Program Kubes

Don Batory
Department of Computer Sciences
University of Texas at Austin

Introduction g@

Future of software development (SWD) lies in automation
* automate rote, time-consuming, error-prone tasks
« three technologies that automate such tasks will converge

Model Driven Engineering (MDE)

» specify target program by a set of high-level models
which are easy to understand, write, and maintain

» program is synthesized by transforming models to executables

Refactoring
* reorganize programs/models using transformations to improve structure

Software Product Lines (SPL)

» create a family of related programs from a common set of assets
» automatically synthesize an SPL member from a declarative specification

Convergence >

» Unified by transformations
* mapping of programs to programs (or models to models)

- MDE — map models of one type to another
» Refactoring — restructure models
* SPL — elaborate models by adding more detail

* Emerging Science of Automated SWD from experiences of
practitioners

» compositional — based on function (transformation) composition

+ fundamental mathematical structures provide an
informal language to express program/model designs

» SPL modeled by categories (POPL 2007, ICSE 2007, GPCE 2008)

« theoretical basis for future tools and models for synthesis

Why Transformations? =

Java and C# programs use methods to update and translate objects
* “programming in the small”

In SWD, objects are programs and methods are transformations
» “programming in the large”

Transformations provide a fundamental way to understand SWD
» foundation for MDE, refactorings, and software product lines

Thinking mathematically leads to unusual design techniques that take
time to understand

« this talk is about one particular example

]

Long, Long Ago... <>

* 1In 2001, we (Lopez-Herrejon, et al) discovered a multi-dimensional
structure to express interacting dimensions of variability in SPLs

* Called “Origami”
» design of a program P was defined by a matrix of transformations
* rows, columns were features

» matrix was folded in precise ways (thereby composing transformations)
until a single term was produced

* this term is an expression (composition of transformations) that synthesizes P

P = technique that
others will use
in the future

e Essential concept in building ATS (250K+ LOC)

“This Works???” =

Take a “physics” approach — small number of principles
(in mathematical form) that hold this entire universe together

Origami is sophisticated technique — taken years to connect
seeming unrelated topics that it integrates

» data cubes database technology

» tensors, categories mathematics

e expression problem programming languages
» feature interactions software design

This is a modeling talk aimed at practitioners
* no special mathematical background
e program synthesis and variability expressed by modern mathematics
 raise the level on how to think about SWD and variability

Your tour guide through a strange universe...

Data Cubes

Background fr\nc\Databa/eS’-'

7
Data Cubes ©
» Data Cubes (Gray 1997) are a multi-dimensional array
visualization of relational tables for data warehouses
Dimension Measures

Attributes Attribute Iti?els Time

tools usa Feb

tires spain jan 3 Mar

bikes france may 30 Apr

May

USA Spain France Greece LoOcation

Data Cubes

e Data Cubes (Gray 1997) are a multi-dimensional array

visualization of relational tables for data warehouses

* tuples are cube entries

Dimension
Attributes

. ; Bikes
Items Location Time _ Tools

tools usa feb
tires spain jan
bikes france may

Measure

Attributes ltems

Tires

44
33
3030 ‘ | | |

USA Spain Greece France

Time
Jan
Feb
Mar
Apr

May

Location

Cube Queries

Subcubes restrict dimensional values
» count # of bikes, tools sold in Europe in January, March, April

Iltems .
Tires Time
Bikes Jan
Tools
Feb
Mar
|))
’ Apr
)))
’ May
| |’ |’ |/
USA Spain France Greece LOcation

10

Data Cube Operations b

* Projection eliminates unnecessary elements
» count # of bikes, tools sold in Europe in January, March, April

ltems .
Tires . Time
Bikes
Tools

Jan

Feb

Mar

Apr

May

USA Spain France Greece LoOcation

11

Data Cube Operations b

* Aggregate or roll-up elements to produce a scalar
* scalar totals the # of bikes, tools sold in Europe in January, ...

