
Using Modern Mathematics as an FOSD Modeling Language

Don Batory
Department of Computer Sciences

University of Texas at Austin
batory@cs.utexas.edu

Abstract
Modeling languages are a fundamental part of automated software
development. MDD, for example, uses UML class diagrams and
state machines as languages to define applications. In this paper, we
explore how Feature Oriented Software Development (FOSD) uses
modern mathematics as a modeling language to express the design
and synthesis of programs in software product lines, but demands
little mathematical sophistication from its users. Doing so has three
practical benefits: (1) it offers a simple and principled mathematical
description of how FOSD transforms, derives, and relates program
artifacts, (2) it exposes previously unrecognized commuting rela-
tionships among tool chains, thereby providing new ways to debug
tools, and (3) it reveals new ways to optimize software synthesis.

Categories and Subject Descriptors D.2.11 Software Architec-
tures: Languages (e.g., description, interconnection, definition) .

General Terms Design, Theory

Keywords: Commuting Diagrams, Features, Geodesics, Model
Driven Design, Software Product Lines.

1. Introduction
Modeling languages are a fundamental part of automated software
development. Model driven design (MDD), for example, uses UML
class diagrams and state machines as languages to define and syn-
thesize applications [38]. Service oriented architectures (SOA) use
message sequence charts to specify SOA applications [15].

Feature oriented software development (FOSD) is a compositional
paradigm for program synthesis [9]. Features are modular incre-
ments in program development, and different compositions of fea-
tures yield different programs. Given a set of features, there can be
an exponential number of meaningful compositions, and as such,
FOSD is ideally suited for software product lines (SPLs), where a
SPL is a family of similar programs that are differentiated by their
features.

Although there are many SPL methodologies (e.g. [28][50][59]),
FOSD is distinguished in its use of elementary mathematics as a
modeling language to express program designs: features are unary

functions that transform simple programs to more elaborate pro-
grams. A program’s design is thus a composition of functions. A
further distinction is that FOSD started from practice (i.e., by build-
ing product lines via feature composition) and then gradually a
mathematics was developed to explain it. This paper is a next step
in this practice-towards-theory approach.

AHEAD is an implementation of FOSD. Experience has shown
AHEAD concepts and tools are easy to learn. Further, AHEAD has
been used to build product lines in a wide range of domains includ-
ing fire support systems [8], portlets [56], network protocols [7],
peer-to-peer communications protocols [4], and the AHEAD tools
themselves [1], where the AHEAD tool suite currently exceeds
250K Java LOC.

Recently, we realized that FOSD could benefit from elementary
ideas from Category Theory (CT), which is a theory of mathemati-
cal structures and their relationships. CT is very abstract, and for
typical software developers inaccessible. Yet, its basic ideas have
proven quite useful as a modeling language for FOSD [35][56][57].
However, unlike prior work that stresses the formality of CT, our
use of CT demands little mathematical sophistication, and certainly
makes no contribution to CT or algebraic techniques whatsoever.

But connecting FOSD to CT has at least three important benefits:
(1) it offers a simple and principled mathematical description of
how FOSD transforms, derives, and relates program artifacts. We
see this as a precursor to more formal approaches to software devel-
opment. (2) It exposes previously unrecognized commuting rela-
tionships among tool chains, thereby providing new ways to debug
tools. And (3) it reveals new ways to optimize the synthesis of pro-
grams. The contribution of this paper is to document each of these
benefits. We begin by explaining the core ideas of FOSD.

2. Early FOSD Models of Product Lines
A feature is an increment in program development. A software
product line (SPL) is a family of programs where no two programs
have the same combination of features. Every program has multiple
representations (e.g., source, documentation, etc.) and adding a fea-
ture to a program may elaborate each of its representations. We
briefly review the mathematics of the first two generations of
FOSD — GenVoca [7] and AHEAD [10] — in this section. A third
generation that uses ideas from CT is presented in Section 4.

2.1 GenVoca
GenVoca is a compositional paradigm for defining product lines.
Base programs are 0-ary functions called values:

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise,
to republish, to post on servers or to redistribute to lists, requires prior
specific permission and/or a fee.
GPCE’08, October 19–23, 2008, Nashville, Tennessee, USA.
Copyright © 2008 ACM 978-1-60558-267-2/08/10. . . $5.00

dsb
Text Box
Generative Programming and Component Engineering (GPCE) 2008

f // base program with feature f
h // base program with feature h

and features are unary functions that elaborate (extend) programs:

i•x // adds feature i to program x
j•x // adds feature j to program x

• denotes function composition. The design of a program is a
named expression, e.g.:

p1 = j•f // program p1 has features j and f

p2 = j•h // program p2 has features j and h

p3 = i•j•h // program p3 has features i, j, and h

The programs that can be created from a set of values and func-
tions is a product line. Expression optimization is program design
optimization, and expression evaluation is program synthesis [10].

Not all combinations of features are
meaningful. The use of some fea-
tures precludes or demands the use
of others. Feature diagrams define
the legal combinations of features
[20][34]. They are and-or trees,
where leaves are primitive features
and nonterminals are compound fea-
tures. In effect, they express a product line as a directed graph
where base programs are source nodes (no incoming arrows); the
remaining nodes are derived programs. An arrow D:P1→P3
denotes the application of a feature D to program P1 that produces
program P3. Figure 1 depicts a small FOSD product line.

Note: Program P4 in Figure 1 can be produced in two
different ways: start with program P0 and add features A and B
in any order. Features A and B are said to be commutative.
Commuting features are common in SPLs, although not all
pairs of features commute. Also, as a rule, there are no cycles
in product line graphs.

2.2 AHEAD
AHEAD generalizes GenVoca in two ways. First it reveals the
internal structure of GenVoca values as tuples. Every program has
multiple representations, such as source, documentation, bytecode,
and makefiles. A GenVoca value is a tuple of program representa-
tions. In a product line of parsers, for example, a base parser f is
defined by its grammar gf, Java source sf, and documentation df.
Program f has the tuple f=[gf,sf,df]. Each program representa-
tion has subrepresentations, and they too have subrepresentations,
recursively. In general, a GenVoca value is a tuple of nested tuples
that define a hierarchy of representations for a particular program.

