
Enforcing Safety Properties in Product Lines

Chang Hwan Peter Kim1, Eric Bodden2, Don Batory1 and Sarfraz Khurshid1

1 Department of Computer Science and
Department of Electrical and Computer Engineering

The University of Texas at Austin, USA
{chpkim@cs, batory@cs, khurshid@ece}.utexas.edu

2 Software Technology Group
Technische Universität Darmstadt, Germany
bodden@st.informatik.tu-darmstadt.de

Abstract. A product line is a family of programs where each program
is defined by a unique combination of features. Product lines, like con-
ventional programs, can be checked for safety properties through exe-
cution monitoring. However, applying execution monitoring techniques
for conventional programs against product lines is expensive because one
would have to monitor all of the product line’s programs, the number
of which can be exponential in the number of features. Also, doing so
would be wasteful because many programs can provably never violate
a stated property. We introduce a monitoring technique dedicated to
product lines that given a safety property, determines the statements
that need to be instrumented for the corresponding execution monitor
to trigger and the feature combinations required for these statements to
be reached. Thus, we identify feature combinations that cannot possibly
violate the stated safety property, reducing the number of programs to
monitor. Experiments show that our technique is effective, particuarly
for safety properties that crosscut many optional features.

1 Introduction

A software product line is a family of programs where each program is defined by
a unique combination of features. By developing programs with commonalities
and variabilities in a systematic way, product lines help reduce both the time and
cost of software development [14]. Concomitantly, product lines pose significant
new challenges as they involve reasoning about a family of programs, whose
cardinality may be exponential in the number of features.

In this paper we consider the problem of runtime monitoring product lines
for violations of safety properties. A safety property defines a set of unacceptable
program executions that can only be determined through runtime monitoring
[13]. We avoid monitoring every program of a product line by statically identi-
fying feature combinations (i.e., programs) that provably can never violate the
stated property. These programs do not require testing (for this property), which
can significantly speed up the testing process overall.

dsb
Text Box
Runtime Verification 2010, Malta

We accomplish this goal by starting with analyses that shows how to evaluate
runtime monitors at compile time [6, 7, 5, 4] for single programs. Our work ex-
tends these analyses by lifting them to understand features, making them aware
of possible feature combinations. A programmer needs to apply our analysis to
a product line once. The output is a bi-partitioning of feature configuations: (1)
configurations that need to be monitored because violations may occur and (2)
configurations for which no violation can happen.

To validate our work, we analyze two different Java-based product lines.
Experiments show we can rule out over half of the configurations statically for
these case studies. Further, to analyze an entire product line is not much more
expensive than applying the earlier analysis to a single program.

To summarize, the contributions of this paper are:

– A novel static analysis to determine, for a given product line and runtime
monitor specification, the feature combinations (programs) that need to be
monitored.

– An implementation of this analysis within the Clara framework for hybrid
typestate analysis [3], as an extension to Bodden et al.’s earlier whole-
program analysis [6].

– Experiments that show that our analysis can noticably reduce the number of
configurations that require runtime monitoring and thus can therefore result
in noticable savings in testing time.

2 Motivating Example

Figure 1 shows an elementary product line, whose programs fetch data and print
it. There are different ways of representing a product line. In this paper, we use
a SysGen representation [10], where a product line is an ordinary Java program
whose members are annotated and statements are conditionalized using feature
identifiers (in a manner similar to #ifdef).3 Local data is fetched if the Local

feature is selected (blue code), local data from a file is fetched if File is selected
(yellow code) and internal contents of data are printed if Inside is selected
(green code). Each member (class, field, or method) is annotated with a feature.
In this example, every member is annotated with Base feature, meaning that it
will be present in a program only if the Base feature is selected. In SysGen, a
program (also referred to as a configuration or feature combination) is instan-
tiated by assigning a Boolean value for each feature and statically evaluating
feature-conditionals and feature-annotations.

Product lines are usually associated with a feature model [2] that constrains
the allowed combinations of features. The feature model for our product line
is expressed below as a context-sensitive grammar. Base is a required feature:
optional features (Inside, File, Local) are listed in brackets.

