
1

Generating Product-Lines of Product-Families

Don Batory, Roberto E. Lopez-Herrejon, Jean-Philippe Martin
Department of Computer Sciences

University of Texas at Austin
Austin, Texas 78712

{batory,rlopez,jpmartin}@cs.utexas.edu

Abstract. GenVoca is a methodology and technology for gener-
ating product-lines, i.e., building variants of a program. The
primitive components from which applications are constructed
are refinements or layers, which are modules that implement a
feature that many programs of a product-line can share. Unlike
conventional components (e.g., COM, CORBA, EJB), a layer
encapsulates fragments of multiple classes. Sets of fully-formed
classes can be synthesized by composing layers. Layers are mod-
ular, albeit unconventional, building blocks of programs.

But what are the building blocks of layers? We argue that facets
is an answer. A facet encapsulates fragments of multiple layers,
and compositions of facets yields sets of fully-formed layers.
Facets arise when refinements scale from producing variants of
individual programs to producing variants of multiple integrated
programs, as typified by product families (e.g., MS Office).

We present a mathematical model that explains relationships
between layers and facets. We use the model to develop a genera-
tor for tools (i.e., product-family) that are used in language-
extensible Integrated Development Environments (IDEs).

1 Introduction

Over the last thirty years, program modularity has been domi-
nated by object-orientation (OO): method, class, and package
encapsulations are standard concepts. Over this same period,
another form of program modularity has arisen. The concept is
feature refinement — a module that encapsulates the implemen-
tation of a feature, which is a product characteristic that custom-
ers view as important in describing and distinguishing programs
within a family of related programs (e.g., a product-line) [18].

Feature refinement is a very general concept and many different
implementations of it have been proposed, each with different
names, capabilities, and limitations: layers [3], features [21], col-
laborations [28][39][24], subjects [19], aspects [22] and concerns
[36]. Unlike traditional component technologies (such as COM,
CORBA, and EJB), a feature refinement encapsulates not an
entire method or class, but rather fragments of methods and
classes. Figure 1 depicts a package of three classes, c1—c3.
Refinement r1 cross-cuts these classes, i.e., it encapsulates frag-
ments of c1—c3. The same holds for refinements r2 and r3.
Composing refinements r1—r3 yields a package of fully-
formed classes c1—c3. Because refinements reify levels of
abstraction, feature refinements are often called layers — a name
that is visually reinforced by the stratification of c1—c3 in
Figure 1. As refinements, layers, and features are so closely

related, their terms are used interchangeably. In general, layers
are modular, albeit unconventional, building blocks of programs.

This raises an interesting question: if layers (features) are the
building blocks of programs, what are the building blocks of lay-
ers (features)? We argue that an answer is a facet. The idea is
simple: Figure 2 depicts a set of three layers, r1—r3. Facet f1
cross-cuts these layers, i.e., it encapsulates fragments of r1—r3.
The same for facets f2 and f3. Composing facets f1—f3 yields
fully-formed layers r1—r3. Although it appears that Figure 2 is
just Figure 1 turned on its side, where classes and facets are
indistinguishable, this is not the case. Facets are not classes.

A year ago, we would not have believed facets to exist or, if they
did, to have any utility. To our surprise, we now believe that they
are very common. Facets arise when feature refinements scale
beyond the confines of an individual program or package. As a
perspective, contemporary models of feature refinements allow
clients to customize individual programs; the set of all program
variants that can be produced is a product-line. In contrast, a
product-family is an integrated suite of programs, each program
having different capabilities [11]. Microsoft Office is an exam-
ple; it includes the Excel (spreadsheet), Word (text processor),
and Access (database) programs. Given how common product-
families are, an interesting question is: can feature refinements
scale to define a product-line of product-families?

In this paper, we present new results on feature refinement modu-
larity. We show that refinements do scale to product-families and
there are interesting twists in doing so. Previously considered
“atomic” refinements are revealed to be composed of more ele-
mentary refinements called gluons. Gluons are arranged in regu-
lar ways to form both “atomic” refinements and facets. We
present a model of gluons, called Origami, that reveals software

c1 c2 c3

r1

r2

r3

classes

Figure 1: Classes and Refinements (Layers)

layers

r1 r2 r3

f1

f2

f3

layers

facets

Figure 2: Facets

dsb
Text Box
Working Draft 2002

2

to have an elegant mathematical structure that leads to simpler
designs and more powerful models of code generation. We also
present our implementation, tools, and experiences with
Origami.

Our work is based on GenVoca, a methodology and technology
for generating product-lines using feature refinements. This
paper shows how GenVoca ideas scale to product-families, some-
thing that has not been demonstrated previously. Further, we
argue that our results are directly applicable to other models,
such as Aspect-Oriented Programming (AOP) [23] and Multi-
Dimensional Separation of Concerns (MDSC) [36][26][27], and
thus are not GenVoca-specific. We explore this connection fur-
ther in Related Work. We begin with a motivating example that
illustrates the phenomenon of facets.

2 A Motivating Problem

An Integrated Development Environment (IDE) is a suite of
applications (i.e., a product-family) that allow users to write,
debug, visualize, and document programs. Among the programs,
here called tools, of an IDE are a compiler, debugger, editor, for-
matter, and document generator (e.g, javadoc). Figure 3a
depicts some of these tools, each of which is implemented in a
different package.

The problem we consider is generating IDE tools that all work on
the same language dialect or Domain-Specific Language (DSL).
The use of DSLs have shown benefits in terms of understandabil-
ity, maintainability, and extensibility in software design and
development processes [13]. Providing IDE tools to support DSL
program compilation, editing, debugging, and document genera-
tion is essential for the successful adoption of DSL technology.
In particular, our work focuses on dialects of Java.

An example of a Java dialect is the one we are using to write fire-
support simulators for the U.S. Army [7]. As a brief summary,
fire support programs are a set of collaborating state machines.
Figure 4a depicts a state machine of three states (s1, s2, s3) and
three edges (e1, e2, e3), where an edge denotes a transition from
one state to another. For example, edge e3 begins at state s1 and

ends at state s3. Wide spectrum languages, like Java, are typi-
cally used to implement state machines. The resulting code, even
when using the state machine design pattern [16], is often ugly,
involving nested switch statements, large numbers of methods or
classes. This places a burden on maintenance engineers because
they must re-engineer the simple abstractions of state machines
(e.g., Figure 4a) from the code in order to understand and modify
it. In contrast, Figure 4b shows the specification of Figure 4a in
our extended Java language. Highlighted are state declarations
and edge declarations. We have found that state-machine-
extended Java programs are about half the size of their pure-Java
counterparts, and this in turn simplifies the writing, maintenance,
and understanding of domain-specific programs. Similar benefits
accrue when other extensions, such as templates, are added to
Java.

In the future, we expect to work in other domains, each requiring
their own specific extensions to Java. This means that we need to
be able to construct IDE tools targeted for a particular Java dia-
lect, or more generally, we need to define a product-line for a
product-family of IDE tools. The novelty of our work is that we
are using refinements (layers) as the unit of modularity.

