in Figure 4.1b1. The read element is

“author” and the obtained value is “Name.” However, if the component J modified

this data as shown in Figure 4.1c, then the read element would be “authors” and

the obtained value is “Single”. Thus, if the component J inserts a data element

into the path to some elements accessed by the component C, then the result of in-

terference of these operations is that the component C accesses and reads values of

different data elements from what was intended when it uses sequence numbers of

1An example is shown in Figure 1.1 is replicated here in Figure 4.1 for the convenience of the reader.
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elements rather than their names.

• Path-Schema (PS) errors occur when components attempt to access, delete, or add

elements that do not exist in the schemas for the data (PS-2), or when components

violate bounds set by schemas on data elements as a result of executing operations

on data (PS-1).

PS-1 errors occurs when components violate constraint bounds set by schemas. Sup-

pose that a schema defines the value of the minOccurs attribute for a data element

to be equal to one, however, a component deletes all instances of this element. Some

other component may execute code that was written based on the assumption that

at least one instance of this data element should be present in the XML data. This

situation may also lead to execution-order-dependent runtime errors.

• API errors that result from incorrect uses of API calls.

Mastering APIs for accessing and manipulating data often requires programmers to

spend long periods of time learning dependencies between APIs and objects that are

created as results of their calls [66][77]. One of common mistakes is that program-

mers use incorrect APIs in the sequences of calls designed to perform operations

on data. Given that the knowledge of how to use APIs correctly is encapsulated in

the descriptions of sequences of API calls that expert programmers build for abstract

operations, Viola can flag sequences of API calls that do not match any abstract op-

erations as potentially erroneous at compile time. It may also be that the flagged

sequence of API calls is correct, and no FSA was provided to Viola to validate this

sequence. In this case experts will add an FSA to the Viola FSA database, and these

sequences will be accepted from that moment on.
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Sometimes programmers forget to make components save their changes to data (e.g.,

a return statement may be executed before the Save operation in some execution

path). Technically, it is not an incorrect use of API, but rather omission of a crucial

operation that makes changes to data persistent. The data remains consistent after

operations are executed; however, changes made by the component that does not

save the data will be lost. Viola reports these situations to programmers at compile

time helping them to find and debug potential logic faults.

Below are examples of warnings that Viola issues to programmers after it analyzes

interoperating components:

P2-1: At line 23 component C accesses element 〈book, author〉 that may be deleted by

the component J at line 122.

P2-2: At line 23 component C may read a wrong element located under path 〈book〉
because component J modifies elements under this path at line 122.

PS-1: At line 23 component C may delete all instances of the element 〈book, author〉,
however, at least one instance of this element is required by the schema S.

PS-2: At line 23 component C accesses element 〈book, royalties〉, however, this

element is not defined by the schema S.

4.3 The Architecture of Viola

Viola’s architecture and process are shown in Figure 4.2. The steps of the Viola process are

presented with numbers in circles. The names of components and schemas are taken from

the model shown in Figure 1.2. The input to the architecture is the J’s and C’s components
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source code (1). The EDG C++ and Java front ends [13] parse the source code of the

components and output Abstract Syntax Trees (ASTs)(2). The Analysis Routines (ARs)

perform control and data flow analyses on the ASTs in order to determine sequences of API

calls that can be replaced with abstract operations. ARs also input FSAs that model abstract

operations on XML data (3), and check to see if sequences of API calls retrieved from the

source code are accepted by these FSAs. If a sequence of API calls is not recognized, or

some abnormalities in using these API calls are detected, then API errors are reported to

programmers (4).

Running ARs result in abstract programs for C and J components (5). Abstract

programs represent sequences of abstract operations on the XML data. The Symbolic Ex-

ecutor (SE) executes the abstract program for the component J on the schema S1 of the

XML data D1 (6) and outputs the schema S’ (7) and Symbolic Execution Trees (SETs)

(8). SETs are graphs characterizing the execution paths followed during the symbolic ex-

ecutions of a program. Nodes in these graphs correspond to executed statements, and edges

correspond to transitions between statements.

Schema S’ is the approximate specification of data that would be output by the

component J if it is executed on the input data D1. This schema can be viewed as reengi-

Analysis
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API
Errors

Symbolic
Executor

EDG
Parsers

Paths
Analyzer

ASTs Errors

C’s Source 
Code

J’s Source 
Code
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J’s Abstract 
Program
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Schema

S1: D1’s
Schema
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Comparator

S’
Schema

SETs

1
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2
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13
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10
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Figure 4.2: Viola’s architecture and process.
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neered from the component J when its abstract program is symbolically executed on the

schema S1 of the XML data D1. This reengineered schema S’ represents the approximate

view of the XML data held by a programmer who wrote the component J. Comparing the

reengineered schema S’ with the schema S establishes if the MSP is violated, and conse-

quently if the component J may perform some incorrect manipulation on the input data.

The Schema Comparator (SC) compares the reengineered schema S’ with the D2’s

schema S (9), and reports success if the schemas are the same (10). If this step fails,

then the MSP is violated. In the next step (11), Viola checks for violations of the SSP by

analyzing if the component C accesses data elements that are modified by the component J.

To check for the violations of the SSP property, SE executes the abstract program

of the component C on the schema S of the data D2 (12). The purpose of this step is

to obtain information about data elements that the component C accesses in the data D2

provided that it is an instance of the schema S. Then SE executes the abstract program of

the component C on the schema S’ which is reengineered from the component J during the

previous steps. The purpose of this step is to obtain information about data elements that

the component C would access in the data D2 that is not an instance of the schema S1, but

rather of the reengineered schema S’. This information is stored in the SET resulting from

this execution, and this SET is added to the set of SETs (8).

The Paths Analyzer (PA) analyzes the paths computed by components to accessed

and modified data elements (13), and reports the discovered errors to programmers (14).

By comparing the paths to elements that the component C may access in the data D2 that is

an instance of the schema S versus the paths to elements in the data that is an instance of

the schema S’, PA reports different situations that may lead to P2 errors.

Using Viola is described in the procedure StartViola that is shown in Algo-
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rithm 3. The input to this procedure is the set of components C. For each pair of distinct

components ci and cj from the set C, it is determined whether these components interact

via the set of the XML data {D}. This set is obtained by using the function GetData:

C→{D} that maps the component C to the set of data {D} that it uses. This function is

applied to the components ci and cj to obtain the sets of data {D}i and {D}j respectively,

and the intersections of these sets of data is computed to determine the common data used

by both components ci and cj. Then for each element of the computed set of common

data, the procedure CatchErrors is called. This procedure executes the steps of 1-14 the

Viola architecture and issues a list of potential errors.

Algorithm 3 StartViola procedure.

StartViola( C )
for all ci ∈ C do

for all cj ∈ C ∧ci 6= cj do
GetData(ci) 7→ {D}i
GetData(cj) 7→ {D}j
D = {D}i∩ {D}j
if D 6=® then

for all d ∈ D do
CatchErrors(ci, cj, d)

end for
end if

end for
end for

4.4 The Models

Viola builds a model of a program by abstracting its operations on data, and then symboli-

cally executes these operations on schemas. We describe program abstractions and schemas,

and specify the formal framework for building these abstractions.
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J D2
modify CD1

read read

Figure 4.3: A model of component interoperability.

4.4.1 Program Models

A basic programming model for interoperating components is shown in Figure 4.32. Our

goal is to verify at compile time the MSP (the data D2 should conform to the schema S),

and the SSP (the same data elements in S should not be accessed by one and modified

by some other interoperating components). The problem is to determine at compile time

how operations that access and modify data violate these properties. These operations are

navigating to data elements, reading and writing data, adding and deleting data elements,

and loading and saving data, designated as Navigate, Read, Write, Add, Delete,

Load, and Save respectively.

These abstract operations are implemented in components using low-level plat-

form API calls. In general, API calls are complex and the client code that uses API

calls is difficult and tedious to write. It is rare that a one-to-one correspondence exists

between abstract operations and API calls. Programmers have to execute sequences of API

calls in order to accomplish each of these abstract operations [66][77]. For example, the

getDocumentElement API call returns a node in the internal representation of XML

by Document Object Model (DOM) parsers. This internal node is used when calling other

API calls as shown in Figure 1.1a.

Program abstractions represent source code of interoperating components using ab-

stract operations. We observe that a majority of statements and operations in applications

2An example is shown in Figure 1.2 is replicated here in Figure 4.3 for the convenience of the reader.

90



are irrelevant to accessing and modifying XML data. Viola abstracts away specifics of API

calls and program variables that do not affect XML data, and transforms applications into

sequences of abstract operations. This technique decreases the number of states of com-

ponents by focusing on a subset of their variables related to the given specification and

eliminating the remaining variables.

Data abstractions represent actual data with smaller generalized specifications. Data

abstractions can be achieved with XML schemas [14]. We consider XML schemas in this

thesis because XML is the lingua franca of data exchange, and because XML schemas are

also used to model non-XML data (e.g., relational databases [61] and PDF files [1]).

Program abstractions are obtained from source code by analyzing it and mapping

sequences of platform API calls to the abstract operations. Examples of program abstrac-

tions for the Java and C++ components from Figure 1.1a and Figure 1.1d are shown in Fig-

ure 4.4a and Figure 4.4b respectively. In general, names of data elements (e.g., “title”)

are not constants; they are expressions whose values are computed at runtime. In program

abstractions, these names are replaced with symbolic variables (e.g., root, child, e1,

and e2) as it is shown in Figure 4.4. With program abstractions we lose precision, however,

as the number of program states is significantly reduced.

Branching statements include boolean predicates specifying the condition under

which certain execution paths will be taken. In general, we lack the knowledge to deter-

mine the exact predicate. For example, the condition i<authorList.getLength()

of the for loop for the Java component shown in Figure 1.1a means that the iterator vari-

able i is incremented until its value reaches the number of items in the authorList

object. However, this condition could be determined only at runtime. In Viola a general

approach is taken to abstract away predicate conditions of branching statements and loops.
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Load book.xml
Navigate root
Add e1
Loop

tmp = child
Delete child
Navigate e1
Add tmp

end loop
Save book.xml

Load book.xml
Navigate root
if

Navigate “title”
else

Navigate e2, seqnumber
end if

Read var
Save book.xml

a) b)

Figure 4.4: Program abstractions for Java a) and C++ b) components shown in Figure 1.1a
and Figure 1.1d respectively.