3 Note that we capitalize feature identifiers for presentation purposes. Although fea-
ture identifiers in an if-conditional are implemented as field references, for presenta-
tion purposes we do not qualify the field reference with its class.

Fig. 1. Example Product Line

Example :: [Inside] [File] [Local] Base;
Inside or File or Local;
// Implementation constraints
(Inside implies Base) and (File implies Base) and (Local implies Base);

The model further requires at least one of the optional features to be selected
(line 2). In the last line, the feature model enforces additional implementation
constraints that must hold for all programs in the product line to compile. Ex-
ample: the code of the File feature references methods in Base. A technique
described elsewhere [15] can generate these implementation constraints automat-
ically. In total, the feature model allows seven configurations (i.e. our product
line has seven distinct programs).

2.1 Problem

Researchers have developed a multitude of specification formalisms for defining
runtime monitors. As our approach extends the Clara framework, it can gen-
erally apply to any runtime-monitoring approach that uses AspectJ aspects for
monitoring. This includes popular systems such as JavaMOP and tracematches.
For the remainder of this paper, we will use the tracematch [1] notation be-
cause it can express monitors concisely. Figure 2(a) shows a simple example.
ReadPrint prevents a print event after a read event is witnessed. In line 3 of

Figure 2(a), a read symbol captures all those events in the program execution,
known as joinpoints in AspectJ terminology, that are immediately before calls
to Util.read*(..). Similarly, the symbol print captures joinpoints occurring
immediately before calls to Util.print*(..). Line 6 carries the simple regular
expression “read print”, specifying that code body in lines 6–8 should execute
whenever a print follows a read on the program’s execution. Figure 2(b) shows
a finite-state machine for this tracematch, where symbols represent transitions.

1 aspect ReadPrint {
2 tracematch () {
3 sym read before : ca l l (∗ U t i l . read ∗ (. .)) ;
4 sym pr in t before : ca l l (∗ U t i l . p r i n t ∗ (. .)) ;
5

6 read+ p r in t {
7 throw new RuntimeException (” p o s s i b l e l eak ! ”) ;
8 }
9 }

10 }
(a) ReadPrint Tracematch

0start 1 2
read

read

print

(b) Finite-State Machine

Fig. 2. ReadPrint Safety Property

Figure 3 shows a second and different safety property: HasNext [6]. The prop-
erty checks if Iterator.next() is called twice without calling Iterator.has-

Next() in between. Note that this tracematch only matches if the two Iterator-

.next() calls bind to the same Iterator object i, as shown in Figure 3(a),
lines 2–4. When the tracematch encounters an event matched by a declared
symbol that is not part of the regular expression, such as hasNext, the trace-
match discards its partial match. Therefore, the tracematch would match a trace
“next(i1) next(i1)” but not “next(i1) hasNext(i1) next(i1)”, which is
exactly what we seek to express.

A naive approach to runtime monitoring would insert runtime monitors like
ReadPrint and HasNext into every program of a product line. However, as we
mentioned, it is often unnecessary to insert runtime monitors into some of these
programs because these programs provably cannot trigger the runtime monitor.

1 aspect HasNext {
2 tracematch (I t e r a t o r i) {
3 sym next before : ca l l (∗ I t e r a t o r . next ()) && args (i) ;
4 sym hasNext before : ca l l (∗ I t e r a t o r . hasNext ()) && args (i) ;
5

6 next next {
7 throw new RuntimeException (” check hasNext ! ”) ;
8 }
9 }

10 }
(a) HasNext Tracematch

0start 1 2

next

hasNext

next

(b) Finite-state machine

Fig. 3. HasNext Safety Property [6]

2.2 Goal

Our goal is to statically determine the feature configurations to monitor or con-
versely the configurations that cannot trigger the monitor. For our running exam-
ple, we can deduce these configurations by hand. For ReadPrint, both read and
print symbols have to match, meaning that File (which calls Util.read(..)