Items Time
Bikes Jan
Tools
421 Mar
Apr

Spain France Greece LoOcation

Order in which dimensions are aggregated doesn’t matter

12

ﬁ_\-\(: ¥ 7

The Kube Datg"Ty__pe

et
| oS e S

13

Kubes: N-Dimensional Arrays <

Borrow terminology of tensors
» rank of kube is its dimensionality
» scalaris a kube of rank 0
» vector is a kube of rank 1
* matrix is a kube of rank 2

Notation: # of indices = rank of kube

S — kube of rank O
\' — kube of rank 1
M — kube of rank 2

ij

Cix —kube of rank 3

(scalar)
(vector — linear array)
(matrix — 2D array)

(cube - 3D array)

14

Kube Operations

* Roll-up is contraction

e summi

ng across dimensions i, j for kube Cy,:

Vi = 2ij Cii

* Interested ntistaly ON contracting to scalars

S= Zijk Cik

order in which
dimensions are
contracted does

not matter
» Projection limits values of indices
S = Ziel,jeJ, kek Cijk
15
Previous Example
Itigls Time
Bikes Jan
Tools
Feb
Mar
Cix = B
‘ May
|
USA Spain France Greece LOcation

S =X

i€ {Bikes,Tires} |e {Spain,France,Greece} te {Jan,Mar,Apr} Cilt

16

Software Synthesis <

» Kube expresses multidimensional models of variability

» Data cubes aggregate numbers,

program synthesis composes transformations
» element is a program transformation
» dimensions we il see are defined by feature models

Program
Cube

Program

17

Example: AHEAD Tool Suite <« »

« Language, tool extensible IDE
» synthesize tools for dialects of Java
» optional extensions to Java

State machine SM {

States g, h, i;

refines class CL {
Transition el : g 2 h ...; <o
Transition e2 : h 2> i ...;
refines interface IN {
} }

state machine refines

18

AHEAD Tool Suite

» Language, tool variability expressed as a 2D kube
« ASE 2002 and SIGSOFT/FSE 2003

Lang —

Java

Ds Java
‘ ‘ | | | sm ~— Language
’ ’ | | | i Features
LPLPLPL PL P

T00| Parse Harvest Reduce Doclet Pretty

\)

Y
Tool Features

AHEAD Tool Suite

» AHEAD Tool specified by 2 sets of features

» Jedi — javadoc tool for a dialect of Java

Lang

E Java

Ds

Jedi

CBCBCPCPR™

‘ I | | | Refines

L PP P PL P

T00| Parse Harvest Reduce Doclet Pretty

* Project matrix

Synthesize Jedi R

Lang
Jedi = X
| | Refines
LPLPL PP P
Tool Parse Harvest Reduce Doclet Pretty
21
Synthesize Jedi R

e Contract matrix

» Defines composition of transformations to synthesize Jedi

Tool

Lang

Java

Sm

Refines

Parse Harvest Doclet

Most AHEAD Tools (250K+ LOC) are built by contracting 2D, 3D kubes;

see ASE 2002, FSE 2003 papers

22

Here’'s What's Odd... 2>

» Lots of other ways to contract matrix
— Each contraction produces a different expression
— Function composition (unlike integer addition) is not commutative

] Why all
Jedi = Y [w = foldings

{contractions)

Sm

Refines p rOd u ce
Tool Parse Harvest Doclet th e s a m e
res u It (program) ?

2007

23

e
p:?‘f"f__,\«
- e
:"_\‘.—,*
23
.
= \
5= ~
R
e 5
T
. B
D
LA e
<] <
e
o
R
r.‘h.ﬂ, o
v\‘\‘-{'.‘)?e.
o
Pl
g . "
S
S
<
s

-

s

T e
T,

Back to Ba5|cs\f“'*---- P <
Transformations |n SWD

24

Basics <

» Fact: no program is created spontaneously
* no MDE model, Word document, etc...
» created by extending simpler programs
» and simpler programs come from simpler programs, recursively

0 —>

\ 4

\ 4

!

o
-

U
N

0
w

direction of time >

25

Incremental Development <o

» Going forward in time explains how a program’s design
was developed incrementally, in logical steps

* incremental development
* hallmark of automated program synthesis

;
i

0 —>

\ 4
\ 4

U
AN

-
N

U
w

direction of time >

26

Timelines .

» Think of arrows as transformations
* mappings from one program to another
e path from 0 to a program is its timeline

* when arrows are given semantic meaning and are reusable
they are called features

0 —>

\ 4

\ 4

!

o
-

U
N

0
w

direction of time >

27

Example: Expression Trees «»

» Parse tree of an expression +
/\
2 3

- - +
* print() operation on trees: print | "> | =2+ 3"
2 3
. +
» eval() operation on trees: eval| —~_ | =5

28

T .