Example. Suppose terminal representations are files. In
AHEAD, grammar gf corresponds to a single BNF file,
source sf corresponds to a tuple of Java files [c1…cn], and
documentation df is a tuple of HTML files [h1…hk].
GenVoca values (nested tuples) can be depicted as directed
graphs: the graph for program f is Figure 2. Arrows denote
projections, i.e., mappings from a tuple to one of its
components. AHEAD implements tuples as file directories, so

f is a directory containing file gf and subdirectories sf and
df. Similarly, directory sf contains files c1…cn, and directory

df contains files h1…hk.1

Second, AHEAD expresses features as nested tuples of unary func-
tions called deltas. Deltas can be program refinements (semantics-
preserving transformations), extensions (semantics-extending
transformations), or interactions (semantics-altering transforma-
tions). We use the neutral term “delta” to represent all of these pos-
sibilities, as each occurs in FOSD.

As an example, suppose feature j modifies a grammar by Δgj
(new rules and tokens are added), modifies source code by Δsj
(new classes and members are added and existing methods are
modified), and modifies documentation by Δdj. The tuple of deltas
for feature j is j=[Δgj,Δsj,Δdj], which we call a delta tuple.
Elements of delta tuples can themselves be delta tuples. For exam-
ple, Δsj represents the changes that are made to each class in sf by
feature j, i.e., Δsj=[Δc1…Δcn].2

The representations of a program are computed recursively by
composing tuples element-wise. The representations for parser p
whose GenVoca expression is j•f are:

p1 = j•f ; GenVoca expression

= [Δgj,Δsj,Δdj]•[gf,sf,df] ; substitution

= [Δgj•gf,Δsj•sf,Δdj•df] ; compose element-wise

That is, the grammar of p is the base grammar composed with its
extension (Δgj•gf), the source of p is the base source composed
with its extension (Δsj•sf), and so on. As elements of delta tuples
can themselves be delta tuples, composition recurses, e.g.,
Δsj•sf=[Δc1…Δcn]•[c1…cn]=[Δc1•c1…Δcn•cn].

Summarizing, GenVoca values are nested tuples of program arti-
facts, and features are nested delta tuples, where • recursively com-
poses them. This is the essence of AHEAD [7]. These are the ideas
that were used to synthesize programs in many SPLs [7][8][12]
[43][56]. Figure 3 shows how the representation or directory hier-
archy of program f maps to an isomorphic hierarchy for program
p=j•f. Each node of f maps to a corresponding node in p with the
same name (although clearly the contents of a node in f may be
different than its node in p). Not shown is that each arrow in f
maps to the corresponding arrow in p.

P0

P1

P2

P3

P4

P5

A

B

D

A

G

Figure 1. A Product Line

B

1. Files can be hierarchically decomposed further. Each Java class can be
decomposed into a tuple of members and other class declarations (e.g., ini-
tialization blocks, etc.) [10].
2. The value of a tuple component may be 0 (empty) if the corresponding
file is undefined. A feature that first defines a file (say x) uses a delta that
maps 0 to x.

f

sfgf df

c1 ... cn h1 ... hk

Figure 2. Hierarchical Program Representations

2.3 Feature Implementations
There are many ways to implement AHEAD. Some of AHEAD’s
basic ideas are now found in contemporary languages that support
collaboration-based designs [4][24][47]. We briefly reviews its
basics; for more details see [1][10].

The unary functions that can be defined in AHEAD are simple:
new elements can be added to a file and existing elements can be
altered. Figure 4a shows a value W which represents Java class
foo. A delta (unary function) of W is R, shown in Figure 4b. R
means “add field int y, method void set() to class foo, and
extend method inc()”. Method deltas are written and interpreted
just like method overrides in Java subclassing hierarchies [1]. The
composition of R•W is the class foo of Figure 4c. The same ideas
apply to other (non-Java) program representations. For example,
Figure 4d is a base grammar G, Figure 4e is a delta T that adds a
token MINUS and a new right-hand side to production Opr. The
“super” construct refers to the prior right-hand sides of a produc-
tion (in this case, Opr). The composition T•G is the grammar of
Figure 4f.

The benefit of using similar delta concepts for different program
representations is pragmatic. If each representation had a com-
pletely different mental model for deltas, the ability of any individ-
ual to understand all of them and use them effectively rapidly
diminishes. Our experience is that uniformity contributes to under-
standability and simplicity. Note: FOSD does not preclude other
and more sophisticated ways of defining deltas. Aspects and rule
sets of transformation systems are examples [13][36]. Both tech-
nologies could be (and have been!) uniformly applied to all kinds
of program representations [30].

3. Modeling GenVoca and AHEAD using CT
3.1 Categories
A category is a directed multigraph with special structure. Nodes
are objects and edges are arrows. An arrow drawn from object X to
object Y is a map with X as its domain and Y as its codomain.
Arrows compose and arrow composition is associative. Also, there
are identity maps for each object, indicated by loops [49]. See
Figure 5.

A product line is a category: Figure 1
is identical to Figure 5, minus identity
arrows. (Identity and composed
arrows are henceforth omitted for
readability). Each object Pi in
Figure 5 is a domain with one element
— the ith program in the product line.
Let P denote the category of an SPL,
such as Figure 5.3

Arrows of a category are unary (single-parameter) maps. To
express maps with multiple inputs or outputs, tuples of objects are
used. A tuple is formed by a product of objects. So if category C
had objects O1 and O2, a product of these objects, [O1,O2],
becomes another object of C. In general, a product of a family of
objects O1…On is a tuple [O1…On]. A projection arrow/function is
used to obtain a particular object of a tuple.

f

gf

c1
...

cn

Δgj
Δsj
Δdj

Δc1
Δh1

Figure 3. Features Map Representation Hierarchies

h1
...

hk

sf

df

p

gf

c1
...

cn

h1
...

hk

sf

df

j

Δhk

Δcn

class foo {
int x = 0;
void inc() {
 x++;
}

}

refines class foo {
int y;
void set() { y=x; }
void inc() {
 y++; super.inc();
}

}

class foo {
int x = 0;
int y;
set() { y=x; }
void inc() {
 y++; x++;
}

}(a) W
(b) R

(c) R•W

Figure 4. Values, Functions, and Their Composition

“+” PLUS

Expr : Val
| Val Opr Expr ;

Val : INTEGER ;
Opr : PLUS ;

“+” PLUS
“-” MINUS

Expr : Val
| Val Opr Expr ;

Val : INTEGER ;
Opr : PLUS

| MINUS ;

“-” MINUS

Opr : super
| MINUS ;

(d) G

(e) T

(f) T•G

3. Just as partial orders and containment lattices are representative of ele-
mentary or trivial categories, so too are SPLs.