in line 17) and Base (which calls Util.print*(..) in lines 29 and 30) have to
be present for the monitor to trigger. Also, Local needs to be present because it
enables File’s code to be reached. Therefore, the ReadPrint monitor has to be
inserted if and only if these three features are present, i.e. on two of the seven
configurations. We represent the condition under which the monitor has to be in-
serted by treating a monitor as a feature itself (e.g. ReadPrint) and constructing
the presence condition for it: ReadPrint = File and Local (we do not include
Base because it’s always present) Similarly, the HasNext property only has to be
inserted iff Iterator+.next() can be called, i.e. on the four configurations with
Inside present. The presence condition for HasNext is HasNext = Inside. The
goal of our technique is to change the original feature model so that tracematches
are now features themselves and the tracematch presence conditions are part of
the feature model:

// ReadPrint and HasNext are now features themselves
Example :: [ReadPrint] [HasNext] [Inside] [File] [Local] Base;
Inside or File or Local;
// Implementation constraints
(Inside implies Base) and (File implies Base) and (Local implies Base);

// Tracematch presence conditions
ReadPrint = File and Local;
HasNext = Inside;

Note that although a tracematch is a feature itself that can be selected or
eliminated, it is different from other features in that its selection or elimination
is determined not by the user, but by the presence or absence of other features.

2.3 The Need for a Dedicated Static Analysis for Product-Lines

As mentioned earlier, there exists a static analysis that reduces a monitor’s
instrumentation against a single program [6, 7, 5], which we will refer to as a
“traditional program analysis”. There are two ways to use this analysis. One way
is inefficient, the other way imprecise: running the traditional program analysis
against each instantiated program will be very inefficient because it will have to
inspect every product program separately.

Another way would be to run the traditional program analysis against the
SysGen product line itself. By not evaluating the feature conditionals statically,
the analysis can treat the product line as an ordinary program. However, this
approach can be imprecise. For example, suppose we apply the traditional pro-
gram analysis on the ReadPrint and HasNext tracematches: both tracematches
may match in the case in which all features are enabled. Being oblivious to the
notion of features, the analysis will therefore report that the tracematches al-
ways have to be present. This shows that a static analysis, to be both efficient
and effective on a product line, has to be aware of the product line’s features.

Figure 4 displays an overview of our technique. First, our analysis deter-
mines the symbols required for the tracematch to trigger (“Determine Required
Symbols”). For each of these symbols, we use the aspect weaver to identify the
statements that are matched by the tracematch’s declared symbols (“Determine
Symbol-To-Shadows”). We elaborate these steps in Section 3. Then, for each of
these statements, we determine what feature combinations need to be present
for the statement to be reachable from the program’s main() method. This re-
sults in a set of presence conditions. We combine all these conditions to form
the presence condition of the tracematch. We repeat the process for each trace-
match (“Determine Presence Conditions”) and add the tracematches and their
presence conditions to the original feature model (“+”). We explain these steps
in Section 4.

3 Required Symbols and Shadows

A safety property must be monitored for a feature configuration c if the code in
c may drive the finite-state monitor from its initial state to its final (error) state.
In earlier work [6], Bodden et al. described three different algorithms that try to
determine, with increasing degrees of sophistication, whether a single program
can drive a monitor into an error state, and using which transition statements.
The first, called Quick Check , rules out a tracematch if the program does not even
contain transition statements required to reach the final automaton state. The
second, called Consistent-Variables Analysis, performs a similar check on every
consistent variable-to-object binding. The third, called flow-sensitive, check rules

Fig. 4. Overview of Our Technique

out a tracematch if the program cannot execute its transition statements in a
property-violating order.

In this paper, we limit ourselves to extending the Quick Check to product
lines. The Quick Check has the advantage that, as the name suggests, it exe-
cutes quickly. Nevertheless, our results show that even this relatively pragmatic
analysis approach can already considerably reduce the number of configurations
that require monitoring. It should be simple to extend our work to the other
analyses that Bodden et al. proposed but we consider this task less interesting
because it does not fundamentally alter our technique.

3.1 Required Symbols

A symbol represents a set of transition statements with the same label. Given
a tracematch, we determine the required symbols, i.e. the symbols required for
the error state to be reached, by removing each symbol one at a time and seeing
if removing the automaton edges with the symbol prevents the final state from
being reached. A configuration that doesn’t match a required symbol does not
have to be monitored. For ReadPrint property, the symbols read and print are
required because without even one of these, the final state in Figure 2(b) cannot
be reached. For HasNext property, only the symbol next is required. Note that
the final state can be reached without hasNext.

