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• Future of software design and development is automation
• mechanize repetitive tasks
• free programmers for more creative activities

• Entering the age of Computational Design
• program design and synthesis is a computation

• Design: steps to take to create an artifact
• metaprogram

• Synthesis: evaluate steps to produce the artifact
• metaprogram execution

Introduction
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• Model Driven Engineering (MDE)
• high-level models define applications
• transformed into lower-level models
• general-purpose approach

• Software Product Lines (SPL)
• domain-specific approach
• we know the problems, solutions of a domain
• we want to automate the construction of these programs

• Both complement each other
• strength of MDE is weakness of SPLs, and vice versa
• not disjoint, but I will present their strengths as such

Forefront of Automated Development
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• In prior lifetime, I was a database researcher
• program generation was relational query optimization (RQO)
• query evaluation programs were relational algebra expressions
• designs of such programs could be optimized 

• Took me years to recognize the significance of RQO
• compositional paradigm, computational design

• Fundamentally shaped my view of automated software 
development

• you’ll see impact…

My Background
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• SPLs with emphasis on language and tool support

• I needed a simple language to express program design 
and synthesis as a computation

• modern algebra fits the bill

• Programs are structures
• tools transform, manipulate, analyze 

• OO structures are methods, classes, packages
• compilers transform source structures
• refactoring tools transform source structures
• meta-models of MDE define allowable structures of instances;

transformations map instances for analysis or synthesis

My Work
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• Well … mathematics is the science of structure and the 
manipulation of structure

• Once I recognized that transformations are fundamental to 
software development

• I was on the road to mathematical thinking

• basic ideas are relevant

• once I understood the connection…

So What??
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• I use mathematics as an informal design methodology and 
language to explain computational designs

• not a formalism!

• This is a modeling talk aimed at practitioners
• no special mathematical background

• Core ideas inspired from category theory
• theory of mathematical structures
• result of a domain analysis of 

geometry, topology, algebra…
• basic concepts in CT are core ideas in MDE, SPL

My Work
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• Expose underlying principles of MDE and SPL
• not category theory – functors,  pushouts, products of 

categories, …

• Series of mini-tutorials (10 minutes apiece)

This Talk
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scale



Part 1: Categories in MDE 

let’s start with some 
unfortunate terminology…



Objects

• An object is a domain 
of points (no standard term)

• Metamodel defines a 
domain of models

object metamodel

m1
m3

m4

m2

models

p1
p3

p4

p2

points

cone of
object

instances

cone of
metamodel
instances
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• MDE focuses on UML metamodels and their instances
• Ideas of objects & instances also apply to non-MDE artifacts

• technical spaces of Bezivin, et al.

Examples

Java

j1
j3

j4
j2

11

j5

XML

x1
x3

x4

x2
x5

ByteCodes

b1
b3

b4

b2



Recursion

• A point can be an object • Standard MOF architecture

models

m1 m3
m2 m4 m6

m5

mm1 mm3
mm4

mm2

meta-metamodel

meta
models

o1 o3
o4

o2

object

points

p1 p3
p2 p4 p6

p5
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• Is map or function or transformation or 
morphism between objects  (all names are used)

• implementation is unspecified

Arrow

A
S B External Diagram

s1
s3

s2 b1
b3

b4

b2

Internal Diagram

C
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• Arrow – denotes a map

• Transformation – an MDE implementation of an 
arrow

• ATL, RubyTL, GReAT, QVT …

• Tool – is a non-MDE implementation of an arrow
• standard tools of software engineers

My Terminology (for this talk)
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• Category – a collection of objects and arrows

• above is a category of 4 objects, 3 non-identity arrows

• categories satisfy 3 simple properties…

External Diagrams

MSC SC
M2MX

Java
M2TX

ByteCode
javac
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• Arrows are composable

• Composition is associative:  A•(B•C) = (A•B)•C

• Identities

Properties of Categories

IdA IdB
F F • IdB = F

IdA • F = F

x

y

z
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• Treat arrows and objects uniformly
• hide their implementation technologies
• GROVE, UniTI, etc.
• lack of support obscures fundamental relationships
• remove artificial complexity, expose essential complexity

Support for These Abstractions

MSC SC
M2MX

Java
M2TX

ByteCode
javac

M2B = javac • MT2X • M2MX

tool chains, 
makefiles,
metaprogram
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Notation and Modeling Issues



MSC SC
M2MX

Java
M2TX

ByteCode
javac

MSC SC
M2MX

Java
M2TX

ByteCode
javac

• No standard names for such diagrams in MDE
• drawn differently (sans identity arrows)
• Toolchain diagrams (MIC)
• MegaModels (ATL)

External Diagrams in MDE
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• No standard name for such diagrams in MDE
• Toolchain diagrams (MIC)
• MegaModels (ATL)