The keywords loop and if-then are used in abstract programs to indicate branching

control statements in the corresponding components. Recursive functions are abstracted as

called inside loops with the recursive calls removed.

4.4.2 Schemas

XML schemas are recorded in the XML format [14] and each schema has the root spec-

ified with the <schema> element. Data elements are specified with <element> and

<attribute> tags. Each data element is defined by its name and its type. Elements

can be either of simple or complex types. Complex element types support nested elements

while simple types are attributes and elements of basic types (e.g., integer, string, or

float).

Elements may have two kinds of constraints. First, the values of elements may be

constrained through enumerating or specifying low and upper bounds for numerical types.

The second constraint specifies bounds on the number of times that a specific element may

occur as a child of some element. These bounds are specified with the minOccurs and
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<element name=”book”>
<complexType>

<element name=”author”
maxOccurs=1/>

<element name=”title”
type=“string”/>

</complexType>
</element>

<element name=”book”>
<complexType>

<element name=”authors”>
<complexType>

<element name=”author” minOccurs=1/>
<element name=”title” type=“string”/>

</complexType>
</element>

</complexType>
</element>

root †
book author1

†

string

title

author1

†

string

title

authors
root †

book
†

a) b)

Figure 4.5: Examples of graphs for two XML schemas.

maxOccurs attributes of the 〈element〉 tag.

Elements can be grouped in a sequence if they are children of the same parent

element. Attributes of the same element can also be grouped in a sequence. Each element

or attribute in a sequence is assigned a unique positive integer sequence number. This

number can be used to access elements or attributes instead of using their names.

We represent schemas using graphs, and we use this formalism for comparing dif-

ferent schemas in order to detect discrepancies that lead to runtime errors. Examples of

graphs for two different schemas are shown in Figure 4.5. These schemas describe in-

stances of XML data shown in our motivating example in Figure 1.1b and Figure 1.1c.

Let T be finite sets of type names and F of element and attribute names (labels), and

distinct symbols ¦ ∈ F and ¥ ∈ T. Schemas graphs are directed graphs G = (V, E, L)

such that

• V⊆T, the nodes are type names or ¥ if the type name of data is not known;

• L⊆F, edges are labeled by element or attribute names or ¦ if the name is not known;
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• E⊆L×V×V, edges are cross-products of labels and nodes. If 〈l,vk,vm〉 ∈ E, we write

vk
l−→ vm. Nodes vm are called children of the node vk. If an element has no children,

then its corresponding node in a schema graph has an empty collection of children

nodes;

• Bounds for elements are specified with subscripts and superscripts to labels designat-

ing these elements. Subscripts are used to specify bounds defined by the minOccurs

attribute, and superscripts designate the bounds specified by the maxOccurs at-

tribute;

• Each graph has the special node labeled root ∈ V, where root represents a collec-

tion of the root elements. An empty schema has a single root node and no edges;

• The XML tag <complexType> specifies that an element is a complex type, and it

is not represented in the graph.

A path in a schema graph G = (V, E, L) is defined as a sequence of labels pG

= 〈l1, l2, . . . , ln〉, where vk
lu−→ vm for vk,vm ∈V and 1 ≤ u ≤ n. The symbol ¦ may be used

instead of a label in a path if an element is navigated by its sequence number. For example,

the symbol ¦ in the path 〈book, ¦〉 for the schema graph shown in Figure 4.5a stands for

any child element of the element book, and this path may be expanded into two paths:

〈book, author〉 and 〈book, title〉.
Path pi is a subpath of some other path, p j, pi ⊆p j if and only if all labels of the path

pi are also labels of the path p j, and the order in which they appear and how they relate to

each other in p j is the same as they appear and relate to each other in the path pi. Function

type:v →s returns the type s∈T of the node v ∈V. Function max:labelu
l → u returns

the upper bound u, or ∞ if the upper bound is not specified, and function min:labelu
l → l
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returns the lower bound l, or zero if the lower bound is not specified.

4.4.3 The Formal Framework

In order to build program abstractions we need to locate sequences of API calls that corre-

spond to abstract operations. If all sequences of platform API calls for the abstract opera-

tions were known in advance, then these sequences can be searched for and replaced with

abstract operations. Unfortunately, the multiplicity of data hosting platforms and API calls

for accessing and manipulating data as well as their constant evolution makes it difficult to

hardcode all sequences of API calls for abstract operations once and for all. We use a for-

mal framework to define these sequences and extract them from source code in a uniform

way.

Let Σ be the set of API calls that access and manipulate data, and let Γ be the set of

abstract operations, Γ = {Navigate, Read, Write, Add, Delete, Load, Save}. Let

α⊆ Σ∗ be sequences of API calls that access and manipulate data. Partial function ϕ : α→ γ

maps a sequence of API calls α to an abstract operation γ ∈ Γ.

We assume that α, the set of sequences of API calls, is a regular language. Since

for each regular language there exists an FSA that accepts this language, FSAs are provided

for each γ, such that ϕ−1(γ) = α. If an FSA for an abstract operation γ accepts sequences of

API calls α, then these API calls can be replaced with this abstract operation in the abstract

program.

Different API platforms offer API calls that are organized in different sequences that

are mapped to abstract operations. It is impractical to constantly evolve Viola to recognize

new sequences of API calls. By describing sequences of API calls uniformly, Viola can

perform its analysis in a platform-independent way.
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getDocument()
3

getDocumentElement()

getChildNodes()
5

getLength()

item()getAttributes()
7

getNamedItem()

getLength() getParentNode()

1
new DOMParser()

Parse()

8

getLength()

2

46

Figure 4.6: Example of an FSM for accepting XML DOM API calls for the Navigate
abstract operation.

A trace τ ⊆ Σ∗ is a sequence of operations that can be executed by a path in the

program. Let τ∗ be all possible traces that result from all possible execution paths of the

program. If α is a subtrace of τ∗ and ϕ(α) = γ, then a subtrace of τ∗ can be replaced with

the corresponding abstract operation γ. In general, τ∗ is not a regular language because it

contains traces of function calls. When a function is called, a stack is used to store local

variables and the return address. Languages that use stacks are context-free rather than

regular. If τ∗ is modeled as a context-free language, then there exists a pushdown automaton

(PDA) that accepts this language. A PDA configuration is described by its current state

and all the symbols that the PDA contains in the given state. It was shown that reachable

configurations of a PDA form a regular language, and therefore can be represented by some

FSA [33][41].

An example of an FSA for the Load and Navigate abstract operations for Xerces

XML parser API calls is shown in Figure 4.6. Circles designate states with state numbers

inside the circles, and transitions are labeled with API calls. Double concentric circles

indicate final states, and circles with no edges incident on them are the start states. This
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FSA contains four joined FSAs, one for modeling the Load at the final state 1, and three for

Navigate abstract operations. Experts who understand how to use API calls to implement

abstract operations construct these FSAs. Once built, these FSAs can be used for building

abstract programs from the source code of components.

In our framework we perform limited analysis of data flow. Specifically, we are

only interested in producing separate traces of operations invoked on different objects that

represent different data. For example, given two DOMParser objects that designate dif-

ferent data, we want to obtain separate traces of methods invoked on these objects. No

dataflow analysis is performed on the parameters to these methods. This decision results

in better performance of Viola, but the side-effect is more false-positives produced by the

compiler. However, we show in our experimental evaluation, the number of false positives

is acceptable in practice.

4.5 Building Program Abstractions

Here we explain how abstract programs are obtained using components source code and

FSAs that model abstract operations. We give a grammar for abstract programs and show

an example of obtaining an abstract program from a fragment of Java code.

4.5.1 Extracting Abstract Programs

Program abstractions are obtained from Java and C++ programs using FSAs that map low-

level API calls to abstract operations. EDG parser front ends for C++ and Java build Control

Flow Graph (CFG) from the source code of components. CFGs are graphs whose nodes

represent basic blocks (BBs) with a statement containing a relevant API call from the set

α, and edges between BBs that represent the flow between program statements. Compo-
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nents are partitioned into BBs in the following manner. Statements are read and put into

the same BB until either a relevant API call or a branching statement (e.g., if-then,

switch-case, do-while) is encountered. Then, this BB is added to the CFG. If the

program consists of multiple source files, then the CFGs produced for each of these source

files are merged into a single CFG.

Program abstractions are computed for each path in the CFG, where a path is a set

of nodes from the CFG connected by edges. For a selected path in the CFG stacks for API

calls are created. For each BB containing an API call in the given path, this API call is

extracted and put on the stack. Every time an API call is added, the sequence of API calls

on the stack is checked to see if it is accepted by any FSA for abstract operations. If such

an FSA is found, then this sequence is modeled by the corresponding abstract operation for

this FSA, and this operation is put into the abstract program.

Each FSA has a uniquely labeled edge incident on the start node. The label of

this edge is an API call that is not encountered anywhere else in the FSAs except for the

edges incident on the start nodes. When such an API call is encountered in a CFG, a new

stack is created. Several stacks can exist at any given time, and API calls are put on these

stacks until they satisfy some FSAs and can be replaced with the corresponding abstract

operations. For example, if there are three FSAs are stacked, then the next API call may

be added to all three stacks. If no stack can be replaced with an abstract operation, then an

API type of error is reported to programmers.

4.5.2 Limitations

In general, it is an undecidable problem to determine all API calls relevant for a given stack

from an arbitrary program. If a function pointer is used to reference an API call, then Viola
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is unable to resolve it without the guidance from users. To understand the limitations of

Viola consider a code fragment where a reference to an object that denotes a data element

is put, among other references, into a hash table object, which is passed as a parameter to

some function. Inside this function, references to objects are retrieved from the hash table.

In a general case it is impossible to determine what exact objects in the calling function

the references denote in the hash table inside the called function. To resolve this situation,

Viola requires guidance from programmers to resolve object references. This guidance

takes a form of a prompt with a list of objects from the calling context that match the object

in question from the called context.

4.5.3 Example of Extracting Abstract Program

We demonstrate how to extract an abstract program from a fragment of Java code using the

FSA shown in Figure 4.6. A fragment of Java code is shown in Figure 4.7 to the left of the

block arrow, and the extracted abstract program is shown to the right of the block arrow.