3.2 Symbol-to-Shadows

For each required symbol, we determine its joinpoint shadows (shadows for
short), i.e. program statements that cause the symbol to match. The symbol
will match — cause transition in the automaton — if even one of the shadows
is executed. Each symbol is a conventional AspectJ pointcut and as such, deter-
mining its shadows requires asking the weaver where they are. The way abc, a
compiler for tracematches that we are using, is built requires these shadows to

be actually woven into the SysGen product line first in order to determine the
symbols associated with them. And because the weaving is done against byte-
code, the SysGen product line has to be first compiled (as an ordinary program
without partially evaluating feature-conditionals and feature-annotations). Note
that the weaving against the SysGen product line is done solely to help deter-
mine the necessary configurations which are expressed as tracematch presence
conditions (see Figure 4). The actual tracematch weaving has to be done for
each configuration or program.

In our example, for ReadPrint tracematch, read symbol’s shadow is Util.-
read("secret.txt") call in line 17 of Figure 1 and print symbol’s shadows are
Util.printHeader() call in line 29 and Util.print(p.data) call in line 30.
For HasNext tracematch, next symbol’s shadows are Iterator.next() calls in
lines 50 and 51 and hasNext symbol’s shadow is Iterator.hasNext() call in
line 49.

4 Presence Conditions

A tracematch has to be inserted only on the configurations where each of the
required symbols is present. Thus, a tracematch’s presence condition (PC) is the
conjunction of the presence condition of each of the required symbols. A symbol is
present if even one of its shadows is present. Thus, a symbol’s presence condition
is the disjunction of the presence condition of each of its shadows. For a shadow
to be present, features of its enclosing feature-conditionals and method and class
must be present. In summary, a tracematch is computed in the following way:

pc(tracematch) = pc(reqdSymbol1) and pc(reqdSymbol2) and ... and pc(reqdSymbolN)
= {pc(shadow11) or pc(shadow12) or ... or pc(shadow(1X))} and

{pc(shadow21) or pc(shadow22) or ... or pc(shadow(2Y))} and ... and
{pc(shadowN1) or pc(shadowN2) or ... or pc(shadow(NZ))}

pc(shadow) = feature(condition1) and feature(condition2) and ... and feature(conditionJ) and
feature(classMember1) and feature(classMember2) and ... and feature(classMemberK)

For example, Figure 5 shows how ReadPrint tracematch is determined. As
mentioned in Section 3.1, the tracematch’s required symbols are read and print

(Figure 5, line 1), read has one shadow in line 17 of Figure 1 and print has
two shadows in lines 29 and 30. (Figure 5, line 2). For line 17 shadow to be
syntactically present in a program, the program must have the if(FILE) condi-
tional in line 16 and the fetchLocal() method definition (annotated with BASE

in line 14), which explains how pc(line17) is expanded into [File and Base].
Similarly, pc(line29) and pc(line30) are each expanded into [Base] because
each of the shadows just requires the main method definition, which is annotated
with BASE.

Figure 5 is imprecise in that it allows configurations where a shadow is syn-
tactically present, but is not reachable from the main method of the program.
For example, according to the algorithm, Util.read(..) shadow is “present”
in configurations {Base=true, Local=false, File=true, Inside=DONT CARE}
even though it is not reachable from main due to Local being turned off. A

1 ReadPrint = pc(read) and pc(print)
2 = {pc(line17)} and {pc(line29) or pc(line30)}
3 = {File and Base} and {Base or Base}

Fig. 5. Computing ReadPrint’s Presence Condition

more precise algorithm could require not only the shadow’s syntactic contain-
ers to be present, but also its transitive callers. The full algorithm for precisely
computing a shadow’s presence condition is not shown for space reasons, but it
basically takes a shadow’s imprecise presence condition and conjoins it with the
disjunction of the callers’ precise presence conditions. For example, for the line
17 shadow, which is called by line 10 that is in turn called by line 28, the precise
algorithm would return:

pc(line17) = [enclosingFeatures and (pc(caller1) or pc(caller2) or ... or pc(callerM))]
= [enclosingFeatures and (pc(line10))]
= [enclosingFeatures and (enclosingFeaturesLine10 and (pc(line28)))]
= [File and Base and (Local and Base and (Base))]
= File and Local