P0

P1

P2

P3

P4

P5

A

B

D

A

G

Figure 5. A Category

B

To see products in action, the nested tuples of AHEAD values
define a category. Figure 2 depicts a category minus identity and
composed arrows. The leaves are objects representing domains
with a single file. Each non-leaf is a product of a family of objects,
e.g., sf is the product of objects c1…cn and f is the product of gf,
sf, and df [49]. Arrows are element projection functions.

The relationship between P, the category of all programs in an SPL
(Figure 1), and R, the category of all program representations
(Figure 2), is expressed by the categorical product (R×P), where an
arrow represents either a delta or a projection function. Although
categorical products are not essential to our main-line discussion,
they are relevant and are explained in Appendix I.

3.2 Functors
A functor is a structure preserving map between two categories
[49]: functor F:A→B maps each object in A to an object in B, and
each arrow in A to an arrow in B such that the connectivities of A is
preserved. The functors that arise in AHEAD are particularly sim-
ple: they are maps between isomorphic categories, such as maps
from one hierarchy of representations to another (Figure 3), and as
we will show later one product line to another (Figure 15).

Example. A feature F:A→B is a functor that maps the
category of representations of program A to the category of
representations of program B. In general, a GenVoca
expression can be seen as the application of a series of
functors to an initial category (the category of representations
of a base program). Figure 3 is an example: f is the initial
category and j is a functor applied to f. Each object in f is
mapped to the corresponding object in p=f•j and each arrow
in f is mapped to the corresponding arrow in p.

Relating features to functors offers an interesting perspective on
today’s industrial programming languages (e.g., Java and C#) and
contemporary programming language research. Industrial lan-
guages enable engineers to define objects (program source), but
offer little or no help in defining and composing arrows (e.g., del-
tas). That is, common languages do not provide AHEAD-like
refines declarations to define deltas that update existing class
and method declarations and that allow such deltas to be com-
posed. In absence of language support, programmers resort to pre-
processors or transformation systems to implement deltas, which
have important drawbacks. Namely, the language to express deltas
is different from the source language, deltas cannot be compiled
separately, creating and maintaining the infrastructure to define
and compose deltas may burden programmers, etc.

From a CT perspective, half of a fundamental picture is missing:
modeling languages and programming languages should allow
developers to define not only objects (programs), but arrows (pro-
gram deltas), and arrow compositions as well. Recent program-
ming languages that support collaboration-based designs can be
recognized as attempts to address this omission, e.g., virtual
classes and mixins [14][45], Scala [47], higher-order hierarchies
[24], and giving aspects functional semantics [44].

4. Next Generation FOSD Model of Product Lines
AHEAD captures the lock-step update of artifacts (files, models)
of a program when features are applied. It does not capture impor-
tant derivation relationships among artifacts. The next generation
of FOSD integrates ideas of MDD that emphasizes the derivation
of one model (artifact) from another. This next-generation of
FOSD is called Feature Oriented MDD (FOMDD) [56][57].

Suppose we generalize the tuples of our parser product line. In
addition to a grammar (g), source code (s), and documentation (d)
representations, we add a bytecode (b) representation. So base
parser f=[gf,sf,df,bf] now has four components, one for each
representation. Derivation relationships exist among components
of f: bytecode (b) is derived from source (s) by the Java compiler.
That is, javac is a function that maps Java source to Java byte-
codes. Similarly, the documentation (d) may also be derived from
the Java source (s). For example, javadoc is a function that maps
Java source to HTML documentation. As a general rule, common
tools used by software engineers implement object-to-object maps
in FOSD.

Note that there are other basic CT concepts that arise in FOSD,
such as natural transformations. As these ideas are not essential to
our main-line discussion, they are presented in Appendix II.

4.1 Commuting Diagrams
The commuting diagram [39]
[49] of Figure 6 expresses
what we expect to hold
between derivations and del-
tas. Horizontal arrows are
deltas (called endogenous
transformations in the MDD
literature [46]) and vertical
arrows are derivations (called exogenous transformations [46]).
Any path from the upper-left object to the lower-right object pro-
duces an equivalent result. In Figure 6, a higher-order function or
operator Θ maps delta ΔM to delta ΔN. The general relationship is:

f • ΔM = Θ(ΔM) • f

As CT is not construc-
tive in the sense that it
doesn’t tell you how to
implement arrows, it can
be a substantial engi-
neering challenge to cre-
ate operator Θ. As an
example, Figure 7
depicts how javac relates the Java source of programs P0 and P1
(namely S0 and S1) to their corresponding bytecodes B0 and B1.
The horizontal arrow S0→S1 is a source code delta ΔS (i.e., a set of
AHEAD class additions and class deltas), and the B0→B1 arrow is
the corresponding bytecode delta ΔB. We implemented a special
tool in AHEAD (bccompiler) to implement the arrow-to-arrow
mappings of Figure 7 (i.e., ΔB = bccompiler(ΔS)) [3]. That is,
bccompiler allowed us to separately compile the files of ΔS into
bytecode (ΔB). This allowed us to demonstrate that extending

M1M0

N1N0
ΔN

ΔM

f f

Figure 6. Commuting Diagram

Θ

S0 S1

B0 B1

ΔS

ΔB

javacjavac bccompiler

Figure 7. Source-Bytecode Diagram

source code S0 by ΔS and compiling was equivalent to compiling
the source of S0 and extending its bytecode by ΔB.

Commuting diagrams such as Figure 7 have practical uses. One is
immediately evident: most AHEAD tools are preprocessors that
map source files to extended source files. If features are to be dis-
tributed commercially as components, bytecode (not source code)
will be the preferred representation.