When extracted from the Java source code, API calls are put on the stack. Each time

the stack configuration is updated, it is checked to see if API calls from the current stack

configurations are accepted by some FSA that models some abstract operation. When API

1: DOMParser parser = new DOMParser();
2: parser.parse( “book.xml” );
3: Document doc = parser.getDocument();
4: Element book = doc.getDocumentElement();
5: NodeList authorList = book.getChildNodes();
6: for( i = 0; i < authorList.getLength(); i++ ) {
7:       Node item = authorList.item( i );
8: }

Load book.xml
Navigate root
Loop

endLoop

Navigate e1

Figure 4.7: Example of the abstract program extracted from a fragment of Java code.
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calls from a stack configuration are accepted by some FSA, this configuration is reduced

to the abstract operation which this FSA models. If several stacks exist, then only these

stack configurations are updated with API calls if these calls are accepted by corresponding

FSAs.

When processing the fragment of Java code shown in Figure 4.7 to the left of the

block arrow, the API call new DOMParser() is retrieved from the line 1. The FSA,

shown in Figure 4.6, accepts this call switching to the state 2 from the initial state 1. The

next API call parse() is retrieved from the line 2, and FSA accepts this call in the state 2.

Incidentally, this sequence of API calls corresponds to the abstract operation Load, and it

is modeled by the FSA starting at the state 1 and finishing at the state 2. The configuration

of the stack is reduced to the abstract operation Load book.xml which is put into the

abstract program shown in Figure 4.7 to the right of the block arrow.

Next two API calls getDocument() and getDocumentElement() are re-

trieved from lines 3 and 4 respectively. These calls are put on the stack and accepted by the

FSA, switching it to states 3 and 4. This FSA models the abstract operation Navigate

whose parameter is the symbolic variable root denoting that the program navigates to the

root element of the XML document. Thus, the stack configuration is reduced to the abstract

operation Navigate root which is put into the abstract program.

After retrieving the API call getChildNodes() from the line 5 and switching

the FSA to the state 5, the keyword for is encountered, denoting the loop control struc-

ture. In general, it is not possible to determine how many times this loop will execute, if it

executes at all. This lack of knowledge is reflected by abstracting away conditional pred-

icates of loops, leaving only information about the loop itself in abstract programs. Thus,

the Loop and endLoop keywords are put into the abstract program. Continuing to re-
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trieve API calls from lines 6 and 7, getLength() and item() are put on the stack and

accepted by the FSA, switching it to the state 6. Then, the stack configuration is reduced

to the abstract operation Navigate e1 which is put into the abstract program inside the

loop.

The lack of knowledge about the navigated data element is reflected in the symbolic

variable e1, the parameter to the abstract operation Navigate. The values of this variable

are the names of the navigated data elements. In general, it is an undecidable problem to

retrieve names of data elements using static program analysis. However, when abstract

operations are executed on schemas, symbolic variables take specific values as parameters

to these operations. We show this process in Section 4.6.

4.5.4 The Grammar of Abstract Programs

A grammar for abstract programs is shown in Figure 4.8. An abstract program is a sequence

of operations and command included within Load and Save operations. The metavariable

aoper ranges over abstract operations; id ranges over symbolic identifiers (variables);

const ranges over string and integer constants; command ranges over the state and

jump commands as well as assignment expressions, and body ranges over program defi-

nitions. An abstract program in Viola, Program, is a triple (load, body, save) of

Load and Save abstract operations and the program body. Assignment expression is also

included, allowing us to create global identifiers and assign values to them.

4.5.5 Description of Abstract Operations

The summary of abstract operations is given in Table 4.1. The operations Load and Save

take the identifiers of data as their arguments. These operations mark the beginning and
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Program ::= load body save
load ::= Load var
save ::= Save var
body ::= Loop body endLoop |

If body endIf |
If body else body endIf |
aoper | command

aoper ::= Navigate var |
Navigate var, seqnumber |
Navigate var, attribute |
Navigate var, parent |
Read var | Write var |
Add var | Delete var

command ::= state var | jump var | id = var
var ::= id | const
id ::= an identifier
const ::= n | s
n ::= numerical value
s ::= string value

Figure 4.8: The grammar for abstract programs.

the end of abstract programs. The mandatory parameter of the operation Navigate is the

name of a data element or attribute or a symbolic variable if the name is not known, or the

order sequence number of the data element in the collection of elements that are children

of the currently referenced element. The seqnumber optional parameter specifies that

the sequence number of the element is used to access it rather than its name. The optional

parameter attribute specifies whether an attribute or an element is navigated to, and

the optional parameter parent gives the direction of the navigation to parent rather than

to children elements.

The operation Add takes names of data elements and adds them under the currently

navigated elements. Finally, the Delete operation takes names of data elements as its

parameter and deletes them from the collection of children of the currently referenced ele-
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OPERATION DESCRIPTION
Load identifier Start interacting with the XML data referenced by its identifier
Save identifier Update the XML data referenced by its identifier
Navigate element Navigate to the element whose name is specified by the
[,seqnumber] symbolic variable, the optional flag seqnumber

specifies that the element is denoted by its sequence
number rather than its name,

[,attribute] the optional flag attribute specifies that the element is
an attribute,

[,parent] and the optional flag parent specifies that
it is navigated to a parent element

Add element Inserts elements specified by the symbolic variable element
under the currently navigated elements

Delete element Deletes elements specified by the symbolic variable element
that are children elements of the currently navigated element

Table 4.1: Abstract operations and their descriptions.

ments.

4.6 Symbolic Execution

Symbolic execution is a path-oriented evaluation method that describes data dependencies

for a path [57][58][35]. Program variables are represented using symbolic expressions that

serve as abstractions for concrete instances of data that these variables may hold. The state

of a symbolically executed program includes values of symbolic variables. When a program

is executed symbolically its state is changed by evaluating its statements in the sequential

order.
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4.6.1 Background

Historically, symbolic evaluation is used for analyzing and testing programs that perform

numerical computations. We illustrate it on a simple example. Consider two consecutive

statements x=2*y and y=y+x in a program. Initially, variables x and y are assigned sym-

bolic values X and Y respectively. After symbolically executing the first statement, x has the

value 2*Y, and after executing the second statement the value of y is Y+2*Y. When sym-

bolically executing numerical programs, variables obtain symbolic values of polynomial

expressions.

Recall that symbolic execution trees (SETs) are graphs characterizing the execution

paths followed during the symbolic executions of a program. Nodes in these graphs corre-

spond to executed statements, and edges correspond to transitions between statements. Each

node in the SET describes the current state of execution that includes values of symbolic

variables and the statement counter. Nodes for branching statements (e.g., if or while

statements) have two edges that connect to nodes with different condition predicates.

4.6.2 Symbolic Variables

In Viola, symbolic variables contain paths to data elements. In many cases, names of data

elements are not specified as constants in programs, but rather computed at runtime. These

elements are assigned unique symbolic variables in abstract programs.

Each abstract program contains four symbolic state variables: root, current,

children, and rw. The variable root contains the names of the root elements of the

data. A set of tuples 〈current, children〉 describes elements referenced by a compo-

nent in a given state and their children elements. This information will be used in the path

analysis routines of Viola to get extended diagnostic information about found bugs.
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In every tuple the variable current contains a path to the element that can be

referenced in the given state, and the variable child contains paths to the elements that

are children of the element referenced by the variable current. For example, for the

data shown in Figure 1.1b in a state in which the root element is navigated, the set of

values for the variables are root = {book}, current = {〈book〉}, and children =

{〈book, author〉, 〈book, title〉}. Finally, the rw variable keeps the list of elements

and attributes whose values are read or written in a given state.

The state of an abstract program is the union of values of the state variables. Ab-

stract operations modify the state of a program by changing values of the state variables.

Bookmarking commands “state <name>” and “jump <stateName>” mark certain

states in abstract programs in order to enable execution to return to them from any point

when executing these programs. The command “state <name>” represents an inter-

mediate object created by platform API calls in the component. For example, opera-

tion doc.getDocumentElement() creates the transient data element book of type

Element in the Java component shown in Figure 4.1a. This object represents the root of

the data, and it is used in other API calls that navigate down to data elements. We assign

some unique name to the state in which this intermediate object is created.

The command “jump <stateName>” directs execution of the abstract program

to abandon its current state, and this command swaps in the context associated with some

named state and continues to execute the program in the switched state.

Three global symbolic path variables are associated with each SET. The access

path variable Θ keeps paths to navigated elements and attributes, the delete path variable

∆ keeps paths to deleted elements and attributes, and the add path variable Ω keeps paths

to added elements and attributes. Each path is associated with a node in the SET which
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represents executing some operation from an abstract program. For each component Ci and

data D j there is a triple 〈Ci,D j,〈Θ,∆,Ω〉〉 that maps this component and data to access,

delete, and add paths of the data elements accessed and modified by this component. This

information is used to verify if the SSP holds.

4.6.3 Semantics of Abstract Operations

Abstract programs are executed symbolically on schemas producing SETs. Recall that

nodes in SETs contain the values of symbolic variables and (modified) schemas. Each ab-

stract operation creates a new node in the SET and updates the content of the symbolic state

variables. We define the operational semantics of abstract operations in terms of changes

made to the state variables and schemas after these operations are executed.

In general it is an undecidable problem to determine automatically how many times

to execute symbolically abstract operations located within the body of a loop. We decided to

make it a configurable parameter in Viola based on the small scope hypothesis [53] stating

that in practice, many bugs can be detected in small scopes. By default, the number of times

Viola executes the bodies of loops is one.

The operation Load marks the beginning of abstract programs and instructs Viola

to create a new SET, initialize the state variables, and read in the schema. Viola processes

abstract operations until the Save operation is encountered, which marks the end of the

abstract program.

The Navigate operation, just like the Load and Save operations does not change

the schema, but it modifies the content of the state variables to reflect navigated elements

and attributes and their child elements. Other operations that do not modify schemas are the

operations Read and Write. When they are executed, new nodes are created in the SET,
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and the value of the rw state variable is updated with paths to data elements whose values

are read or updated.

Operations Add and Delete add elements to and delete elements from schemas

and update values of the state variables to reflect the changes. Recall that elements in

schemas have bounds that are specified with attributes minOccurs and maxOccurs. If

the Add operation is executed unconditionally (i.e., outside a loop of a branching state-

ment), then it gives us assurances that there should be at least one instance of the added

element in the data. Correspondingly, the value of the minOccurs attribute is set to one

if it was previously set to zero, or left unchanged if it was greater or equal to one. Uncon-

ditional execution of the Delete operation deletes all instances of elements with given

names. Correspondingly, the value of the minOccurs attribute is set to zero to reflect the

possibility that all instances of a given element will be deleted.

