

### Introduction



### • Future of software development (SWD) lies in automation

- automate rote, time-consuming, error-prone tasks
- three technologies that automate such tasks will converge

### Model Driven Engineering (MDE)

- specify target program by a set of high-level models which are easy to understand, write, and maintain
- · program is synthesized by transforming models to executables

#### Refactoring

· reorganize programs/models using transformations to improve structure

### • Software Product Lines (SPL)

- · create a family of related programs from a common set of assets
- automatically synthesize an SPL member from a declarative specification



#### • Unified by transformations

- mapping of programs to programs (or models to models)
- MDE map models of one type to another
- Refactoring restructure models
  - SPL elaborate models by adding more detail
- Emerging Science of Automated SWD from experiences of practitioners
  - compositional based on function (transformation) composition
  - fundamental mathematical structures provide an informal language to express program/model designs
  - SPL modeled by categories (POPL 2007, ICSE 2007, GPCE 2008)
  - theoretical basis for future tools and models for synthesis

Why Transformations?

- Java and C# programs use methods to update and translate objects
  - "programming in the small"
- In SWD, objects are programs and methods are transformations
  - "programming in the large"
- Transformations provide a fundamental way to understand SWD
  - foundation for MDE, refactorings, and software product lines
- Thinking mathematically leads to unusual design techniques that take time to understand
  - this talk is about one particular example

3







- **Data Cubes** (Gray 1997) are a multi-dimensional array visualization of relational tables for data warehouses
- Dimension Measure Items Attributes Attributes Time Tires Bikes Jan Items Location Time QtySold Tools tools usa feb 4 4 Feb tires spain jan 3 3 Mar bikes france may 3030 Apr . . . . . . ... May Location USA Spain Greece France 9 **Cube Queries**  Subcubes restrict dimensional values • count # of bikes, tools sold in Europe in January, March, April Items Time Tires Bikes Jan Tools Feb Mar Apr May Location USA Spain France Greece
- tuples are cube entries







- Roll-up is **contraction** 
  - summing across dimensions i, j for kube C<sub>ijk</sub>:

$$V_k = \sum_{ij} C_{ijk}$$

• Interested (in this talk) on contracting to scalars

$$S = \sum_{ijk} C_{ijk}$$

order in which dimensions are contracted does not matter

• Projection limits values of indices

$$S = \sum_{i \in I, j \in J, k \in K} C_{ijk}$$

**Previous Example** Items Time Tires Bikes Jan Tools Feb Mar C<sub>ilt</sub> Apr May Spain France Greece Location USA  $S = \sum_{i \in \{Bikes, Tires\}} |_{\in \{Spain, France, Greece\}} t_{\in \{Jan, Mar, Apr\}} C_{ilt}$ 

15

























- Program synthesis is projection and contraction of 1D kube
- GenVoca grammar defines legal kube projections











## To Explain Origami, Few More Questions



• What is the EPL feature model?



- What is the origin of the EPL graph?
- What arrows are stored?
- How is EPL related to kubes?







• Postulate extra null programs and arrows between them







• Union of Methods and Types feature models with extra rule























- Nothing special about how we contracted the matrix
  - any contraction (i.e., path) would do
- Nothing special about program P we selected
  - any program in the SPL would do
- Nothing special about this matrix
  - any SPL matrix would do ex. AHEAD 2D kube
- Nothing special about 2D kubes
  - same ideas apply to higher-dimensions
  - e.g. a square becomes a cube with a single interaction arrow
- Result that can be applied to SPL in general
  - Origami is a fundamental structure of SPLs

79

# So What?



### Perspective



- Programming in the Small Java and C# objects, methods
- Programming in the Large objects are programs, methods are xforms
- Transformations provide a fundamental way to understand SWD
  - foundation for MDE, refactorings, and software product lines

#### Working toward a Science of Automated Design

- start from experiences and abstract to a theory
- · belief: few principles hold this universe together
- principles assume a mathematical form as in other sciences and engineering disciplines that manipulate structures
- a promising alternative to the ad hoc design techniques in use today

81

# **Dimensions of Variability**

- Preplanned variability is key to automated software design
  - much like design patterns helped novices design like experts
  - SPLs help novices create customized programs like experts
- Common in SPLs to have orthogonal and interacting sets of features
  - EPL method variability vs. type variability
  - AHEAD tool variability vs. language variability
- Origami expresses multiple dimensions of variability
  - powerful and elegant, it scales
- Expose new and basic relationships in mathematical form
  - projection and contraction of kubes database technology
  - cross product of features (feature interactions)
  - cross product of SPLs
  - use of n-D kubes to represent n-dimensions of variability



- Clear that ideas are being reinvented in different contexts
  - not accidental evidence we are working toward general paradigm
  - modern mathematics is a simple language to express these ideas
  - maybe others may be able to find deeper connections
- At the earliest stages
- Advice: think in terms of arrows, think in terms of kubes
  - if you look for kubes, you'll find them...
  - if you don't look, you won't find them...

# Look for them!

83