Substituting this in Figure 5, we get ReadPrint = File and Local, which
is what we seeked to achieve as outlined in Section 2.2. Similarly, HasNext’s
presence condition is:

HasNext = pc(next)
= {pc(line50) or pc(line51)}
= {[Inside and Base and (Base)] or [Inside and Base and (Base)]}
= Inside

Note that even though HasNext is more localized than ReadPrint, i.e. in
one optional feature (Inside) as opposed to two optional features (File and
Local), it is required in more configurations (4 out of 7) than ReadPrint is (2
out of 7). This is because the feature model allows fewer configurations with
both Local=true and File=true than configurations with just Inside=true.

4.1 Technical Subtleties

There are subtle, but important factors to take into account when computing
a shadow’s precise presence condition, which we discuss using a more involved
example shown in Figure 6. Suppose that Util.read(..) is the shadow whose
presence condition we’re computing. For simplicity, recursive edges in the call-
graph are not included in the presence condition. It is safe to do so because the
shadow can be still be reached by ignoring the feature controlling the recursive
edge. To see why, consider the recursion between a() and c() in the call-graph.
The shadow Util.read(..) can actually be reached only through the recursive
edge being present, i.e. X=true. If we do not include this constraint on X, we will
just end up inserting the monitor for both values of X, which is imprecise but
sound.

Also, main’s callers (e.g. D) is not included because main can be executed
through the execution environment, without having a caller. And main must be

Fig. 6. Example of Computing a Precise Shadow Presence Condition

present at least once in a shadow’s presence condition. Otherwise, the shadow is
not reachable and we can simply return false as the shadow’s presence condi-
tion.

4.2 Precision

Conjunctions strengthen the presence condition of the callee, but they are en-
tirely optional. For example, we can return the imprecise presence condition of
the callee in this example and the result will still be sound, albeit less precise.
This nice property allows us, through user’s preference for example, to control the
size of the presence condition by simply not going any farther in the call-graph,
thereby trading off precision for a more feasible analysis. Also, our technique
works with either a context-sensitive or -insensitive call-graph, although we use
a context-insensitive one constructed from Spark [11] for evaluation.

5 Evaluation

We implemented our analysis by extending the Clara static analysis framework
[3] and evaluated it on the following product lines: Graph Product Line (GPL),
a set of programs that implement different graph algorithms [12] and Notepad,
a Java Swing application with functionalities similar to Windows Notepad. We
considered three safety properties for each product line. For each property, we
report the number of configurations on which the property has to be monitored
and the execution time to derive the tracematch presence condition. We ran our
tool on a Windows 7 machine with Intel Core2 Duo CPU with 2.2 GHz and 2
GB of RAM.

Note that, although the product lines were created in-house, they were cre-
ated long before this paper was conceived (GPL over 5 years ago and Notepad
2 years ago). Our tool, the examined product lines and monitors, as well as the
detailed evaluation results are available for download [9].

5.1 Case Studies

Graph Product Line (GPL) Table 1 shows the results for GPL, which has
1713 LOC with 17 features and 156 congurations. Variations arise from algo-
rithms and structures of the graph (e.g. directed/undirected and weighted/un-
weighted).

Table 1. Graph Product Line (GPL) Results

Lines of code 1713
No. of features 17

No. of configurations 156
DisplayCheck

No. of configurations 67 (43%)
Duration 95.5 sec. (1.6 min.)

SearchCheck
No. of configurations 58 (38%)

Duration 225.3 sec. (3.8 min.)
KruskalCheck

No. of configurations 13 (8%)
Duration 86.0 sec. (1.4 min.)

The DisplayCheck safety property checks if the method for displaying a
vertex is called not in the control flow of the method for displaying a graph, which
would be a behavioral API violation. Instead of monitoring all 156 configurations,
our analysis reveals that only 67 configurations, or 43% of 156, need monitoring.
Our analysis took 1.6 minutes to complete. (The tracematch presence constraint
that represents these configurations is available on our website [9].)

