
Program KubesProgram Kubes

Don Batory
Department of Computer SciencesDepartment of Computer Sciences
University of Texas at Austin

1

Introduction

• Future of software development (SWD) lies in automation
• automate rote, time-consuming, error-prone tasks

th t h l i th t t t h t k ill• three technologies that automate such tasks will converge

• Model Driven Engineering (MDE)
• specify target program by a set of high level models• specify target program by a set of high-level models

which are easy to understand, write, and maintain
• program is synthesized by transforming models to executables

R f t i• Refactoring
• reorganize programs/models using transformations to improve structure

• Software Product Lines (SPL)• Software Product Lines (SPL)
• create a family of related programs from a common set of assets
• automatically synthesize an SPL member from a declarative specification

2

Convergence

• Unified by transformations
• mapping of programs to programs (or models to models)
• MDE – map models of one type to anotherMDE map models of one type to another
• Refactoring – restructure models
• SPL – elaborate models by adding more detail

E i S i f A t t d SWD f i f• Emerging Science of Automated SWD from experiences of
practitioners

• compositional – based on function (transformation) compositionp () p

• fundamental mathematical structures provide an
informal language to express program/model designs

• SPL modeled by categories (POPL 2007, ICSE 2007, GPCE 2008)

• theoretical basis for future tools and models for synthesis

3

Why Transformations?

• Java and C# programs use methods to update and translate objects
• “programming in the small”

• In SWD, objects are programs and methods are transformations
• “programming in the large”p g g g

• Transformations provide a fundamental way to understand SWD
• foundation for MDE refactorings and software product lines• foundation for MDE, refactorings, and software product lines

• Thinking mathematically leads to unusual design techniques that take
time to understandtime to understand

• this talk is about one particular example

4

Long, Long Ago…

• In 2001, we (Lopez-Herrejon, et al) discovered a multi-dimensional
structure to express interacting dimensions of variability in SPLs

• Called “Origami”
• design of a program P was defined by a matrix of transformations

l f t• rows, columns were features

• matrix was folded in precise ways (thereby composing transformations)
until a single term was produced

• this term is an expression (composition of transformations) that synthesizes Pp (p) y

P = technique that
others will use

• Essential concept in building ATS (250K+ LOC)

in the future

Essential concept in building ATS (250K+ LOC)

5

“This Works???”

• Take a “physics” approach – small number of principles
(in mathematical form) that hold this entire universe together

• Origami is sophisticated technique – taken years to connect
seeming unrelated topics that it integrates

• data cubes database technology

• tensors, categories mathematics

• expression problem programming languages

• feature interactions software designg

• This is a modeling talk aimed at practitioners
• no special mathematical background

th i d i bilit d b d th ti• program synthesis and variability expressed by modern mathematics
• raise the level on how to think about SWD and variability

• Your tour guide through a strange universe…g g g

6

Background from Databases:Background from Databases:
Data Cubes

7

Data Cubes

• Data Cubes (Gray 1997) are a multi-dimensional array
visualization of relational tables for data warehouses

Di i M

Jan

F b

TimeTires
Bikes

Tools

Items

Items Location Time QtySold

t l f b 4

Dimension
Attributes

Measures
Attribute

Feb

Mar

Apr

tools usa feb 4

tires spain jan 3

bikes france may 30

May

USA Spain France Greece Location

… … … …

8

USA Spain France Greece Location

Data Cubes

• Data Cubes (Gray 1997) are a multi-dimensional array
visualization of relational tables for data warehouses

Di i M

• tuples are cube entries

Items Location Time QtySold

t l f b 4

Dimension
Attributes

Measure
Attributes

Jan

F b

TimeTires
Bikes

Tools

Items

tools usa feb 4

tires spain jan 3

bikes france may 30

Feb

Mar

Apr

3

4

30

… … … …
May

USA Spain Greece France Location

9

USA Spain Greece France Location

Cube Queries

• Subcubes restrict dimensional values
• count # of bikes, tools sold in Europe in January, March, April