Expression Tree Program =2

Arrow either defines base program or adds operations

°
Exp Exp Exp
print() print()
|
0 shell $ print $ eval Al
Int Plus | | Times Int Plus | [Times ‘ Int Plus | | Times
print() | | print() | | print() print() [| print() | | print()
eval() | [eval() | [eval()
Methods Product Line ET
29
Properties of Arrows s
X
 Arrows are composable .
y
Exp Exp
> print()
Int Int
print print()
Plus E—— Plus
-> print()
Times Times
-> print()

30

Software Product Lines E =
* Family of related programs
* Features are increments in program functionality (arrows)
» SPL building blocks
» Conceptualize SPL as a directed graph
* nodes are programs, arrows are features
» paths from O are program timelines
» superimpose the timelines of all programs in an SPL
shell i
0e Se print é > eval@
Methods Product Line Graph
31
Typically e

* Product line graphs are trees
» one timeline for every program in a product line

32

Categories g

« Add identity arrow to each node

@ shell Q print Q eval Q

Category of the Methods Product Line

* Resulting graph (& arrow composition rules) is a category
» object is a domain, arrow maps domain to co-domain

» Software product line = micro (trivial) category
* each domain contains one element

33

Typical Impl erﬁ“en_t ations

of SPL categories and arrows \

e
e
e

34

Feature Models =

Standard representation of SPLs (Kang 1990)

» and-or tree with cross-tree constraints
» defines legal combinations of features

Car and
feature O%
diagram ™ Cruise Engine | | Transmission
or: 1+ P%
Gasoline Electric Manual Automatic
cross-tree
consraints L Cruise = Automatic
35
Ordered Feature Models s
Order in which features (arrows) are composed matters!
Ordered feature model is a “GenVoca” grammar

» tokens are features

» productions define sentences

 order in which tokens appear in sentences = order of composition
car : [cruise] engine+ trans body; car
engine : gasoline | electric; | Cruise | Engine || Transmission || Body |
trans : manual | automatic;

| Gasoline || Electric | | Manual || Automatic |
#4
Cruise - Automatic

cruise 2 automatic;

GenVoca Grammar Feature Model

36

A

Encode Graph of SPL S

 As an ordered feature model

@ shell Q print Q eva|®

Methods Category/Graph

Ops: [eval] I[print] shell; Ops

##
eval print | | shell

eval > print;

eval 2> print

GenVoca Grammar
Feature Diagram

37

Feature Implementations =

« Arrows can change at least the following:

» add new classes, packages
» add new members (fields, methods) to existing classes

» wrap existing methods ...

» Lots of prototype technologies to do this....

Exp Exp Exp
print() print() ET
0 shell $ print f{lf eval evf'ial()
l Int Plus | | Times l Int Plus | | Times ‘ Int Plus | [Times
print() | | print() | | print() print() | | print() | | print()
eval() | [eval(Q) | [eval()

Methods Product Line

38

SPL Implementation =

Collection of arrows (features) whose compositions produce
programs of an SPL is a GenVoca Model

F=[F,..FF,F 1 [/lvector

Program P of an SPL is a particular composition of arrows

P=Fg+F,+F,+F; /I P’s timeline

where + denotes feature (arrow) composition

39

Connection to Kubes S8

Given P=F+F,+F,+F;

Rewrite P as:

P=2 c8.4.21) Fi

Program synthesis is projection and contraction of 1D kube

GenVoca grammar defines legal kube projections

40

Y,

Recap So Far...

» Conceptualize a SPL as a micro category
 quirk: programs and objects are computed

* Implement by ordered pair:

SPL = (Grammar, Kube)

« 1 dimension of variability = Kubes are vectors

41

=
N
T e

Another way to'd erive program \=; <

precursor to 2" dimensien of variability

42

Data Type Extensibility B

« Variability in the Methods SPL were methods a class
supported

» set of Exp subclasses (Int, Plus, Times) were fixed

» Another variability is data types
« fix the set of methods
* vary the set of subclasses of Exp

Exp Exp Exp Exp
print() print() print() print()
eval() int eval() | eval() eval()
o =X N —3 pus ——1 times
‘ ‘ Int ‘ Int Plus ‘ Int Plus | |Times
print() print() | | print() print() | | print() | | print()
eval() eval() | [eval() eval() | [eval() | [eval()
Types Product Line ET
43
Types Product Line =

oo QO m Q o O imes Q)

Types Category/Graph

Types: [times] [plus] [int] exp;