SearchCheck checks if the search method is called without first calling the
initialize method on a vertex, which would make the search erroneous. Our
analysis shows that only 38% of the 156 configurations need monitoring and
took 3.8 minutes to complete. It should be noted that 2.3 minutes out of the
3.8 minutes is actually the time taken to count the configurations described by
the complex tracematch presence condition generated for this property, not to
generate the presence condition itself. We believe that the long duration is due
to the unoptimized implementation of our feature model solver, not due to the
complexity of the new feature model with the tracematch presence condition.

KruskalCheck checks if the method that runs the Kruskal’s algorithm returns
an object that was not created in the control-flow of the method, which would
mean that the algorithm is not functioning correctly. In 1.4 minutes, our analysis
showed that only 8% of the GPL product line needed monitoring.

Notepad Table 2 shows the results for Notepad, which has 2074 LOC with 25
features and 144 configurations. Variations arise from permuting largely inde-
pendent functionalities, such as saving/opening files, printing, and user interface
support (e.g. menubar or toolbar). The analysis, for all safety properties, takes
notably longer than that for GPL because Notepad uses the Java Swing frame-
work, which heavily uses call-back methods that increase by large amounts the
size of the call graph that our analysis needs to construct and to consider.

Table 2. Notepad Results

Lines of code 2074
No. of features 25

No. of configurations 144
PersistenceCheck

No. of configurations 72 (50%)
Duration 331.8 sec. (5.5 min.)

CopyPasteCheck
No. of configurations 64 (44%)

Duration 372.0 sec. (6.2 min.)
UndoRedoCheck

No. of configurations 32 (22%)
Duration 304.5 sec. (5.1 min.)

PersistenceCheck checks if java.io.File* objects are created outside of
persistence-related functions, which should not happen. In 5.5 minutes, our anal-
ysis reduces the configurations to monitor to 50%.

CopyPasteCheck checks if a paste can be performed without first performing
a copy, an obvious error with the product line. In 6.2 minutes, our analysis
reduces the configurations to monitor to 44% of the original number.

UndoRedoCheck checks if a redo can be performed without first performing
an undo. In 5.1 minutes, our analysis reduces the configurations to monitor to
22%.

5.2 Effectiveness

Cost-Benefit Analysis. As the duration for each product-line/tracematch pair
shows, our analysis introduces a small cost. Even for product lines considerably
larger than our case studies, we believe that the duration will remain small. Most
of the duration is from the weaving that is required to determine the required
shadows and from constructing the inter-procedural call-graph that we then
traverse to determine the presence conditions. The one-time cost of duration
is worth incurring if it is less than the time it takes to test-run each saved
configuration with complete path coverage (complete path coverage is required
to see if a monitor can be triggered). Consider Notepad and PersistenceCheck

pair, for which our technique is least effective as it takes the longest time, 4.65
seconds, to save a configuration (144 minus 64, or 80, configurations are saved
in 372.0 seconds, or 4.65 seconds to save a configuration).

is least effective as it takes the longest time, 287.4 seconds (4.8 minutes),
to achieve the smallest saving (72 configurations or 50%). In absolute numbers,
the duration of the analysis is spread out to 4 seconds per configuration. The
only way our technique would not be worth employing is if one could test-run
a configuration of Notepad with complete path coverage in less than 4 seconds.
Achieving the test-run within this time is unrealistic, especially in a UI-driven
application like Notepad.

Ideal (Product-line, Tracematch) Pairs. Our technique works best for pairs
where the tracematch can only be triggered on few configurations of the product

line. Ideally, a tracematch would crosscut many optional features or touch one
feature that is present in very few configurations. This is evident in the running
example, where the saving for ReadPrint, which requires two optional features,
is greater than that for HasNext, which requires one optional feature. It is also
evident in the case studies, where KruskalCheck and UndoRedoCheck, which are
localized in a small number of features but requires other features due to the fea-
ture model, sees better saving than their counterparts. Without any constraint,
a tracematch requiring x optional features needs to be inserted on 1/(2x) of
the configurations (PersistenceCheck requires one optional feature, hence the
50% reduction). A general safety property, such as one involving library data
structures and algorithms, is likely to be applicable to many configurations of a
product line (if a required feature uses it, then it must be inserted in all configu-
rations) and thus may not enable our technique to save many configurations. On
the other hand, a safety property specific to a small number of configurations
would make an ideal candidate.

