
The Objects And Arrows
Of Computational Design

Don Batory – University of Texas at Austin, USA
Maider Azanza – Univ. Basque Country, Spain
João Saraiva – Univ. Minho, Portugal

• Future of software design and development is automation
• mechanize repetitive tasks
• free programmers for more creative activities

• Entering the age of Computational Design
• program design and synthesis is a computation

• Design: steps to take to create an artifact
• metaprogram

• Synthesis: evaluate steps to produce the artifact
• metaprogram execution

Introduction

2

• Model Driven Engineering (MDE)
• high-level models define applications
• transformed into lower-level models
• general-purpose approach

• Software Product Lines (SPL)
• domain-specific approach
• we know the problems, solutions of a domain
• we want to automate the construction of these programs

• Both complement each other
• strength of MDE is weakness of SPLs, and vice versa
• not disjoint, but I will present their strengths as such

Forefront of Automated Development

3

• In prior lifetime, I was a database researcher
• program generation was relational query optimization (RQO)
• query evaluation programs were relational algebra expressions
• designs of such programs could be optimized

• Took me years to recognize the significance of RQO
• compositional paradigm, computational design

• Fundamentally shaped my view of automated software
development

• you’ll see impact…

My Background

4

• SPLs with emphasis on language and tool support

• I needed a simple language to express program design
and synthesis as a computation

• modern algebra fits the bill

• Programs are structures
• tools transform, manipulate, analyze

• OO structures are methods, classes, packages
• compilers transform source structures
• refactoring tools transform source structures
• meta-models of MDE define allowable structures of instances;

transformations map instances for analysis or synthesis

My Work

5

• Well … mathematics is the science of structure and the
manipulation of structure

• Once I recognized that transformations are fundamental to
software development

• I was on the road to mathematical thinking

• basic ideas are relevant

• once I understood the connection…

So What??

6

• I use mathematics as an informal design methodology and
language to explain computational designs

• not a formalism!

• This is a modeling talk aimed at practitioners
• no special mathematical background

• Core ideas inspired from category theory
• theory of mathematical structures
• result of a domain analysis of

geometry, topology, algebra…
• basic concepts in CT are core ideas in MDE, SPL

My Work

7

• Expose underlying principles of MDE and SPL
• not category theory – functors, pushouts, products of

categories, …

• Series of mini-tutorials (10 minutes apiece)

This Talk

8

categories
on an

industrial
scale

Part 1: Categories in MDE

let’s start with some
unfortunate terminology…

Objects

• An object is a domain
of points (no standard term)

• Metamodel defines a
domain of models

object metamodel

m1
m3

m4

m2

models

p1
p3

p4

p2

points

cone of
object

instances

cone of
metamodel
instances

10

• MDE focuses on UML metamodels and their instances
• Ideas of objects & instances also apply to non-MDE artifacts

• technical spaces of Bezivin, et al.

Examples

Java

j1
j3

j4
j2

11

j5

XML

x1
x3

x4

x2
x5

ByteCodes

b1
b3

b4

b2

Recursion

• A point can be an object • Standard MOF architecture

models

m1 m3
m2 m4 m6

m5

mm1 mm3
mm4

mm2

meta-metamodel

meta
models

o1 o3
o4

o2

object

points

p1 p3
p2 p4 p6

p5

12

• Is map or function or transformation or
morphism between objects (all names are used)

• implementation is unspecified

Arrow

A
S B External Diagram

s1
s3

s2 b1
b3

b4

b2

Internal Diagram

C

13

• Arrow – denotes a map

• Transformation – an MDE implementation of an
arrow

• ATL, RubyTL, GReAT, QVT …

• Tool – is a non-MDE implementation of an arrow
• standard tools of software engineers

My Terminology (for this talk)

14

• Category – a collection of objects and arrows

• above is a category of 4 objects, 3 non-identity arrows

• categories satisfy 3 simple properties…

External Diagrams

MSC SC
M2MX

Java
M2TX

ByteCode
javac

15

• Arrows are composable

• Composition is associative: A•(B•C) = (A•B)•C

• Identities

Properties of Categories

IdA IdB
F F • IdB = F

IdA • F = F

x

y

z

16

• Treat arrows and objects uniformly
• hide their implementation technologies
• GROVE, UniTI, etc.
• lack of support obscures fundamental relationships
• remove artificial complexity, expose essential complexity