Figure 3b revisits our IDE tools, but this time we expose the lay-
ers from which they were constructed. One layer, Java, encapsu-
lates a cross-cut of the compiler, debugger, and document
generation packages that is specific to the Java language. A sec-

compiler debugger document

Java

Sm

(a)

(b)

Figure 3: IDE Tools and Cross-Cutting
Language Features

Tmpl

compiler debugger document

state_machine example {
 event_delivery receive_message(M m);

no_transition { error(-1, m); }
 otherwise_default { ignore_msg(m); }

 states s1, s2, s3;

 edge e1 : s1 -> s2
 conditions !booltest() do

{ /* e1 action */ }

 edge e2 : s2 -> s3
 conditions booltest() do

{ /* e2 action */ }

 edge e3 : s1 -> s3
 conditions true do

{ /* e3 action */ }

 // Java class data members and
// methods from here

 boolean booltest() { ... }
 example() { current_state = start; }
}

states

edges

(b)

(a) s1 s2

s3

e1

e2
e3

Figure 4: State Machines in Extended Java

3

ond layer, Sm, encapsulates another cross-cut of these tools; the
encapsulated code fragments implement our state machine exten-
sion to Java. (That is, Sm extends the compiler tool to compile
state machine specifications, it also extends the debugger so that
it can debug state machine programs, etc.) A third layer, Tmpl,
encapsulates the code fragments that implement our template
extension to Java.

In principle, this is encouraging: layers (features) scale to prod-
uct-families. That is, refinements scale to the encapsulation of
fragments of multiple tools. Further, it appears that an IDE tool
generator has a simple, declarative GUI front-end. Figure 5 sug-
gests its basic outline: a client selects a set of optional language
features and a set of tools (as not all might be needed), and by
pressing the Generate button, the generator produces the
requested set of IDE tools to work on the specified dialect of
Java.

While the GUI is simple, the technology that underlies this gen-
erator is sophisticated. To understand how it works, we first
review the GenVoca model and the Jakarta Tool Suite.

3 GenVoca

GenVoca is a design methodology for creating product-lines and
building architecturally-extensible software — i.e., software that
is extensible via component additions and removals. GenVoca is
an outgrowth of an old and practitioner-ignored methodology
called step-wise refinement [14], which asserts that efficient pro-
grams can be created by revealing implementation details in a
progressive manner. Traditional work on step-wise refinement
has focussed on microscopic program refinements (e.g., x+1 ⇒
inc(x)), for which one had to apply hundreds or thousands of
refinements to yield admittedly small programs. While the
approach is fundamental and industrial infrastructures are on the
horizon [9][30], GenVoca extends step-wise refinement by scal-
ing refinements to a multi-class-cross-cut granularity, so that
each refinement adds a feature to a program, and composing a
few refinements yields an entire application.

3.1 Model Concepts

The central idea is programs are constants and refinements are
functions that add features to programs. Consider the following
constants that represent programs with different features:

f // program with feature f
g // program with feature g

A refinement is a function that takes a program as input and pro-
duces a refined (or feature-augmented) program as output:

i(x) // adds feature i to program x
j(x) // adds feature j to program x

A GenVoca model is a set of constants and functions. A multi-
featured application is an equation that is a named composition
of a model’s constants and functions. Different equations define a
family of applications, such as:

app1 = i(f) // app1 has features i & f
app2 = j(g) // app2 has features j & g
app3 = i(j(f)) // app3 has features i, j, & f

Thus, by casually inspecting an equation, one can determine the
features of an application.

Note that there is a subtle but important confluence of ideas: a
function represents both a feature and its implementation —
there can be different functions that offer different implementa-
tions of the same feature:

k1(x) // adds feature k with
// implementation1 to x

k2(x) // adds feature k with
// implementation2 to x

When an application requires feature k, it is a problem of optimi-
zation to determine which implementation of k is best (e.g., pro-
vides the best performance)1. It is possible to automatically
design software (i.e., produce an equation that optimizes some
quantitative criteria) given a set of declarative constraints for a
target application. An example of this kind of automated reason-
ing is in [6].

Although GenVoca constants and functions appear to be untyped,
typing constraints do exist in the form of design rules. Design
rules capture syntactic and semantic constraints that govern the
legal composition of features [4]. It is not unusual that the selec-
tion of a feature disables (or enables) the selection of other fea-
tures [12]. For this paper, design rules constrain the order in
which features are composed. Details of their specification are
beyond the scope of this paper and can be found in [4].

3.2 Model Implementation

Feature refinements are intimately related to collaboration-based
designs [28][31][33]. A collaboration is a generic relationship
among multiple classes. An individual class represents a particu-
lar role in a collaboration, and is a set of data members, methods,
and method overrides that are needed to carry out this role.

Figure 5: A GUI for an IDE-Tool Generator

1. Different equations represent different programs and equation optimi-
zation is over the space of semantically equivalent programs. This is
identical to relational query optimization: a query is initially represented
by a relational algebra expression, and this expression is optimized. Each
expression represents a different, but semantically equivalent, query-
evaluation program as the original expression.

4

Because collaborations are defined largely in isolation of each
other, they define features that are reusable, i.e., that can be used
in the construction of many applications. A particular application
is a composition of collaborations. Each class of an application
plays one or more roles, where each role originates from a differ-
ent collaboration.

A GenVoca constant is a set of classes. Figure 6 depicts a con-
stant i with four classes (ai—di). A GenVoca function is a set of
classes and class extensions. A class extension is a subclass: it
encapsulates new data members, methods, and method overrides
of its parent class.2 Figure 6 shows the result of applying func-
tion j to i: classes a, c, and d are extended (aj, cj, dj), and class
e is added (ej). Figure 6 also shows the application of function k
to j(i), resulting in two classes being extended. In general, a
forest of inheritance hierarchies is created as layers are com-
posed, and this forest grows progressively broader and deeper as
the number of layers increase [5].

Linear inheritance chains, called refinement chains, are common
in this implementation method. The rule is that only the bottom-
most class of a refinement chain is instantiated, because this class
implements all roles that were assigned to it. These classes are
shaded in Figure 6. For example, the bottom-most class of the c
refinement chain plays the roles ci, cj, and ck in the collabora-
tions i, j, and k respectively.

Because GenVoca functions can be composed in arbitrary orders,
class extensions are implemented as mixins. A mixin is a tem-
plate: it is a class whose superclass is specified via a parameter.
Mixins enable the order in which subclasses appear in a refine-
ment chain to be permuted. More details on mixins and imple-
menting collaborations as mixins are discussed elsewhere
[31][15][33].

4 The Jakarta Tool Suite (JTS)

The Jakarta Tool Suite (JTS) is a suite of compiler-compiler tools
that we used to implement our IDE tools [5]. A family of transla-
tors is defined by a GenVoca model, which consists of a single
constant — the base language — and functions that define
optional extensions to the base. The family of translators of Java
dialects is a GenVoca model, named J, consisting of the Java
constant (representing the Java 1.4 language) and functions that
add to Java embedded domain-specific languages for state
machines (Sm(x)), container data structures (P3(x)), code frag-
ments a la Lisp quote and unquote (Ast(x)), hygienic macros
(Gscope(x)), and templates (Tmpl(x)), among others
([5][6][32]):

J = { Java, Sm(x), P3(x), Ast(x),
 Gscope(x), Tmpl(x), ... } (1)

A translator for particular dialect of Java is defined by an equa-
tion. The current dialect of Java is called Jak (short for Jakarta),
which is Java extended with state machines and templates. Its
translator, j2j (short for Jak-to-Java), is:

j2j = Sm(Tmpl(Java)) (2)

The state machine and template features are independent of each
other. As a consequence, the order in which Sm and Tmpl are
composed doesn’t matter. Thus, an equation equivalent to (2) is:

j2j = Tmpl(Sm(Java)) (3)

JTS converts such equations directly into a Java package using
the ideas of Section 3 to implement a translator (preprocessor).
j2j, like other JTS-produced preprocessors, translates an
extended-Java program (with state machines and templates) into
a program that represents its pure-Java counterpart. Figure 7
depicts its internal organization. An extended-Java program is
parsed into an extended-Java parse tree. A reducer walks the tree,
replacing each non-Java node or subtree with its pure-Java coun-
terpart. The result is a pure-Java parse tree, which is then printed.
The printed program is the Java translation of the extended-Java
program. No matter what language extensions are added to Java,
the organization of Figure 7 remains the same. This organization
was inspired by Microsoft’s IP [30].