6 Related Work

To the best of our knowledge, we are the first to propose using static analysis to
reduce the number of configurations to be monitored. Never-the-less, there are
direct connections to prior work.

Statically Evaluating Monitors. Our work is most closely related to [6].
As mentioned in Section 1 and Section 2, this traditional static analysis is not
suitable for product lines because it is oblivious to features. As mentioned in
Section 3, the traditional static analysis proposes three stages of precision. Al-
though we took only the first stage and extended it, there is no reason why the
other stages cannot be extended in a similar fashion. Whether further optimiza-
tion should be performed after running our technique remains an open question.
Namely, it may be possible to take a configuration or a program that our tech-
nique has determined to require a monitor and apply the traditional program
analysis [6] on it, which could possibly yield optimizations that wasn’t possible
in the more complex SysGen product line.

Testing Product Lines. The idea of reducing configurations originated
from our work on product line testing [10], which determines features that are
incremental, a notion similar to sandboxing, and uses this information to reduce
the combinatorics in running a product line test. The two works are different
both in setting and technique. In terms of setting, that work requires a test to
be written as a unit test, i.e. a program that exercises a subset of the program
under test, while this work requires a test to be written as a monitor against the
program under test. In terms of technique, [10] employs a static analysis that
checks if a feature does not alter the control-flow or data-flow of another feature,
which is not sufficient for our work because such a sandboxed feature can still
violate safety properties. Thus the two works are complementary.

Model-Checking Product Lines. Classen et al.[8] propose a feature-aware
model-checking technique. The technique is similar in intent to ours: using the

authors’ technique, programmers can apply model checking to a product line as
a whole, instead of applying it to each program of the product line. The authors
show, that in the common case this approach yields a far smaller complexity and
therefore has the potential for speeding up the model-checking process. Classen
et al. do not, however, model-check concrete product lines. Instead they assume a
given abstraction of a product line, given as a Feature Transition Systems (FTS),
a linear transition system annotated with feature conditions. Because our tech-
nique works on SysGen and Java, we need to consider issues specific to Java such
as the identification of relevant events, the weaving of the runtime monitor and
the static computation of points-to information. Also, model checking answers a
different question than our analysis: model checking can only tell whether or not
a given program (or product line) may violate a given temporal property. Our
analysis further reports a subset of instrumentation points (joinpoint shadows)
that can, in combination, lead up to such a violation. As we showed in previous
work [4], identifying such shadows requires more sophisticated algorithms than
those that only focus on violation detection.

Safe Composition. [15] collects referential dependencies in a product line
to determine the so-called “implementation constraints” that ensure that every
feature combination produces a compilable program. Our work can be seen as a
variant of safe composition, where a tracematch is treated as a feature itself that
“references” its shadows in the product line and requires features that allow
those shadows to be reached. Our analysis checks a much stronger property,
i.e. reachability to the shadows, than syntactic presence checked by the existing
safe composition technique. Also, collecting the referential dependencies is much
more involved in our technique because it requires evaluting pointcuts that can
have wildcards and control-flow constraints.

Relying on Domain Knowledge. Finally, rather than relying on static
analysis, users can come up with a tracematch’s presence condition themselves
if they are confident about their understanding of the product line and the trace-
match pair. However, this approach is highly error-prone as even a slight mistake
in the presence condition can cause configurations that must be monitored to
end up not being monitored. Also, our approach promotes separation of concerns
by allowing a safety property to be specified independently of the product-line
variability.

7 Conclusion

A product line enables systematic development of related programs, but it also
introduces the challenge of analyzing its large number of programs, which can
be exponential in the number of features. For safety properties that are enforced
through an execution monitor, conventional wisdom tells us that every config-
uration must be monitored. In this paper, we presented a static analysis tech-
nique that minimizes the configurations on which an execution monitor has to
be inserted. The technique determines the required instrumentation points and
determines what features need to be present for those points to be reachable.

