
Design of Large-Scale Polylingual Systems
Mark Grechanik, Don Batory, and Dewayne E. Perry

UT Center for Advanced Research In Software Engineering (UT ARISE)
University of Texas at Austin

Austin, Texas 78712
{gmark, batory}@cs.utexas.edu, perry@ece.utexas.edu

Abstract. Building systems from existing applications writ- P →P denotes the ability of program P to access objects of

ten in two or more languages is common practice. Such sys-
tems are polylingual. Polylingual systems are relatively easy
to build when the number of APIs needed to achieve lan-
guage interoperability is small. However, when the number
of distinct APIs become large, maintaining and evolving
polylingual systems becomes a notoriously difficult task.

In this paper, we present a simple, practical, and effective
way to develop, maintain, and evolve large-scale polylingual
systems. Our approach relies on recursive type systems
whose instances can be manipulated by reflection. Foreign
objects (i.e. objects that are not defined in a host program-
ming language) are abstracted as graphs and path expres-
sions are used for accessing and manipulating data. Path
expressions are implemented by type reification — turning
foreign type instances into first-class objects and enabling
access to and manipulation of them in a host programming
language. Doing this results in multiple benefits, including
coding simplicity and uniformity that we demonstrate in a
complex commercial project.

1 Introduction

Building software systems from existing applications is a
well-accepted practice. Applications are often written in dif-
ferent languages and provide data in different formats. An
example is a C++ application that parses an HTML-based
web page, extracts data, and passes the data to an EJB pro-
gram. We can view these applications in different ways. We
can view them as COTS integration applications where a sig-
nificant amount of code is required to effect that integration.
Or we can view them as instances of architectural mismatch,
specifically as mismatched assumptions about data models
[1]. Or we can view them, as we do in this paper, as instances
of polylingual interoperable [2] applications that manipulate
data in foreign type systems (FTSs) i.e., type systems that are
different from the host language.

Consider an architecture for polylingual systems as shown in
the directed graph in Figure 1. Graph nodes correspond to
programs P1, P2, …, Pn that are written in different lan-
guages and may run on different platforms. Each edge

i j i
program Pj. Pi→Pj is usually implemented by a complex
API that is specific to language of the calling program Pi, the
platform Pi runs on, and the language and platform Pj to
which it connects. (In fact, there can be several different
tools and APIs that allow Pi to access objects in Pj). Note
that the APIs that allow Pi to access objects in Pj may be dif-
ferent than the APIs that allow Pj to access objects in Pi.

The complexity of a polylingual program is approximately
the number of edges in Figure 1 that it uses. That is, when
the number of edges (i.e., APIs needed for interoperability)
is miniscule, the complexity of a polylingual system is man-
ageable; it can be understood by a programmer. But as the
number of edges increases, the ability of any single individ-
ual to understand all these different APIs and the system
itself rapidly diminishes. In the case of clique of n nodes
(Figure 1), the complexity of a polylingual system is O(n2).
This is not scalable. Of course, it is hard to find actual sys-
tems that have clique architectures. In fact, people want
them, but these systems are too complex to build, maintain,
and evolve. A large-scale polylingual system is a polylingual
system where the number of edges (APIs) is excessive. Such
systems are common (we consider one in Section 6) and are
notoriously difficult to develop, maintain, and evolve.

Current approaches do not support large-scale polylingual
systems well. They are often limited to specific languages
(e.g., typical CORBA platforms allow Java, C++, etc. pro-
grams to interoperate, but there are no facilities for accessing
HTML or XML data or objects in C# programs). This leads
to a proliferation in tools and their APIs used, which notice-
ably increases the accidental complexity [3] of the resulting
code, loss of uniformity in the way programs are written,

Figure 1: Architecture of Polylingual Systems

Pn

P1

P2

P3
P4

…

1

dsb
To be presented at the 26th International Conference on Software Engineering (ICSE 2004), May 2004, Edinburgh, Scotland, UK

thus rendering resulting systems extremely difficult to main-
tain and evolve.

Object-oriented researchers have developed frameworks as a
technique for eliminating this kind of complexity. A frame-
work is an abstraction that underlies a number of similar pro-
grams, and is represented by a set of abstract classes. A
particular implementation of this framework is a set of con-
crete classes that customizes the framework’s abstract classes
for a designated application. The benefit of a framework is
that it defines a single API that all programmers can use; so
instead of having O(n2) possible APIs for achieving program-
to-program communication, a single, standard, and clear API
is used. New framework implementations are easy to add, and
consequently, this is a scalable approach.

In this paper, we define a framework that presents a single
API for the interoperability of programs in a polylingual sys-
tem. Our idea is to abstract instances of an FTS as a graph of
objects and to provide language-neutral specifications based
on path expressions, coupled with a set of basic operations,
for traversing this graph to access and manipulate its objects.
We implement traversals by dynamically converting foreign
types into first-class host language objects so that we enable
access to and manipulation of their instances. This is the con-
cept of type reification. Reification by reflection eliminates
the need for generating potentially huge numbers of conver-
sion classes, and allows us to access and manipulate semi-
structured data that have no schemas. In this respect, this is
superior to existing approaches because it does not require
programmers to generate potentially large number of corre-
sponding types, explicitly define common interfaces using an
IDL language, or use different low-level APIs. Among its
many benefits, we provide a type checking mechanism that
enables a tractable method for checking program behavior
with respect to reified foreign types. We call our approach the
Reification Object-Oriented Framework (ROOF).

2 Background

2.1 Principles of Polylingual Interoperability

A framework for the analysis and design of polylingual
interoperable systems is given in [4][5]. This framework has
two objectives. First, developers should not be constrained in
using the type system provided by the host programming lan-
guage. For example, if a programmer wants to share a Java
object, then s/he should be able to do it directly in Java with-
out resorting to some other type system such as an IDL. Sec-
ond, the design of polylingual programs should not be
affected by a decision to share objects. It means that the struc-
ture of classes and their interfaces should not be a function of
sharing their instances.