Conditional executions of the Add and Delete operations occur when these oper-

ations are located within the bodies of conditional statements (e.g., if-then) or loops. In

case of loops, we often lack the knowledge of the upper bound on the number of iterations

through the loop, and we assume that it is infinite. A conservative guess of the lower bound

on the number of iterations through the loop is zero, meaning that it is never executed. If

the Add operation is executed within the body of a conditional statement or a loop, then

the entry for the added element is inserted into the schema with the attribute minOccurs

set to zero, and the attribute maxOccurs is not present reflecting the absence of the upper

bound on the number of instances of this element. If the name of the added data element is

not known at compile time, then all edges with the label ¦ incident on the current element

are added to the schema graph.

Executing the Delete operation within the body of a conditional statement means
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that a single instance of some element may be deleted from data. In general, the name of

a deleted element may not be known, and Viola makes a conservative guess about what

elements may be affected by these operations. If the Delete operation is conditionally

executed within the body of a loop on the set of n elements in the schema and it is not

known what elements are deleted, then it is assumed that any subset of the set of these

elements can be deleted from the data at runtime. Formally, this is expressed with the

powerset operator P which transforms the set of n elements to 2n subsets of these elements,

which may remain after executing the Delete operation.

Executing the Add operation inserts an element whose name is specified by the

parameter under the currently navigated elements. If the element being added already exists

in the schema, then the schema is not changed. Otherwise, the schema is modified by

adding an entry that describes the added data elements as children to the currently navigated

elements. The children symbolic variable is updated with the path to the newly added

element.

When the parameter to abstract operations Navigate, Add, and Delete is the

actual name of a data element, the symbolic executor expects this element to exist as a child

of the element referenced by the variable current. If the referenced data element does

not exist, then Viola issues PS-2 error stating that a component attempts to access, delete,

or add elements that do not exist in the schema. After issuing this error Viola continues to

symbolically execute the abstract program.

4.6.4 Example of Symbolic Execution

We demonstrate an example of symbolic execution of abstract programs on schemas. We

use names and terminology defined in the basic model shown in Figure 1.2 and from the
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motivating example described Figure 1.1. Abstract programs for the components J and

C are shown in Figure 4.10a and Figure 4.10b3 respectively. These abstract programs are

obtained from the source code for the Java and C++ components shown in Figure 1.1a and

Figure 1.1d respectively. XML schema shown in Figure 4.5a serves both as the schema for

input data D1 and the expected schema S.

First, we execute the abstract program for the component J shown in Figure 4.10a

symbolically on the XML schema for input data D1 shown in Figure 4.5a. The result of this

execution is the SET shown in Figure 4.9(a). The content of nodes in the SETs includes

schemas and symbolic state variables. Due to lack of space, only schemas are shown in

the nodes of the trees. Solid block arrows point to nodes denoted by the state variable

current. Values for the tuple 〈current, child〉 for the SET nodes are shown in

Tables 4.2. Values for the path variables are summarized in the Table 4.4.

Node Operation 〈current, child〉
Node 1 Navigate root 〈{〈book〉, {〈book, author〉,

〈book, title〉}}〉
Node 2 Add e1 〈{〈book〉, {〈book, author〉,

〈book, title〉,〈book, ¦〉}}〉
Node 3 Loop Delete child 〈{〈book〉, {〈book, author〉,

〈book, title〉,〈book, ¦〉}P}〉
Node 4 Loop Navigate e1 〈{〈book, ¦〉, 〈〉}〉
Node 5 Loop Add tmp 〈{〈book, ¦〉, {〈book, ¦, author〉,

〈book, ¦, title〉,〈book, ¦, ¦〉}P}〉
Table 4.2: Values of the state variables for the SET shown in Figure 4.9(a).

The Node 0 shows the initial schema for input data D1. After executing the ab-

stract operation Navigate root, the node Node 1 is created, and the schema remains

unchanged because this operation does not modify the schema. Access path 〈book〉 is
3Abstract programs shown in Figure 4.4 are replicated here in Figure 4.10 for the convenience of the reader.
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Node 0

root †
book author1

†

string

title

Node 1

root †
book author1

†

string

title

Operation: Navigate root

Node 2

root †
book author1

†

string

title

Operation: Add e1

†

©

Node 3

root †
book author1

†

string

title

Operation: Loop Delete child

†

©

P

Node 4

root †
book author1

†

string

title

Operation: Loop Navigate e1

† P

Node 5

root †
book author1

†

string

title

Operation: Loop Add tmp

†
P

†

†

author1

†

title
©

©

©

(a) A SET for the execution of the abstract program for the component J shown in Figure 4.4a on the schema shown
in Figure 4.5a.

Node 1

root †
book author1

†

string

title

Operation: Navigate root

Node 2

root †
book author1

†

string

title

Operation: Navigate “title”

Node 3

root †
book author1

†

string

title

Operation: 
Navigate e2, seqnumber

Node 4

root †
book author1

†

string

title

Operation: Read var

(b) A SET for the execution of the abstract program
shown in Figure 4.4b on the schema shown in Fig-
ure 4.5a.

Node 1

root †
book author1

†

string

title

Operation: Navigate root

†
P

†

†

author1

†

title

Node 2

root †
book author1

†

string

title

Operation: Navigate “title”

†
P

†

†

author1

†

title

Node 3

root †
book author1

†

string

title

Operation: 
Navigate e2, seqnumber

†
P

†

†

author1

†

title

Node 4

root †
book author1

†

string

title

Operation: Read var

†
P

†

†

author1

†

title

©

©

©

©

©

©

©

©

(c) A SET for the execution of the abstract program
shown in Figure 4.4b on the schema obtained as a result
of the symbolic execution shown in Figure 4.9(a).

Figure 4.9: SETs for the symbolic executions of the abstract programs shown in Figure 4.4
on schemas. 110



Load book.xml
Navigate root
Add e1
Loop

tmp = child
Delete child
Navigate e1
Add tmp

end loop
Save book.xml

Load book.xml
Navigate root
if

Navigate “title”
else

Navigate e2, seqnumber
end if

Read var
Save book.xml

a) b)

Figure 4.10: Program abstractions for Java a) and C++ b) components shown in Figure 1.1a
and Figure 1.1d respectively.

added to the access path variable Θ as shown in the Table 4.4 in the column for the Java

component paths.

The next operation Add e1 adds an element denoted by the symbolic variable e1

as a child to the currently navigated element book. Correspondingly, the path 〈book, ¦〉 is

added to the add path variable Ω. Since the value for the variable e1 is not known at compile

time, an edge labeled ¦ is added to the schema graph. Node Node 2 is created, and the

value of the variable current remains unchanged, but the content of the variable child

is updated with the path to the newly added element e1. We do not show the operation tmp

= child that copies values of the variable child to the symbolic variable tmp.

Next, the operation Delete child is executed within a loop, and it deletes the

children of the element book. Since the condition of the loop is not known in the abstract

program, it is difficult to predict what children will be deleted, if any at all. Therefore

it is assumed that any subset of children of the element book can be deleted. That is,

after executing this operation in the loop an element of the powerset of the set of children

elements of the element book will be left. The node Node 3 is created and the P flag is set
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Node Operation 〈current, child〉
Node 1 Navigate root 〈{〈book〉,

{〈book, author〉,
〈book, title〉}}〉

Node 2 Navigate “title” 〈{〈book, title〉,〈〉}〉
Node 3 Navigate e2, 〈{{〈book, author〉,〈〉},

seqnumber {〈book, title〉,〈〉},
〈book, ¦〉,
〈book, ¦, ¦〉,
{〈book, ¦, author〉,
〈book, ¦, title〉}}〉

Table 4.3: Values of the state variables for the symbolic execution tree shown in Figure
4.9(c).

as indicated by applying P subscript to the variable child. That is, the children elements

are tagged as potentially deleted. Correspondingly, the paths 〈book, author〉, 〈book,

title〉, and 〈book, ¦〉 are added to the delete path variable ∆ as shown in Table 4.4.

Within the same loop the operation Navigate e1 is executed as shown in the

Node 4. Access path 〈book, ¦〉 is added to the access path variable Θ. Finally, the

operation Add tmp appends children of the element book to the currently navigated ele-

ment e1, updating the add path variable Θ with the paths 〈book, ¦〉, 〈book, ¦, author〉,
〈book, ¦, title〉, and 〈book, ¦, ¦〉. We designate the resulting schema shown in the

Node 5 as S’.

After obtaining the schema S’, Viola executes the abstract program for the compo-

nent C shown in Figure 4.4b symbolically on the reengineered XML schema S’. The result

of this execution is the SET shown in Figure 4.9(b), and the values for the tuple 〈current,

child〉 for the SET nodes are shown in Table 4.3.

Finally, the abstract program for the component C shown in Figure 4.4b is executed
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symbolically on the XML schemas for input data D2 shown in Figure 4.5a. The result of

this execution is the SET shown in Figure 4.9(b).

Path Java C++ component paths
vars component paths Schema S Schema S’
Access 〈book〉, 〈book, ¦〉 〈book〉, 〈book, author〉, 〈book〉, 〈book, author〉
paths Θ 〈book, title〉 〈book, title〉, 〈book, ¦〉
Delete 〈book, author〉, 〈book, title〉,
paths ∆ 〈book, ¦〉
Add 〈book, ¦〉, 〈book, ¦, author〉,
paths Ω 〈book, ¦ title〉, 〈book, ¦, ¦〉

Table 4.4: Values of access, delete, and add path variables after symbolically executing
abstract programs for Java and C++ components shown in Figure 4.4 on the reengineered
schema S’ and the expected schema S.

4.7 Finding Errors

The categories of errors, their descriptions, and where they are detected in Viola analysis

are shown in Table 4.5. API and PS-2 errors are detected during extracting abstract pro-

grams (APs) and symbolic execution respectively. Errors of type PS-1 are detected when

comparing the reengineered schema S’ and the expected schema S, and errors of type P2

are caught during the path analysis stage of Viola. We describe algorithms for comparing

schemas and path analysis, and we explain how errors are mapped to the source code of the

components.