Support for These Abstractions

MSC SC
M2MX

Java
M2TX

ByteCode
javac

M2B = javac • MT2X • M2MX

tool chains,
makefiles,
metaprogram

17

Notation and Modeling Issues

MSC SC
M2MX

Java
M2TX

ByteCode
javac

MSC SC
M2MX

Java
M2TX

ByteCode
javac

• No standard names for such diagrams in MDE
• drawn differently (sans identity arrows)
• Toolchain diagrams (MIC)
• MegaModels (ATL)

External Diagrams in MDE

19

• No standard name for such diagrams in MDE
• Toolchain diagrams (MIC)
• MegaModels (ATL)

External Diagrams in MDE

MSC SC
M2MX

Java
M2TX

ByteCode
javac

20

• No standard name for such diagrams in MDE
• Toolchain diagrams (MIC)
• MegaModels (ATL)

External Diagrams in MDE

MSC SC
M2MX

Java
M2TX

ByteCode
javac

21

• Arrows 1 input object to 1 output object

what about T: O1, O2, O3 O4, O5 ?
occurs in model weaving …

• Ans: create tuple of objects, which is itself an object

O123 = [O1, O2, O3]
O45 = [O4, O5]

Arrows with Multiple Inputs, Outputs

TO123 O45

projection
arrows

O1 O2 O3 O4 O5
22

Internal Diagrams

m5

s5

j5

b5

External Diagram is a category

Internal Diagrams are
(points + arrows)
also categories

degenerate or trivial category: point is a domain with a single program

M2TX

javac

MSC

SC

M2MX

Java

ByteCode

23

• Design of an artifact is an expression
• synthesis is expression evaluation
• RQO paradigm

Computational Design

m5

s5

j5

b5

b5 = javac • M2TX • M2MX • m5

M2TX

javac

M2MX

24

• Categories lie at the heart of MDE

• found at all levels in an MDE architecture
• categories on an industrial scale

• Informally, categories provide a compact set of ideas to
express relationships that arise among objects in MDE

• language and terminology for MDE computational designs

• can use CT more formally (e.g., Meseguer, Ehrig, Täntzer,
Diskin) …

• Now let’s look for categories in Product Lines

Recap

25

Part 2: Categories in SPLs

• SPL is a set of similar programs

• Programs are defined by features
• increment in program functionality that

customers use to distinguish one program from another

• Programs are related by features
• program P is derived from program G by adding feature F
• feature is a function:

SPL Overview

P = F(G)

27

class calculator {
float result;
void add(float x) { result=+x; }

}

class gui {

JButton add = new JButton(“+”);

void initGui() {

ContentPane.add(add);

}

void initListeners() {

add.addActionListener(...);

}

}

void sub(float x) { result=-x; }

JButton sub = new JButton(“-”);

ContentPane.add(sub);

sub.addActionListener(...);

}

JButton format = new JButton(“format”);

ContentPane.add(format);

void formatResultString() {...}

4-Program Product Line

base = sub •format •

new methods

new fields

extend existing methods

new methods

new fields

extend existing methods

p1p2p3p4

28

• 1986 database systems 80K LOC
• 1989 network protocols
• 1993 data structures
• 1994 avionics
• 1997 extensible Java preprocessors 40K LOC
• 1998 radio ergonomics
• 2000 program verification tools
• 2002 fire support simulators
• 2003 AHEAD tool suite 250K LOC
• 2004 robotics controllers
• 2006 web portlets

Ideas Scale...

29

Perspective on Product Lines

• SPL is a set of similar
programs

• Is a miniscule subset
of a domain

• Infinite set of SPLs in a
domain

Java

size of
domain is

infinite

size of
SPL is
finite

elevator
domain

portlet
domain

telephony
domain

device
driver

domain

30

• SPL defines relationships between its programs
• how are programs related?
• by arrows, of course!