Both these objectives define a foundational principle in
design of polylingual system, called seamlessness [4]. This
principle states that developers of polylingual systems need
not be aware of language differences between interoperating
programs. For example, polylingual programs that include
special platform-dependent functions that facilitate interac-
tions between the host and foreign type systems, are not
seamless. Violations of this principle of seamlessness lead to
complex and nonuniform code that is difficult to understand
and reason about and subsequently difficult to maintain and
evolve.

When analyzing and designing polylingual systems it is
equally important to address three orthogonal requirements.
The first is naming. Sharing objects among FTSs often
requires elaborate name management mechanism. Suppose
that an XML type’s name is a keyword in a host programming
language, for example, C++. Then this XML type name can-
not be used directly when defining a corresponding class in
C++. Even worse, if we have an XML and HTML schemas
that have identical type names, then what is a naming scheme
that resolves this ambiguity when defining corresponding
types to C++? Serious effort is dedicated to offering effective
name management strategies, however, most carry a signifi-
cant overhead.

The other requirement is the time when a decision is made to
share objects. The decision time is defined by three intervals:
earliest time when a decision to share objects is made before
any software is written, common time of making a sharing
decision when only a part of polylingual system is developed,
and a megaprogramming object sharing decision made after
the entire system is developed. Clearly, allowing program-
mers to share objects at the megaprogramming stage is both
attractive and quite difficult.

The final requirement is type checking of shared and native
objects to ensure that they have compatible types. Different
approaches that provide effective type checking can only be
used at the earliest stage. Thus, the design and development of
interoperable polylingual system is the science of trade-offs
among objectives and concepts described above.

2.2 Related Work

Polylingual interoperability is a functional aspect that pro-
grammers should be able to add to or remove easily from
existing software. If such changes are complex then polylin-
gual software is hard to maintain and evolve. Low-level
approaches (e.g. RPC, message passing, Document Object
Model) provide APIs that enable programs to cross process
boundaries in order to access foreign objects and invoke their
methods. This approach is tedious and error prone because it
requires the steep learning curve to master various vendor-
2

dependent APIs that deal, for example, with marshalling and
unmarshaling data.

IDL-based approaches (DCOM, CORBA, Mockingbird)
require programmers to define interfaces in an Interface Defi-
nition Language (IDL) that are implementation language neu-
tral and can be translated into language-dependent client and
server classes using an IDL compiler. This approach suffers
from multiple drawbacks; notably the necessity to deal with
an additional type system (the IDL), and to maintain client
and server sets of code. In addition, this approach is hardly
transparent since programmers are required to use a complex,
hard-to-learn platform-dependent API.

IDL-based approaches are also difficult to maintain and
evolve because reversing the initial decision to share objects
once the client/server wrapper code is generated and imple-
mented requires software to be rewritten. Suppose that a pro-
grammer creates a Java program whose objects are not shared
by different programs. If this decision is reversed then these
previously non-shared Java classes should be recoded as
interfaces in an IDL, and then client/server code in implemen-
tation languages should be generated using an IDL compiler.
Clearly, this can require major rework of the existing code
that is laborious and costly when applied to large software
projects. However, much larger amount of work is required if
a Java class, conversely, is decided not to be interoperable
after its IDL-based specification is created and client/server
code is generated and implemented. This class has to be
recoded by removing its IDL compiler generated code and
writing its new implementation. To do this change requires
significant programming investment, and is very expensive at
the maintenance stage of a project.

When a programmer creates an interface using IDL s/he can
select certain types to declare interface members because they
may closely map to desired types in the selected implementa-
tion language. For example, if an IDL interface is used to gen-
erate C++ wrapper code then IDL types that define this
interface are likely to be C++-friendly. When the same IDL
interface is used to generate Java wrapper code, programmers
may replace some IDL types with Java-friendly types. Mock-
ingbird [6] is an IDL-based tool for developing polylingual
distributed applications that generates adapter code that rec-
onciles existing friendly IDL-based data types. However, this
approach leads to software that is difficult to maintain and
evolve. It also suffers from problems with IDL-based
approaches described in [7].

PolySPIN [8] did away with the IDL approach by directly
mapping types between different FTSs. A tool called
PolySPINNER analyzes class definitions written in different
languages, matches their structure, and generates code that
enables objects of matched classes to interoperate seamlessly,

i.e. if objects of types t1 and t2 exist in different FTSs, for
example, in Java and C++ correspondingly. Both types have
to exist in Java and C++ to begin with. After applying
PolySPIN approach a call to method f1 of an object of type t1
is translated by the generated code into the call to the matched
method f2 of some object of type t2. The problem with this
approach is that it requires complex matching mechanism to
determine isomorphisms between foreign types.

Exu [9] is an alternative approach to IDL. It enables C++
classes to be accessed from Java classes using Java Native
Interface (JNI). For any C++ class Exu generates a corre-
sponding Java proxy classes and JNI-based interoperability
code. This approach is limited as it works only for Java
classes that interoperate with C++ classes. In addition, it is
difficult to maintain and evolve Exu-based systems because
generated isomorphic classes may be changed by program-
mers.

Finally, generator-based approaches (e.g. JAXB, Apigen) can
do automatic mapping for individual languages. For example,
if an XML schema contains thousands of types then thou-
sands of corresponding classes are generated in a host pro-
gramming language that map to these XML types. This
approach leads to serious problems with evolution and main-
tenance of generated code, like a complex naming mecha-
nism, and results in a significantly increased compilation time
of the system. In addition, as it often happens in commercial
development, a schema1 may not exist to generate corre-
sponding classes at the time of writing an interoperating pro-
gram. For example, it is customary to write prototype code
that manipulates some XML data before a complete XML
schema that describes this data is created, without a schema
most generator approaches fail. Various generators are used as
part of programming environments and as standalone tools to
analyze FTSs and generate corresponding types in host pro-
gramming languages. Most are generators that take XML
schemas and generate corresponding classes in Java and C++
[10][11]. This approach requires sophisticated name manage-
ment software and produces software that is difficult to main-
tain and evolve.