j2j is only one of a number of IDE tools that must be custom-
ized to a particular language dialect. Another is a javadoc-like
tool that harvests comments from specific program constructs
and displays them neatly on HTML pages. Obviously, Sun
Microsystem’s javadoc [20] can’t be used directly, as it only
understands pure-Java programs (and documenting generated
pure-Java programs typically isn’t all that useful). So we created
a language extensible version of javadoc called Jedi (Java

2. More accurately, a class extension is a subclass that assumes the name
of its parent class. This is different than typical subclassing, but is a sim-
ple way in which the contents of a class can be refined.

ai bi ci dii

aj cj dj ej

ck dk

j

k

Figure 6: Implementing Refinements as Collaborations

Extended-Java
Program

Pure-Java
Program

Parse
Extended-Java

Parse Tree Reduce Print
Pure-Java
Parse Tree

j2j

Figure 7: The Organization of the j2j Translator

5

Extensible DocumentatIon). Jedi, like j2j, is produced by JTS
using a GenVoca model, called D. The lone constant is JavaDoc,
which encapsulates the code that parsers, harvests, and docu-
ments comments in pure-Java programs. Functions of this model
extend JavaDoc with the capabilities of producing HTML docu-
mentation for state machines (SmDoc(x)), templates
(TmplDoc(x)), etc. In principle, the elements of models J and D
are in one-to-one correspondence: for each language extension in
J there is a corresponding documentation extension in D.3

D = { JavaDoc, SmDoc(x), TmplDoc(x), ... } (4)

A particular version of Jedi is specified as an equation, e.g.,

Jedi = SmDoc(TmplDoc(JavaDoc)) (5)

As before, the template and state machine layers of Jedi are
independent, and thus can be composed in any order. Thus, an
equation equivalent to (5) is:

Jedi = TmplDoc(SmDoc(JavaDoc)) (6)

Figure 8 depicts the internal organization of Jedi. An extended-
Java program is parsed into an extended-Java parse tree. A har-
vester walks the tree, harvesting comments prefacing particular
language constructs (e.g., interface declarations, class declara-
tions, method declarations, and state machine declarations) and
stores them in a comment repository. Finally, a doclet reads the
contents of the comment repository, and formats harvested com-
ments neatly on an HTML page, which users recognize as java-
doc-like output.

It is interesting to note that j2j, Jedi, and other IDE tools can
be expressed directly by a single GenVoca model, IDE_Model,
where different equations correspond to different tools. The

primitives of this model are tool features. There is a lone constant
Parse, which represents the parser for the given language dia-
lect, and there are functions for reducing extended-Java con-
structs to pure-Java (Reduce(x)), for printing parse trees
(Print(x)), for harvesting comments from parse trees (Har-
vest(x)), for producing HTML documents from harvested
comments (Doclet(x)), and so on.

IDE_Model = { Parse, Reduce(x), Print(x),
 Harvest(x), Doclet(x), ... } (7)

Each IDE tool has an equation. The equations for j2j and Jedi
are:

j2j = Print(Reduce(Parse)) (8)

Jedi = Doclet(Harvest(Parse)) (9)

Even though the above equations look suspiciously like “func-
tional” (e.g. Haskell) programs, they really do represent a com-
position of features that are implemented by cross-cuts. Figure 9a
shows that the Parse layer encapsulates a set of parser classes
(only one class is shown), a set of parse tree node classes (again,
only one is shown), and a Main class. The Reduce layer extends
each parse tree node type with a reduction method (specific to
that type), and extends the Main class with a call to reduce an
extended-Java parse tree to a pure-Java parse tree. Finally, the
Print layer extends each parse tree node type with a print
method (specific to that node type) and extends the Main class
with a call to print the reduced tree. Again, the terminals of the
resulting refinement chains are the classes that are instantiated.
Figure 9b shows the code added by each layer to the Main class.

Note: the order in which tool features are composed is impor-
tant. Parse must be first, followed by Reduce, and then
Print, or followed by Harvest and then Doclet. The rea-
son is Harvest extends classes in Parse, and Doclet refer-
ences methods in Harvest. The same applies to Reduce and
Print. These constraints are examples of design rules.

3. In practice, J and D need not be in correspondence. That is, there
might be a language extension without a corresponding documentation
extension, simply because that extension has yet to be built.

Extended-Java
Program

HTML
Page

Parse
Extended-Java
Parse Tree Harvest Doclet

Jedi

Figure 8: The Organization of the Jedi Translator

Comment
Repository

class Main { // Parse layer
main(String args) {

treeNode root;
root = parse(args[0]);

root.reduce();

root.print();

}
}

Reduce

Print

parser
classes

treeNode
classes Main

Parse

Reduce

Print

j2j = Print(Reduce(Parse))

Figure 9: Cross-Cuts of Tool Features

(a)
(b)

6

Language extensibility is not part of the IDE_Model. In fact,
astute readers may have noticed that our original descriptions of
j2j and Jedi were based on GenVoca models of language fea-
tures, and not tool features. Clearly these models are related, but
how? Further, we know the j2j equations (2) and (8) must be
equivalent, and so too the Jedi equations (5) and (9). But
how? An answer requires a closer look at the internals of these
tools, which we do in the next section.

5 Gluons

Language features are orthogonal to tool features. This means
that we can understand the modularity of j2j and Jedi in terms
of matrices, where rows correspond to language features and col-
umns correspond to tool features.

The matrix for Jedi is shown in Figure 10. Each matrix entry
lists the name of a module that implements a particular tool fea-
ture for a particular language feature. For example, Sharvest
is a module that implements the harvesting of comments from
state machine specifications. Jharvest harvests comments from
Java specifications. Tdoclet formats comments from template
declarations on an HTML page. And so on. A composition of
these modules implements Jedi.

The matrix for j2j is shown in Figure 11 and has a similar inter-
pretation. There is a difference: there are no Sm and Tmpl row
entries for the Print column. The reason is simple: consider the
interpretation of Sreduce: it is a module that transforms parse
trees on state machines into parse trees of pure Java. The Jprint
module prints parse trees of pure Java. So once the Sreduce
module performs its task, the Jprint module is invoked. Thus
there is no need for a module that prints state machine parse
trees. The same argument applies for templates. Once again, a
composition of these modules implements the j2j tool.

These matrices provide the first indication of facets. Let us call
matrix entries gluons and consider the Jedi matrix of Figure 10.
Each row represents a language feature; its implementation is a
composition of the gluons in that row. The Java language fea-
ture, for example, is a composition of the Jparse, Jharvest,
and Jdoclet gluons. The same for other rows.

By the same reasoning, each tool feature is represented by a col-
umn and is implemented by a composition of gluons in that col-

umn. For example, the Harvest tool feature is a composition of
the Jharvest, Sharvest, and Tharvest gluons. The same for
other columns.

Thus, if layers are rows of gluons, then facets are columns of glu-
ons — columns cross-cut every row. Similarly, if layers are col-
umns of gluons, then facets are rows of gluons — rows cross-cut
every column. Thus, a facet is simply a feature along a dimen-
sion, and the implementation of a facet cross-cuts features of
other dimensions.

Two questions remain. First, what are gluons? Very simply, they
are elementary layers (refinements) that implement the intersec-
tion of pair of orthogonal features. Or more accurately, a gluon
implements a feature of a feature or a building block of a lan-
guage feature and a tool feature. A gluon is a module that encap-
sulates any number of classes and class extensions, and has
straightforward implementation as a layer. Thus, we can repre-
sent each gluon as a GenVoca constant or function.