Note. Our bccompiler operator can add new classes, new
members to existing classes, and can wrap existing methods.
However, bccompiler relied on javac, which propagates
constants, and this can be problematic when different features
assign different values to variables. So although we
demonstrated the feasibility of bytecode deltas, a more general
approach, called separate class compilation, is needed, which
delays the folding of constants and other optimizations until
bytecode composition time [1][2].

Proofs should accompany commuting diagrams, but the scale of
programs in AHEAD puts this beyond the state of the art in pro-
gram verification. For example, the Sun Java 1.6.1 compiler maps
Java programs to bytecode, but we are unaware of a correctness
proof. Similarly, we do not have proofs that the semantic proper-
ties of features are preserved or correctly transformed by deriva-
tions and deltas. Proving properties of arrows on the scale of
Figure 7 is appropriate for the Verified Software Grand Challenge
of Hoare, Misra, and Shankar [40], which seeks scalable technolo-
gies for program verification.

We use commuting diagrams to define relationships that we expect
to hold among program artifacts. It is this ‘engineering’ or ‘infor-
mal’ approach to CT, rather than a rigorous mathematical
approach, that we have found useful. In the absence of proofs, we
take a standard software engineering line: forms of equivalence are
demonstrated by testing. That is, we start with program s0∈S0 and
produce programs b1=javac(ΔS•s0) and
b1’=bccompiler(ΔS)•javac(s0) and test their equivalence. In
the case of bytecodes, b1 and b1’ are subjected to the same system
or integration tests; if both have the same responses, these pro-
grams are considered behaviorally identical for those tests. In the
case that a commuting diagram yields a source document, “diffs”
can be used to test for source equivalence. (Source equivalence is
syntactic equivalence with two relaxations: it allows permutations
of members when member ordering is not significant and it allows
white space to differ when white space is unimportant).

Experience to date is that FOMDD exposes commuting relation-
ships in SPL models, and imposes a similar number of constraints
on the commutativity of tool chains, i.e., chains of composed tools
or transformations. We were unaware of many of these constraints.
Not surprisingly, our tools initially failed to satisfy commuting
relationships. By repairing our tools so that they did, we have
greater confidence in our tools and in our understanding of our
domain. Both are wins from an engineering perspective: we can
reason algebraically about our designs, rather than hacking code.
This is a good example where FOMDD exposes valuable and pre-
viously unrecognized properties that program synthesis tools and
tool chains must satisfy. In the next section, we see an interesting
twist on the use of commuting diagrams.

4.2 Geodesics
Suppose program P0 has a specification from which multiple rep-
resentations are derived. Figure 8a shows P0 consisting of three
representations that are derived from the topmost object. (In our
tuple notation, P0=[r0,f•r0,g•f•r0] where f and g, are unary
functions and r0 is a base program representation). As features are
composed onto P0, a mesh of commuting diagrams is produced.
The geometry of Figure 8b is regular, although it could just as eas-
ily be ragged (Figure 8c). Meshes are created by translating delta
arrows that connect the topmost objects into delta arrows of lower-
rung objects. Ragged geometries arise when delta arrows are not
implemented.

Note: In principle, absent arrows always exist, but there is no
tool to compute them. For example, until we built the
bccompiler tool, we could not materialize the B0→B1 arrow
of Figure 7. As mentioned earlier, building tools that
implement arrows can be a significant engineering challenge.

Given an object in the upper left corner of a diagram, we want to
compute the object in the lower right. Any path will produce the
desired result. For a rectangular mesh of m×n nodes, there are

 such paths.

We have observed that engineers develop programs by creating a
single path (tool chain) that maps the initial object (model) to the
target object (model) in a commuting diagram. Such a path is
called a makefile. They (including us) were not aware of other pos-
sible paths. CT exposes new ways to synthesize programs, and this
has lead us to interesting results.

From an engineering perspective, creating and/or traversing an
arrow has a cost, and not all arrows have the same cost. Given a
metric that defines the cost of traversing (synthesizing and com-
posing) an arrow, diagram geometries warp (Figure 9). No longer
are all paths equidistant. It becomes an optimization problem to
determine the shortest traversal, called a geodesic, to synthesize a
target result. The next sections sketch the utility of geodesics and
the generalization of geodesics to more complex categories.

(a) (b) (c)

Figure 8. Geometries

P0 P1 P2P0 P3 P4 P0 P1 P2 P3 P4

f

g

m n 2–+
m 1–⎝ ⎠

⎛ ⎞

Figure 9. Geodesic

start

end

4.3 Applications of Geodesics
4.3.1 PinkCreek
PinkCreek is a product line of web portlets (i.e., web components)
and was the first FOMDD application [56]. A category of objects
(a.k.a. models) is displayed in Figure 10a, where a series of differ-
ent portlet representations were derived from the topmost object.
As features are composed, a multi-pleated geometry is created
(Figure 10b).

A PinkCreek geodesic is not a line. Starting at the upper left object
(which corresponds to a base statechart), there is a set of target
objects produced by the final feature that are to be computed (indi-
cated by white objects in Figure 10b). A common approach in
MDD is to traverse the ridge of the geometry and follow the
arrows downward. “Traversing the ridge” means extend the origi-
nal statechart (the top-most object of Figure 10a) into its final
form, and then derive its representations. FOMDD predicts the
existence of other paths, which might be more efficient. Such a
path was discovered experimentally: start from the original state-
chart, derive its representations, and then apply features to elabo-
rate the desired representations. This new approach was 2-3 times
faster than the original traversal and was a consequence of special
optimizations that were possible in the PinkCreek design [56].

When there is only one source object and one target object, a geo-
desic can be computed by Dijkstra’s shortest path algorithm. In
PinkCreek, there is one starting object and n target objects and
computing a geodesic requires solving the Directed Steiner Tree
Problem, which is NP-hard [19]. More generally, a geodesic can
have m starting objects and n target objects. While simple heuris-
tics for computing geodesics may suffice, there may be some inter-
esting optimization problems to be addressed.

4.3.2 Testing Software Product Lines
Testing SPLs is a fundamental problem. Not only should it be pos-
sible to generate any program of a product line, it should also be
possible to generate tests for that program to provide evidence that
the generated program is correct.