• Empty program (0) may (or may not) be part of SPL

• Each arrow is a feature

Perspective on Product Lines

0
p1

p2

p4

p3base

sub

format

format

sub

31

• Program design is an expression
• RQO paradigm
• programs can have multiple designs

Computational Design

0
p1

p2

p4

p3base

sub

format

format

sub

basesub •format •p3 =

p3 = sub • format • base

evaluating both
expressions yields
the same program

format, sub are
commutative

32

• Degenerate or trivial category
• point is a domain with a single program in it

• Has implied identity arrows

• Has implied composed arrows, as required

A Product Line is a Category

0
p1

p2

p4

p3base

sub

format

format

sub

33

Implementing SPLs

Implementing SPLs

want this:

0
know this:

• Same function being applied to different inputs

35

• Just store arrows regardless of how they are implemented
• n optional features, 2n possible programs
• compact representation of an SPL

Implementing SPLs

store this:

36

• Implement a set of arrows
• Define a feature model to define legal compositions of arrows
• Yields a product line
• See paper for more details

Models of SPLs

MM

feature
model1
feature
model2
feature
model3

37

Recursion

• SPLs can appear at any level
of an MDE architecture

• arrow add same feature to a
large domain of programs

• Model Driven Product Lines
to be discussed shortly

• Superposition is standard
technique

model
level

metamodel
level

38

• AHEAD refines (Scala, ClassBox/J, …)
• “sub” feature adds (superimposes) new fields, members,

wrappers…

Code Arrows in AHEAD

refines class calculator {
void sub(float x) {

result=-x;
}

}

refines class gui {
JButton sub = new JButton(“-”);

void initGui() {
SUPER.initGui();
ContentPane.add(sub);

}

void initListeners() {
SUPER.initListeners();
add.addActionListener(...);

}

}

new method

new field

extend existing methods
(much like inheritance)

39

• “sub” arrow is composed from 2 simpler arrows

Code Arrows in AHEAD

sub

refines class calculator {
void sub(float x) {

result=-x;
}

}

refines class gui {
JButton sub = new JButton(“-”);

void initGui() {
SUPER.initGui();
ContentPane.add(sub);

}

void initListeners() {
SUPER.initListeners();
add.addActionListener(...);

}

}

refines class calculator {
void sub(float x) {

result=-x;
}

} cl

refines class gui {
JButton sub = new JButton(“-”);

void initGui() {
SUPER.initGui();
ContentPane.add(sub);

}

void initListeners() {
SUPER.initListeners();
add.addActionListener(...);

}

}
gu

gucl

sub
clgu

40

• Example: Product Lines of State Machines
• ICSR 2000: fire support simulators
• ICSE 2007: web portlet product line

Model Arrows in AHEAD

baseyellow •orange •

Feature arrows are
implemented by model

deltas – additional elements
and relationships

are superimposed onto
a base model

Makes SPL designs easier
to understand and analyze

Don’t use power of full
transformation language

to implement arrows

Synthesizing customized state charts
by composing features 41

• Categories lie at the heart of Software Product Lines

• SPLs appear at all levels of an MDE architecture

• Informally, categories provides a clean set of ideas to
express relationships that arise among objects in SPL

• enabled me to place in perspective what MDE and SPL
communities have been doing

• Next topic: model-driven product lines (MDPLs)

Recap

46

Part 3: Categories in
Model Driven Product Lines

Exposing fundamental verification
and optimization relationships

• Fundamental concept in category theory
• all paths between two objects yield same result
• theorems of CT

Commuting Diagram

d1

d2

f1 f2
f1 • d2 = d1 • f2

48

• Want to map a product line of S models into its corresponding product
line of B models

• Transformations of MDE map objects

• Operator τ to map arrow Fs to arrow Fb: τ(Fs) = Fb

Diagrams in MDPLs

s1

s2

Fs

S

b1

b2

Fb

B
A

s1

s2

Fs τ

49

s1 s3
s2

How Commuting Diagrams Arise

MSC

SC

M2MX

Java

M2TX

ByteCode

javac

m1 m3
m2m1 m3
m2

s1 s3
s2

j1 j3
j2j1 j3
j2

b1 b3
b2

50

51

Commuting Diagrams in PinkCreek

• Trujillo, et al. ICSE 2007

• Portlet synthesis

• Transform state chart into
a series of lower level
representations until
Java and JSP code
reached

B
statechart of
portlet

java code
of portlet

jsp code
of portlet

52

Commuting Diagrams in PinkCreek

• Trujillo, et al. ICSE 2007

• Portlet synthesis

• Transform state chart into
a series of lower level
representations until
Java and JSP code
reached

B
•F1

•F2
•F3

•F4
•F5

•F6

• Operators easy to draw…

• may (or may not) be easy to implement

• may (or may not) be practical to implement

• CT is not constructive – it doesn’t say how to implement arrow

• no more than UML class diagrams tell you how to implement a
method

• Tells you certain relationships exist, and if you can
implement arrows, you can exploit commuting diagrams

Warning!