Polilinguality is implemented by virtual machines (VM) such
as JVM and .Net CLR. These platforms also have limitations.
Each has its own FTS and does not cover all other existing
type schemas which exist beyond their scope (for example,
there is no virtual machine that would reify HTML types to
Java type system). Not only do separate low-level APIs exist
for each platform, they are also vendor-dependent. These
APIs introduce significant complexity and nonuniformity into

1. A schema is a set of artifact definitions in a type system
that defines the hierarchy of elements, operations, and allow-
able content.
3

programming FTSs, let alone the steep learning curve
required to master each platform. Extending any of existing
VM platforms to support a new type system is difficult
because they are very complex and fragile.

Various bridges are offered to interwork different polylingual
systems [12]. For example, a JVM-COM bridge makes Enter-
prise Javabeans (EJBs) runs as COM objects. However,
bridges offer complicated APIs that are vendor-dependent.
Again, using bridges for FTS programming leads to nonuni-
form and complex code and requires time to learn their APIs.

Since type reification is a part of our solution, we briefly
review existing research in this area. Existing work on type
reification is limited to applying this technique to applications
based on a single type system to enable access to type
instances. For example, the reification of an interpreter’s data
structures to programs it is running was considered in the
work by Friedman and Wand on type reification [13]. Cur-
rently, reification either is used as a conceptual tool when
designing software architectures [14] or to enable reflection in
object-oriented interpreted systems [15]. Reification of an
FTS type to other type systems has not been investigated to
our knowledge nor do we know any work whose results can
reify an XML type directly to a C++ first-class construct with-
out the explicit use of low-level APIs and creation of isomor-
phic types in C++.

3 Our Solution

ROOF is designed in light of principles of interoperable poly-
lingual systems described in Section 2. The goals of our solu-
tion is to enable easily maintainable and evolvable
polylingual interoperability by removing the need for elabo-
rate name management solutions and allowing programmers
to make decisions about sharing objects at the megaprogram-
ming stage. The maintainability and evolvability of polylin-
gual systems are achieved by using foreign objects by their
names as they are defined in FTSs thereby eliminating the
need for creation of isomorphic types in a host programming
language and enabling programmers to share objects at the
megaprogramming stage. We also provide a comprehensive
mechanism for type checking that allows programmers to ver-
ify semantic validity of operations on foreign types both stati-
cally and dynamically.

Our solution is based on three assumptions. First, we deal
with recursive type systems. Even though it is possible to
extend our solution to higher-order polymorphic types, such
as dependent types, we limit the scope of this paper to recur-
sive types and imperative languages to make our solution
clearer. Second, we rely on reflection mechanisms to obtain
access to FTSs. Third, the performance penalty incurred by
using reflection is minimal since the low-level interoperating

mechanisms such as transmission, marshaling and unmarshal-
ing network data has the largest overhead common to all
interoperable solutions.

3.1 Type Graphs

Schemas can be represented as graphs whose nodes are com-
posite types, leaves are primitive or simple types, and parent-
child relationships between nodes or leaves defines a type
containment hierarchy [16]. In order to operate on such
graphs, a programmer must be able to reach nodes at arbitrary
depth. This is accomplished via path expressions that are que-
ries whose results are sets of nodes. A path expression is a
sequence of variable identifiers or names of subordinate (or
containment) types that define a unique traversal through a
schema.

Suppose we have a handle to an object that is an instance of a
foreign type. We declare this handle as an instance R of a
ReificationOperator class shown in Figure 2. R
enables navigation to an object in the referenced type graph
by calling its method GetObject with a path expression as
a sequence of type or object names t1, t2, ..., tk as parameters
to this method:

R.GetObject(t1)...GetObject(tk)

Consider a schema that describes the organizational structure
of a company shown in Figure 3. It is a directed graph where
each node is named after an organizational entity within a
company and edges describe the subordination of one entity
to the other. Each node has attributes shown as line connec-
tors with filled circles followed by the names of the attributes.
The CEO’s subordinate is the CTO who in turn supervises
two departments shown as Test and Geeks. An instance of this
schema may be given in existing markup languages such as
HTML, XML, or SGML.

We simplify the notation for the ReificationOperator
class by introducing array access operators [] that replaces the
GetObject method. For example, if R denotes an instance
of the schema shown in Figure 3, we can write the C++ pro-
gram that counts the number of employees in the Geeks
department as:

int n = R[“CEO”][“CTO”][“Geeks”].Count();

class ReificationOperator
{

public:
ReificationOperator &GetObject(string t);
int Count(void);

};
...
ReificationOperator R;

Figure 2: Declaration and instantiation of
ReificationOperator class in C++
4

The method Count returns the number of child nodes under a
given path. Such notation is useful since a single line of lucid
code is used to replace a lot of hand-written or generated
code. No additionally defined types and operations are
required. Path expressions symbolize simplicity and unifor-
mity. These are the properties that we inherit from path
expressions and they enable programmers to uniformly navi-
gate through instances of foreign types. Further, since type
names are used as they are defined in foreign schemas, there
is no need to redefine them again in the host language. That
is, we use the existing names of foreign types; we do not cre-
ate corresponding types in the host language! We will show
how this is accomplished shortly.

FTS-based applications often change each other’s structures.
A common example is a C++ application that changes the
structure of an XML document. These modifications are com-
plex and require carefully crafted software called transforma-
tion engines. However, since all type systems can be
represented as graphs, these modifications can be reduced to
transformations on graph structures. Thus, we reduce the task
of manipulating FTS structures to that of manipulating
graphs. A comprehensive set of basic operations used to
manipulate FTS graph structures is shown in Table 1.