When we create the matrices of Figure 10 and Figure 11, we are
decomposing a composite language feature (layer) or tool feature
(layer) into more primitive layers — in essence, separating their
concerns. The theoretical justification is simple: any function F
can be the result of composing more primitive functions F1…Fn,
and any constant C can be the result of composing a more primi-
tive constant C’ with one or more functions F1’…Fn’:

F(x) = F1(F2(... Fn(x) ...))
C = F1’(F2’(... Fn’(C’)...))

Decomposing software is modeled by decomposing equations.

Second, we want to represent j2j and Jedi as equations that are
compositions of gluons. Equations for j2j and Jedi are:

j2j = Jprint(Treduce(Sreduce(Jreduce(
Tparse(Sparse(Jparse)))))) (10)

Jedi = Tdoclet(Tharvest(Tparse(
Sdoclet(Jdoclet(Sharvest(
Jharvest(Sparse(Jparse)))))))) (11)

These equations are much more complex than those of previous
sections. Two questions immediately arise: (a) are they correct
— are they legal compositions of gluons? and (b) are they consis-
tent — do they represent tools that work on the same language
dialect? Existing design rule checking algorithms can validate
these equations [4], but there are no algorithms to check for con-
sistency. In fact, without the techniques presented in the next sec-
tion, it would take some time to write such equations manually
and verify that they are consistent. We would expect the consis-
tency problem to be much worse for larger sets of tools and more
complex language dialects. Hence, automated support is required
to write these equations and to ensure their consistency: we need
a model of gluons.

Doclet Harvest Parse

Java Jdoclet Jharvest Jparse

Sm Sdoclet Sharvest Sparse

Tmpl Tdoclet Tharvest Tparse

Figure 10: Jedi Matrix

Print Reduce Parse

Java Jprint Jreduce Jparse

Sm — Sreduce Sparse

Tmpl — Treduce Tparse

Figure 11: j2j Matrix

7

6 Origami: A Model of Gluons

The notation that we have used prior to this section is consistent
with previous work on GenVoca. However, the usual “func-
tional” notation becomes cumbersome as equations become com-
plicated. So we make a cosmetic switch in notation to simplify
our upcoming discussions. Without loss of generality, instead of
writing A = B(C(D)) we write A = B o C o D, where o is the (func-
tion) composition operator.

GenVoca models are inherently one-dimensional; they are sets of
constants and functions. In contrast, models of gluons are 2-
dimensional — and generally n-dimensional — and need to be
treated accordingly. Consider the matrix of Figure 12, called an
Origami matrix, where rows denote language features and col-
umns are tool features. Elements of this matrix are gluons.

Adding new entries to this matrix is easy. When a new row is
added, a gluon must be supplied for every existing column. For
example, to add the container data structure (Ds) language fea-
ture, we would have to add Dparse (a parser for container DSL
specifications), Dreduce (reduction methods to transform con-
tainer specification parse trees to Java parse trees), Dharvest (a
harvester of comments on container specifications), and
Ddoclet (a doclet that formats container comments). Some
entries (such as the entry for the Print column) are “empty”
because no code needs to be written to implement that function-
ality. In such cases, the identity function (denoted by “-”) is sup-
plied.

Symmetrically, when a new column is added, a gluon must be
supplied for every existing row. To add a new doclet that pro-
duces, say Word documents, we would add Jword (a doclet that
formats Java comments in Word), Sword (a doclet that formats
state machine comments in Word), Tword (a doclet that formats
template comments in Word), and so on. Again, if no code needs
to be written for a particular entry, the identity function is sup-
plied.

An application (expression) is created by folding an Origami
matrix (hence its name). Rows are folded together by composing
the corresponding gluons in each column. Columns are folded
together by composing the corresponding gluons in each row.
Folding continues until a matrix is produced; the entry of
this matrix is the desired expression. (Unlike true origami, rows
and columns to be folded need not be adjacent. For our examples,
we have arranged the matrix so that they are).

Rows and columns cannot be chosen at random for folding.
Rows (columns) must be composed in design rule order. That is,
if we are folding tool features, we must begin with the Parse
column, and then fold/compose the Harvest column, and finally
the Doclet column, just as design rules prescribe for the
IDE_Model. Similarly, if we are folding language features, we
must begin with the Java row, and then fold the Sm row and
Tmpl rows in any order, as prescribed by the language feature
models J and D. The reason for this is that language features and
tool features are orthogonal.

To illustrate, suppose we want to create an equation for Jedi. We
project this matrix of unnecessary rows and columns, leaving the
rows for Java, Sm, and Tmpl, and the columns Parse, Harvest,
and Doclet yielding Figure 13a. (Note that there can be differ-
ent kinds of doclets — HTML, Word, etc. So part of this projec-
tion is selecting the appropriate tool features).

Figure 13b shows the result of composing the Java row with the
Sm row. Figure 13c-d shows the result of composing the Har-
vest column with the Parse column, and this result with the
Doclet column. A matrix of two rows and one column results.
The final fold merges the remaining two rows to yield the expres-
sion of equation (11). We leave it as an exercise for readers to
discover the folding of equation (10).

Other constraints may preclude certain foldings, but this is the
essential idea. In the next section, we show how we can use
Origami to produce sets of language-dialect consistent equations.

7 An Application of Origami

Recall the GUI for the IDE generator of Figure 5: users select a
set of optional language features and a set of tools, and the gener-
ator produces this set of tools for the specified language dialect.4

To see how the generator works, we begin with the Origami
matrix of Figure 12 and eliminate all language feature rows that
were not selected. Figure 14 shows this matrix for the current
Jak dialect.

Rows are folded in design rule order (i.e., Tmpl o Sm o Java). In
general, our generator simply uses design rules to hard-code this
ordering. The result is a matrix (i.e. a row) in Figure 15.
Note the row’s semantics. Each column defines an equation for a
tool feature:

Doclet Harvest Parse Reduce Print ...

Java Jdoclet Jharvest Jparse Jreduce Jprint ...

Sm Sdoclet Sharvest Sparse Sreduce - ...

Tmpl Tdoclet Tharvest Tparse Treduce - ...

Ds Ddoclet Dharvest Dparse Dreduce - ...

...

Figure 12: An Origami Matrix

1 1×

4. We assume the set of language features is consistent. Design rule
checking algorithms can be used to check consistency.

1 n×

8

Doclet = Tdoclet o Sdoclet o Jdoclet
Harvest = Tharvest o Sharvest o Jharvest
Parse = Tparse o Sparse o Jparse
...

That is, the Doclet equation is the composition of gluons that
builds a doclet layer for the Java language that has been extended
by state machines and templates. The Harvest equation defines
a harvest layer for the Java language that has been extended by
state machines and templates, and so on. Thus, by folding rows
in design-rule order, we have produced a set of equations for tool
features that are consistent with respect to a particular language
dialect.

The row of Figure 15 is exactly the set of tool features that com-
prise the IDE_Model. Since we know the IDE_Model equations
for each tool (e.g., (8),(9)), we use these equations and plug in
the generated expressions for their tool features. Thus, for each
GUI-selected tool, we evaluate its equation, and send it to a gen-
erator to produce the Java package for that tool. In this way, our
IDE generator produces language-dialect-consistent tools from a
simple declarative specification.

8 Implementation and Experience

In this section, we describe our implementation, tools and experi-
ences with Origami.

8.1 The AHEAD Origami Matrix

AHEAD is the successor to GenVoca [8]. Initially all of AHEAD
tools were built using JTS; AHEAD tools have since been boot-
strapped. Both JTS and AHEAD synthesized AHEAD tools by
folding a 3-dimensional Origami matrix (Figure 16). The matrix
itself is sparse, where only one “plane” in the third dimension is
non-empty. The dimensions are (Language Features × Tool Fea-
tures × Language Features).

