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Abstract
The efforts of an expert to parallelize and optimize a dense linear
algebra algorithm for distributed-memory targets are largely me-
chanical and repetitive. We demonstrate that these efforts can be
encoded and automatically applied to obviate the manual imple-
mentation of many algorithms in high-performance code.

Categories and Subject Descriptors D.1.2 [Automatic Program-
ming]

; D.1.3 [Concurrent Programming]
; G.4 [Mathematical Software]: Efficiency

General Terms Design,Performance

Keywords high-performance numerical algorithms, software for
distributed-memory computing, dense linear algebra, program gen-
eration, MDE, libraries of the future

1. Introduction
Parallelizing and optimizing dense linear algebra (DLA) algo-
rithms for distributed-memory machines has historically been done
by domain experts who are very familiar with both linear algebra
and the oddities of a target class of machines. When a DLA expert
has no experience with a new architecture and wants to implement
an algorithm, (s)he must live with an existing library, learn a lot
about that architecture, or find an experienced developer. This is
inefficient and unnecessary because the work of an expert is me-
chanical and systematic, and therefore automatable.

Expert-tuned, high-performance parallel code for distributed-
memory architectures can be automatically produced by a tool via
an approach we call Design by Transformations (DxT) [3], pro-
nounced “dext”. We demonstrated DxT on a handful of prototypi-
cal examples, simple and complex, in a broad class of dense linear
algebra operations (e.g., the commonly used matrix operations in
the BLAS and operations supported by libraries like LAPACK and
libflame [5]). As our examples were targeted to a distributed-
memory architecture, we believe DxT can be extended to target
other architectures (such as multi-core processors, GPGPUs, and
many-core processors).
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We expect the insights from this work to have a profound impact
on the FLAME project [6], which encompasses a formalism for de-
riving DLA algorithms, notation for expressing these as algorithms,
and APIs for implementation in code. Two library instantiations
exist to support a variety of parallel architectures: the libflame
library that targets sequential, multicore, and (multi-) GPU archi-
tectures, and Elemental [2], which targets distributed memory ar-
chitectures. DxT would allow us instead to support a single encod-
ing of algorithms and knowledge, with libraries like libflame and
Elemental being the products (outputs) of applying DxT.

2. Mechanizing Expert Transformations
When an expert parallelizes a DLA algorithm for a distributed-
memory target, (s)he typically focuses on the loop body. For each
of the operations or functions in that loop body, (s)he chooses an
implementation code. In distributed-memory programs, matrix data
is distributed among processors. In Elemental, for example, the de-
fault distribution views processes as a 2-dimension grid and stores
the data in a 2-dimensional, block-cyclic distribution with a block-
size of one. To parallelize each operation in the loop body, an ex-
pert redistributes the data from the default distribution in some way
that enables the computation to proceed in parallel, and then redis-
tributes the result back to the default distribution. There are often
multiple implementation choices that perform each loop body oper-
ation correctly, but they get varying performance depending on the
machine architecture, problem size, etc. An expert chooses imple-
mentation codes based on a rough idea of the runtime cost of redis-
tributing data and the runtime cost of computation. Redistributing
data in Elemental requires an expensive collective communication
operation, so an expert optimizes programs by reducing the amount
of data redistribution. Once parallel implementations are chosen for
loop body operations, an expert can see how data is redistributed
and can remove redundant communication.

Step by step, an expert implements a DLA algorithm in high-
performance code by transforming the algorithm with implementa-
tion choices of sub-operations, using a rough estimate of runtime
costs, and transforming with optimizations that decrease the esti-
mated runtime cost of communication. DxT attempts to mechanize
this strategy by encoding the transformations performed by an ex-
pert instead of the resulting code. Then, those transformations can
be applied automatically using a tool, as described below, instead
of being re-applied by rote across many algorithms in the domain.

We view software as a stack of layers. Each layer provides de-
tails about an operation’s implementation, so the transformations
we encode break through these layers to expose implementation
details that can be optimized (we encode transformations for many
implementation choices, not just one). The optimizing transforma-
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Figure 1. Automatically generated Cholesky Variant 3 implemen-
tations tested on 240 cores (and ScaLAPACK results for compari-
son). Peak performance, 3200 GFLOPS, is at the top of the graph.

tions are viewed as encoding equivalent sets of functionality. An
expert’s optimizing transformation replaces one piece of code with
a functionally-equivalent piece of code that is better-performing.
For DxT we encode many such equivalences.

When an expert applies transformations to generate parallel, op-
timized code, (s)he uses a rough estimate of operation costs to make
choices on which transformation is best to use. We use rough esti-
mates of operation costs in terms of the number of floating-point
operations performed and the speed of the machine, and of the
cost of collective communication operations in terms of the amount
of data being moved and the network latency and bandwidth. For
DxT we encode these cost estimates for each operation and they
guide the choice of implementing and optimizing transformations
to use [4]. The next section demonstrates the efficacy of this ap-
proach.

3. A Prototype for Automatic Program
Generation

We developed a prototype to test DxT. Algorithms are represented
as data-flow, directed, acyclic graphs (DAGs). Transformations are
encoded as graph rewrites similar to the those performed by com-
pilers on DAGs. The prototype has multiple implementing trans-
formations for BLAS and LAPACK operations, and has dozens of
optimizing transformations that replace patterns of collective com-
munication with equivalent, but faster, implementations.

Our prototype takes as input the algorithm being implemented,
encoded as a DAG, and iteratively applies transformations. At each
step, the prototype applies any transformation that can be applied
to any graph it has developed. Thus, all possible implementation
codes from the input algorithm are generated. A cost estimate is
attached to each graph, as described above, and is used to select the
parallelized, optimized code that is least costly.

We tested the prototype, its transformations, and its cost es-
timates on two Cholesky factorizations variants, three matrix-
multiplication (Gemm) variants, a triangular solve with multiple
right-hand sides (TRSM) variant, and a significantly more com-
plicated variant of a two-sided triangular solve [1]. The Cholesky
factorization algorithm is prototypical in DLA codes. Its imple-
mentation and optimizations require an expert to perform many

transformations that are common throughout the domain. For both
variants of Cholesky that were tested, the system generated hun-
dreds of implementations. The “best” versions were chosen using
the above-described cost estimates, and these versions were the
same as those hand-generated and optimized by the expert de-
veloper of Elemental. In Figure 1, we show performance of one
of those variants on 240 cores. Here, the “Inlined” results come
from simply implementing that algorithm directly in code, without
applying any optimizations. The “Optimized 1” line shows perfor-
mance with some simple optimizations applied by the system, re-
moving redundant communication. The “Optimized 2” line shows
performance for the expert-generated code, which the prototype
also generated and calculated as “best” using its cost estimates.
This version results from some additional optimizations being per-
formed on the “Optimized 1” version; they have to do with memory
access patterns and cache-reuse. ScaLAPCK results are shown for
comparison.

Similar results can be seen for the other operations tested. The
prototype generated and chose as “best” the same code developed
by an expert. For the two-sided triangular side, the generated imple-
mentation was slightly better than the version written by the expert
as the prototype applied an optimization the expert forgot (which
has since been incorporated into Elemental).

4. Conclusion
We demonstrated for a handful of prototypical algorithms how the
implementing and optimizing transformations an expert performs
can be mechanized. Instead of requiring an expert to re-apply the
transformations by hand for many algorithms in a domain, a tool
can do this task automatically. We see DxT as a sustainable ap-
proach to library development as architectures continue to change,
requiring code to be re-developed.
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