By implementing these operations using a standardized nota-
tion we achieve uniformity of FTS-based code. Indeed, poly-
lingual programs written in different languages that perform
the same operation on the same schema will look the same.
This very important property of uniformity enables effective
program evolution and maintenance of and automated reason-
ing about polylingual systems.

3.2 Type Reification

In this section we show how to reify types. We first explain
reification concepts, then their abstraction as reification oper-
ators, and then present detailed notes on implementation.

3.2.1 Reification Concepts

Reflection. Reflection is a powerful and common mechanism
in contemporary programming languages and programming
infrastructures (e.g., reflection in virtual machines). Reflec-
tion exposes the type of a given object; it reveals the public
data members, method names, type signatures of method
parameters and results, and superclasses (if any) of an object’s
class. Further, reflection enables a program to invoke methods
of objects whose classes were not statically known at the time
the program was compiled. It also allows a program to navi-
gate a graph of interconnected instances without statically
knowing the types of these objects. All of this information
and power is available to a program at run-time.

Connectors. A reification connector (RC) is an example of an
architectural connector [18][19]; it is a communication chan-
nel between a host language application and an application
with a foreign type system. At the host language end, there are
one or more classes corresponding to reification classes which
accepts navigation instructions starting from a given foreign
object. These instructions are transmitted via the RC to one or
more classes in the foreign application, which executes these
instructions and returns a reference to the resulting object.
This is similar to the way methods of remote objects are exe-
cuted in CORBA and the result is returned to the calling lan-
guage. The difference is that there is no need to define explicit
CORBA interfaces between the host (or client) application
and the foreign (or server) application. Internally, we use a
low-level API to transmit names of object attributes, names of
methods, and primitive values to execute in the foreign appli-
cation, and use reflection (on the foreign application side) to
generate the appropriate method call.

CEO

CTO

Test Geeks Em
ployees

Name
Bonus

Name
Salary

Em
ployees

Figure 3: A schema of an organizational structure.

Operation Description
Copy Creates a copy of a node and adds it to its new

location. All properties of the node are
cloned.

Move Identical to the copy operation except for the
automatic removal of the original node upon
completion of copying.

Add Appends a node under a given path.
Remove Removes nodes from the given path.
Relational Compares graphs with constants, variables, or

other graphs.
Logic set Computes various logic set operations such as

intersection, union, cartesian product, com-
plement, and difference.

Conversion Transforms one instance of a graph into
another

TABLE 1. Basic operations that can be performed over
abstract type graphs
5

Combining. Using reflection and reification connectors, a
host program in one type system can navigate a graph of
objects in a foreign type system. Suppose we are given a for-
eign object x and a path expression x.a.b. That is, starting
with foreign object x, we access its “a” attribute to obtain
some object y, and then we access the “b” attribute of y, as
the result of the path expression.

In more detail given x, we transmit “a” to the foreign execut-
able. Using reflection, we can validate that “a” is indeed a
public member of x, and by invoking the appropriate get
method (or simply variable access), we can access the “a”
value of x. We return the handle of the resulting object y back
to the host language, and repeat the process for attribute “b”.
This is the essence of our implementation.

3.2.2 Reification Operators

We mentioned in the previous section that a host application
has a set of classes that hide the details of our implementation.
In fact, the handle to a foreign object is the object R of
Figure 2. R implements a reification operator (RO) that pro-
vides access to objects in a graph of foreign objects. We give
all ROs the same interface (i.e., the same set of methods) so
that its design is language independent; reification operators
possess general functionality that can operate on type graphs
of any FTS. By implementing R as an object-oriented frame-
work that is extended to support different computing plat-
forms, we allow programmers to write polylingual programs
using a uniform language notation without having to bother
about peculiarities of each platform. That is, for Java we have
separate extensions of the framework that allows Java pro-
grams to manipulate C# objects, another extension to manipu-
late XML documents, etc. Similarly, for C# we have separate
extensions of an equivalent framework that allows C# pro-
grams to manipulate Java objects, another extension to
manipulate XML documents, etc.

Reification operators are thus nonsymmetrical, i.e. reifying
types from FTSI to FTSJ is not the same as the converse. RO
has the transitive property, i.e. by applying RO RIJ to an
instance of FTSI we reify it to the FTSJ. Then by applying
RO RJK to an instance of FTSJ we reify it to the FTSK. The
same result is achieved by applying RO RIK directly to an
instance of FTSI. This property is useful since it enables the
composition of reification operators to obtain a new RO.
Finally, an identity RO reifies FTS types to the same type sys-
tem, and interestingly, this is useful. Consider a Java program
that needs to analyze its own structure. The identity RO
enables such a reflective capability and extends it to all poly-
lingual systems.

3.2.3 Reification of Methods

So far, we have described how host programs can navigate a
graph of foreign objects. But in addition to navigation, we
would like to invoke methods on foreign objects as well.

One way to reify methods is to implement an RO so that it
reads binary instructions of some function in an FTS applica-
tion and moves them to another FTS application where it con-
verts these instructions to the new platform before executing
them on the reified type instances. This approach is laborious
and difficult to implement. Instead we instruct the RO to set
all parameters for a desired function and execute it in its
native type system, and then reify the returned result.

We propose a reification model where operators << and >>,
used to set and get values of reified type instances, and consti-
tute the basis for operations on reified types. In the notation
shown below, we use parentheses to specify attribute name ar
of type tk.

RIJ[t1]...[tk](ar)<< Ej
RIJ|t1]...[tk](ar)>> Ej

The operation << takes the value of a variable Ej and instructs
the RO to set the particular attribute of a foreign object to this
value; conversely the operation >> instructs the RO to obtain
the value of the particular attribute of a foreign object and
assign it to some variable Ej.