External Diagrams in MDE

MSC SC
M2MX

Java
M2TX

ByteCode
javac
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• No standard name for such diagrams in MDE
• Toolchain diagrams (MIC)
• MegaModels (ATL)

External Diagrams in MDE

MSC SC
M2MX

Java
M2TX

ByteCode
javac
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• Arrows 1 input object to 1 output object

what about T: O1, O2, O3 O4, O5 ?
occurs in model weaving …

• Ans: create tuple of objects, which is itself an object

O123 =  [ O1, O2, O3 ]
O45 =  [ O4, O5 ]

Arrows with Multiple Inputs, Outputs

TO123 O45

projection
arrows

O1 O2 O3 O4 O5
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Internal Diagrams

m5

s5

j5

b5

External Diagram is a category

Internal Diagrams are 
(points + arrows)
also categories

degenerate or trivial category: point is a domain with a single program

M2TX

javac

MSC

SC

M2MX

Java

ByteCode
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• Design of an artifact is an expression
• synthesis is expression evaluation
• RQO paradigm

Computational Design

m5

s5

j5

b5

b5 = javac • M2TX • M2MX • m5

M2TX

javac

M2MX

24



• Categories lie at the heart of MDE

• found at all levels in an MDE architecture
• categories on an industrial scale

• Informally, categories provide a compact set of ideas to 
express relationships that arise among objects in MDE

• language and terminology for MDE computational designs

• can use CT more formally (e.g., Meseguer, Ehrig, Täntzer, 
Diskin) …

• Now let’s look for categories in Product Lines

Recap
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Part 2: Categories in SPLs



• SPL is a set of similar programs

• Programs are defined by features
• increment in program functionality that 

customers use to distinguish one program from another

• Programs are related by features
• program P is derived from program G by adding feature F
• feature is a function:

SPL Overview

P = F(G)
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class calculator {
float result;
void add( float x ) { result=+x; }

}

class gui {

JButton add    = new JButton(“+”);

void initGui() {

ContentPane.add( add );

}

void initListeners() {

add.addActionListener(...);

}

}

void sub( float x ) { result=-x; }

JButton sub    = new JButton(“-”);

ContentPane.add( sub );

sub.addActionListener(...);

}

JButton format = new JButton(“format”);

ContentPane.add( format );

void formatResultString() {...}

4-Program Product Line

base = sub •format •

new methods

new fields

extend existing methods

new methods

new fields

extend existing methods

p1p2p3p4
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• 1986 database systems 80K LOC
• 1989 network protocols
• 1993 data structures
• 1994 avionics
• 1997 extensible Java preprocessors 40K LOC
• 1998 radio ergonomics
• 2000 program verification tools
• 2002 fire support simulators
• 2003 AHEAD tool suite 250K LOC
• 2004 robotics controllers
• 2006 web portlets

Ideas Scale... 
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Perspective on Product Lines

• SPL is a set of similar 
programs

• Is a miniscule subset 
of a domain

• Infinite set of SPLs in a 
domain

Java

size of 
domain is

infinite

size of 
SPL is
finite

elevator 
domain

portlet
domain

telephony 
domain

device 
driver 

domain
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• SPL defines relationships between its programs
• how are programs related?
• by arrows, of course!

• Empty program (0) may (or may not) be part of SPL

• Each arrow is a feature

Perspective on Product Lines

0
p1

p2

p4

p3base

sub

format

format

sub
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• Program design is an expression
• RQO paradigm
• programs can have multiple designs

Computational Design

0
p1

p2

p4

p3base

sub

format

format

sub

basesub •format •p3 = 

p3 = sub • format • base 

evaluating both 
expressions yields
the same program

format, sub are
commutative
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• Degenerate or trivial category
• point is a domain with a single program in it

• Has implied identity arrows

• Has implied composed arrows, as required

A Product Line is a Category

0
p1

p2

p4

p3base

sub

format

format

sub
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Implementing SPLs



Implementing SPLs

want this:

0
know this:

• Same function being applied to different inputs

35



• Just store arrows regardless of how they are implemented
• n optional features, 2n possible programs
• compact representation of an SPL

Implementing SPLs

store this:
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• Implement a set of arrows
• Define a feature model to define legal compositions of arrows
• Yields a product line
• See paper for more details

Models of SPLs

MM

feature
model1
feature
model2
feature
model3
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Recursion

• SPLs can appear at any level 
of an MDE architecture

• arrow add same feature to a 
large domain of programs

• Model Driven Product Lines
to be discussed shortly

• Superposition is standard
technique

model 
level

metamodel
level
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• AHEAD refines (Scala, ClassBox/J, …)
• “sub” feature adds (superimposes) new fields, members, 

wrappers…

Code Arrows in AHEAD

refines class calculator {
void sub( float x ) {

result=-x; 
}     

}

refines class gui {
JButton sub = new JButton(“-”);

void initGui() {
SUPER.initGui();
ContentPane.add( sub );