53

Examples that Exploit
Commuting Diagrams

54

• In last 2 years, we found uses for commuting diagrams and
arrow operators in MDPLs:

• simplifying implementation (ICMT 2008)
• improving test generation (SIGSOFT 2007)
• understanding feature interactions (GPCE 2008)
• understanding AHEAD (GPCE 2008)
• improving synthesis performance (ICSE 2007)

• Briefly review the first two of these…

Writing Operators

55

General Technique for
Implementing MDPLs

• Work with G. Freeman and G. Lavender
• MDPL of applications written in SVG and JavaScript

• selectively customize application (removing, adding charts, controls)

Example 1: ICMT 2008 Paper

57

• Created a set of arrows and a feature model for our MDPL
• red arrows (defining a product line of charts) were tedious to write
• created DSL for charts, where arrows were easy to write, compose

• defined an operator τ to map 1:1 from green arrows to red arrows

Example 1: ICMT 2008 Paper

feature
model

SPL

“lift arrows”

DSL for chart arrows

τ
operator τ

58

τ Translation Example

point-cut
(AOP terminology)

advice

GREEN Arrow

RED Arrow

τ

59

• Same result if we compose green arrows and translate OR
we translate green arrows, and compose red arrows

• Homomorphism – mapping of expression in one algebra
(GREEN) to a corresponding expression in another (RED)

Diagram Constraints

τ(G1 • G2) = τ(G1) •τ(G2)

= R1 • R2

G1 τ R1

G2 τ
R2

Verification condition:
Implementation is correct

if this equality holds!

60

• Initially our tools did not satisfy diagram constraints

• equalities of homomorphisms didn’t hold
• our tools had bugs – we had to fix our tools

• now we have greater confidence in tools because they
implement explicit relationships of domain models

• win from engineering perspective
» we have an insight into domains that we didn’t have before
» by imposing categorical structure on our domain, we have

better understanding, better models, and better tools

• Lifting is not specific to our application,
it is a general technique for building MDPLs

Guess What?

61

Test Generation for MDPLs

• Work with E. Uzuncaova and S. Khurshid (ECE@UTexas)

• Testing SPLs is a basic problem
• we can generate different programs, but how do we know that the

programs are correct?

• Specification-based testing can be effective
• start with a spec (model) of program
• automatically derive tests
• Alloy is example

Example 2: ISSRE 2008 Paper

63

Conventional Test Generation

S0

spec solutions tests

A0
alloy T0testera

T3
A3

alloy testera

A2
T2alloy testera

A1
T1alloy testeraS1

S2

S3

τ

τ

τ

Challenge:
is there

a τ
operator?

64

Incremental Test Generation

S0

spec solutions

A0
alloy

T3
A3

alloy testera

A2

alloy

A1
alloyS1

S2

S3

τ

τ

τ

conventional
approach

incremental

65

• Spec S1 = (A ∨ B) ∧ (¬A ∨ C) // 20K clauses

a solution: [A,B,C] = [1, 0, 1]

• Spec S2 = (A ∨ B) ∧ (¬A ∨ C) ∧ (D ∨ ¬ A)

a solution: [A,B,C,D] = [1, 0, 1, 1]

• Solution for S1 “bounds” solution for S2
• sound, complete

• Reason for efficiency…

Implementing τ

66

• In product lines that we examined (typical of Alloy
research), majority of cases incremental approach is faster
– 30-50× faster
– can now solve larger problems with Alloy

• Although preliminary, results are encouraging

• See paper(s) for details

Preliminary Results

67

• Creating a SPL or MDE application creates
industrial–sized categories

• Putting them together reveals a foundational idea
of categories – commuting diagrams

• involves mapping both objects of a category AND arrows
• need operators (transformation – to – transformation maps)