Consider setting the Salary attribute of the CTO to the
value of integer salary and retrieving the value of the
Bonus attribute of the type CEO into the variable bonus for
an instance of the organizational schema shown in Figure 3.

int salary = 10000, bonus;
R[“CEO”][“CTO”](“Salary”) << salary;
R[“CEO”](“Bonus”) >> bonus;

Our notation can be used to reify methods in FTSs. Since a
method has a unique type determined by its name, its signa-
ture types, and its return type, we treat a method name as a
type tk and its parameters as a set of attributes {ar}. We set
values for each parameter using the operation <<. Then by
applying the RO to the typed operation tk we execute it. The
result of the execution is an instance of some type that is
stored in some internal representation of the reification opera-
tor.

int j, rv;
string s;
RO_Java rj;
.....................................
rj[“SomeClass”][“mthd”](“ip”) << j;
rj[“SomeClass”][“mthd”](“sp”) << s;
rj[“SomeClass”][“mthd”] >> rv;

Figure 4: Example of a method reification.
6

A fragment of C++ code that provides an example of reifica-
tion of a Java method is shown in Figure 4. A declaration for
the reified Java method is shown in Figure 5.

We declare RO rj that reifies Java type instances to C++.
The method mthd declared as a member of Java class
SomeClass has two parameters. We navigate to the method
mthd and set the values of its parameters using the attribute
semantics. Then we call this method, retrieve the return value
and set it to the local variable rv.

3.3 Implementation Details

Here is how a reification operator RO_Java that reifies Java
types to C++ programs can be created. A C++ program uses
low-level API to invoke a JVM and load it in the memory as
shown in Figure 6 with a block arrow. Then, using the Java
Native Interface (JNI) APIs as FindClass, GetStatic-
MethodID and CallStaticVoidMethod, a Java class
can be loaded into the JVM, executed, and the results of its
execution can be passed back to the C++ program. The inter-
action between the JVM and the Java class is shown in
Figure 6 with dashed arrows.

An example of RO RO_Java is implemented as a C++ class
declared and instantiated in Figure 7. For example, if we need
to load Java class called j.class and execute its method A
by setting its parameter In to integer value 5, we write the
statement below:

rj.Load(“j”).GetMethod(“A“).SetParam(“In”, 5);

Now consider an RO RO_CPP that reifies C++ types to Java.
It is an inverse operator to RO_Java. Using JNI, an instance
of RO_CPP in a Java program invokes a C++ library and exe-
cutes methods as shown in Figure 8. Even though the imple-
mentation of these operations is different from the ones of
RO_Java, the class declaration is pretty much the same as
shown in Figure 9.

The implementation of RO_Java is based on the concept of a

shared stub described in [17]. It is a native method that dis-
patches to other native functions and is responsible for locat-
ing and loading libraries, passing arguments, calling native
functions, and returning results.

Finally, consider an RO RO_XML that reifies XML types to
C++. Using a DOM XML parser low-level API we load and
parse XML data as shown in Figure 10. We can access any
type or collection of types and change the structure of this
data. We can also execute any method defined in an XLS doc-
ument associated with any XML type. In this respect a decla-
ration and implementation of RO_XML does not differ
fundamentally from RO_Java or RO_CPP shown in Figure 7
and Figure 9 respectively.

The inverse RO to RO_XML that allows an XML instance to
access C++ programs can be implemented as a C++ compo-
nent that is loaded via XSL commands by a DOM parser and
serves as a bridge between XML and C++ FTSs. The detailed
discussion of this implementation is beyond the scope of this
paper.

At this point we can introduce a generic reification operator
GenericRO shown in Figure 11 that uses [] and () operator
overloading to provide uniform syntax and semantics to FTS-

class SomeClass
{
public:
int mthd(int ip, String sp {...}

}

Figure 5: Declaration of a Java class.

C++ program Java class

JVM

Low-level API

Figure 6: A C++ program
interacting with a Java class via JVM low-level API

class RO_Java
{

public:
RO_Java &Load(string name);
RO_Java &GetMethod(string name);
RO_Java &SetParam(string name, int v);

};

RO_Java rj;

Figure 7: Declaration and instantiation of RO RO_Java

Java program C++ library

JNI

Low-level API

Figure 8: A Java program
interacting with a C++ library via Java Native Interface

class RO_CPP
{
public:
RO_CPP Load(string name);
RO_CPP GetMethod(string name);
RO_CPP SetParam(string name, int v);

};

Figure 9: Declaration of RO RO_CPP

C ++ program XM L data

D O M Parser

Low -level A PI

Figure 10: A C++ program
interacting with an XML data instance using DOM
7

based programs. The operator [] allows programmers to
access typed objects in FTS programs, for example, XML
types and Java member variables and methods, and the opera-
tor () provides access to type attributes, for example, method
parameters. Using this syntax we can rewrite the statement
that loads Java class called j.class and execute its method
A by setting its parameter In to integer value 5 as following:

rj[“j”][“A”](“In”) << 5;

The generality of RO GenericRO operator enables us to
introduce a platform that uses GenericRO as an abstract
parent class to implement different ROs derived from it. This
way we provide uniformity to programmers and remove the
use of low-level APIs thereby reducing complexity of polylin-
gual systems.

4 Reification Object-Oriented Framework
(ROOF)

The Reification Object-Oriented Framework (ROOF) targets
FTS-based applications and provides a reification model. This
model is intended for programmers writing polylingual sys-
tems. Unlike many existing frameworks that require a steep
learning curve to understand the semantics of hundreds or
even thousands of classes and collaborations among them,
ROOF effectively eliminates most of the classes and collabo-
rations that programmers would otherwise have to develop or
learn.

ROOF reifies types by providing a framework that is a collec-
tion of reusable classes that implement the following func-
tionality:
• establish a channel between FTSs. This channel may be

different from interprocess communication channels
because it uses a low-level API to initialize a FTS
environment and establish denotation of its control and
data structures;

• retrieve a collection of instances of a desired type;

• retrieve a specific instance of the given type;

• set and retrieve values from an instance of the given type;

• invoke operations on type instances;

• implement polymorphic/overloaded operations on the
structures of polylingual systems;

• enable structure conversion between FTS-based applica-
tions.