It

Jan

Feb

TimeTires
Bikes

Tools

Items

eb

Mar

Apr

May

USA Spain France Greece Location

10

Data Cube Operations

• Projection eliminates unnecessary elements
• count # of bikes, tools sold in Europe in January, March, April

It

Jan

Feb

TimeTires
Bikes

Tools

Items

eb

Mar

Apr

May

USA Spain France Greece Location

11

Data Cube Operations

• Aggregate or roll-up elements to produce a scalar
• scalar totals the # of bikes, tools sold in Europe in January, …

Jan

Mar

Time

Bikes
Tools

Items

421 a

Apr

421

Spain France Greece Location

12

Order in which dimensions are aggregated doesn’t matter

The Kube Data TypeThe Kube Data Type

13

Kubes: N-Dimensional Arrays

• Borrow terminology of tensors
• rank of kube is its dimensionality

l i k b f k 0• scalar is a kube of rank 0
• vector is a kube of rank 1
• matrix is a kube of rank 2

• Notation: # of indices = rank of kube

S – kube of rank 0 (scalar)

Vk – kube of rank 1 (vector – linear array)

M k b f k 2 (t i 2D)Mij – kube of rank 2 (matrix – 2D array)

Cijk – kube of rank 3 (cube – 3D array)

14

Kube Operations

• Roll-up is contraction
• summing across dimensions i, j for kube Cijk:ijk

Vk = Σij Cijk

• Interested (in this talk) on contracting to scalars

order in which

S = Σijk Cijk

order in which
dimensions are
contracted does

not matter

• Projection limits values of indices

S Σ C
15

S = Σi∈I, j∈J, k∈K Cijk

Previous Example

Jan

TimeTires
Bikes

Items

Jan

Feb

Mar

Bikes
Tools

C = Apr

May

Cilt =

USA Spain France Greece Location

S = Σi∈ l∈ t∈ Cilt{Bikes,Tires} {Spain,France,Greece} {Jan,Mar,Apr}

16

{ } { } { }

Software Synthesis

• Kube expresses multidimensional models of variability

• Data cubes aggregate numbers,
program synthesis composes transformations

• element is a program transformation

• dimensions we will see are defined by feature models

GF

G1

G2

G3

GF1
F2

F3

F

P Σ G4

G5

Program = Σ

17

H1 H2 H3 H4 H

Example: AHEAD Tool Suite

• Language, tool extensible IDE
• synthesize tools for dialects of Java

• optional extensions to Java

St t hi SM {State_machine SM {

States g, h, i;

T iti 1 h

refines class CL {

Transition e1 : g h ...;

Transition e2 : h i ...;

...
}

refines interface IN {

...
}

state machine

...
}

refines

18

state machine refines

AHEAD Tool Suite

• Language, tool variability expressed as a 2D kube
• ASE 2002 and SIGSOFT/FSE 2003

Java

D

Lang

JDs

Sm

Refines

Java
Language
Features

Quote

Parse Harvest DocletReduceTool Pretty

19

Tool Features

AHEAD Tool Suite

• AHEAD Tool specified by 2 sets of features
• Jedi – javadoc tool for a dialect of Java

Java

D

Lang

Jedi = Σ
Ds

Sm

Refines

Quote

Parse Harvest DocletReduceTool Pretty

20

Synthesize Jedi

• Project matrix

D

Java

Lang

Jedi = Σ
Ds

Sm

Refines

Quote

DocletReduceParse HarvestTool Pretty

21

Synthesize Jedi

• Contract matrix

• Defines composition of transformations to synthesize JediDefines composition of transformations to synthesize Jedi

S

Java

Lang

JediJedi = Σ

DocletParse HarvestTool

Sm

Refines

Most AHEAD Tools (250K+ LOC) are built by contracting 2D, 3D kubes;

22

() y g
see ASE 2002, FSE 2003 papers

Here’s What’s Odd…

• Lots of other ways to contract matrix
– Each contraction produces a different expressionp p