• Can exploit exposed relationships as
• verification conditions
• optimization possibilities

Recap

68

Part 4: Design Optimization

Frontier of
Computational Design

• Design = expression
• Synthesis = expression evaluation
• Design Optimization = expression optimization

• find program that satisfies functional requirements and optimizes some
non-functional properties (performance, energy consumption)

Principles of Computational Design

set of programs
that satisfy
functional

requirements
paradigm of

relational query
optimization

most efficient
program

programs
that satisfy

non-functional
requirements

70

• I know of few examples of design optimization …

• relational query optimization (1980s)
• data structure optimizations (1990s)
• Neema’s work on synthesizing adaptive computing (2001)
• Püschel’s work on numerical library synthesis (2006)
• Benavides work on configurators (2005)
• …

• Main challenge: finding domains where there are different ways
to implement the same functionality

• commuting diagrams
• this is where design optimization occurs

• If you think in terms of arrows, you have a conceptual
framework and tools to explain and address design
optimization in a principled, non-ad hoc way

At Present…

71

Conclusions

• RQO helped bring database systems out of stone age

• Relational Model was based on set theory
• this was the key to understanding a modern view of databases
• set theory used was shallow
• fortunate for programmers and database users
• set select, union, join, intersect
• disappointment for mathematicians

• Computational Design uses category theory
• basic ideas useful – allows us to place research results in context
• new insight on verification, optimization issues
• whether theorems from CT are applicable, I don’t know

Role of Mathematics in Design

73

• Educational benefit of the connection
• common terminology, concepts
• new perspectives

• How often in MDE, SPL, MDPL do commuting diagrams
arise?

• don’t know; too early
• but if you look, you’ll find them
• theory says they exist
• whether creation of operators practical decided on a per domain basis

Key To Success

74

• Future of software design and synthesis is in automation
• seeking principles that have a mathematical basis

• Made great strides understanding structure (UML)

• Need to take few more strides in understanding arrows
• tools, transformations used in design and synthesis

• Software design & synthesis seems to rest on simple ideas
• programs (models) are values
• transformations map programs to programs
• operators map transformations to transformations

Final Comments

75

• Clear that ideas are being reinvented in different
contexts

• not accidental – evidence we are working toward general
paradigm

• modern mathematics provides a simple language to express
computational designs, expose useful relationships in SPL and
MDE architectures

• maybe others may be able to find deeper connections

Final Comments

76

	The Objects And Arrows�Of Computational Design
	Introduction
	Forefront of Automated Development
	My Background
	My Work
	So What??
	My Work
	This Talk
	Part 1: 	Categories in MDE �		
	Objects
	Examples
	Recursion
	Arrow
	My Terminology (for this talk)
	External Diagrams
	Properties of Categories
	Support for These Abstractions
	Slide Number 18
	External Diagrams in MDE
	External Diagrams in MDE
	External Diagrams in MDE
	Arrows with Multiple Inputs, Outputs
	Internal Diagrams
	Computational Design
	Recap
	Part 2: Categories in SPLs
	SPL Overview
	4-Program Product Line
	Ideas Scale...
	Perspective on Product Lines
	Perspective on Product Lines
	Computational Design
	 A Product Line is a Category
	Slide Number 34
	Implementing SPLs
	Implementing SPLs
	Models of SPLs
	Recursion
	Code Arrows in AHEAD
	Code Arrows in AHEAD
	Model Arrows in AHEAD
	Recap
	Part 3: Categories in �Model Driven Product Lines
	Commuting Diagram
	Diagrams in MDPLs
	How Commuting Diagrams Arise
	Commuting Diagrams in PinkCreek
	Commuting Diagrams in PinkCreek
	Warning!
	Examples that Exploit Commuting Diagrams
	Writing Operators
	Slide Number 56
	Example 1: ICMT 2008 Paper
	Example 1: ICMT 2008 Paper
	t Translation Example
	Diagram Constraints
	Guess What?
	Slide Number 62
	Example 2: ISSRE 2008 Paper
	Conventional Test Generation
	Incremental Test Generation
	Implementing 
	Preliminary Results
	Recap
	Part 4: Design Optimization
	Principles of Computational Design
	At Present…
	Conclusions
	Role of Mathematics in Design
	Key To Success
	Final Comments
	Final Comments