Specification-based testing can be an effective approach for testing
the correctness of programs [17][18][32]. The idea is to map a pro-
gram’s specification automatically to a set of test inputs. These
inputs are fed to the program, and the program’s response can be
validated automatically using correctness criteria. Alloy is an
example [32][33]. An Alloy specification S for program P defines
properties (constraints) that data structures must satisfy. The Alloy
analyzer [33] translates S to test inputs T in the following way: the

analyzer converts S into a propositional formula, the formula is
solved by a SAT solver, and each solution is converted into a test.

In the context of SPLs, each program Pi is represented as an
ordered pair [Si,Ti], where Si is a specification of Pi and Ti is
its set of tests. The commuting diagram of Figure 11 shows a prod-
uct line of four programs (P0-P3), where horizontal arrows are del-
tas and vertical arrows are the mappings of Alloy.

In a conventional approach, one starts with base program P0 which
has Alloy spec S0. Suppose feature F (which maps P0 to P1) has
Alloy specification SF. When F is composed with P0 to produce
program P1 (i.e., P1=F•P0), assume that the composite specifica-
tion is S1=SF∧S0 (i.e., the conjunction of the F and P0 specs). Add-
ing two more features produces spec S3, at which point the Alloy
analyzer translates S3 into T3.

FOMDD predicts Figure 11 that reveals other ways of producing
test T3 starting from specification S0. The challenge is that it is not
obvious how to take any path other than the conventional path —
no other path has ever been taken.

A way to traverse other paths was proposed by Uzuncaova, et al.
[60][61]. Instead of solving the entire formula S3 (as is done con-
ventionally), an alternative is to find a solution I0 to the base spec
S0, and then use I0 as a constraint for solving more complex spec
S1. A solution for I1 is then used as a constraint for solving S2, and
so on. That is, start with the solution (tests) of a simpler program,
and extend it to a solution (tests) for a more complex program. The
incremental approach, as it is called, has appealing properties.
First, it is sound: any solution of Si+1 that can be computed from
Ii is, obviously, a solution of Si+1. Second and more interesting, it
is complete: any solution to Si+1 must embed a solution to sub-
problem Si. Thus, by iterating over solutions to Si, it is possible to
enumerate all solutions of Si+1.

Note: some solutions to Si may not extend to solutions of
Si+1, and some Si solutions may extend to multiple Si+1
solutions.

Note: the geometry of this problem matches that of Figure 8c:
the top nodes are Alloy specifications Si, the middle nodes are
solutions Ii, and the bottom nodes are tests Ti, where
solutions are refined, and tests are derived from these
solutions.

Initial experimental results comparing the incremental approach
with the conventional approach were encouraging. Figure 12

(a) (b)

Figure 10. PinkCreek Geometries Figure 11. Conventional vs. Incremental Test Generation

S0 S1 S2 S3

T0 T1 T2 T3

conventional

incremental

shows the time for creating tests for a product line of trees (a stan-
dard example of researchers using the Alloy analyzer). For some
experiments, the conventional approach was faster. The reason is
that the composite predicate was simple enough to solve directly
— it was overkill to partition it into smaller predicates, solve these
predicates, and then extend their solutions. However, for a major-
ity of cases, the conventional approach to solve a composite predi-
cate directly was often more than an order of magnitude slower
than an incremental approach. In several cases, an incremental
approach was 50× faster. The reason is that it is easier to find solu-
tions to simple predicates and to extend their solutions.

Another interesting result is that it is possible to permute the order
in which features are composed. Although the technical details for
how this is can be done for arbitrary program artifacts is beyond
the scope of this paper (see [5][37]), in principle, the idea is clear
for the way Alloy specifications are composed. Figure 13 shows
the construction of tests for a balanced search tree; the different
ways in which a tree specification (S0) can be mapped to the tests
for a balanced search tree (T2) can be visualized by a 3-dimen-
sional commuting diagram. Note that the conventional and incre-
mental approaches correspond to some paths through this diagram.
We evaluated all paths.

Conventional paths traverse the top of the cube starting at S0 and
lastly deriving the test T2 from the full specification of S2. The
fastest this could be accomplished was in 4.87 seconds. Incremen-
tal paths derived test T0 immediately, and traversed the bottom of
the cube to T2. The fastest that this could be accomplished was in
1.34 seconds, a factor of 3.6× improvement. However, neither of
these traversals was a geodesic: the fastest traversal is formed by

first refining S0 by the balance feature, then deriving the test for
balanced trees, and finally extending this test by the search fea-
ture to T2. This path was traversed in .18 seconds, a 27.3× factor
improvement over the conventional approach. Once again, it is an
interesting and on-going research problem to determine heuristics
for identifying optimal paths (geodesics) for test generation.

5. Related Work
There is a huge literature at the intersection of category theory and
Computer Science (CS). Papers appearing in software engineering
venues are often theoretical, requiring mathematical expertise to
appreciate their contributions. Even good tutorials, like [53] which
illustrates CT concepts using the ML programming language, are
difficult to relate to practical design problems encountered in
extensible object-oriented programs and feature-based SPLs. (Part
of the problem is that it is hard for ML functors to express the
incremental addition and refinement of methods and variables to
class-like structures). We know that useful CT connections have
been made with non-trivial applications (e.g., [23][25][48]), but
the key challenge is finding connections and examples that can be
appreciated by typical SPL designers. It is important to remember
that we did not set out to develop FOMDD with CT in mind. On
the contrary, FOMDD was created and later we discovered its con-
nection with CT. (It is this subsequent connection with CT that this
paper documents). Our use of CT as an informal way to model
SPL domains and to expose the commuting relationships among
program synthesis tools and features is the primary contribution of
our work. Other researchers are finding similar benefits of using
commuting diagrams informally to structure and explain their sys-
tems (e.g., version control [52], feature interaction [5][37]).

Research in algebraic specification uses CT and commuting dia-
grams to express ideas similar to those in this paper [23][48]. In
fact, the basic notion that refinements affect different representa-
tions of a module (e.g., its interface, implementation, parameters)
is present, although our use of deltas (which need not be seman-
tics-preserving transformations) is a clear difference. Terminology
is misaligned: the terms ‘refinement’ and ‘extension’ have differ-
ent meanings. Consider a 2-space, where points along the X-axis
are specifications, and points along the Y-axis are implementa-
tions. A common paradigm (e.g., Z [55]) builds a specification
incrementally by extensions. Once completed, the specification is
then refined progressively to an implementation. Program P has
specification S and implementation I in Figure 14a, where hori-
zontal arrows denote specification extensions and vertical arrows
are refinements.