– Function composition (unlike integer addition) is not commutative

S

Java

Lang

JediJedi = Σ

DocletParse HarvestTool

Sm

Refines

23

Back to Basics:Back to Basics:
Transformations in SWD

24

Basics

• Fact: no program is created spontaneously
• no MDE model, Word document, etc…

• created by extending simpler programs

• and simpler programs come from simpler programs, recursively

0

P1 P2 P3

25

direction of time

Incremental Development

• Going forward in time explains how a program’s design
was developed incrementally, in logical stepsp y, g p

• incremental development

• hallmark of automated program synthesis

0

P1 P2 P3

26

direction of time

Timelines

• Think of arrows as transformations
• mappings from one program to another

• path from 0 to a program is its timeline

• when arrows are given semantic meaning and are reusable
they are called features

0

P1 P2 P3

27

direction of time

Example: Expression Trees

• Parse tree of an expression

2

+

32 3

+
• print() operation on trees:

2

+

3
print = “2 + 3”

l() ti t
+

• eval() operation on trees:
2 3

eval = 5

28

Expression Tree Program

• Arrow either defines base program or adds operations

Exp
print()

Exp
print()

Exp

eval()
print evalshell0

Int TimesPlus

print()

Int

print()

Times

print()

Plus
print()

Int

eval()

print()

Times

eval()

print()

Plus

eval()

29

Methods Product Line

Properties of Arrows

• Arrows are composable
x

y
z

ExpExp

print()

p

IntInt

print print()

print()

PlusPlus

print()

TimesTimes

30

Software Product Lines

• Family of related programs

• Features are increments in program functionality (arrows)
• SPL building blocks

C t li SPL di t d h• Conceptualize SPL as a directed graph
• nodes are programs, arrows are features

• paths from 0 are program timelines

• superimpose the timelines of all programs in an SPL• superimpose the timelines of all programs in an SPL

print evalshell
0

Methods Product Line Graph

31

Methods Product Line Graph

Typically

• Product line graphs are trees
• one timeline for every program in a product line

32

Categories

• Add identity arrow to each node

print evalshell
0

Category of the Methods Product Line

• Resulting graph (& arrow composition rules) is a category
• object is a domain, arrow maps domain to co-domainobject is a domain, arrow maps domain to co domain

• Software product line = micro (trivial) category
• each domain contains one element• each domain contains one element

33

Typical ImplementationsTypical Implementations
of SPL categories and arrows

34

Feature Models

• Standard representation of SPLs (Kang 1990)
• and-or tree with cross-tree constraints

• defines legal combinations of features

Car
and

BodyTransmissionEngineCruise

or: 1+ alternative
choose1

feature
diagram

AutomaticManualElectricGasoline

cross-tree

35

Cruise Automaticconstraints

Ordered Feature Models

• Order in which features (arrows) are composed matters!

• Ordered feature model is a “GenVoca” grammarOrdered feature model is a GenVoca grammar
• tokens are features

• productions define sentences

• order in which tokens appear in sentences = order of composition• order in which tokens appear in sentences = order of composition

car : [cruise] engine+ trans body; carcar : [cruise] engine+ trans body;

engine : gasoline | electric;

trans : manual | automatic;

car

BodyTransmissionEngineCruise

##

cruise automatic;

AutomaticManualElectricGasoline

Cruise Automatic

36

GenVoca Grammar Feature Model

Encode Graph of SPL

• As an ordered feature model

print evalshell0

Methods Category/Graph

OpsOps: [eval] [print] shell;

##

shellprinteval

eval print

eval print;

GenVoca Grammar

37

Feature Diagram
GenVoca Grammar

Feature Implementations

• Arrows can change at least the following:
• add new classes, packages

• add new members (fields, methods) to existing classes

• wrap existing methods …

• Lots of prototype technologies to do this….