The AHEAD matrix is represented as a pair of 2-dimensional
matrices. The frontal matrix is called Tools; the horizontal
matrix is Ast. We will explain the Tools matrix first in
Section 8.2 and the Ast matrix later in Section 8.3.3.

The units along the Tool Features dimension are listed in Table 1.
All tools that can be synthesized from this matrix share the same

Doclet Harvest Parse Reduce Print ...

Java Jdoclet Jharvest Jparse Jreduce Jprint ...

Sm Sdoclet Sharvest Sparse Sreduce - ...

Tmpl Tdoclet Tharvest Tparse Treduce - ...

Figure 14: A Row-Projected Matrix

Doclet Harvest Parse Reduce Print ...

Tmpl o
Sm o

Java

Tdoclet o
Sdoclet o

Jdoclet

Tharvest o

Sharvest o
Jharvest

Tparse o
Sparse o

Jparse

Treduce o
Sreduce o

Jreduce

Jprint ...

Figure 15: A Row-Folded Matrix

Doclet
Harvest o

Parse

Sm o
Java

Sdoclet o
Jdoclet

Sharvest o
Jharvest o

Sparse o
Jparse

Tmpl Tdoclet Tharvest o
Tparse

Doclet Harvest Parse

Java Jdoclet Jharvest Jparse

Sm Sdoclet Sharvest Sparse

Tmpl Tdoclet Tharvest Tparse

Doclet Harvest Parse

Sm o Java Sdoclet o
Jdoclet

Sharvest o
Jharvest

Sparse o
Jparse

Tmpl Tdoclet Tharvest Tparse

Doclet o
Harvest o

Parse

Sm o
Java

Sdoclet o
Jdoclet o

Sharvest o
Jharvest o

Sparse o
Jparse

Tmpl Tdoclet o
Tharvest o

Tparse

Doclet o
Harvest o

Parse

Tmpl o

Sm o

Java

Tdoclet o
Tharvest o

Tparse o

Sdoclet o
Jdoclet o

Sharvest o
Jharvest o

Sparse o
Jparse

(a) (b)

(c) (d) (e)

Figure 13: Folding an Origami Matrix

9

grammar and parser, which is denoted by Base. The remaining
units of Table 1 graft on tool-specific semantics to the parser.
Thus, AHEAD tools operate on Jak files yet have different func-
tionality (e.g., some compose Jak files (jampack, mixin),
another translates Jak files to Java (j2j), and another propagates
changes in composed specifications back to the uncomposed
specifications (unmixin)).5

The units along both Feature Language dimensions are listed in
Table 2. The base language is Java; other units extend Java in
some way, typically by adding new grammar rules. The exten-
sions include an embedded DSL for state machines (SmDsl),
extensions for metaprogramming (AstDsl), forms of hygienic
macros (LocalIdDsl, Gscope), and refinements (Com-
poseIntDsl, ComposeSmDsl, ComposeClassDsl). Both Lan-
guage Feature dimensions in the AHEAD matrix are identical.

8.2 Obe and the Tools Matrix

The Tools matrix defines the relationship between Language
Features and Tool Features, exactly as the Origami theory pre-
scribes. We wrote a program, called obe (Origami Browser and
Editor), which enables users to create, browse, fold, and edit 2-
dimensional matrices. Users can define and document the units
of each dimension and can define a number of files in each
matrix element. The element files that we currently use are
entry.notes and gluon.expression. entry.notes is sim-
ply a text file that we use to document an entry. gluon.expres-
sion is a file that specifies an expression — a composition of
layers. We found that although gluons are indeed layers, in prac-
tice, gluons could be synthesized by composing even more prim-

itive and reusable layers. So instead of replicating these primitive
layers or their compositions in matrix entries, a more practical
implementation of Origami is for its entries to define expressions
for gluons. This is the approach taken in obe.

For a given matrix, users select the file they want to view.
Figure 17a depicts the contents of the Tool matrix for the
gluon.expression view. A matrix entry with “x” denotes the
presence of a gluon.expression file; a blank denotes its
absence. By clicking an entry, the contents of the selected file are
displayed and can be edited. So in Figure 17, the [Java,Base]
entry of Tools has a gluon.expression file, as do all other
rows in the Base column except the antStuff row. Similar
interpretations are given to other entries.6

The Tools matrix is folded in two steps. First, a composition of
Language Feature units defines the row composition order. The
matrix that results from the folding is a single row, whose col-

Unit Description

Base parser/grammar shared by all tools

j2j Jak-to-Java translation tool

JamPack compressed composition tool

Mixin uncompressed composition tool

UnMixin update propagation tool

mmatrix reflection tool

Table 1. Units of the Tool Features Dimension

5. The Tools Feature dimension of Table 1 reflects its state as of Decem-
ber 2002. Additional units have since been added to build Jedi and
other AHEAD tools. However, the essential ideas remain the same.

Lang
Features

Tool Features

Lang
Features

Tools

Ast

Lang
Features

Tool Features

Lang
Features

Tools

Ast

Figure 16: The AHEAD Origami Matrix

6. Readers may have noticed an additional row (SUMrows) and column
(SUMCols) in an obe matrix, beyond the units we have defined per
dimension. obe allows matrices to be composed, and the result of com-
posing selected rows appears in the SUMcols column and the result of
composing selected columns appears in the SUMrows row.

Unit Description

Java base Java language

AstDsl AST constructors and escapes

Gscope Generation scoping

BaseDsl misc additions to Jak grammar

SourceDsl SoUrCe statement

LocalIdDsl layer scoping construct

LayerDsl layer statement

ComposeClassDsl statements for refining and composing
classes

ComposeIntDsl statements for refining and composing
interfaces

ComposeSmDsl statements for refining and composing
state machines

antStuff adds feature that allows tool to be
invoked by ant

Table 2. Units of the Language Feature Dimensions

Figure 17: Gluon View of the Tools Matrix

10

umns are {Base, j2j, jampack, mixin, …}, as expected. To
build a particular tool, columns of this synthetic row are com-
posed. Each AHEAD tool is defined by its own equation. The
mixin tool, for example, is defined by:

mixinTool = Mixin o Base

This equation specifies a column folding that pairs the Base
parser (shared by all tools) with the Mixin layer that defines the
semantic actions of the mixin tool. The same idea holds for all
other tools.

8.3 The Ast Matrix

The unusual part of the AHEAD matrix is the Ast matrix. This
matrix captures interactions among Language Features (in partic-
ular the AstDsl feature) and Tool Features. The contents of the
AstDsl row in the Tools matrix is a function of the Language
Features that are composed. This row is computed by folding the
Ast matrix. Virtually all of our language additions to Java have
no interaction with each other, because they are orthogonal to (or
independent of) each other. The lone exception is AstDsl which
adds metaprogramming constructs like abstract syntax tree (AST)
constructors and escapes to Java. We first outline metaprogram-
ming constructs that we have added to Java, and then show how
AST constructs require the Ast matrix.

8.3.1 Metaprogramming Additions to Java

Consider the following code snippet. It assigns to variable c the
code fragment that defines an empty class foo. A code fragment
surrounded by delimiters code{...}code is a code constructor:

c = code{ class foo{ } }code;

When c is printed, the program:

class foo{ }

is generated. Programs that generate other programs are metapro-
grams or generators.

An important concept in metaprogramming is staging [38]. A
typical metaprogram has two stages: the generator runs and then
the generated program runs. A generator-generator has three
stages: the generator-generator runs, the generated generator
runs, and then the generated program runs. It is easy to recognize
fragments of code that run at particular stages. For example, the
snippet below shows code that runs in three stages:

s = // stage 1
code{ f = // stage 2

code{ a = b; }code; // stage 3
}code;

The assignment of a code fragment to s is done in the generator-
generator (stage 1), the assignment of a code fragment to f is
done by the generated generator (stage 2), and the assignment to
variable a is by the generated program (stage 3).