FOSD is different. A feature extends both a specification and an
implementation, i.e., features move diagonally through this 2-
space. In Figure 14b, program P1=[S1,I1] is mapped to program

Figure 12. Conventional v.s Incremental Test Generation

subject product speed-up

Binary
Tree

(scope=10)

base n/a
size•base 0.58×

parent•base 0.72×
search•base 27.99×

parent•size•base 0.41×
search•size•base 55.16×

search•parent•base 21.40×
seaarch•parent•size•base 66.44×

INS
(scope=16)

base n/a
attr-val•base 0.35×

label•attr-val•base 14.53×
record•label•attr-val•base 9.56×

S0 balance

balance

balance

balance
T2

start

end

Figure 13. Geodesic in a Commuting Diagram

conventional4.87 sec

incremental1.34 sec
3.6×

mixed (geodesic)0.18 sec
27.3×

specs

implementations

P

S

I

Figure 14. Extension and Refinement

specs

implementations

S1

I2

S2

I1
P1

P2

F

F’
P3

(a) (b)

I3

P2=[S2,I2] by feature F. It is possible for features to share the
same specification extension (e.g., F’ in Figure 14b) but have a
very different implementation (e.g., P3=[S2,I3]), which leads to
interesting optimizations. For example, which feature produces the
most efficient program [54]? To the best of our knowledge, fea-
tures implement a form of constrained subtypes [42], where type
specifications are very weak.

Specware uses CT as a formal foundation for program synthesis
[48]. Specifications are composed by pushouts, which are commu-
tative. Pushouts are appropriate as the specifications that are com-
posed in Specware are orthogonal (i.e., pushouts effectively
compute specification union). FOSD uses a different model: fea-
ture composition is function composition, which is not commuta-
tive. To illustrate, suppose feature F1 increments field V, and
feature F2 doubles V. The order in which F1 and F2 are composed
matters. This example leads to inconsistencies in Specware. Of
course, a major advantage of Specware are guarantees of correct-
ness in the code that it synthesizes; AHEAD offers no such assur-
ances.

Our work exploits other fundamental ideas in CS. Equating tools
with functions or operations is an ancient idea. Among its first
statements are the T-diagrams of Early and Sturgis [22] and more
recently by Appel [6]. T-diagrams are a graphical way to show the
composition of compilers and translators to achieve a particular
translator (here called an arrow). An algorithm is given in [22] to
show how a desired arrow can (or cannot) be synthesized given a
set of primitive arrows. Although unstated, it is an obvious step
from here to see how this algorithm can be used to generate multi-
ple ways to synthesize a given arrow, where a “geodesic” would be
the cheapest. Our work shows how similar ideas arise in a much
more general context, where software design and construction is
viewed as a computation. It is this mathematical (transformational)
approach that allows us to make connections from software design
to elementary ideas in mathematics.

From the FOSD perspective, theorems and proofs are other syntac-
tic artifacts that are subject to transformation. First steps on how
theorems (both their statements and proofs) are transformed by
features have been taken [12]. Ideally, features define conservative
refinements, so that semantic properties that were true before
remain true (or are qualified) after a feature has been applied. But
in general, there are domains where features have a more invasive
impact, where properties may be erased and replaced by others, so
that it is not obvious how the replaced definitions can be incremen-
tally built. This abrupt discontinuity in semantics is often called
feature interaction [16]. The way a pair of features “interact” now
is manifested by the need for a third feature to coordinate/modify
the activities of the first two features in a rational way [37]. Under-
standing feature interactions remains a difficult challenge.

FOSD has similar goals to Goguen’s parameterized programming
[26]. His work offers two distinct forms of parameterization, hori-
zontal and vertical, and uses views to define morphisms (maps)
between module interfaces that would otherwise not be compos-
able. Although FOSD emphasizes vertical parameters to express
deltas, features (as mentioned in footnote 1) can indeed have hori-
zontal (e.g., performance) parameters.

Collaborations (or role-based designs) were perhaps the first
object-oriented way to express features (arrows) [51]. Collabora-
tions can be implemented by virtual classes [45] and mixins [14],
and have been the basis of several feature-based design methodol-
ogies [58]. Unfortunately, support for collaborations has not found
its way into industrial programming languages.

Ernst’s Higher-Order Hierarchies (HOH) has much of the flavor
of AHEAD, where any number of (virtual) classes in an inherit-
ance hierarchy can be extended lock-step. Different extensions can
be composed and there are statements to specify compositions
[24]. Scala is another language that can express code deltas [47].
Scala is general, and requires programmers to express “type
plumbing”, i.e., type bindings in deltas. AHEAD’s refines
class construct is much more limited, and hides (or rather
assumes) type bindings. Consequently, refines class declara-
tions are more compact and may be easier for typical programmers
to use [43]. A major difference is Scala has a type system; AHEAD
does not.

6. Conclusions
Software architects are not (and may never be) mathematicians,
but this should not prevent them from using modern mathematics
to express fundamental relationships in program structure, SPLs,
and program synthesis. Indeed, conceiving programs as structures
(values) and transformations that map programs to other programs
is both a fundamental and ancient idea in computer science,
although it seems to have been lost in current software design texts
and practices.

In this paper, we used elementary concepts of CT as a modeling
language to explain how FOSD defines and creates software prod-
uct lines; we did not use CT as the basis for a formal model for
proving theorems about SPL semantics. Rather we used CT infor-
mally (a) to explain how in FOSD artifacts that represent programs
are transformed to other artifacts by features or by tools, (b) to
expose previously unrecognized commuting relationships among
tool chains (providing new ways to debug existing tools), and (c)
to reveal new ways to optimize program synthesis. All of these
advances were beneficial in building practical tools and designing
FOSD models of SPLs.