Exp
print()

Exp
print()

Exp

l()

Int TimesPlus

print()

Int

print()

Times

print()

Plus

eval()

print()

Int

eval()

print()

Times

eval()

print()

Plus

eval()

print evalshell0

38

eval() eval()eval()

Methods Product Line

SPL Implementation

• Collection of arrows (features) whose compositions produce
programs of an SPL is a GenVoca Modelp g

Fi = [Fn … F3, F2, F1] // vector

• Program P of an SPL is a particular composition of arrows

P = F8 + F4 + F2 + F1 // P’s timeline

where + denotes feature (arrow) composition

39

Connection to Kubes

• Given P = F8 + F4 + F2 + F1

• Rewrite P as:

P = Σ i∈(8,4,2,1) Fi

• Program synthesis is projection and contraction of 1D kube

• GenVoca grammar defines legal kube projections

40

Recap So Far…

• Conceptualize a SPL as a micro category
• quirk: programs and objects are computed

• Implement by ordered pair:

SPL = (Grammar, Kube)()

• 1 dimension of variability Kubes are vectors

41

Another way to derive program ETAnother way to derive program ET

precursor to 2nd dimension of variabilityprecursor to 2nd dimension of variability

42

Data Type Extensibility

• Variability in the Methods SPL were methods a class
supportedpp

• set of Exp subclasses (Int, Plus, Times) were fixed

A th i bilit i d t t• Another variability is data types
• fix the set of methods

• vary the set of subclasses of Exp

Exp
print()

eval()

print()

Exp

eval()

print()

Exp

eval()

print()

Exp

eval()

0 exp
eval()

int
eval()

print()

Int

eval()

plus
eval()

print()

Int

eval()

print()

Plus

eval()

eval()

print()

Int

eval()

print()

Times

eval()

print()

Plus

eval()

times

43

() () () () ()()

Types Product Line

Types Product Line

int plusexp times

Types Category/Graph

int plusexp0 times

Types: [times] [plus] [int] exp; Types

##

plus int;
times plus;

plus int

expintplustimes

GenVoca Grammar

plus int
times plus

Feature Diagram

44

Expression ProblemExpression Problem

classic example of 2D variabilityclassic example of 2D variability

45

Expression Problem

• Fundamental problem of program design and variability
• 1975 J. Reynolds

• 1990 W. Cook

• 1998 S. Krishnamurthi, M. Felleisen, D. Friedman

• 1998 P. Wadler

• how to add new methods and data types in a type safe manner

• SPL of 30-40 line programs

• ASE 2002, SIGSOFT/FSE 2003
• R. Lopez-Herrejon, D. Batory, J-P. Martin, J. Liu, J. Sarvelap j , y, , ,

• how ideas scale to synthesize large programs

• SPL of 30-40K line programs (1000×)

• how we synthesize the AHEAD Tool Suite

46

0

Exp

Exp Exp Exp

Int Int Plus Int TimesPlus

print

print()

Exp

p

print()

Int

print()

Times

print()

Plus

eval

print()

Exp

eval()

eval

print()

Int

eval()

print()

Times

eval()

print()

Plus

eval()

0

Exp

Exp Exp Exp

Int Int Plus Int TimesPlus

print()

Exp
print()

Exp

p ()

print()

Int

print()

Times

print()

Plus

exp

print()

Exp

eval()

print()

Exp
print()

Exp

eval()

print()

Exp

eval()int plus times

print()

Int

eval()

print()

Times

eval()

print()

Plus

eval()

print()

eval()

print()

Int

eval()

print()

Int

eval()

print()

Plus

eval()

0
Expression Product Line (EPL)

Exp

Exp Exp Exp

Int Int Plus Int TimesPlus

print()

Exp
print()

Exp

print()

Exp
print()

Exp

print()

Int

print()

Int

print()

Plus

p ()

print()

Int

print()

Times

print()

Plus

print()

Exp

eval()

print()

Exp
print()

Exp

eval()

print()

Exp

eval()

print()

Int

eval()

print()

Times

eval()

print()

Plus

eval()

print()

eval()

print()

Int

eval()

print()

Int

eval()

print()

Plus

eval()

0
Commuting Diagrams in Categories

Exp

Exp Exp Exp

Int Int Plus Int TimesPlus

print()

Exp
print()

Exp

print()

Exp
print()

Exp

print()

Int

print()

Int

print()

Plus

p ()

print()

Int

print()

Times

print()

Plus

print()

Exp

eval()

print()

Exp
print()

Exp

eval()

print()

Exp

eval()

print()

Int

eval()

print()

Times

eval()

print()

Plus

eval()

print()

eval()

print()

Int

eval()

print()

Int

eval()

print()

Plus

eval()

To Explain Origami, Few More Questions

• What is the EPL feature model?