##

plus 2 int;
times - plus;

plus 2 int
times 2> plus

GenVoca Grammar
Feature Diagram

44

e

Expression Pra"b-lx_e___m

=

classic example of 2D variability =~

45

Expression Problem N

Fundamental problem of program design and variability
* 1975 J. Reynolds
« 1990 W. Cook
» 1998 S. Krishnamurthi, M. Felleisen, D. Friedman
e 1998 P. Wadler

* how to add new methods and data types in a type safe manner
» SPL of 30-40 line programs

ASE 2002, SIGSOFT/FSE 2003
* R. Lopez-Herrejon, D. Batory, J-P. Martin, J. Liu, J. Sarvela

* how ideas scale to synthesize large programs
» SPL of 30-40K line programs (1000x)
* how we synthesize the AHEAD Tool Suite

46

..............................

print()

l—£|;|

Int Plus | [Times]| :

print() [| print() | | print()

Exp :
print()
eval() ET
Int Plus | [Times

print() | | print() | | print()

=T
print() ﬂé‘

Int

Exp
print()

eval()

print()

Exp Exp
< ;5 >
[1 . [I]
Int Plus P nt Plus | |Times
Exp
print()
i _Int Plus | | Times
2 printQ | | printQ) | | printQ |
Exp Exp
print() | print()
eval() |im X : eval()
Int Plus Int Plus | [Times
print() | | print() i [print() | | print() | | print()
i eval() | [eval() eval() | [eval() | | eval()

Expression Product Line (EPL) &

: Exp | @ : Exp : EXp
|J > [? > [lﬁ 1
Int Int Plus Int Plus | [Times

Exp | i Exp | i Exp
; ; prini() | : print() | ; print(
| Exp | s :
Hpring |[——> & > A —
: Int Int Plus | § Int Plus | | Times
| print0 £ | print() | | print() £ | print() | [print() | | print()
........................ ‘I' ‘I' \ll
Exp Exp Exp
: . print() | E print() | 5 print()
i | Exp eval() eval() eval()
e |—— _——F > ———F > :
i |eval(| i _Int i Int Plus | : i _Int Plus | |Times| :
"""""""" £ | print() : i [print | [print(| £ | print() | | print() | | print() | :
levalg] f : levalg] levalg] : Levalg | [eval | | evalg | :
Exp : : Exp : Exp

print()

— on a commuting =-

Plus | |Times]| §
print() | [print()

EXpP Exp
print() print() print()
eval() eval() eval()
Int Int Plus Int Plus | [Times

[pring : [printg | [print0 [prine0| [print0 | [princo |

To Explain Origami, Few More Questions >

« Whatis the EPL feature model?

0

>¢ > >
) 4) 4 b 4
>¢ > >
Y Y R 4
L 4 C 7 e

* What is the origin of the EPL graph?
* What arrows are stored?
 How is EPL related to kubes?

51

52

Observation N

 Identify any program in EPL by a pair of axis timelines

0 exp int * plus @ times e Types

B 5 Zs 5 5
') re r) rd
Int H Int Pl Time-

print V. o
Int Plu: Time:

e =% H print()
L Exp |t :
CY) | printg | F—t |
H H H Int H H H H
: : 2| printo : 3| printg | | printo | | printg | 2
: Sl : :

print()

eval FECTITTIPD APPPPrPPR .
Vv : Exp | : Exp
PRI LT printg) | print()
x Hl oo S I o
+ | print() |- 7 7 > :
¢ Levaly s |—lot N Pl [- Pl Times | *
Methods o | printo : | print) | | printo | = 3| printg | | pring | | printg | £
shewagl ot slhevan) Lavain | 2 s beanl Levan | | evain) -

53

Observation N

 Identify any program in EPL by a pair of axis timelines

ex int lus times
0 P_o % >0 Types

\ 4
.D
Y.
y
\ 4

0 : : H
Int H) Pl : E - = Time-
print v Exp Exp Exp
fpeesen : print() [= : print() 3 : print()
Exp S5 S S
print() Cd] L]
T : . Int Pl H Int Pl Time:
: H = | printo | | printo [2 i | printg | | print [| print) | =
vl . T~ S v —, A
\ 4 H H : EXD : H n :
el : print() print() : . print()
e]t O
o | print() [+ (e
t Levaly s |—lot s |—nt Pl H N - = Times | *
= | printo = | printg | | print) [2 = | printg | | print | | printo | =
MethOdS evaly | slevan) Lavan] & s leand Lean | L e |