Our goal in designing ROOF was to reduce the number of
interfaces exposed to programmers to a bare minimum. A sin-
gle class for each subscript I and J of reification operator RIJ
implements operations on reified type instances and structures
of FTS-based applications.

A layered view of the reification framework is shown in
Figure 12. Applications A and B are based on FTSs I and J
respectively. For example, A may be based on C# and B is an
XML instance. The access to these applications and FTSs is
provided by low-level APIs, some C# API and some XML
parser API respectively, that provide both control and reflec-
tive capabilities. The ROOF unifies FTSs by providing uni-
form polymorphic operations that are based on their low-level
APIs.

5 Type Checking in ROOF

One of the perceived benefits of existing approaches to poly-
lingual interoperability is that type checking is free since host
language compilers perform it when compiling generated
types and interoperability code. For example, given an XML
schema, a generator can produce corresponding classes in
Java along with interoperability code. A Java compiler per-
forms type checking of the generated classes. Suppose that
during the maintenance phase of polylingual software the
XML schema changed. The Java compiler is not aware of this
change and it would compile the generated classes without
producing any warnings. However, the resulting program fails
at run time because the interoperability code attempts to
access XML objects that are either changed or do not exist
any more. Obviously, this type checking does not meet its pri-
mary objective i.e., to produce errors when semantic inconsis-
tencies with polylingual systems exist.

Our approach provides comprehensive type checking at three
levels: host language compiler, runtime execution, and static
checking across FTSs using our tool based on predefined typ-
ing rules. A detailed discussion of typing rules and the tool is

class GenericRO
{
public:
GenericRO &operator[](string name);
GenericRO &operator()(string name);
GenericRO &operator<<(int i);

};
GenericRO ro;

Figure 11: Declaration and instantiation of
GenericRO.

T y p e S y s t e m J

A p p l i c a t i o n B

L o w - l e v e l A P I

R O O F

T y p e S y s t e m I

A p p l i c a t i o n A

L o w - l e v e l A P I

T y p e R e i f i c a t i o n L a n g u a g e

Figure 12: Abstraction layers for a type
reification framework.
8

beyond the scope of this paper, however, we sketch the basic
ideas to understand how our approach works.

As shown in Figure 12, Type Reification Language (TRL) is a
user interface provided by ROOF to enable programmers to
write interoperable polylingual programs. Let us consider a
fragment of TRL code embedded in C++ shown in Figure 13.

A C++ compiler type checks the compatibility between the
operator << expected parameter types on its right and left
hand sides. The type of variable salary is integer and the
object variable R is of type RO_XML that are consistent with
the declaration of operator << given in Figure 11.

The major limitation of the first level of checking using the
host language compiler is in not being able to infer the type of
object variable R when navigating to a foreign object. For
example, the type of object variable R stays RO_XML when
code R[“CEO”] is executed instead of changing to the CEO
foreign type. If the structure of the foreign object changes for
some reason (e.g. the CTO object is removed), then the host
language compiler will not be able to detect it, and the pro-
gram produces a runtime error. This situation is corrected by
RO producing exceptions at runtime that is shown in
Figure 13 using try and catch blocks.

Finally, we provide a mechanism to perform type checking
across FTSs statically. Since reflection is the primary assump-
tion for our approach to work, we can use it to retrieve type
information about foreign objects at compile time and use it to
verify the validity of operations in host language. To do that
we created a tool based on EDG C++ and Java compiler front
ends [20] that parses polylingual programs and uses reflection
to decorate foreign types in abstract syntax trees, and use our
type checking rules to verify the semantic validity of opera-
tions on foreign types.

6 A Real-World Project

One of the authors (Grechanik) applied our approach to a real-
time component-based semiconductor overlay analysis and
control system. The Archer Analyzer is a software package
geared for Archer 10 optical overlay metrology systems man-
ufactured by the California-based KLA-Tencor Corporation
[21][22].

The purpose of optical overlay measurements is to detect and
fix misalignments between layers of semiconductor chips that
were put on a silicon wafer using microlithography processes.
Overlay or misregistration is a vector quantity defined at
every point on the wafer. Ideally, the value of overlay should
be zero. When nonzero overlay is detected the tool is stopped
and the error is corrected as soon as possible.

The first attempt was started by KLA-Tencor in 1997. A team
of forty specialists was assembled; the original system was
written in a programming language REXX in the beginning of
80’s and became obsolete. The design for the first release of
the product was done carefully. The management allocated
more than a year to hire people, educate them about the com-
pany and existing systems and processes, and to produce
design documentation. Each group planned high-level design,
functionality and interfaces in great detail. The overall
approach to design of this polylingual system was IDL-based
with CORBA and DCOM used as the underlying distributed
object middleware platforms. The number of classes, data
structures, and various methods and functions was in the
thousands, and the complexity of the polylingual system grew
to such a degree that communication overhead between
groups became excessive. Clearly, the selected approach was
not scalable. This situation was compounded by the conflict-
ing and overlapping terminology that led to many syntacti-
cally similar types serving different purposes. When the size
of code grew to two hundred thousand lines the project
became unmanageable.

It took four years and more than $3 million to design and
develop the software and take it to beta test at Texas Instru-
ments Corporation. The test failed with MTF ≈ 2 hours
despite the initial requirement for MTF ≈ 2,000 hours. Each
time the system went down it was virtually impossible to
determine the cause of breakdown since each group claimed
that its components performed internal algorithms properly
and the algorithms themselves were correct. The management
tried to hire more people who would handle the inter-compo-
nent connectivity, but it realized soon that the project would
require significant additional investment as the number of
failures increased the further testing went. Therefore, man-
agement decided to start from scratch.