4.7.1 Comparing Schemas

Consider the model of interoperating components shown in Figure 1.2. After executing

an abstract program of the component J symbolically on the schema describing the XML
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Errors Description When Detected
PS-1 Components violate bounds set Comparing

by schemas on data elements Schemas
PS-2 Components attempt to access,

delete, or add elements that Symbolic
do not exist in the schemas Execution

P2-1 Components access data
elements that are deleted Path
by some other components Analysis

P2-2 Components read or write Path
wrong elements Analysis

API Incorrect uses of API calls Extracting APs

Table 4.5: Categories of errors detected by Viola and steps of the analysis at which these
errors are detected.

data D1, a schema S’ is obtained that approximates the data D2 that would be output by

this component. Recall the MSP that is defined as the XML data D2 should be an instance

of the schema S. This property is validated by comparing the schema S’ with the schema

S. If these schemas are equal, then the data instance that conforms to one schema also

equally conforms to the other schema, and the components that use this data are compatible.

Otherwise, components are not compatible with respect to the data and may throw runtime

errors. We describe a bisimulation algorithm that is used to compare schemas, and we give

an example of its use.

Bisimulation

Formalization of schemas as graphs is described in Section 3.3. An efficient method to

determine if two graphs are equal is bisimulation [22]. We define bisimulation as a binary

relation between the nodes of two graphs g1,g2 ∈G, written as x∼ y, x,y ∈V, satisfying the

following properties:
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Property 1 if x is the root of g1 and y is the root of g2, then x∼ y;

Property 2 if x∼ y and one of x or y is the root node in its graph, then the other node is the

root node as well;

Property 3 if x∼ y and type(x)=type(y), and nodes x, y are not tagged as potentially

deleted, and x
rq

p−→ x′ in g1, then there exists an edge y
sm

k−→ y′ in g2, with the same labels

r=s, r6= ¦ and s 6= ¦, and max(r)=max(s) and min(r)=

min(s), and type(x′)=type(y′), such that x′ ∼ y′;

Property 4 conversely, if x∼ y and type(x)=type(y), and nodes x, y are not tagged as

potentially deleted, and y
lm
k−→ y′ in g2, then there exists an edge x

lq
p−→ x′ in g1, with the

same label l, l 6= ¦, and p=k and m=q, and type(x′)=type(y′), such that x′ ∼ y′.

Two finite graphs g1,g2 ∈G are equal is there exists a bisimulation from g1 to g2. A graph is

always bisimilar to its infinite unfolding. Computing bisimulation of two graphs starts with

selecting the root nodes and applying the above properties. When a relation (x,y) between

nodes x and y in a graph is found that fails to satisfy the above properties, then the graphs

are determined not equal and the bisimulation stops. This relation is called offending.

Example of Bisimulation

We demonstrate how to apply the bisimulation algorithm to show whether two schemas

shown in Figure 4.11a and Figure 4.11b are equivalent. The schema Ga shown in Fig-

ure 4.11a describes XML data that the component C expects in the basic model shown in

Figure 1.2, and the schema Gb shown in Figure 4.11b is reengineered from the component

J as described in Section 4.6.4. If the schema Gb is equivalent to the schema Ga, then we

can declare both components compatible with respect to the data.
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root

†

bo
ok

author1
†

string

title

a) b)

root †
book author1

†

string

title

†
P

†

†

author1

†

title

©

©

Figure 4.11: Graphs for two XML schemas describing the data shown in Figure 1.1b and
Figure 1.1c.

First, we select the root nodes in both schemas which satisfy Property 1 and Prop-

erty 2. Next, we select relation root book−−−→ ¥ from the schema Ga and check to see that

the Property 3 holds for the relation root root book−−−→¥ from the schema Gb. Since it does,

we determine that the Property 4 holds for both relations, and we proceed to the relation

¥ author1−−−−−→¥ for the schema Ga and the relation ¥ author1−−−−−→¥ for the schema Gb. We de-

termine that Property 3 and Property 4 are violated because the offending relation author

is tagged as potentially deleted in the schema Gb. Thus, these graphs are not equal, and the

verification step fails.

4.7.2 Analyzing Paths

Consider the basic model shown in Figure 1.2 when component J adds or deletes some

elements from, and component C accesses some other elements in the data D2. When sym-

bolically executed on the schema of the data D2, operations of the component J modify it
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Algorithm 4 Procedures for catching P2 errors

Catch-P2-1-Errors( Θ, ∆ )
for all pΘ ∈Θ do

for all p∆ ∈ ∆ do
if p∆ ⊆ pΘ then

print error P2-1: accessing deleted data elements
end if

end for
end for

Catch-P2-2-Errors( Θ, Θ′
)

if Θ′ *Θ then
print error P2-2: accessing wrong data elements
for all p ∈Θ′−Θ do

print path p
end for

end if

incorrectly so that the bisimulation algorithm will find offending relations and determine

that the schemas S and S’ do not match. However, in general, component J may modify

elements that lie on different paths from the elements accessed by the component C. While

the mismatch between schemas may lead to errors, no errors will result from the execution

of components in this specific case.

Procedures Catch-P2-1-Errors and Catch-P2-2-Errors for catching P2

errors are shown in Algorithm 4. The procedure Catch-P2-1-Errors takes two para-

meters: the sets of paths Θ to elements accessed by the component C in schemas S and S’,

and the set of paths ∆ to elements deleted by the component J. This procedure checks to

see if each delete path from ∆ is the subpath of any access path in Θ. If a delete path p∆ is

a subpath of some access path pΘ, p∆ ⊆ pΘ, then a P2-1 error is issued that a component

may access a deleted data element.

The procedure Catch-P2-2-Errors takes two parameters: the set of paths Θ
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to elements accessed by the component C in schema S, and the set of paths Θ′
to elements

accessed by the component C in schema S’. This procedure checks to see if set of paths Θ′

is the subset of the set of paths Θ. If Θ′ * Θ, then a P2-2 error is issued that a component

may access and potentially read or write values of wrong data elements.

Consider applying these procedures for analyzing paths for the motivating example

whose symbolic execution is described in Section 4.6.4. Recall that lists of accessed and

modified paths are created when executing the component C on schemas S and S’ symbol-

ically. These lists are shown in Table 4.4. By analyzing these paths some P2 errors can be

caught.

The procedure Catch-P2-1-Errors is applied to access paths obtained by exe-

cuting the C++ component on the schema S’ and the delete paths obtained by executing the

Java component. This procedure issues a warning that the elements {book, author} and

{book, title} as well as the added element {book, ¦} may be deleted, since the delete

paths from the Table 4.4 are subpaths of these access paths. When the C++ component

accesses elements {book, author} and {book, title} in the XML data, it may throw

a runtime error because the Java component deletes these elements. However, the added

element {book, authors} is not deleted, and this specific error is a false positive.

Similarly, the procedure Catch-P2-2-Errors checks to see if the set of access

paths obtained by executing the C++ component on the schema S’ is the subset of the set

of access paths obtained by executing the C++ component on the schema S. It turns out

that the difference between these sets yields the path {book, ¦}. Closer analysis confirms

that when accessing a child of the root element book by its sequence number, the C++

component may read the value of the added element authors instead of the intended

element author. Thus, in this case Viola issues a correct P2-2 error.
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4.7.3 Mapping Errors to Source Code

When an error is found, it is important to map it to the component source code in order

to improve the quality of diagnostics. This mapping is accomplished in a series of steps.

A table (C, SL, EL, FSA) links components to abstract operations identified by the FSAs,

where C is the component identifier, SL and EL are the Starting Line and the Ending

Line of the component’s source code that contain a sequence of API calls that is accepted

by the FSA. Another table (C, SL, EL, AP) links a component C to some abstract programs

AP. A pair (AP, SET) maps abstract programs AP to the SETs of these programs. A triple

(SET, SETNode, FSA) links the node SETNode in a SET to the abstract operations iden-

tified by the FSA. This information is collected and stored when running Viola.

When errors are found, the reverse process is applied to use the stored information

to locate lines in the source code of components that lead to potential errors. First, paths

to data elements are associated with nodes in SETs. Each SET is mapped to an abstract

program, and nodes of the tree are mapped to specific abstract operations in this program.

From the triple (SET, SETNode, FSA), the abstract operations identified by the FSA are

obtained. From the pair (AP, SET) it is determine the abstract programs AP whose SET is

analyzed. From the table (C, SL, EL, AP) the component C and the its scope are determined

that match the abstract programs AP. Finally, from the table (C, SL, EL, FSA) that links

components to abstract operations identified by the FSAs, exact scope of the component

source code is determined that leads to the found error.
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Size Analysis Time, sec Me- Bugs
Subject Prog- Schema, CFG APs, APIs, No. of Gene- Error mory, Expec- Detec- False
Program rams, No. of No. of LOC No. of Compo- rating Detec- Mb ted ted Posi-

LOC Types Nodes calls nents APs tion tives
Book 109 16 682 16 27 3 22.7 3.2 281 10 16 6
Employees 638 11 2486 30 43 8 90.5 5.1 652 15 28 13
ProbeMsg 921 8 7301 57 82 11 183.6 4.7 794 15 32 14
Homeowners 147 12 662 32 61 4 28.3 1.8 335 15 27 12
Happycoding 372 34 924 47 58 3 50.4 9.2 487 15 36 21
papiNet 11048 1653 46934 916 1281 17 1958.3 28.3 1396 30 103 58
MetaLex 18479 66 63937 835 1526 12 2739.0 42.9 1621 15 59 42

Table 4.6: Experimental results of testing Viola on commercial and open source projects.

4.8 Prototype Implementation

A prototype implementation of the Viola architecture shown in Figure 4.2 is based on the

EDG Java front end C++ and Java parsers [13] and an MS XML parser. FSAs, abstract

programs, schemas, SETs, and even output errors are provided in the XML format, and we

use the ROOF framework [48] to process XML documents. Our prototype implementation

included the analysis routines, symbolic executor, schema comparator (bisimulator), and

path analyzer with our error checking algorithms. We wrote these components of Viola in

Java and interfaced them with EDG front end parsers written in C++ using the Java Native

Interface. Our implementation contains 9,000 lines of Java and C++ code.

4.9 Experimental Evaluation

In this section we describe the methodology and provide the results of experimental evalu-

ation of the Viola on subject programs.
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4.9.1 Subject Programs

We applied Viola to two commercial programs for legal and paper supply chain domains

(the latter uses a large XML schema with over 1,600 types), and to open source pro-

grams. One commercial application was written for a legal office, and it used the Metalex

schema. MetaLex is an open XML standard for the markup of legal sources [51]. The

other commercial application was written for papiNet, a transaction standard for the pa-

per and forest supply chain [52]. The combined source code of both commercial applica-

tions was about 30,000 lines of C++ and Java code.