}

void initListeners() {
SUPER.initListeners();
add.addActionListener(...);

}

}

new method

new field

extend existing methods
(much like inheritance)
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• “sub” arrow is composed from 2 simpler arrows

Code Arrows in AHEAD

sub

refines class calculator {
void sub( float x ) {

result=-x; 
}     

}

refines class gui {
JButton sub = new JButton(“-”);

void initGui() {
SUPER.initGui();
ContentPane.add( sub );

}

void initListeners() {
SUPER.initListeners();
add.addActionListener(...);

}

}

refines class calculator {
void sub( float x ) {

result=-x; 
}     

} cl

refines class gui {
JButton sub   = new JButton(“-”);

void initGui() {
SUPER.initGui();
ContentPane.add( sub );

}

void initListeners() {
SUPER.initListeners();
add.addActionListener(...);

}

}
gu

gucl

sub
clgu

40



• Example: Product Lines of State Machines
• ICSR 2000: fire support simulators
• ICSE 2007: web portlet product line

Model Arrows in AHEAD

baseyellow •orange •

Feature arrows are 
implemented by model 

deltas – additional elements
and relationships

are superimposed onto
a base model

Makes SPL designs easier
to understand and analyze

Don’t use power of full
transformation language

to implement arrows

Synthesizing customized state charts
by composing features 41



• Categories lie at the heart of Software Product Lines

• SPLs appear at all levels of an MDE architecture

• Informally, categories provides a clean set of ideas to 
express relationships that arise among objects in SPL

• enabled me to place in perspective what MDE and SPL 
communities have been doing

• Next topic: model-driven product lines (MDPLs)

Recap
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Part 3: Categories in 
Model Driven Product Lines

Exposing fundamental verification
and optimization relationships



• Fundamental concept in category theory
• all paths between two objects yield same result
• theorems of CT

Commuting Diagram

d1

d2

f1 f2
f1 • d2 = d1 • f2
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• Want to map a product line of S models into its corresponding product 
line of B models

• Transformations of MDE map objects

• Operator τ to map arrow Fs to arrow Fb:    τ(Fs) = Fb

Diagrams in MDPLs

s1

s2

Fs

S

b1

b2

Fb

B
A

s1

s2

Fs τ
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s1 s3
s2

How Commuting Diagrams Arise

MSC

SC

M2MX

Java

M2TX

ByteCode

javac

m1 m3
m2m1 m3
m2

s1 s3
s2

j1 j3
j2j1 j3
j2

b1 b3
b2
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Commuting Diagrams in PinkCreek

• Trujillo, et al. ICSE 2007

• Portlet synthesis

• Transform state chart into 
a series of lower level 
representations until 
Java and JSP code 
reached

B
statechart of
portlet

java code
of portlet

jsp code
of portlet
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Commuting Diagrams in PinkCreek

• Trujillo, et al. ICSE 2007

• Portlet synthesis

• Transform state chart into 
a series of lower level 
representations until 
Java and JSP code 
reached

B
•F1

•F2
•F3

•F4
•F5

•F6



• Operators easy to draw…

• may (or may not) be easy to implement

• may (or may not) be practical to implement

• CT is not constructive – it doesn’t say how to implement arrow

• no more than UML class diagrams tell you how to implement a 
method

• Tells you certain relationships exist, and if you can 
implement arrows, you can exploit commuting diagrams

Warning!
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Examples that Exploit 
Commuting Diagrams
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• In last 2 years, we found uses for commuting diagrams and 
arrow operators in MDPLs:

• simplifying implementation (ICMT 2008)
• improving test generation (SIGSOFT 2007)
• understanding feature interactions (GPCE 2008)
• understanding AHEAD (GPCE 2008)
• improving synthesis performance (ICSE 2007)

• Briefly review the first two of these…

Writing Operators
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General Technique for 
Implementing MDPLs



• Work with G. Freeman  and G. Lavender
• MDPL of applications written in SVG and JavaScript

• selectively customize application (removing, adding charts, controls)

Example 1: ICMT 2008 Paper
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• Created a set of arrows and a feature model for our MDPL
• red arrows (defining a product line of charts) were tedious to write
• created DSL for charts, where arrows were easy to write, compose

• defined an operator τ to map 1:1 from green arrows to red arrows

Example 1: ICMT 2008 Paper

feature 
model

SPL

“lift arrows”

DSL for chart arrows

τ
operator τ
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τ Translation Example

point-cut
(AOP terminology)

advice

GREEN Arrow

RED Arrow

τ
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• Same result if we compose green arrows and translate OR
we translate green arrows, and compose red arrows

• Homomorphism – mapping of expression in one algebra 
(GREEN) to a corresponding expression in another (RED)