54

Boundary Cases o

» Postulate extra null programs and arrows between them

int plus times
>@ ® >0 Types
@ > 0 it > 0plu > Onmes
. graneanes e T s R
shell £ : .
¥ > = > >
1 L 1 Time:
print L v E: Exp Exp
N prescies : print() print() print()
¢ 0 —> e > > >
print | printo > > > :
H H I Iny I ime:
” [printg print() | | print print() || printg | [printg
- s, e A S, A
7 : Exp | & Ex : Exp
v LTI print() print() print()
Sl Exp |F H H —%gl()-
B oeva‘ E E print() : >: ; >:
1o, H H Int : Int Pl : Int Pl Times | *
= | printo H = | printg | | print) [= = | printg | | printg | | printo | =
MethOdS shewag) o hewin) Laanl 2 s leand Lean | Lo]

55

Last Pieces to Puzzle s
» Look at two seemingly unrelated topics

 cross products of structures (SPLSs)

» feature interactions

» Putting them together explains Origami

56

57

Cross Products in Mathematics <=

A common way to scale 1D structures to higher dimensions is by
taking the cross product of 1D structures

e 2D structure = cross product of a pair of 1D structures

» nD structure = cross product of n 1D structures

SPL structure is an ordered pair:

SPL = (Grammar, Kube)

Look at cross product of Methods and Types product lines

Methods x Types (Gmethods1 Vmethods) X (thpes’ VWpes)

(G'methods x G \% #V

types' Y methods types)

58

EPL Feature Model is...

y £
r i

* Union of Methods and Types feature models with extra rule

Types : [times] [plus] [int] exp;

%)
%%

Methods: [eval] [print] shell;
%% X

lus 2 int
eval = print P

times = plus

Methods: [eval] I[print] shell;
Types : [times] [plus] [int] exp;

%%

eval 2 print
plus 2 int
times = plus

59

EPL Graph

e tensor product (x) of Methods and Types graphs

» shape we want
* remember: programs/objects are computed, so too are the arrows

exp int plus times Tvpes
2 % * g 2 P
% 0

shell

= Types x Methods

* & s %

print

S
&S
o ot —%
s

eval

© &% >4

Methods

60

EPL Graph >

e tensor product (x) of Methods and Types graphs
» shape we want
* remember: programs/objects are computed, so too are the arrows

0 exp g Nt g plus o times o Types

0 0
shell
$ = Types x Methods
& >¢ S8

print
’ & & ¥

eval
¢ e " % ¥

Methods

61

Kube of EPL R

* Interaction cross product (#) of the Methods &Types kubes
 another tensor product
» GenVoca model of EPL is a matrix (2D kube)

EPLmethods,types = \%

#V

methods types

[shell, print, eval | # [exp, int, plus, times]
(shell # exp) (shell#int) (shell# plus) (shell # times)

but what

are these (print# exp) (print#int) (print# plus) (print # times)

entries?

Q
.(eval#exp) (eval # int) (eval # plus) (eval # times)

62

-t
=¥
e G

Products of Fe\étt-u___r____es
and Feature Interactions

63

Products & Interactions >

Features change a design

Structural feature interactions are flood

changes to a design that are fire.

added conditionally based on the fire fire’

features that are present floo od # fire
flood’

Classical example (Kyo Kang)
» flood control, fire control

* must add extra arrow - to control
their interaction, i.e., so that they
work together correctly

Taking the “square” of features

flood x fire = flood#fire + flood + fire

64

From EPL: int x print >

Exp
Exp int
: > | zs
-------------- Int
print
............. Voo
: Exp
e Y. : print()
Exp :
print() —> IJ
Int

...............

print()

From EPL: int X print >

Exp
Exp int
.............. Int
print
Exp
print()
Int
............................ Exp
...... Y. p—
Exp :
print() ; Zs
fnt

...............

print()

From EPL: eval x times

= _.“-é-'?%g\,

Exp Exp
print() print()
times
Int Plus Int Plus | [Times
print() | | print() print() [| print() | | print()
: Exp
print() :
eval Bl
Int Plus | [Times .
Neval # tim
.............) AT print() | | print() | | print() \Kt eSV

Exp i |eval() | [eval() Exp

print() print()

eval() eval()

>; I 1 1
Int Plus : Int Plus | [Times
print() | | print() print() [| print() | | print()
: eval() | [eval() : eval() | [eval() | [eval()