The second attempt was started in January 2001. One of the
authors who was hired as a consultant to define the strategy
for its implementation saw that it was very difficult to extract
full and correct information about all aspects of communica-
tions among different modules of the existing system. Each
group member of the first implementation could clearly
explain the programming logic of his/her code and had a clear
picture of a schema of data pertinent to the part of the project
the s/he owned. However, the understanding of the overall
structure of the project, relations among modules and data

RO_XML R;
int salary;
............
try
{
R[“CEO”][“CTO”](“Salary”) << salary;

}
catch(RO_Exception &e) {...}

Figure 13: A fragment of TRL code embedded in C++.
9

was vague. When programmers followed the process of creat-
ing structures that map FTS types, they created a system
based on many wrong assumptions that was extremely diffi-
cult to trace in the resulting code. When brought together
these group members could not agree upon all details of the
big picture of the project.

We applied our approach to target the key problems of the
project. The first was to make each member of the team think
about a common schema. The second was to introduce unifor-
mity and reduce the complexity of code. The way to do it was
to eradicate the thousands of explicit mappings between FTS
types.

The first problem was addressed with the type graph solution
explained in Section 3.1. A single schema and its instance
were created by an engineer whose job was to maintain the
schema and serve as a single point of reference to define
every term. The second problem was solved by enabling pro-
grammers to reference each type exactly as it was defined in
the schema. This required a common platform that subsumed
all other FTSs used in the project. Thus, ROOF was created.
Each team member was given a thirty minute presentation of
the basic structure of ROOF and its operations. Moreover,
each programmer was told that if s/he found the concept and
implementation of the ROOF difficult to understand and use
they may go back to low-level APIs that they originally
planned on using. They did not go back.

The architecture of the Archer Analyzer (AA) is based on
many FTSs. AA is created as an open system and is integrated
in the production environment and communicates with many
other FTSs, such as EJBs, CORBA, and .Net assemblies. The
components for AA are created using C++ and different low-
level APIs were used for a variety of tasks such as parsing
XML data and forming matrices. Since we did not generate or
create mapped types in the host programming language it is
not difficult to see how we achieved the reduction of code
close to 80% for this project.

The results exceeded expectations. The system was much eas-
ier to write and the resulting code was clear. It took over a
year with a team of six programmers using our approach to
deliver this project to beta test at AMD Corp. that was suc-
cessfully passed in 2002. This software has since been suc-
cessfully commercialized.

7 Conclusions and Further Work

In today’s enterprise environment it is desirable to make each
program interoperate with other programs. However, existing
solutions lead to the significant accidental complexity as there
are potentially O(n2) possible APIs for achieving communica-
tion among n programs. We have solved the problem of

enabling all-connected architecture graph of polylingual sys-
tems by providing a single framework called ROOF with a
single, standard, and clear API.

ROOF is a simple and effective way to develop easily main-
tainable and evolvable large-scale polylingual systems by
reifying foreign type instances and their operations into first-
class language objects and enabling access to and manipula-
tion of them. By doing so we hide the tremendously ugly,
hard-to-learn, hard-to-maintain, and hard-to-evolve code that
programmers must write or generate today, i.e. we simplified
polylingual code, making it scalable and easier to write, main-
tain, and evolve.

The capability to write uniform and compact programs that
work with applications based on different type systems
enables faster development of complex systems at a fraction
of their cost. Indeed, if developers concentrate on reasoning
about properties of applications without the need to master
many low-level APIs that operate on type system elements
then it significantly improves their productivity and the qual-
ity of the resulting system. We came to this conclusion based
on using our approach for a complex commercial software
system and for a variety of different smaller projects.

Type checking is an important mechanism to guarantee the
safety of ROOF-based programs and improve programmer’s
productivity. We need a compiler that is capable of checking
reified objects against foreign type systems. However, a thor-
ough discussion of type checking is beyond the scope of this
paper and is a subject of ongoing work that we conduct in this
area.

Acknowledgments. We warmly thank William R. Cook,
Prem Devanbu, Jia Liu, Greg Lavender, Roberto E. Lopez-
Herrejon and Rodion M. Podorozhny for multiple discussions
and useful comments.

8 References
[1] D. Garlan, R. Allen, and J.Ockerbloom, "Architectural mismatch: Why

reuse is so hard," IEEE Software, vo. 12, no. 6, November 1995, pp. 17-
26.

[2] D. Barrett, A. Kaplan, and J.Wileden, “Automated support for seamless
interoperability in polylingual software systems,” Fourth Symposium on
the Foundations of Software Engineering, October 1996.

[3] F.Brooks, The Mythical Man-Month, Addison-Wesley, August 1995.
[4] A. Kaplan and J.Wileden, “Software interoperability: principles and

practice,” ICSE 1999.
[5] A. Kaplan and J.Wileden, “Toward painless polylingual persistence,”

Seventh International Workshop on Persistent Object Systems, May
1996.

[6] J. Auerbach, C. Barton, M. Chu-Carroll and M. Raghavachari,
“Mockingbird: Flexible Stub Compilation from Pairs of Declarations,”
10

19th IEEE International Conference on Distributed Computing Systems,
May 1999.

[7] A. Kaplan, V. Ridgway and J.Wileden, “Why IDLs are not ideal,” Ninth
IEEE International Workshop on Software Specification and Design,
April 1998.

[8] D. Barret, “Polylingual Systems: An Approach To Seamless
Interoperability,” Ph.D. thesis, University of Massachusets at Armherst,
May 1998.

[9] A. Kaplan, J. Bubba and J.Wileden, “The Exu Approach to Safe,
Transparent and Lightweight Interoperability,” 25th Annual International
Computer Software and Applications Conference (COMPSAC'01),
October 2001.