Open source programs are taken from different XML projects posted on the In-

ternet. The Book and Employees projects contain programs that generate, access, and

manipulate XML data that describe books and employees respectively [2]. ProbeMsg is

an application that creates XML data and sends it as a stream to a different application

[11]. HomeOwners applications illustrates the use of the Xerces DOM parser to access

and manipulate XML data that contains information on homeowners includes their names,

addresses, and closing dates of house purchases [6]. Finally, the Happycoding website

contains different applications that exchange XML data [5]. Open source programs are

small, ranging from less than a hundred to less than a thousand lines of code.

4.9.2 Methodology

To evaluate Viola, we carried out two experiments that explore how effectively it catches

errors in the existing interoperating components, and how the precision of the data flow

analysis affects the number of false positives. We inject different bugs in the subject pro-

grams and test how Viola catches them. We carried out our experiments using Windows XP

that ran on Intel Pentium 4 3.2GHz dual CPUs and 2Gb of RAM.
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Injecting Bugs

We wish to evaluate how effective Viola is in catching bugs from all categories of errors

which are described in Section 4.2. Even though the first attempt to run Viola on subject

programs yielded few faults, they were only API and P2-2 type faults with one real P2-2

type bug which we confirmed. To test Viola on other types of bugs, we asked several grad-

uate computer science students, each with at least two years of C++ and Java programming

experience to insert bugs into subject programs. Initially, these students were not aware

about our study and only one student knew how to use Xerces XML DOM parser API calls.

After giving instructions on using Xerces and MSXML DOM parser API calls and explain-

ing the goals of this project, each student was asked to inject certain types of bugs in the

source code of components. Students were asked to make these bugs as realistic as possible

based on their experience and the knowledge of the subject programs. It was up to students

to select locations in the source code for the injected bugs and create test cases to ensure

that these bugs behave as intended.

When delivered, the subject programs were tested without the injected bugs (the

code that students wrote to inject bugs was initially commented out), and then with injected

bugs. We excluded injected bugs that introduced compounded bugs in the logic of the

existing code accessing and manipulating XML data. That is, if the code for an injected

bug led to one or more other bugs, then the bugs related to the injected bug were excluded.

The number of bugs remaining in the components source code after exclusions is reported

in Table 4.6.
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Experiments

We ran two experiments with Viola. In the first experiment, we run Viola on subject pro-

grams with injected bugs. The goal of this experiment is to determine how effective Viola

is at catching bugs. We report the sizes of the original programs in lines of code (LOC),

number of nodes in the corresponding CFGs, and the number of platform APIs used by pro-

grams to access and manipulate XML data. We measure times taken by Viola to produce

abstract programs and to report bugs. The time it takes to catch API errors is included in

the time of producing abstract programs because these errors are a part of building program

abstraction routines. We also measure how much memory Viola consumes.

We inspect the source code of the subject programs before running Viola, and we

modify source code to inject bugs. Thus, we expect Viola to catch a certain number of bugs.

Viola may catch more bugs for two reasons. It is possible that we missed some existing bugs

during the code inspection, and Viola can report false positives. We report the number of

expected bugs, detected bugs, and false positives.

We are also interested in the breakdown of bugs based on their types as described

in Section 4.2. We report the number of expected and found bugs for each type of errors.

This information helps us to identify the effectiveness and precision of Viola for different

types of problems. These results show for what classes of bugs Viola is most effective, and

we can use these results to improve the effectiveness of Viola.

The goal of the second experiment is to evaluate the effect of having precise names

of data objects versus symbolic variables in abstract programs on the Viola’s rate of false

positives. Since program abstractions are approximations of actual programs, symbolic

variables are often used in place of names of data elements. For example, if a program has

a variable whose value is a name of a data object and the value of this variable is computed
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at runtime, then Viola uses a symbolic variable with an undefined value to denote this data

element.

Consider a fragment of C++ code shown in Figure 4.12. The value of the variable

element is computed at runtime and it is the name of the XML data elements accessed

by the selectNodes and get item API calls. In general, it is an undecidable problem

to determine the values of string expressions at compile time. When extracting an abstract

program the variable element is replaced with some symbolic variable whose value is un-

determined. However, in the C++ code fragment, API calls are executed when the condition

element == "authors" is met. It means that in the corresponding abstract program

the value authors can be used in place of the symbolic variable.

string element;
int index = 0;
..............
if( element == "authors" ) {

bookNode->selectNodes(element, &list);
list->get_item((long)index, &node );

}

Figure 4.12: A fragment of C++ code accessing a data element using DOM API calls.

In order to compute precise values for abstract programs we need to use more so-

phisticated analysis that takes more time and resources. In order to know that this additional

effort is justified, we manually replace symbolic variables in abstract programs with precise

names of data objects, and we measure the number of false positives. To determine the

names of data elements we inspected the source code manually and ran programs collect-

ing values for variables. After determining names for data elements, we went to abstract

programs generated by Viola and manually replaced the corresponding symbolic variables
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with names of data elements. We symbolically execute abstract programs before and after

we replace symbolic variables with data element names, and we measure the number of

false positives detected by Viola.

The goal of this experiment is to plot the number of false positives as a function

of the percentage of precise names of data element versus symbolic variables denoting

these elements in abstract programs. If the number of false positives does not decrease,

then improving data flow analysis to detect precise names of data elements will not lead to

increased effectiveness of Viola. On the contrary, if Viola reports fewer false positives, the

increased precision and subsequently the cost of data flow analysis is justified to improve

our approach.

Threats to Validity

Our subject programs are of small to moderate size because it is surprisingly difficult to

find a large-scale open source project whose components exchange XML data while there

are plenty of such commercial projects. We chose small open source programs because

we did not have access to large-scale application with components interacting using XML

data. Our explanation is that open source projects are mostly applications with specific user-

defined purposes. We have not found an open source project that integrated two or more

open source applications that exchange XML data. In commercial application development

it is important to make applications exchange information in a timely manner in order to

achieve competitive advantage. Therefore there are various large-scale commercial projects

whose goal is to write interoperating components that exchange XML data with high quality

while reducing development costs.

Large applications that interact using XML data might have different characteristics
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compared to our small to medium size subject programs. Increasing the size of applications

to millions of lines of code may lead to a nonlinear increase in the analysis time and space

demand for Viola. If this happens, then more time should be spent on making Viola scalable.

4.9.3 Results

Experimental results with testing Viola on subject programs are shown in Table 4.6. This

table is divided into five main columns. The first column gives the name of the subject

project. Next column, Size, contains five subcolumns reporting sizes of subject programs,

number of types in XML schemas, number of nodes in CFGs, LOCs of abstract programs,

and the numbers of API calls in the subject programs respectively. The third column re-

ports the analysis time in seconds and contains two subcolumns for the time it takes to

generate abstract programs and the time to catch errors. The following column shows the

maximum memory consumption when running Viola. Finally, the Bugs column reports the

number of bugs. Its first subcolumn shows the number of expected bugs for each subject

project (and we know the number of the expected bugs since we injected them), the sub-

column Detected gives the number of bugs caught by Viola, and the subcolumn False

Positives shows the number of false positives. For example, the ProbeMsg subject

program was expected to have 15 bugs, but after running Viola 32 bugs were detected, 14

of which were confirmed through manual code inspection as false positives. It means that

three more bugs were missed during the initial code inspection.

A breakdown of expected and detected errors by their types for each subject pro-

gram is shown in Table 4.7. The difference between the number of detected and expected

errors is the number of false positives. A graphic distribution of the number of detected and

expected errors by their types is shown in Figure 4.13. Almost a half of all false positives
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API Errors P2-1 P2-2 PS-1 PS-2
Project Expected Found Expected Found Expected Found Expected Found Expected Found
Book 2 2 2 5 2 2 2 3 2 4
Employees 3 5 3 6 3 7 3 4 3 6
ProbeMsg 3 4 3 12 3 6 3 3 3 7
Homeowners 3 3 3 8 3 9 3 3 3 4
Happycoding 3 6 3 11 3 10 3 5 3 4
papiNet 6 17 6 25 6 31 6 13 6 17
MetaLex 1 5 4 21 1 13 2 5 7 15

Table 4.7: A breakdown of real and detected errors by error types.

are generated by the P2 type of errors. Recall that P2 errors occur in components that access

data elements that are deleted by some other components (P2-1) and by components that

read or write wrong elements (P2-2). The reason for the false positives is that Viola ap-

proximates paths through the data during symbolic execution. This approximation results

in many spurious paths that are not accessed or modified when components interoperate

at runtime. However, based on our experience it is easy to verify whether the code that

produces a path has a bug in it by running the application and observing its behavior.

The results of evaluating the effect of having precise names of data objects versus

symbolic variables in abstract programs on the Viola’s rate of false positives are shown

in Figure 4.14. The horizontal axis shows the percentage of symbolic variables that we

replaced in abstract programs with actual data object names, and the vertical axis shows the

number of false positives. We observe that when close to 30% of symbolic variables are

replaced with actual object names, the number of false positives decreases approximately

three times. Such a significant drop in false positives justifies the use of elaborate data flow

analyses that help to improve the precision of the generated abstract programs.
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Figure 4.13: Dependency of false positives issued by Viola from the percentage of precise
names of data elements versus symbolic variables used in abstract programs.

4.9.4 Recommendation

As our experiments show, Viola takes around 45 minutes to run on a system with over

20,000 lines of code. Since programmers routinely run compilers on the code they write

many times a day, using Viola this way is prohibitive since it takes too much time to check

the code. We suggest that Viola should be used after “freezing” a release and before testing

starts. This way test engineers obtain warnings about potential bugs, and they can define

test plans to validate these warnings.
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4.10 Summary

We present a novel solution called Viola for finding bugs in components interacting via

XML data. Viola is a helpful bug finding and testing tool that assists test engineers by

detecting a situation at compile time when one component modifies XML data so that it

becomes incompatible for use by other components. We implemented a prototype of Viola

in C++ and Java using EDG Java and C++ and XML parsers. Viola’s static analysis mech-

anism reports some potential errors for a system of interoperating components. We tested

Viola on open source and commercial systems, and we detected a number of known and
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unknown errors in these applications with good precision thus proving the effectiveness of

our approach.

Concrete instances of the model shown in Figure 1.2 are common even in small

software systems. Two components that inadvertently modify the same environment vari-

able work fine when running on separate computers, however, they malfunction when put

on the same machine. The reason is that the first component sets the value of the envi-

ronment variable, and this value is not recognized by the other component thus leading to

an error that is extremely difficult to catch. Similar situations occur when components use

databases, XML and HTML data, or system registries.