00

Exp

Exp

Int

Exp

Int Plus

Exp

Int TimesPlus

print()

Exp

print()
Int

print()

Exp

print()
Int

print()
Plus

print()

Exp
print()

Exp

print()
Int

print()
Times

print()
Plus

p () () ()

print()

Exp

eval()

print()
Int

print()
Times

print()
Plus

print()

Exp

eval()

print()

Exp

eval()

print()
Int

print()

Exp

eval()

print()
Int

print()
Plus

• What is the origin of the EPL graph?

• What arrows are stored?

print()
eval()

print()
eval()

print()
eval()

print()
eval()

print()
eval()

print()
eval()

• How is EPL related to kubes?

51

ObservationsObservations

52

Observation

• Identify any program in EPL by a pair of axis timelines

0 0

0 exp int plus times Types

shell
Exp

Exp

Int

Exp

Int Plus

Exp

Int TimesPlus

print
print()

Exp

Int

print()

Exp

Int Plus

print()

Exp
print()

Exp

Int TimesPlus

eval

print()

Int
print()

Int

print()

Plus

print()

Exp

eval()

print()

Int

print()

Times

print()

Plus

print()

Exp
print()

Exp

eval()

print()

Exp

eval()

53

print()

Int

eval()

print()

Times

eval()

print()

Plus

eval()

print()

eval()
print()

Int

eval()

print()

Int

eval()

print()

Plus

eval()
Methods

Observation

• Identify any program in EPL by a pair of axis timelines

0 0

0 exp int plus times Types

shell
Exp

Exp

Int

Exp

Int Plus

Exp

Int TimesPlus

print
print()

Exp

Int

print()

Exp

Int Plus

print()

Exp
print()

Exp

Int TimesPlus

eval

print()

Int
print()

Int

print()

Plus

print()

Exp

eval()

print()

Int

print()

Times

print()

Plus

print()

Exp
print()

Exp

eval()

print()

Exp

eval()

54

print()

Int

eval()

print()

Times

eval()

print()

Plus

eval()

print()

eval()
print()

Int

eval()

print()

Int

eval()

print()

Plus

eval()
Methods

Boundary Cases

• Postulate extra null programs and arrows between them

0 0

0 exp int plus times

0int 0plus 0times0exp

Types

shell
Exp

Exp

Int

Exp

Int Plus

Exp

Int TimesPlus

0shell

print
print()

Exp

Int

print()

Exp

Int Plus

print()

Exp
print()

Exp

Int TimesPlus

0print

eval

print()

Int
print()

Int

print()

Plus

print()

Exp

eval()

print()

Int

print()

Times

print()

Plus

print()

Exp
print()

Exp

eval()

print()

Exp

eval()0eval

55

print()

Int

eval()

print()

Times

eval()

print()

Plus

eval()

print()

eval()
print()

Int

eval()

print()

Int

eval()

print()

Plus

eval()
Methods

Last Pieces to Puzzle

• Look at two seemingly unrelated topics

• cross products of structures (SPLs)

• feature interactions• feature interactions

• Putting them together explains Origami

56

Cross ProductsCross Products

57

Cross Products in Mathematics

• A common way to scale 1D structures to higher dimensions is by
taking the cross product of 1D structures

• 2D structure = cross product of a pair of 1D structures

• nD structure = cross product of n 1D structures

SPL structure is an ordered pair:• SPL structure is an ordered pair:

SPL = (Grammar, Kube)