We believe that connecting software design and development to
mathematics is a precursor to more formal, structured, and repeat-
able models of automated software development that could be used
in practice. Although the integration of program semantics into
FOSD is still in its infancy, we believe our work takes us a small
step closer to explain the design activities of today’s software engi-
neers in a principled way.

Acknowledgements. I greatly appreciate the comments from P.
Kim, D. Smith, M. Mehlich, G. Lavender, M. Poppleton, S. Nedu-
nuri, W. Cook, S. Apel, S. Trujillo, O. Diaz, A. Rauschmayer, M.
Wirsing, E. Boerger, and J. Misra on earlier drafts of this paper.
Also, I thank C. Lengauer for recognizing the vector description of
AHEAD, and V. Ramachandran and R. Chowdhury for their help
in connecting my work with the Directed Steiner Tree Problem,
and discussions with J. McGregor on product line testing. Finally, I
thank the referees for their helpful comments. This work was sup-

ported by NSF’s Science of Design Project #CCF-0438786 and
#CCF-0724979.

7 References

[1] D. Ancona, G. Lagorio, and E. Zucca. “Jam—Designing a
Java Extension with Mixins”, ACM TOPLAS 2003.

[2] D. Ancona, F. Damiani, and S. Drossopoulou. “Polymorphic
Bytecode: Compositional Compilation for Java-like Lan-
guages”, POPL 2005.

[3] AHEAD Tool Suite, www.cs.utexas.edu/users/schwartz/
index.html

[4] S. Apel, “The Role of Features and Aspects in Software
Development”, Ph.D. Dept. of Tech.l and Business Info. Sys-
tems, University of Magdeburg, Germany, March 2007.

[5] S. Apel, C. Kaestner, and D. Batory. “Program Refactoring
using Functional Aspects”. GPCE 2008.

[6] A. Appel, “Axiomatic Bootstrapping: A Guide for Compiler
Hackers”, ACM TOPLAS Nov. 1994.

[7] D. Batory and S. O'Malley. “The Design and Implementation
of Hierarchical Software Systems with Reusable Compo-
nents”. ACM TOSEM, October 1992.

[8] D. Batory, C. Johnson, B. MacDonald, and D. von Heeder.
“Achieving Extensibility Through Product-Lines and
Domain-Specific Languages: A Case Study”, ACM TOSEM,
April 2002.

[9] D. Batory, “A Science of Software Design”, AMAST 2004.
[10] D. Batory, J.N. Sarvela, and A. Rauschmayer. “Scaling Step-

Wise Refinement”, IEEE TSE, June 2004.
[11] D. Batory, “From Implemention to Theory in Product Synthe-

sis”, University of Texas Austin, Dept. Comp. Science TR-
07-35, June 2007.

[12] D. Batory and E. Börger. “On The Modularization of Theo-
rems for Software Product Lines”, to appear in JUCS.

[13] I.D. Baxter. “Design Maintenance Systems”. CACM, April
1992.

[14] G. Bracha and W. Cook. “Mixin-Based Inheritance”. OOP-
SLA and ECOOP 1990.

[15] M. Broy, I. H. Krüger, and M. Meisinger. “A Formal Model
of Services”. ACM TOSEM, vol. 16, no. 1, p. 5, Feb. 2007.

[16] M. Calder, M. Kolberg, E.H. Magill, and S. Reiff-Marganiec.
“Feature Interaction: A critical Review and Considered Fore-
cast”. Computer Networks, January 2003.

[17] J. Chang and D.J. Richardson. “Structural Specification-
Based Testing: Automated Support and Experimental Evalua-
tion”. ACM SIGSOFT/FSE 1999.

[18] Y. Cheon and G.T. Leavens. “A Simple and Practical
Approach to Unit Testing: The JML and JUnit Way”. ECOOP
2002.

[19] M. Charikar, et al., “Approximation Algorithms for Directed
Steiner Tree Problems, ACM-SIAM Symposium on Discrete
Algorithms (SODA) 1998.

[20] K. Czarnecki and U. Eisenecker. Generative Programming
Methods, Tools, and Applications. Addison-Wesley, Boston,
MA, 2000.

[21] E.W. Dijkstra. A Discipline of Programming. Prentice Hall,
1976.

[22] J. Earley and H. Sturgis. “A formalism for translator interac-
tions”. CACM Oct. 1970.

[23] H. Ehrig and B. Mahr, Fundamentals of Algebraic Specifica-
tion 2: Module Specifications and Constraints, Springer-Ver-
lag, 1990.

[24] E. Ernst, “Higher Order Hierarchies”, ECOOP 2003.
[25] J. Fiadeiro. Categories for Software Engineers. Springer

1998.
[26] J. Goguen. “Principles of Parameterized Programming” in T.

Biggerstaff and A. Perlis, Software Reusability Volume II:
Applications and Experiences, Addison-Wesley, 1990.

[27] J. Goguen. “A Categorical Manifesto”. Mathematical Struc-
tures in Computer Science, 1991.

[28] H. Gomaa, Designing Software Product Lines with UML:
From Use Cases to Pattern-Based Software Architectures,
Addison-Wesley 2005.

[29] J. Goodenough and S. Gerhart. “Toward a Theory of Test
Data Selection”. IEEE TSE, June 1975.

[30] J. Gray, et al. “Model Driven Program Transformation of a
Large Avionics Framework”, GPCE 2004.

[31] W. Grieskamp, Y. Gurevich, W. Schulte, and M. Veanes.
“Generating Finite State Machines From Abstract State
Machines”. ISSTA 2002.

[32] D. Jackson. Software Abstractions: Logic, Language and
Analysis. The MIT Press, Cambridge, MA, 2006.

[33] D. Jackson. “Alloy: A Lightweight Object Modeling Nota-
tion”. ACM TOSEM, April 2002.

[34] K. Kang, et al., “Feature-Oriented Domain Analysis (FODA)
Feasibility Study”, Tech Report CMU/SEI-90-TR-21.

[35] S. Khurshid, E. Uzuncaova, D. Garcia, and D. Batory. “Test-
ing Software Product Lines Using Incremental Test Genera-
tion”. Submitted.

[36] G. Kiczales, et al. “An Overview of AspectJ”. ECOOP 2001.
[37] C.H.P. Kim, C. Kästner, and D. Batory. “On the Modularity

of Feature Interactions”. GPCE 2008.
[38] A. Kleppe, J. Warmer, W. Bast. MDA Explained: The Model

Driven Architecture: Practice and Promise. Addison-Wesley
2003.