One of the applications of our work is to detect errors when components interact via

XML data using XML parsers as underlying platforms. However, components may violate

each other’s properties by using any kind of data hosted by different platforms. This is

known as emergent phenomena in complex systems, specifically software, that occur due

to interactions between the components of a system over time. Emergent phenomena are

often unexpected, nontrivial results of simple interactions of simple components. Currently,

no compiler checks interoperating components for violations that occur as results of these

interactions, even when components are located within the same program. We believe that

this thesis is the first research step in this direction.
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Chapter 5

Related Work

We divide related work into three categories: middleware services that enable component

interoperability, language and type checking approaches, and formal verification methods.

Component interoperability is a functional aspect that programmers should be able

to add to or remove easily from existing software. If such changes are complex then in-

teroperable software is hard to maintain and evolve. Low-level approaches (e.g. RPC,

message passing, Document Object Model) provide APIs that enable programs to cross

process boundaries in order to access foreign objects and invoke their methods. This ap-

proach is tedious and error prone because it requires the steep learning curve to master

various vendor-dependent APIs that deal, for example, with marshalling and unmarshaling

data.

IDL-based approaches (DCOM, CORBA, Mockingbird) require programmers to

define interfaces in an Interface Definition Language (IDL) that are implementation lan-

guage neutral and can be translated into language-dependent client and server classes using

an IDL compiler. This approach suffers from multiple drawbacks; notably the necessity
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to deal with an additional type system (the IDL), and to maintain client and server sets of

code. In addition, this approach is hardly transparent since programmers are required to use

a complex, hard-to-learn platform-dependent API.

IDL-based approaches are also difficult to maintain and evolve because reversing

the initial decision to share objects once the client/server wrapper code is generated and

implemented requires software to be rewritten. Suppose that a programmer creates a Java

program whose objects are not shared by different programs. If this decision is reversed then

these previously non-shared Java classes should be recoded as interfaces in an IDL, and then

client/server code in implementation languages should be generated using an IDL compiler.

Clearly, this approach can require major rework of the existing code that is laborious and

costly when applied to large software projects. However, much larger amount of work is

required if programmers decide to make a Java class not to be interoperable after its IDL-

based specification is created and client/server code is generated and implemented. This

class has to be recoded by removing its IDL compiler generated code and writing its new

implementation. To do this change requires significant programming investment, and is

very expensive at the maintenance stage of a project.

When a programmer creates an interface using IDL s/he can select certain types to

declare interface members because they may closely map to desired types in the selected

implementation language. For example, if an IDL interface is used to generate C++ wrapper

code then IDL types that define this interface are likely to be C++-friendly. When the

same IDL interface is used to generate Java wrapper code, programmers may replace some

IDL types with Java-friendly types. Mockingbird [25] is an IDL-based tool for developing

interoperating distributed components that generates adapter code that reconciles existing

friendly IDL-based data types. However, this approach leads to software that is difficult to
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maintain and evolve. It also suffers from problems with IDL-based approaches described

in [81].

PolySPIN [27] did away with the IDL approach by directly mapping types between

different FTSs. A tool called PolySPINNER analyzes class definitions written in differ-

ent languages, matches their structure, and generates code that enables objects of matched

classes to interoperate seamlessly, i.e. if objects of types t1 and t2 exist in different FTSs,

for example, in Java and C++ correspondingly. Both types have to exist in Java and C++ to

begin with. After applying PolySPIN approach, a call to method f1 of an object of type t1

is translated by the generated code into the call to the matched method f2 of some object of

type t2. The problem with this approach is that it requires complex matching mechanism to

determine isomorphisms between foreign types.

Exu [54] is an alternative approach to IDL. It enables C++ classes to be accessed

from Java classes using Java Native Interface (JNI). For any C++ class Exu generates a

corresponding Java proxy classes and JNI-based interoperability code. This approach is

limited as it works only for Java classes that interoperate with C++ classes. In addition, it is

difficult to maintain and evolve Exu-based systems because generated isomorphic classes

may be changed by programmers.

Finally, generator-based approaches (e.g. JAXB, Apigen) can do automatic map-

ping for individual languages. For example, if an XML schema contains thousands of types

then thousands of corresponding classes are generated in a host programming language that

map to these XML types. This approach leads to serious problems with evolution and main-

tenance of generated code, like a complex naming mechanism, and results in a significantly

increased compilation time of the system. In addition, as it often happens in commercial

development, a schema may not exist to generate corresponding classes at the time of writ-
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ing an interoperating program. For example, it is customary to write prototype code that

manipulates some XML data before a complete XML schema that describes this data is

created, without a schema most generator approaches fail. Various generators are used as

part of programming environments and as standalone tools to analyze FTSs and generate

corresponding types in host programming languages. Most are generators that take XML

schemas and generate corresponding classes in Java and C++ [15][7][20]. This approach

requires sophisticated name management software and produces software that is difficult to

maintain and evolve.

One of the perceived benefits of existing approaches to component interoperability

is that type checking is free since host language compilers perform it when compiling gen-

erated types and interoperability code. For example, given an XML schema, a generator

can produce corresponding classes in Java along with interoperability code. A Java com-

piler performs type checking of the generated classes. Suppose that during the maintenance

phase of interoperating components the XML schema has been changed. The Java compiler

is not aware of this change and it would compile the generated classes without producing

any warnings. However, the resulting program fails at run time because the interoperability

code attempts to access XML objects that are either changed or do not exist. Obviously,

this type checking does not meet its primary objective i.e., to produce errors when semantic

inconsistencies with interoperating components exist.

Polilinguality is implemented by virtual machines (VM) such as JVM and .Net

CLR. These platforms also have limitations. Each has its own FTS and does not cover all

other existing type schemas which exist beyond their scope (for example, there is no virtual

machine that would reify HTML types to Java type system). Not only do separate low-level

APIs exist for each platform, they are also vendor-dependent. These APIs introduce signif-
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icant complexity and nonuniformity into programming FTSs, let alone the steep learning

curve required to master each platform. Extending any VM platform to support a new type

system is difficult because it is very complex and fragile. Various bridges are offered to

interwork different components [40]. For example, a JVM-COM bridge makes Enterprise

Javabeans (EJBs) runs as COM objects. However, bridges offer complicated APIs that are

vendor-dependent. Again, using bridges for FTS programming leads to nonuniform and

complex code and requires time to learn their APIs.

Related work on verifying and testing software that accesses and manipulates XML

data falls into two major categories: systems that use type checking and verification tech-

niques for XML manipulating programs, and model checkers that automate the verification

process for XML-unrelated software artifacts.

An automated verification system for XML data manipulation operations translates

XML data and XPath expressions to Promela, the input language of the SPIN model checker

[42]. The techniques of this system constitute the basis of a web service analysis tool

that verifies linear temporal logic properties of composite web services. Unlike Viola, this

system cannot be applied to arbitrary C++ and Java programs, however, Viola can use its

ideas to further improve the verification process of interoperating components.

Currently, there are various language design projects that address this problem by

making XML a first-class data type at the language level (e.g., XJ, XLinq, Xact, and Cω)

[49][59][29]. While some success is demonstrated, there are three major problems with

these approaches. First, they impose additional type systems and coding practices on pro-

grammers, and it serves as an inhibiting factor for adopting these approaches. Next, for

these approaches to be sound (i.e., to ensure the absence of bugs if the compiler reports no

errors) programmers should not compute names of XML data elements at runtime. This
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constraint limits programmers to a small class of applications. Finally, given the large num-

ber of legacy systems that has been written and are being written using API calls exported

by XML parsers, it is unlikely that these systems will be rewritten adhering to some of these

approaches.

Generator-based approaches (e.g. JAXB, Apigen, Castor) can do automatic map-

ping for individual languages. For example, if an XML schema contains thousands of types

then thousands of corresponding classes are generated in a host programming language

that map to these XML types. This approach leads to serious problems with evolution and

maintenance of generated code, like a complex naming mechanism, and results in a sig-

nificantly increased compilation time of the system. Various generators are used as part

of programming environments and as standalone tools to generate corresponding types in

programming languages. Most are generators that take XML schemas and generate corre-

sponding classes in Java and C++ [18][19][20]. This approach requires sophisticated name

management software.

Our work uses a variety of ideas introduced in different model checkers. Most of

these model checkers use the same abstract-verify-refine verification paradigm that Viola is

based on. Unlike other model checkers that determine whether programs match specifica-

tions or satisfy certain logic predicates (invariants), Viola concentrates on verifying that two

components interoperating using XML data do not violate the predefined safety properties.

In doing so, Viola employs many common techniques used in other model checkers, but in

a novel way.

MAGIC is a model checker that creates models of C components using the method

of predicate abstraction, and compositionally verifies computed models using SAT solvers

[32]. Like our research, MAGIC uses state machines called linear transition systems to ex-
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press the desired behavior of systems, and it operates on the source code of C components.

By contrast, the Viola’s goal is to verify that two components do not violate each other’s

properties by computing incorrect data.

MOPS is a model checker for verifying that programs do not violate predefined

security properties [33]. Like our research, MOPS uses FSAs to describe security properties

of programs source code, and it computes models of verified programs by analyzing API

calls that affect security properties. Unlike our approach MOPS is used strictly to discover

violations of security properties rather than to verify component interoperability.

SLAM is a model checker for C programs that is based on the method of counterexample-

driven refinement [26]. SLAM extracts boolean programs from C programs and performs

the reachability analysis on the extracted boolean programs by combining interprocedural

dataflow analysis and the binary decision diagrams techniques. If a path that leads to an

error is not reachable, then SLAM tools analyze the feasibility of executing this path in

the actual program by refining boolean programs. Like our research, SLAM builds abstract

programs and performs path analysis in order to catch errors. Unlike Viola, SLAM does

not address verification of interoperating components with respect to the safety properties

defined in terms of exchanged data, and SLAM analyzes execution paths in programs, not

in the data that they manipulate.

Blast is a model checker for C programs based on a lazy abstraction algorithm.

BLAST uses specifications for temporal properties written in C syntax [50]. For model

checking Blast uses the predicate abstraction method [46] to find bugs or prove the specifi-

cation.

Moped is a combined linear temporal logic and reachability checker for pushdown

systems [78]. Since pushdown systems can express programs with recursive procedures, its
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power is equal to or greater than that of Viola’s. Moped can also process boolean programs

and interact with the SLAM checker.