• Look at cross product of Methods and Types product lines

Methods × Types = (Gmethods, Vmethods) × (Gtypes, Vtypes)

(G × G V # V)

58

(Gmethods × Gtypes, Vmethods # Vtypes)=

EPL Feature Model is…

• Union of Methods and Types feature models with extra rule

Types : [times] [plus] [int] exp;
%%
plus int

Methods: [eval] [print] shell;
%% × plus int

times pluseval print

EPL : ;

Methods: [eval] [print] shell;
Types : [times] [plus] [int] exp;

extra grammar ruleMethods Types

%%
eval print
plus int
ti l

59

times plus

EPL Graph

• tensor product (×) of Methods and Types graphs
• shape we want

• remember: programs/objects are computed, so too are the arrows

Types0 exp int plus times

0

shell

0

shell

print

= Types × Methods

eval

E

60

Methods print()

Exp
eval()

print()
Int Times

eval()print()
Plus

eval() print()eval()

EPL Graph

• tensor product (×) of Methods and Types graphs
• shape we want

• remember: programs/objects are computed, so too are the arrows

Types0 exp int plus times

0

shell

0

shell

print

= Types × Methods

eval

E

61

Methods print()

Exp
eval()

print()
Int Times

eval()print()
Plus

eval() print()eval()

Kube of EPL

• Interaction cross product (#) of the Methods &Types kubes
• another tensor product

• GenVoca model of EPL is a matrix (2D kube)

Vmethods # Vtypes=EPLmethods types methods # types

[shell, print, eval] # [exp, int, plus, times]=

methods,types

(shell # exp)

(print # exp)

(shell # int)

(print # int)

(shell # plus)

(print # plus)

(shell # times)

(print # times)

=but what
are these
entries?

(p p)

(eval # exp)

(p)

(eval # int)

(p p)

(eval # plus)

(p)

(eval # times)

entries?

62

Products of FeaturesProducts of Features
and Feature Interactions

63

Products & Interactions

• Features change a design

• Structural feature interactions are
changes to a design that are
added conditionally based on the fire’fire

flood

fire

features that are present

• Classical example (Kyo Kang) flood’

flood # fireflood

p (y g)
• flood control, fire control

• must add extra arrow to control
their interaction, i.e., so that they
work together correctly

flood × fire = flood#fire + flood + fire
work together correctly

• Taking the “square” of features

64

From EPL: int × print

Exp

Exp

int

Int

print

Exp

print()

Exp
print()

p

Int

65

print()

From EPL: int × print

Exp

Exp

int

Int

print()

Exp print
print

Int

Expint

print # int

print()

Exp
print()

p

Int

66

print()

From EPL: eval × times

print()

Exp
print()

Exp

times

print()

Int

print()

Plus

print()

Int

print()

Times

print()

Plus

eval

print()

Exp

eval()

print()

Exp
print()

Exp
print()

Int

eval()

print()

Times

print()

Plus

eval()

eval # times

p ()

eval()

print()

Int

print()

Times

print()

Plus

p ()

eval()

print()

Int

print()

Plus

67

eval() eval()eval()eval() eval()

GMethods × GTypes
Types : [times] [plus] [int]
exp;
%%
plus int

0

times plus

Methods : [eval] [print] shell;
Types : [times] [plus] [int]
exp;
%%
eval print
plus int

EPL: Methods Types;

plus int
times plus

Methods # Types

Methods: [eval] [print] shell;
%%
eval print

Methods: [eval] [print] shell;
Types: [times] [plus] [int]
exp;
%%

l ieval print
plus int
times plus

Taking the Square of Features

• Fundamental relationship among features & interactions

• The changes features make always commuteThe changes features make always commute

• Interactions are added to coordinate features correctly

g

f

f f ’
f # g

f

g

g ’

69

Adding Interactions

• Recall the EPL graph

• Expose interaction arrowsExpose interaction arrows

• EPL Matrix = VMethods # VTypes

(h ll #) (h ll # i t) (h ll # l) (h ll # ti)