[39] F.W. Lawvere and S.H. Schanuel, Conceptual Mathematics:
A First Introduction To Categories, Cambridge University
Press, 1997.

[40] G. Leavens, et al. “Roadmap for Enhanced Languages and
Methods to Aid Verification”. GPCE 2006.

[41] H.C. Li, S. Krishnamurthi, and K. Fisler. “Modular Verifica-
tion of Open Features Through Three-Valued Model Check-
ing”, Automated Software Engineering Journal, 2005.

[42] B. Liskov and J.M. Wing, “A Behavioral Notion of Subtyp-
ing”, ACM TOPLAS 1994.

[43] R. Lopez-Herrejon, D. Batory, and W. Cook. “Evaluating
Support for Features in Advanced Modularization Technolo-
gies”, ECOOP 2005.

[44] R. Lopez-Herrejon, D. Batory, and C. Lengauer. “A Disci-
plined Approach to Aspect Composition”, PEPM 2006.

[45] O.L. Madsen and B. Møller-Pedersen, “Virtual Classes: A
Powerful Mechanism in Object-Oriented Programming”,
OOPSLA 1989.

[46] T. Mens, K. Czarnecki, and P. van Gorp. “A Taxonomy of
Model Transformations”, Dagstuhl Seminar Proceedings
04101. drops.dagstuhl.de/opus/volltexte/2005/11

[47] M. Odersky, et al. “An Overview of the Scala Programming
Language”. September 2004, scala.epfl.ch

[48] D. Pavlovic and D.R. Smith. “Software Development by
Refinement”, UNU/IIST 10th Anniversary Colloquium, For-
mal Methods at the Crossroads: From Panaea to Foundational
Support, Springer-Verlag LNCS 2757, 2003.

[49] B. Pierce. Basic Category Theory for Computer Scientists,
MIT Press, 1991.

[50] K. Pohl, G. Boeckle, F. van der Linden, Software Product Line
Engineering: Foundations, Principles and Techniques,
Springer 2005.

[51] T. Reenskaug, et al. “OORASS: Seamless support for the cre-
ation and maintenance of object-oriented systems”. Journal of
Object-Oriented Programming, October 1992.

[52] D. Roundy, “Theory of Patches”, //darcs.net/manual/

node8.html

[53] D.E. Rydeheard and R.M. Burstall, Computational Category
Theory, Prentice Hall, 1988.

[54] P. Selinger, M.M. Astrahan, D.D. Chamberlin, R.A. Lorie,
and T.G. Price. “Access Path Selection in a Relational Data-
base System”, ACM SIGMOD 1979.

[55] J.M. Spivey, The Z Notation: A Reference Manual, Oxford
University Press, 1998.

[56] S. Trujillo, D. Batory, and O. Diaz. “Feature Oriented Model
Driven Development: A Case Study for Portlets”, ICSE 2006.

[57] S. Trujillo, M. Azanza, and O. Diaz. “Generative Metapro-
gramming”, GPCE 2007.

[58] M. VanHilst and D. Notkin. “Using role components to
implement collaboration-based designs”. OOPSLA 1996.

[59] D.M. Weiss, C.T.R. Lai, Software Product-Line Engineering:
A Family-Based Software Development Process, Addison-
Wesley, 1999.

[60] E. Uzuncaova, D. Garcia, S. Khurshid, and D. Batory, “A
Specification-Based Approach to Testing Software Product
Lines (Poster Paper)”. ACM SIGSOFT/FSE 2007.

[61] E. Uzuncaova and S. Khurshid. “Constraint Prioritization for
Efficient Analysis of Declarative Models”. Symposium on
Formal Methods (FM), May 2008.

Appendix I. Product of Categories
The product of categories C and D, denoted C×D, is the cross prod-
uct of graphs C and D; it is formed by pairing each object in C with
each object in D. Let Ci be an object in C, and Dj be an object in D.

An arrow from [Ci,Dj] to [Ck,Dl] is a pairing of two arrows, one
Ci→Ck in category C and another Dj→Dl in D [49]. Figure 15
illustrates the idea (sans identity and composed arrows).

Recall that a program in AHEAD is a hierarchy of representations.
When a feature is applied to a program, the contents of the pro-
gram’s hierarchy is updated. Let P be a category of a product line
and R be a (hierarchical) category of program representations. The
product R×P defines the relationships between the representation
hierarchies of programs in a product line. Figure 3 shows a small
part of R×P where the representation hierarchies of programs f and
j•f are related via arrows. (Actually, Figure 3 shows the full prod-
uct R×P if P contains only programs f and j•f and arrow j).

Appendix II. Natural Transformations
Informally, a natural transformation (NT) is a mapping from an
object to an arrow [49].4 NTs arise when derivation relationships
are exposed. Consider Figure 16. Suppose P (the top category) rep-
resents a product line of parsers, where each object Pi is an
ordered pair [Si,Di] of the program’s source code and documen-
tation. Different projections of P yield categories S and D. Cate-
gory S is the product line of the source representations of parsers,
and category D is the product line of the javadoc representations
of these parsers. Let S+D denote the coproduct (disjoint union) of S
and D [49]. The projection of P to S is the functor P2S:P→S+D and
the projection of P to D is the functor P2D:P→S+D. The arrow
(tool) javadoc defines the object-to-object maps of the natural
transformation from P2S to P2D.

As mentioned earlier, the functors that arise in AHEAD are maps
between isomorphic categories; the functor that maps product line
S to product line D in Figure 16 is example. Other concepts (e.g.,
limits, equalizers) can be similarly illustrated.

4. Stated differently, a functor F:A→B is the embedding of the image of
category A in the image of category B. A natural transformation is prima-
rily a map from one embedding to another, and secondarily as a map from
objects in the source category to arrows between the images under the
functors of that object in the target category.

C × D =

C×D
Figure 15. Product of Categories

S0

S1

S2

S3

S4

S5

Figure 16. Categories of Program Representations

P0

P1

P2

P3

P4

P5

D0

D1

D2

D3

D4

D5

P

S D