67
GMethods X GTypes
Types : [times] [plus] [int]
exp;
0 —> %%
plus = int
times = plus
Methods : [eval]‘[print] shell;
Types : [times] [plus] [int]
exp;
eval - print
plus = int
times 3 plus \Metho s # Tydes
\ A\ 4
EPL: Methods Types;

v Methods: [eval] [print] shell;
Methods: [eval]l I[print] shell; Types: [times] [plus] [int]
%% > exp;
eval = print %%

eval = print
plus = int
times = plus r

Taking the Square of Features <« »

« Fundamental relationship among features & interactions
» The changes features make always commute
* Interactions are added to coordinate features correctly

N

69

Adding Interactions o

\6
4

Recall the EPL graph
Expose interaction arrows
EPL Matrix = Vyethogs # V-

Types

)

5
$
s

(shell # exp) (shell # int) (shell # plus) (shell # times)

(print # exp) (print # int) (print # plus) (print # times)

¢ ¥ Y
Y o Y

(eval # exp) (eval # int) (eval # plus) (eval # times)

70

Important Property 2>

» Given the EPL matrix and boundaries,
any arrow and any program of EPL can be computed

* Proof sketch
e givenf, g, f#g

. can complete square O
s DS N Ny
f f a [Ny Ny
‘\ a N Ny

71

Another Important Property <« »

« Aggregating adjacent squares sums interactions

N 7

g < h h+g

f f
f#g Q » f#h+ f#g

72

Finally, Why Origami Works

Any program of EPL can be computed

by projecting & contracting EPL matrix

73

Projection

» Projection of matrix = projection of category,

yields a commuting diagram
» any path from O to P will synthesize P

/ 1

%

/

commuting diagram

/

/

/

matrix

Y

/
/

/
/

74

Contract by Columns =

« Contraction aggregates adjacent squares and sums
interaction arrows

& N OH N BN
. ~N N o N N
P
commuting diagram vector
Contract by Rows <D

« Contraction aggregates adjacent squares and sums
interaction arrows

commuting diagram scalar

76

Final Step/Square =

« Boundary programs are 0s
 0->0 arrows add NOTHING, and so too their compositions

* interaction arrow defines an expression that synthesizes P
« this is the arrow that is computed by matrix contraction

0 0
N]
: [
0
P
commuting diagram scalar

7

Aside: Commuting Paths =

» Start from desired program

» Aggregate by row moves vertically up

* Aggregation by columns moves vertically left
* Final square any path will do

Nt N N\

commuting diagram matrix

78

Generality of Arguments

Nothing special about how we contracted the matrix
* any contraction (i.e., path) would do

Nothing special about program P we selected
e any program in the SPL would do

Nothing special about this matrix
» any SPL matrix would do — ex. AHEAD 2D kube

Nothing special about 2D kubes
» same ideas apply to higher-dimensions
» e.g. a square becomes a cube with a single interaction arrow

Result that can be applied to SPL in general
» Origami is a fundamental structure of SPLs

79

So What?

and other final thoughts...

80

Perspective >
Programming in the Small — Java and C# objects, methods

Programming in the Large — objects are programs, methods are xforms

Transformations provide a fundamental way to understand SWD
- foundation for MDE, refactorings, and software product lines

Working toward a Science of Automated Design
 start from experiences and abstract to a theory
* belief: few principles hold this universe together

» principles assume a mathematical form as in other sciences and engineering
disciplines that manipulate structures

» a promising alternative to the ad hoc design techniques in use today

81

Dimensions of Variability =

Preplanned variability is key to automated software design
» much like design patterns helped novices design like experts
» SPLs help novices create customized programs like experts

Common in SPLs to have orthogonal and interacting sets of features
» EPL — method variability vs. type variability
* AHEAD - tool variability vs. language variability

Origami expresses multiple dimensions of variability
» powerful and elegant, it scales

Expose new and basic relationships in mathematical form
* projection and contraction of kubes — database technology
 cross product of features (feature interactions)

» cross product of SPLs
» use of n-D kubes to represent n-dimensions of variability

82

Final Comments >

» Clear that ideas are being reinvented in different contexts
* not accidental — evidence we are working toward general paradigm
* modern mathematics is a simple language to express these ideas
* maybe others may be able to find deeper connections

» At the earliest stages

» Advice: think in terms of arrows, think in terms of kubes
* if you look for kubes, you'll find them...
* if you don’t look, you won't find them...

Look for them!

83