[10]Institute for Software Research, University of California, Irvine, xADL
2.0 project, Apigen for xArch schemas,
http://www.isr.uci.edu/projects/xarchuci/tools-apigen.html

[11]Sun Microsystems, “Java Architecture for XML Binding (JAXB),” http:/
/java.sun.com/xml/jaxb/.

[12]W. Emmerich, Engineering Distributed Objects, John Wiley, July 2000.
[13]D. Friedman, and M. Wand, "Reification: Reflection without

Metaphysics," LISP and Functional Programming, 1984, pp. 348-355.
[14]R. Keller and R. Schauer, "Design Components: Towards Software

Composition at the Design Level," ICSE 1998.
[15]M. Beaudouin-Lafon and W. Mackay, "Reification, Polymorphism and

Reuse: Three Principles for Designing Visual Interfaces," Advanced
Visual Interfaces, 2000, pp. 102-109.

[16]S. Abiteboul, P.Buneman, D.Suciu, Data on the Web: From Relations to
Semistructured Data and XML, Morgan Kauffman Publishers, 2000.

[17]S. Liang, Java Native Interface: Programmer's Guide and Specification,
Addison Wesley, June 1999.

[18]D.Perry and A.Wolf, “Foundations for the Study of Software
Architectures”, ACM SIGSOFT Software Engineering Notes 17(4), 1992,
pp. 40-52.

[19]D.Perry, “Software Architecture and its Relevance for Software
Engineering”, Keynote at Coordination 1997, Berlin, September 1997.

[20]Edison Design Group, http://www.edg.com.
[21]Semiconductor Business News, http://www.siliconstrategies.com/story/

OEG20020708S0052.
[22]KLA-Tencor, "Archer Analyzer Automated, Real-Time Overlay

Metrology Analysis," Technical Fact Sheet,
http://www.kla-tencor.com/products/archer10/
archer_analyzer_tech_factsheet.html
11

	Design of Large-Scale Polylingual Systems
	Mark Grechanik, Don Batory, and Dewayne E. Perry UT Center for Advanced Research In Software Engi...
	1 Introduction
	Figure 1: Architecture of Polylingual Systems

	2 Background
	2.1 Principles of Polylingual Interoperability
	2.2 Related Work

	3 Our Solution
	3.1 Type Graphs
	Figure 2: Declaration and instantiation of ReificationOperator�class in C++
	Figure 3: A schema of an organizational structure.

	3.2 Type Reification
	TABLE 1. ��Basic operations that can be performed over abstract type graphs
	3.2.1 Reification Concepts
	3.2.2 Reification Operators
	3.2.3 Reification of Methods
	Figure 4: Example of a method reification.
	Figure 5: Declaration of a Java class.

	3.3 Implementation Details
	Figure 6: A C++ program interacting with a Java class via JVM low-level API
	Figure 7: Declaration and instantiation of RO RO_Java
	Figure 8: A Java program interacting with a C++ library via Java Native Interface (JNI) API.
	Figure 9: Declaration of RO RO_CPP
	Figure 10: A C++ program interacting with an XML data instance using DOM parser low-level API.
	Figure 11: Declaration and instantiation of GenericRO.

	4 Reification Object-Oriented Framework (ROOF)
	Figure 12: Abstraction layers for a type reification framework.

	5 Type Checking in ROOF
	Figure 13: A fragment of TRL code embedded in C++.

	6 A Real-World Project
	7 Conclusions and Further Work
	8 References
	[1] D. Garlan, R. Allen, and J.Ockerbloom, "Architectural mismatch: Why reuse is so hard," IEEE S...
	[2] D. Barrett, A. Kaplan, and J.Wileden, “Automated support for seamless interoperability in pol...
	[3] F.Brooks, The Mythical Man-Month, Addison-Wesley, August 1995.
	[4] A. Kaplan and J.Wileden, “Software interoperability: principles and practice,” ICSE 1999.
	[5] A. Kaplan and J.Wileden, “Toward painless polylingual persistence,” Seventh International Wor...
	[6] J. Auerbach, C. Barton, M. Chu-Carroll and M. Raghavachari, “Mockingbird: Flexible Stub Compi...
	[7] A. Kaplan, V. Ridgway and J.Wileden, “Why IDLs are not ideal,” Ninth IEEE International Works...
	[8] D. Barret, “Polylingual Systems: An Approach To Seamless Interoperability,” Ph.D. thesis, Uni...
	[9] A. Kaplan, J. Bubba and J.Wileden, “The Exu Approach to Safe, Transparent and Lightweight Int...
	[10] Institute for Software Research, University of California, Irvine, xADL 2.0 project, Apigen ...
	[11] Sun Microsystems, “Java Architecture for XML Binding (JAXB),” http:/ /java.sun.com/xml/jaxb/.
	[12] W. Emmerich, Engineering Distributed Objects, John Wiley, July 2000.
	[13] D. Friedman, and M. Wand, "Reification: Reflection without Metaphysics," LISP and Functional...
	[14] R. Keller and R. Schauer, "Design Components: Towards Software Composition at the Design Lev...
	[15] M. Beaudouin-Lafon and W. Mackay, "Reification, Polymorphism and Reuse: Three Principles for...
	[16] S. Abiteboul, P.Buneman, D.Suciu, Data on the Web: From Relations to Semistructured Data and...
	[17] S. Liang, Java Native Interface: Programmer's Guide and Specification, Addison Wesley, June ...
	[18] D.Perry and A.Wolf, “Foundations for the Study of Software Architectures”, ACM SIGSOFT Softw...
	[19] D.Perry, “Software Architecture and its Relevance for Software Engineering”, Keynote at Coor...
	[20] Edison Design Group, http://www.edg.com.
	[21] Semiconductor Business News, http://www.siliconstrategies.com/story/ OEG20020708S0052.
	[22] KLA-Tencor, "Archer Analyzer Automated, Real-Time Overlay Metrology Analysis," Technical Fac...

		2003-09-25T14:19:13-0500
	Mark Grechanik