SLAM, MOPED, and BLAST use the predicate abstraction method [46]. Like our

research, these model checkers can verify safety properties of programs using their source

code. However, these model checkers are not designed to verify properties of interoperat-

ing components that use platform API calls to interact by accessing and modifying data. By

contrast, our solution abstracts away properties of interoperating components that are not

related to their interacting using data, and it analyzes paths in data computed by symboli-

cally executing abstract programs

A static program analysis method checks structural properties of code by comput-

ing an initial abstraction of the code that over-approximates the effect of function calls

[79]. Like Viola, this method then refines the computed abstractions by inferring a context-

dependent specification for each function call, so that only as much information about a

function is used as is necessary to analyze its caller. Rather than concentrating on specifi-

cations for function calls, Viola analyzes API calls that access and manipulate XML data.

Navigation traversal paths are integral part of FOREL. Until recently, the automa-

tion of traversal of object structures using succinct representations has been unique to

Demeter [39]. The connection between reification expressions that navigate to foreign

objects and traversal specifications in Demeter is following. The latter is used to gener-

ate code that performs the required traversal to the destination object while the former is

the code that performs the traversal. In adaptive programming, a change of requirements

for a foreign program induces changes of the traversal specifications and the subsequent

regeneration of the code that manipulates foreign objects.

XML is a new standard for defining and processing markup languages for the web
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that uses grammars (also called document type definitions or schemas) to define a markup

language for a class of documents. These grammars are akin to class graphs in Deme-

ter. Because of significance of XML as a data interchange standard, an effort is made to

integrate XML in the type system of various languages [69][68][49].

FOREL language is similar in its functionality to XPath, a language introduced by

W3 Consortium to select subsets of XML document elements [34]. XPath expressions are

used to describe sets of objects, in the sense that the value of an expression is an unordered

collection of objects without duplicates. The way elements are selected in XPath is by

navigation, somewhat resembling the way one selects files from an interactive shell, but

with a much richer language. XPath was proposed as input to a universal object model

walker for arbitrary Java objects [8].

In the context of programming languages, traversals are frequently used as a part of

attribute grammars, for traversing abstract syntax trees [44]. Using conventional program-

ming techniques, the details of traversals must be hard-coded in the attribute grammar; this

fact makes attribute grammars hard to maintain, say in the case of some modifications in the

grammar [56]. In the Eli system [47], this problem is addressed by separating the details of

the grammar from the underlying algorithm, using traversal specifications which basically

correspond to single edge strategy graphs.

Meta-programming techniques have also been developed for traversals. In [31], a

simple kind of traversal (corresponding to a one layer tree graph) is used in a metaprogram;

this traversal scans all objects and executes the specified code at the desired targets.

ArchJava is an example of the most recent sophisticated language support for user-

defined architectural connectors [24, 23]. ArchJava enables a wide range of connector

abstractions, including caches, events, streams, and remote method calls. Developers can
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describe both the run-time semantics of connectors and the typechecking semantics.
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Chapter 6

Conclusion, Recap, and Future Work

Our work extends the state-of-the-art research in software interoperability in two direc-

tions. First, we proposed an abstraction that simplifies modeling component interoperabil-

ity. Specifically, foreign objects (i.e., objects that are not defined in a host programming

language) are viewed as graphs and abstract operations are used for accessing and manip-

ulating these objects. These operations navigate to data elements, read and write data, add

and delete data elements, and load and save data. We used these operations as a basis for

the framework and bug finding approaches.

Next, we built a framework called ROOF and a language extension called FOREL

based on this model. We showed that ROOF with FOREL is a simple and effective way to

develop easily maintainable and evolvable systems of interoperating components by reify-

ing foreign type instances and their operations into first-class language objects and enabling

access to and manipulation of them. By doing so we were able to hide the tremendously

ugly, hard-to-learn, hard-to-maintain, and hard-to-evolve code that programmers must write

or generate today, i.e., we simplified code of interoperating components, making it scalable
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and easier to write, maintain, and evolve.

Quality of the code of interoperating components and their scalability are critical

for large-scale applications. Weaving interoperability into the fabric of enterprise-level

architectures often reduces the scalability of the resulting system. In this thesis we ana-

lyzed the sources of nonscalability for systems of interoperating components. Our analysis

is based on presenting a clique architecture for systems of interoperating components, in

which nodes represent components and edges represent platform APIs needed for interop-

erability.

The complexity of a system of interoperating components is approximately the

number of edges in the clique architecture. That is, when the number of edges is minuscule,

the complexity of a system of interoperating components is manageable; it can be under-

stood by a programmer. But as the number of edges increases, the ability of any single

individual to understand all these different APIs and the system itself rapidly diminishes.

In the case of clique of n nodes, the complexity of a system of interoperating components

is O(n2). This is not scalable.

A large-scale system of interoperating components is a system where the number

of edges (APIs) is excessive. Such systems are common and are notoriously difficult to

develop, maintain, and evolve. Current approaches do not support large-scale systems of

interoperating components well. They are often limited to specific languages (e.g., typical

CORBA platforms allow Java, C++, etc. programs to interoperate, but there are no facilities

for accessing HTML or XML data or objects in C# programs). This leads to a proliferation

in tools and their API calls, which noticeably increases the accidental complexity of the

resulting code, loss of uniformity in the way programs are written, thus rendering resulting

systems extremely difficult to maintain and evolve [30].
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Among many benefits, ROOF defines a single API platform that all programmers

can use; so instead of having O(n2) possible API platforms for achieving component-to-

component communication, a single, standard, and clear set of API calls is used. New

framework implementations are easy to add, and consequently, this is a scalable approach.

While ROOF and FOREL offer new approaches for developing interoperating com-

ponents, many components are still written using low-level platform API calls. It is not

likely that millions of lines of legacy software would be replaced in the near future using

ROOF and FOREL (although we hope that it will!). In the meantime, we used our abstrac-

tion to design and build Viola, a novel solution for finding bugs in components interacting

via XML data and helping test engineers to validate reported errors. Viola creates models

of the source code of components and computes approximate specifications of the data (i.e.,

schemas) that these components exchange. The input to Viola is the component’s source

code, schemas for the XML data used by these components, and FSAs that model abstract

operations on data with low-level platform API calls. These FSAs are created by expert pro-

grammers who understand how to use platform API calls to access and manipulate XML

data.

Viola uses control and data flow analyses along with the provided FSAs to extract

abstract operations from the component source code. Next, these operations are symboli-

cally executed to compute approximate schemas of the data that would be output by these

components. That is, given the schema of the input data, Viola reengineers the approximate

schema of the data that would be output by some component from its source code.

The reengineered and expected schemas are compared to determine if they match

each other. If a mismatch between them is found, it means that some component modifies

the data incorrectly so that runtime exceptions may be thrown by other components using
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this incorrect data. To confirm this, Viola analyzes paths to data elements accessed and

modified by these components to determine whether the schema mismatch results in actual

errors. Sequences of operations leading to some potential errors are reported to help test

engineers validate and reproduce errors.

Viola is a helpful bug finding tool whose static analysis mechanism reports some

potential errors for a system of interoperating components. We tested Viola on open source

and commercial systems, and detected a number of known and unknown errors in these

applications with good precision thus showing the potential of this approach.

Concrete instances of the model shown in Figure 1.2 are common even in small

software systems. Two components that inadvertently modify the same environment vari-

able work fine when running on separate computers, however, they malfunction when put

on the same machine. The reason is that the first component sets the value of the envi-

ronment variable, and this value is not recognized by the other component thus leading to

an error that is extremely difficult to catch. Similar situations occur when components use

databases, XML and HTML data, or system registries.

One of the applications of our work is to detect errors when components interact via

XML data using XML parsers as underlying platforms. However, components may violate

each other’s properties by using any kind of data hosted by different platforms. This is

known as emergent phenomena in complex systems, specifically software, that occur due

to interactions between the components of a system over time. Emergent phenomena are

often unexpected, nontrivial results of simple interactions of simple components. Currently,

no compiler checks interoperating components for violations that occur as results of these

interactions, even when components are located within the same program. We believe that

this thesis is the first research step in this direction.
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Our work has limitations. It is not clear what effort is required in general to create

FSAs for different platform APIs. While it is possible to use systems to extract these FSAs

from the source code of components, it remains to be seen whether automatically extracted

FSAs have enough precision to be used in Viola. When error checking C++ components

that use pointers, especially function pointers, the number of false positives for API errors

increases significantly. In addition, if no explicit names of data objects are used in compo-

nents, then the number of false positives would be excessive. However, in our experience

once the source of a possible error is located, determining whether it leads to actual errors

is easier.

The goal of my future work is to improve the productivity of software engineers

developing interoperating components. One aspect of this agenda is providing software en-

gineers with reliable solutions for making software. It means that such solutions should en-

able programmers to develop interoperating components without writing significant amount

of additional code, and to provide tools to find bugs in written code at compile time. Based

on the current state-of-the-art of software interoperability I believe that there are ample

opportunities for novel research in this area. Not only do I want to develop useful tools

and techniques for creating and maintaining interoperating components, but I also want

to deepen my understanding of the underlying principles behind component interoperabil-

ity and use these principles to automate various aspects of error detection using program

analysis and model checking.

I would like to expand my approach to detecting errors in interoperating compo-

nents that lead to byzantine failures[60]. Specifically, I am interested in finding bugs that

result from operating on incorrect data. For example, one component expects to receive data

that denotes salary, but the other component sends zip codes. Since salaries and zip codes
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are expressed as integers, detecting such errors is difficult. I plan to develop a framework

and tools that developers can use to find these bugs.

Most broadly, my future research will address a range of issues in software reli-

ability and evolution of interoperating components. Using program analysis and model

checking techniques, I plan to develop algorithms for finding errors in interoperating com-

ponents statically, design effective and efficient methods for composing components, and to

detect invariants and other useful assertions in large-scale systems of interoperating compo-

nents. One of the major uses of invariants and assertions is to help programmers understand

legacy systems of interoperating components. A Bell Labs study shows that up to 80% of

programmer’s time is spent discovering the meaning of legacy code when trying to evolve

it [38], and Corbi reports that up to 50% of the maintenance effort is spent on trying to

understand code [36]. Thus, the extra work required to discover invariants and assertions in

interoperating programs is likely to reduce development and maintenance time, as well as

to improve software quality.
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