In addition to code constructors, there are escapes. A code escape
allows one to “pop-up” one stage within a code constructor. In
the code snippet below, we create the boolean test “a>b” and

insert it into an if statement using an escape denoted by
$code():

t = code{ a>b }code;
i = code{ if ($code(t)) foo(); }code;

$code(t) means substitute the value for code variable t that
was defined in the previous stage — i.e., value “a>b”. Thus, the
above assignment for i is equivalent to:

i = code{ if (a>b) foo(); }code;

When a statement is parsed, it is a simple matter to determine the
stage of each token. At the top of a parse tree, the stage is set to
one. As the tree is traversed, the stage is incremented each time a
code constructor is entered and is decremented upon exit. Con-
versely, upon entry to a code escape, the level number is decre-
mented, and upon exit, the level number is incremented.

In general, the language that is used at each stage need not be the
same. For example, a Java program could generate a Pascal pro-
gram. However, the form of staging used in AHEAD is more typ-
ical: the same language — in our case, the Jak language — is
used in all stages. As mentioned earlier, the Language Feature
that adds code constructors and code escapes to the Java lan-
guage is AstDsl.

8.3.2 Transforming Abstract Syntax Trees

AHEAD tools perform transformations on ASTs that are returned
by a parser. These transformations are implemented by traversals
that walk the tree and modify its content. One such traversal
might be to harvest the names of all variables defined in an AST
(i.e., parsed program). Harvesting variable names is a particu-
larly simple traversal: when a parse tree node for a variable defi-
nition is encountered, the name of the variable is extracted and
saved in a container.

A key assumption of traversal algorithms is that the nodes on
which they perform their tasks are at stage 1. Nodes appearing at
higher-stages are not harvested or transformed. Consider the
class below: the only variable of this class is s (because it is at
stage 1). Variable b exists at stage 2, and is not a variable of the
example class. (It is a variable of a generated class, not a vari-
able of the generator).

class example {
void foo() {

treeNode s = code{ int b; }code;
}

}

A traversal in JTS and AHEAD is a method that is present in all
AST nodes. This is possible because all AST node classes are
descendant from a single class (AstNode); a traversal is a
method that is added to AstNode and is thereby inherited by all
of its subclasses. The default behavior of a traversal method is to
do nothing except invoke the traversal method of the children of
a node instance. Recall the example of harvesting variable
names. The default harvestName traversal method might be:

11

void harvestName(int stage, Set result) {
for each subtree s {

 s.harvestName(stage, result);
}

}

A particular harvesting or transformation task is introduced by
overriding the traversal method for a node type. If an AST node
type defines a variable name, its overriding harvestName
method might be:

void harvestName(int stage, Set result) {
if (stage == 1) {

harvest name and add it to result;
}
super.harvestName(stage, result);

}

where super.harvestName(stage,result) invokes the
default behavior of harvesting names from the subtrees of that
node. Note that harvesting occurs only when stage == 1.

In general, implementing traversals in this manner works well.
Language Feature additions to Java add new AST node classes to
the AstNode hierarchy, and default behaviors for traversals are
inherited. When features don’t interact, default behavior is
appropriate. The problem comes when default behavior is inap-
propriate, and this occurs specifically when stage numbers are to
be updated.

To see how we express feature interactions, keep the following in
mind. An AstDsl layer introduces the CodeConstructor and
CodeEscape classes as subclasses of AstNode. Each instance of
CodeConstructor represents an AST of a code constructor
expression. Similarly, each instance of CodeEscape represents
the AST of a code escape expression.

Suppose a Language Feature (layer) L adds a traversal method T
to AstNode. For traversal T to work correctly for the CodeCon-
structor and CodeEscape classes, we cannot use the default
behavior of T. Instead, T must be overridden in CodeConstruc-
tor to be:

void T(int stage, Set result) {
super.T(stage+1, result);

}

so that the stage of the code constructor’s expression is one
higher the current level. Similarly, method T in CodeEscape
must be overridden by:

void T(int stage, Set result) {
 super.T(stage-1, result);

}

meaning that stage of the expression enclosed by the escape is
one level lower than the current level. The collection of all these
method overrides is encapsulated in a single layer LAstDsl.

7

There are specific conditions when LAstDsl is used: LAstDsl must
appear in an equation iff Language Feature AstDsl is present
(meaning that the CodeConstructor and CodeEscape classes
are present) and Tool Feature L is present (meaning traversal
method T is present). If either AstDsl or L is absent, LAstDsl is
not used. LAstDsl encapsulates the interaction of Language Fea-
ture AstDsl with Tool Feature L.

8.3.3 The Role of the Ast Matrix

The Ast matrix encapsulates the interactions between AstDsl
and all Tool Features. Figure 18 is the obe gluon.expression
view of this matrix. The “x” entries identify the layers that intro-
duce traversals (and hence, tool-interaction layers). For example,
the LocalIdDsl layers for jampack and mixin add traversal
methods.

Recall that the rows of the Tools matrix are folded by an equa-
tion that is a composition of Language Features. This same
expression folds the rows of the Ast matrix; the computed row
becomes the AstDsl row of the Tools matrix.

Stated another way, the Language Feature equation specifies the
language features that will be in the Jak language. Each Lan-
guage Feature identifies a unique row in the Ast matrix. This
row enumerates the layers that define the interaction of code con-
structors and escapes with each Tool feature. By composing rows
of the Ast matrix, the resulting entry in each Tool Feature col-
umn is the composition of all feature-interaction layers needed
for the targeted variant of Jak.

8.3.4 Results

Folding the AHEAD matrix synthesizes five tools that are lan-
guage-dialect sensitive: j2j, mixin, unmixin, mmatrix, and
jampack. Table 3 lists for each tool its size in Java LOC, and the
number of layers that define its equation. Just with this set of
tools (and we expect many more), we are generating well over
100K LOC. Without Origami, our tool equations are seemingly
randomly-ordered compositions of layers that are difficult to
understand and update. Origami imposes a regularity in equation7. Stated another way, a traversal can be thought of as a visitor [16].

LAstDsl encapsulates a refinement of a visitor.

Figure 18: Gluon View of the Ast Matrix

12

organization that enables us to generate product-families from
simple specifications. Even more important, it helps us control
the complexity of feature-refinement-based representations of
product-families.

8.3.5 Experiences and Future Work

Tool support for Origami is essential. obe only works for 2-
dimensional matrices, and generalizations to n-dimension matri-
ces (n>2) are needed. Conveniently visualizing multi-dimen-
sional spaces remains an open problem, despite considerable
prior research (e.g. [17]). In the meantime, we are exploring
alternative encodings of matrices that are based purely on equa-
tional representations.

While our first examples of Origami demonstrate that feature
refinements scale, it is equally important to illustrate microscopic
examples as well, to demonstrate that Origami is applicable to
arbitrary levels of abstraction. Finding good examples are the
subject of current research, and preliminary examples are being
distributed with the current release of AHEAD [2].

Finally, we believe the role of Origami will be essential to future
models of feature refinements. The reason is that they lead to
simple and appealing declarative languages (e.g., like the GUI of
Figure 5) for specifying members of a product-family. Without
Origami, the implementation of such languages/GUIs is not
obvious and is subject to many ad hoc decisions. Origami pro-
vides an elegant way to structure orthogonal sets of features.

9 Relevance to Other Technologies

There are many non-GenVoca examples of Origami. One is the
internationalization of programs made during Windows OS
installations. By selecting a particular language (or dialect), the
GUIs of different Windows programs are modified to present
commands in that language. Origami also has relationships to
component-based software design.