Diagram Constraints

τ(G1 • G2) =   τ(G1) •τ(G2)

=       R1 •    R2

G1 τ R1

G2 τ
R2

Verification condition:
Implementation is correct 

if this equality holds!
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• Initially our tools did not satisfy diagram constraints

• equalities of homomorphisms didn’t hold
• our tools had bugs – we had to fix our tools

• now we have greater confidence in tools because they 
implement explicit relationships of domain models

• win from engineering perspective
» we have an insight into domains that we didn’t have before
» by imposing categorical structure on our domain, we have

better understanding, better models, and better tools

• Lifting is not specific to our application,
it is a general technique for building MDPLs

Guess What?
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Test Generation for MDPLs



• Work with E. Uzuncaova and S. Khurshid (ECE@UTexas)

• Testing SPLs is a basic problem
• we can generate different programs, but how do we know that the 

programs are correct?

• Specification-based testing can be effective
• start with a spec (model) of program
• automatically derive tests
• Alloy is example

Example 2: ISSRE 2008 Paper
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Conventional Test Generation

S0

spec solutions tests

A0
alloy T0testera

T3
A3

alloy testera

A2
T2alloy testera

A1
T1alloy testeraS1

S2

S3

τ

τ

τ

Challenge:
is there

a τ
operator?
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Incremental Test Generation

S0

spec solutions

A0
alloy

T3
A3

alloy testera

A2

alloy

A1
alloyS1

S2

S3

τ

τ

τ

conventional
approach

incremental
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• Spec S1 = (A ∨ B) ∧ (¬A ∨ C) // 20K clauses

a solution: [A,B,C] = [1, 0, 1]

• Spec S2 = (A ∨ B) ∧ (¬A ∨ C) ∧ (D ∨ ¬ A)

a solution: [A,B,C,D] = [1, 0, 1, 1]

• Solution for S1 “bounds” solution for S2
• sound, complete

• Reason for efficiency…

Implementing τ
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• In product lines that we examined (typical of Alloy 
research), majority of cases incremental approach is faster
– 30-50× faster
– can now solve larger problems with Alloy

• Although preliminary, results are encouraging

• See paper(s) for details

Preliminary Results

67



• Creating a SPL or MDE application creates 
industrial–sized categories

• Putting them together reveals a foundational idea 
of categories – commuting diagrams

• involves mapping both objects of a category AND arrows
• need operators (transformation – to – transformation maps)

• Can exploit exposed relationships as
• verification conditions
• optimization possibilities

Recap
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Part 4: Design Optimization

Frontier of
Computational Design



• Design = expression
• Synthesis = expression evaluation
• Design Optimization =  expression optimization

• find program that satisfies functional requirements and optimizes some 
non-functional properties (performance, energy consumption)

Principles of Computational Design

set of programs 
that satisfy
functional

requirements
paradigm of 

relational query 
optimization

most efficient
program

programs
that satisfy

non-functional
requirements
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• I know of few examples of design optimization …

• relational query optimization  (1980s)
• data structure optimizations (1990s)
• Neema’s work on synthesizing adaptive computing (2001)
• Püschel’s work on numerical library synthesis (2006)
• Benavides work on configurators (2005)
• …

• Main challenge: finding domains where there are different ways 
to implement the same functionality

• commuting diagrams
• this is where design optimization occurs

• If you think in terms of arrows, you have a conceptual 
framework and tools to explain and address design 
optimization in a principled, non-ad hoc way

At Present…
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Conclusions



• RQO helped bring database systems out of stone age

• Relational Model was based on set theory
• this was the key to understanding a modern view of databases
• set theory used was shallow
• fortunate for programmers and database users
• set select, union, join, intersect
• disappointment for mathematicians

• Computational Design uses category theory
• basic ideas useful – allows us to place research results in context
• new insight on verification, optimization issues
• whether theorems from CT are applicable, I don’t know

Role of Mathematics in Design
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• Educational benefit of the connection
• common terminology, concepts
• new perspectives

• How often in MDE, SPL, MDPL do commuting diagrams 
arise?

• don’t know; too early
• but if you look, you’ll find them
• theory says they exist
• whether creation of operators practical decided on a per domain basis

Key To Success
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• Future of software design and synthesis is in automation
• seeking principles that have a mathematical basis

• Made great strides understanding structure (UML)

• Need to take few more strides in understanding arrows
• tools, transformations used in design and synthesis

• Software design & synthesis seems to rest on simple ideas
• programs (models) are values
• transformations map programs to programs
• operators map transformations to transformations

Final Comments
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• Clear that ideas are being reinvented in different 
contexts

• not accidental – evidence we are working toward general 
paradigm

• modern mathematics provides a simple language to express
computational designs, expose useful relationships in SPL and 
MDE architectures

• maybe others may be able to find deeper connections

Final Comments
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