The execution monitor is inserted only on the configurations with such features.
Our technique incurs a small overhead and achieves high reduction when a safety
property crosscuts optional features.

As the importance of product lines grows, so too will the importance of
analyzing and testing product lines, especially in a world where reliability and
security are its first and foremost priorities. This paper takes one of the many
steps needed to make analysis and testing of product lines an effective technology.

Acknowledgement. The work of Kim and Batory was supported by the
NSF’s Science of Design Project CCF 0724979 and NSERC Postgraduate Schol-
arship.

References

1. C. Allan, P. Avgustinov, A. S. Christensen, L. J. Hendren, S. Kuzins, O. Lhoták,
O. de Moor, D. Sereni, G. Sittampalam, and J. Tibble. Adding trace matching
with free variables to aspectj. In OOPSLA, pages 345–364, 2005.

2. D. Batory. Feature models, grammars, and propositional formulas. Technical
Report TR-05-14, University of Texas at Austin, Texas, Mar. 2005.

3. E. Bodden. Clara: a framework for implementing hybrid typestate analyses. Tech-
nical Report Clara-2, 2009.

4. E. Bodden. Efficient Hybrid Typestate Analysis by Determining Continuation-
Equivalent States. In International Conference of Software Engineering (ICSE).
ACM Press, 2010. To appear.

5. E. Bodden, F. Chen, and G. Rosu. Dependent advice: a general approach to
optimizing history-based aspects. In AOSD ’09: Proceedings of the 8th ACM in-
ternational conference on Aspect-oriented software development, pages 3–14, New
York, NY, USA, 2009. ACM.

6. E. Bodden, L. J. Hendren, and O. Lhoták. A staged static program analysis
to improve the performance of runtime monitoring. In E. Ernst, editor, ECOOP,
volume 4609 of Lecture Notes in Computer Science, pages 525–549. Springer, 2007.

7. E. Bodden, P. Lam, and L. Hendren. Finding programming errors earlier by eval-
uating runtime monitors ahead-of-time. In SIGSOFT ’08/FSE-16: Proceedings
of the 16th ACM SIGSOFT International Symposium on Foundations of software
engineering, pages 36–47, New York, NY, USA, 2008. ACM.

8. A. Classen, P. Heymans, P.-Y. Schobbens, A. Legay, and J.-F. Raskin. Model
checking lots of systems: Efficient verification of temporal properties in software
product lines (to appear). In 32nd International Conference on Software Engi-
neering, ICSE 2010, May 2-8, 2010, Cape Town, South Africa, Proceedings. IEEE,
2010. Acceptance rate: 13.7

9. C. H. P. Kim. Enforcing safety properties in product lines: Tool and results.
Available from http://userweb.cs.utexas.edu/~chpkim/splmonitoring, 2010.

10. C. H. P. Kim, D. Batory, and S. Khurshid. Reducing combinatorics in product line
testing. Technical Report TR-10-02, University of Texas at Austin, Austin, Texas,
USA, January 2010.

11. O. Lhoták and L. Hendren. Scaling Java points-to analysis using Spark. In
G. Hedin, editor, Compiler Construction, 12th International Conference, volume
2622 of LNCS, pages 153–169, Warsaw, Poland, April 2003. Springer.

12. R. E. Lopez-herrejon and D. Batory. A standard problem for evaluating product-
line methodologies. In Proc. 2001 Conf. Generative and Component-Based Soft-
ware Eng, pages 10–24. Springer, 2001.

13. F. B. Schneider. Enforceable security policies. ACM Trans. Inf. Syst. Secur.,
3(1):30–50, 2000.

14. Software Engineering Institute, CMU. Software product lines. http://www.sei.

cmu.edu/productlines/.
15. S. Thaker, D. S. Batory, D. Kitchin, and W. R. Cook. Safe composition of product

lines. In C. Consel and J. L. Lawall, editors, GPCE, pages 95–104. ACM, 2007.