Microsoft’s Component Object Model (COM), Sun’s Enterprise
Java Beans (EJB), and CORBA are conventional software com-
ponent models [29] that deal with interface-based programming
— clients program to standardized interfaces and components
implement these interfaces [35]. This makes it easy to swap out
one interface implementation (component) with another, say, for
purposes of bug fixes, improved performance, or trying alterna-
tive implementations. Variations of interface-based programming
are found in design patterns (e.g., OO decorators) and in com-
mon OO designs (e.g., frameworks) [16].

Not long ago, GenVoca was presented as example of interface-
based programming.8 The key design issue was choosing the
methods of an interface. Those that were included were funda-
mental to the abstraction of that interface; those that were
excluded were dismissed as non-essential.

The problem that we and other engineers noticed with interface-
based designs is that they are brittle. We observed that the set of
methods that we designated as fundamental was subjective —
they were sufficient for our current needs [19]. Over time, we
longed for other methods to be included, and periodically we
would indeed extend the set of methods in our interfaces. How-
ever, when new methods are added to a standardized interface, all
components that export that interface had to be (manually)
updated. After an extension, we would be happy for a while until
we discovered a new set of methods that needed to be added, and
the cycle would repeat.

The problem with this, of course, is that we couldn’t subse-
quently customize our interfaces or our components. It was sim-
ply too much work to eliminate unneeded groups of methods
from interfaces and components. The impact of interface exten-
sions is negative: interfaces become fat and components suffer
code bloat. Other techniques have been developed to address this
problem, but they too have limitations. COM, for example,
requires that a new interface be published rather than changing
an existing interface. While this works, it still requires a manu-
ally-introduced extension to each component to implement that
new interface. The visitor design pattern allows almost arbitrary
method extensions to existing components [16]. Access to pri-
vate data members and methods of components is precluded to
visitors, and this can be problematic. Also, it is useful for exten-
sions to add new data members to components, and this too is
problematic using visitors.

It is easy to recognize the concept of gluons and Origami in this
situation. Each row represents either a standardized interface or a
component that implements such an interface. Columns represent
semantically cohesive groups of methods — features — where
one column defines a “core” set of methods and other columns
represent optional additional extensions to this set. Matrix (col-
umn) folding corresponds to the construction of interfaces and
components that are customized for a desired set of interface
extensions with their implementing components.

The need for Origami arises because abstractions change over
time. Changes tend to be incremental and optional. That is,
abstractions change by incremental leaps in understanding, and
these leaps are needed for building specialized classes of applica-
tions. The contribution of this paper is a general model and a set
of techniques that allow us to evolve both conventional compo-
nents and implementations of feature refinements statically in an
automatic and declaratively-specified way. Such flexibility is
useful in generating software. For situations dealing with third-
party components, where extensibility without recompilation is a

Tool # of layers Size in Java LOC

j2j 27 31K

mmatrix 22 28K

mixin 26 28K

jampack 30 30K

unmixin 21 27K

Table 3. Size of Generated IDE Tools

8. Which actually it still is. Layers have interfaces, although in recent
papers including this one, this “feature” of layer implementation has been
down-played. See [10][25].

13

major goal, it might not work as well. However, there is no
requirement that feature refinements must be composed stati-
cally; they can be composed dynamically as well [34]. Unfortu-
nately, dynamically-composable refinements are not as well-
understood as statically-composable refinements.

10 Related Work

The idea that features have features is well-established in the
product-line community. Feature diagrams, which are typically
hierarchies of features, i.e., parent features are defined to have
aggregate sets of child features, was first introduced in the
FODA methodology [21] and has been improved by others [12].
Our contribution shows how the idea of features-of-features
translates into product-family models based on feature refine-
ments.

As mentioned earlier, there are other models of program develop-
ment that seem very similar to GenVoca, the most prominent of
which are AspectJ and Hyper/J. AspectJ [1] offers two fla-
vors of cross-cutting implementations: static and dynamic. Static
cross-cuts are almost identical to GenVoca layers: they can add
new data members and new methods to existing classes.
Dynamic cross-cuts, where explicit pointcut-advice pairs are
defined, can emulate the refinement (overriding) of methods
offered by inheritance. What aspects cannot currently represent
is the addition of new classes; in GenVoca terms, aspects only
extend existing classes. (At least, we have been unable to add
classes in aspect definitions that can be subsequently refined).
With simple work-arounds, we have implemented GenVoca gen-
erators using AspectJ. These preliminary results suggest that
compositions of layers can be modeled as compositions of
aspects. Therefore, we believe that the Origami example in this
paper could be implemented using AspectJ and thus our results
are relevant to AOP in that they show how aspects can scale to
product-families.

Admittedly, AspectJ can do more than just implement layers
(modulo our comments above), and in fact, we are focussing on
the least novel part of AspectJ. But it is also the case that what
we and others have been able to do with GenVoca generators has
never been done in AOP. Our work provides an opportunity to
enhance AOP’s appeal from a novel direction.

Our work is more closely related to Multi-Dimensional Separa-
tion of Concerns (MDSC). MDSC is the idea that modularity
relationships can be understood in terms of an n-dimensional
space, called a hyperspace, of units [36][26][27]. A unit can be
primitive (such as an individual method or variable) or com-
pound (e.g., a class or package). Each dimension is associated
with a set of similar concerns, such as a set of classes or a set of
features; different values along a dimension are different mem-
bers of this set (e.g., class1…classn or feature1…featuren). A
hyperslice is the set of units that pertain to a concern; it is an (n-
1)-dimensional space where one coordinate value (e.g., a con-
cern) is fixed. A hypermodule is a set of hyperslices and a set of
integration relationships that dictate how the units of hyperslices
are to be integrated or composed to form a program.

Hyper/J is the flagship tool for MDSC [37]. We have used
Hyper/J to implement GenVoca product-line models. GenVoca
layers have direct implementations as hyperslices, and layer
compositions are hyperslice compositions. Again, we believe
that the Origami model and its results are directly applicable to
Hyper/J. Origami is a 2-dimensional example of MDSC, where
both dimensions are features and units are gluons. Further, the
strength of MDSC models is that they do not impose fixed modu-
larization hierarchies, and this flexibility is present in Origami
matrices. As with AspectJ, Hyper/J can do more than just
compose hyperslices. Our contribution is that we can provide
sophisticated examples of product-lines and product-families to
Hyper/J researchers.

In summary, GenVoca, Hyper/J (MDSC), and AspectJ (AOP)
have substantial overlaps. What distinguishes GenVoca and
Origami is an algebra for organizing features into programs.

Other related work deals with tool integration [37]. Cross-cuts
are problematic when new features impact every product in a
product-family. However, instead of designing a system to easily
handle features, [34] explored how a product family can be
designed in such a way that new features can be added by modi-
fying a single class — a design that eliminates cross-cuts. The
advantage is that it can be applied to legacy software and that it
ensures that existing tools will be able to work with new addi-
tions to the program family without recompilation. The authors
emphasize that in their design, the cost of evolutionary change is
proportional to its apparent size in specification. The disadvan-
tage is that this technique only applies to some features, so in fact
their approach is complimentary to AOP.

11 Conclusions

Features have proven their value in raising the level of abstrac-
tion in modularity in building and customizing individual pro-
grams. The question is: do features scale to larger program
organizations, such as program families? We showed that they do
in the context of GenVoca generators, which has not been done
before. We discovered that features themselves have internal
structures — features of features — which we called gluons.
Gluons are arranged and composed in regular ways, so that com-
positions of gluons yields both familiar and formerly “atomic”
features, as well as an interesting and what we now believe is a
common phenomena of facets. Facets cross-cut features and
compositions of them yield fully-formed features. In essence, we
have identified a new class of composition relationships among
features that were not previously known.