0

(shell # exp)

(print # exp)

(shell # int)

(print # int)

(shell # plus)

(print # plus)

(shell # times)

(print # times)

(eval # exp) (eval # int) (eval # plus) (eval # times)

70

Important Property

• Given the EPL matrix and boundaries,
any arrow and any program of EPL can be computedy y p g p

• Proof sketch
• given f, g, f#g

• can complete square 0

f

g

f

f

f f ’

g ’

f # gg

71

g

Another Important Property

• Aggregating adjacent squares sums interactions

f

h + g

f

g h

f
f # h + f # g

f
f # g f # h

72

Finally, Why Origami WorksFinally, Why Origami Works

Any program of EPL can be computedAny program of EPL can be computed
by projecting & contracting EPL matrix

73

Projection

• Projection of matrix = projection of category,
yields a commuting diagramy g g

• any path from 0 to P will synthesize P

0

PP

74

matrixcategorycommuting diagram

Contract by Columns

• Contraction aggregates adjacent squares and sums
interaction arrows

0

+ ++ +

+ +
PP

75

matrixvectorcommuting diagram

Contract by Rows

• Contraction aggregates adjacent squares and sums
interaction arrows

0

+

P

++

P

76

vectorscalarcommuting diagram

Final Step/Square

• Boundary programs are 0s

• 0 0 arrows add NOTHING and so too their compositions0 0 arrows add NOTHING, and so too their compositions
• interaction arrow defines an expression that synthesizes P

• this is the arrow that is computed by matrix contraction

0 00 0

0
P

0
+

P

77

vectorscalarcommuting diagram

Aside: Commuting Paths

• Start from desired program

• Aggregate by row moves vertically up

• Aggregation by columns moves vertically left

• Final square any path will do

0

++

+ ++

PP

78

matrixcommuting diagram

Generality of Arguments

• Nothing special about how we contracted the matrix
• any contraction (i.e., path) would do

• Nothing special about program P we selected
• any program in the SPL would do

• Nothing special about this matrix
• any SPL matrix would do – ex. AHEAD 2D kube

• Nothing special about 2D kubes
• same ideas apply to higher-dimensions
• e.g. a square becomes a cube with a single interaction arrowe.g. a square becomes a cube with a single interaction arrow

• Result that can be applied to SPL in general
• Origami is a fundamental structure of SPLsg

79

So What?So What?

and other final thoughtsand other final thoughts…

80

Perspective

• Programming in the Small – Java and C# objects, methods

P i i th L bj t th d f• Programming in the Large – objects are programs, methods are xforms

• Transformations provide a fundamental way to understand SWD
f d ti f MDE f t i d ft d t li• foundation for MDE, refactorings, and software product lines

• Working toward a Science of Automated Design
• start from experiences and abstract to a theory• start from experiences and abstract to a theory

• belief: few principles hold this universe together

• principles assume a mathematical form as in other sciences and engineering
disciplines that manipulate structures

• a promising alternative to the ad hoc design techniques in use today

81

Dimensions of Variability

• Preplanned variability is key to automated software design
• much like design patterns helped novices design like experts

• SPLs help novices create customized programs like experts

• Common in SPLs to have orthogonal and interacting sets of features
• EPL method variability vs type variability• EPL – method variability vs. type variability

• AHEAD – tool variability vs. language variability

• Origami expresses multiple dimensions of variabilityO g p p y
• powerful and elegant, it scales

• Expose new and basic relationships in mathematical formp p
• projection and contraction of kubes – database technology

• cross product of features (feature interactions)

• cross product of SPLs

• use of n-D kubes to represent n-dimensions of variability

82

Final Comments

• Clear that ideas are being reinvented in different contexts
• not accidental – evidence we are working toward general paradigm

• modern mathematics is a simple language to express these ideas

• maybe others may be able to find deeper connections

• At the earliest stages

• Advice: think in terms of arrows, think in terms of kubes
• if you look for kubes, you’ll find them…

• if you don’t look, you won’t find them…y , y

83