There is anecdotal evidence that supports our work. Engineers
have repeated the observation that there is something about pro-
gram scale that introduces complexity one doesn’t find in small
programs. Our work reveals one reason: there are relationships
and constraints that exist among gluons when building program
families. If there is no way (or only ad hoc ways) of expressing
and satisfying these constraints, it is no wonder why scaling pro-
grams introduces complexity. At least now we have a way to
express and reason about such constraints. Undoubtedly there are
even more relationships to be discovered.

14

The key to our success is how we represent and manipulate these
relationships. Using GenVoca formulations allows us to capture
these regularity relationships as matrices of functions and con-
stants that can be folded into equations. That is, we can reason
about software designs as equations. We explained that our
results are not GenVoca-specific, in particular, how Origami has
direct relationships to AOP and MDSC models. We believe
Origami is important, because others will encounter it as feature
refinement models scale to produce more complex systems.

Acknowledgements. We gratefully acknowledge the support of
the U.S. Army Simulation and Training Command (STRICOM)
contract N61339-99-D-10 and the University of Texas Center for
Agile Technology (UT:CAT) for their support of our work. We
thank Jack Sarvela for pointing out the relationship of Origami to
internationalization customizations of Windows programs. We
also thank anonymous referees for helping us to clarify our pre-
sentation.

12 References

[1] AspectJ. Programming Guide. http://aspectj.org/doc/
proguide

[2] AHEAD Tool Suite (ATS). http://www.cs.utexas.edu/
users/schwartz

[3] D. Batory and S. O’Malley, “The Design and Implementation of
Hierarchical Software Systems with Reusable Components”, ACM
TOSEM, October 1992.

[4] D. Batory and B.J. Geraci, “Composition Validation and Subjectivity
in GenVoca Generators”, IEEE Transactions on Software
Engineering, Feb. 1997, 67-82.

[5] D. Batory, B. Lofaso, and Y. Smaragdakis, “JTS: Tools for
Implementing Domain-Specific Languages”, 5th Int. Conf. on
Software Reuse, Victoria, Canada, June 1998.

[6] D. Batory, G. Chen, E. Robertson, and T. Wang, “Design Wizards
and Visual Programming Environments for GenVoca Generators”,
IEEE Trans. Software Engineering, May 2000.

[7] D. Batory, C. Johnson, R. MacDonald, and D. von Heeder,
“Achieving Extensibility Through Product-Lines and Domain-
Specific Languages: A Case Study”, to appear in ACM TOSEM.

[8] D. Batory, J.N. Sarvela, and A. Rauschmayer, “Scaling Step-Wise
Refinement”, ICSE 2003.

[9] I. Baxter, “Design Maintenance Systems”, CACM, April 1992.

[10] R. Cardone, A. Brown, S. McDirmid, and C. Lin, “Using Mixins to
Build Flexible Widgets”, AOSD 2002.

[11] K. Czarnecki, U.W Eisnecker. Generative Programming: Methods,
Tools, and Applications. Addison Wesley, 2000.

[12] K. Czarnecki, T. Bednasch, P. Unger, and U. Eisenecker,
“Generative Programming for Embedded Software: An Industrial
Experience Report”, GCSE/SAIG 2002.

[13] A. van Deursen, P. Klint, “Little Languages: Little Maintenance?”,
SIGPLAN Workshop on Domain-Specific Languages, 1997.

[14] E.W.Dijkstra, A Discipline of Programming. Prentice-Hall, 1976.

[15] Flatt, M., Krishnamurthi, S., and Felleisen, M. “Classes and
Mixins”. ACM Principles of Programming Languages, San Diego,
California, 1998, 171-183.

[16] E. Gamma, R. Helm, R. Johnson, J. Vlissides, Design Patterns:
Elements of Reusable Object-Oriented Software, Addison Wesley,
1994.

[17] J. Gray, S. Chaudhuri, A. Bosworth, A. Layman, D.Reichart, M.
Venkatrao, F. Pellow, H. Pirahesh: Data Cube: A Relational
Aggregation Operator Generalizing Group-by, Cross-Tab, and Sub
Totals. Data Mining and Knowledge Discovery 1(1): 29-53 (1997)

[18] M. Griss, “Implementing Product-Line Features by Composing
Component Aspects”, First International Software Product-Line
Conference, Denver, August 2000.

[19] W. Harrison and H. Ossher, “Subject-Oriented Programming (A
Critique of Pure Objects)”, OOPSLA 1993, 411-427.

[20] Javadoc — The Java API Documentation Generator. Sun
Microsystems, http://java.sun.com/j2se/1.3/docs/
tooldocs/solaris/javadoc.html

[21] K.C. Kang, et al., Feature-Oriented Domain Analysis Feasibility
Study, SEI 1990.

[22] G. Kiczales, J. Lamping, A. Mendhekar, C. Maeda, C. Lopes, J.
Loingtier, and J. Irwin, “Aspect-Oriented Programming”, ECOOP
97, 220-242.

[23] G Kiczales, E. Hilsdale, J. Hugunin, M. Kirsten, J. Palm, W.G.
Griswold. “An overview of AspectJ”. ECOOP 2001.

[24] M. Mezini and K. Lieberherr, “Adaptive Plug-and-Play Components
for Evolutionary Software Development”, OOPSLA 1998, 97-116.

[25] S. McDirmid, M. Flatt, and W.C. Hsieh, “Jiazzi: new-Age
Components for Old-Fashioned Java”, OOPSLA 2001.

[26] H. Ossher and P. Tarr. “Using Multi-Dimensional Separation of
Concerns to (Re)Shape Evolving Software.” CACM October 2001.

[27] H. Ossher and P. Tarr, “Multi-dimensional separation of concerns
and the Hyperspace approach.” In Software Architectures and
Component Technology (M. Aksit, ed.), 293-323, Kluwer, 2002.

[28] T. Reenskaug, et al., “OORASS: Seamless Support for the Creation
and Maintenance of Object-Oriented Systems”, Journal of Object-
Oriented Programming, 5(6): October 1992, 27-41.

[29] R. Sessions, COM+ and the Battle for the Middle Tier, Wiley
Computer Publishing, 2000.

[30] C. Simonyi, “The Death of Computer Languages, the Birth of
Intentional Programming”, NATO Science Committee Conference,
1995.

[31] Y. Smaragdakis and D. Batory, “Implementing Layered Designs with
Mixin Layers”. 12th European Conference on Object-Oriented
Programming, ECOOP, July 1998.

[32] Y. Smaragdakis and D. Batory, “Scoping Constructs for Program
Generators”. Generative and Component-Based Software
Engineering (GCSE), September 1999.

[33] Y. Smaragdakis and D. Batory, “Mixin Layers: An Object-Oriented
Implementation Technique for Refinements and Collaboration-
Based Designs”, to appear ACM TOSEM.

[34] Sullivan, K.J. and Notkin, D., ``Reconciling Environment
Integration and Software Evolution,'' ACM TOSEM July 1992.

[35] C. Szyperski, Component Software: Beyond Object-Oriented
Programming, Addison-Wesley, 1997.

[36] P. Tarr, H. Ossher, W. Harrison, and S.M. Sutton, Jr., “N Degrees of
Separation: Multi-Dimensional Separation of Concerns”, ICSE
1999.

[37] P Tarr, H. Ossher. Hyper/J User and Installation Manual. IBM
Corporation, 2001. http://www.research.ibm.com/
hyperspace.

[38] W. Taha. “Multi-Stage Programming: Its Theory and Applications”.
Ph.D. thesis, Oregon Graduate Institute of Science and Technology,
1999.

[39] M. Van Hilst and D. Notkin, “Using Role Components to Implement
Collaboration-Based Designs”, OOPSLA 1996, 359-369.

