Special Issue on Software Product Lines
December 2006, Communications of the ACM

Automated Analyses of Feature Models: Challenges Ahead

Don Batory
Dept. Computer Sciences
University of Texas at Austin
Austin, Texas, U.S.A.
batory@cs.utexas.edu

1 Introduction

A feature is an increment in product functionality. Features
are commonly used to specify and distinguish products in
product lines. They communicate product functions in an
easy-to-understand way, they capture functionalities con-
cisely, and help delineate the commonalities and variabilities
of a domain.

Features can have attributes (much like GUI components can
be customized by property lists), where the values of certain
attributes are computed from the properties of other features
(e.g., the cost of a product is the sum of the costs of its con-
stituent features). Also features often have constraints on
their usage: the selection of one feature may preclude or
require the selection of others.

Current tool support for feature models is ad hoc, offering
little or no support for debugging feature models or optimiz-
ing feature selections. Recent work shows how feature mod-
els can be reduced to propositional formulas or to constraint
satisfaction problems, for which off-the-shelf tools can vali-
date properties of models (e.g., confirming that a given set of
features are incompatible or compatible) or to optimize the
selection of features (e.g., performance) [1][2][4]. This
opens up new possibilities for next-generation tools for spec-
ifying products in software product lines.

Of course, feature models are a front-end to a back-end syn-
thesis technology that takes the output of a feature model
(i.e., a program specification) and converts it into the pro-
gram itself. There are many technologies for doing this, and
reviewing them is beyond the scope of this paper. The contri-
bution of this paper is to alert readers to recent advances in
formalizing feature models and to the challenges ahead in
automating product specification and design.

2 Open Issues and a Research Agenda

Model Consistency. The automotive industry has feature
models with up to ten thousand features. It is well-known
that these models are riddled with inconsistencies that are
hard to detect. As an elementary illustration, suppose a fea-
ture model requires that (1) if feature a is used then 8 must

David Benavides and Antonio Ruiz-Cortés
Dpto. de Lenguajes y Sistemas Informaticos

University of Seville

Av. de la Reina Mercedes S/N, 41012 Seville, Spain

{benavides,aruiz}@tdg.lsi.us.es

also be used, and (2) if feature B is used, feature a cannot be
used. This is expressed by the formula:

(A implies B) and (B implies not A)

Clearly there is an inconsistency: if a is true, we can con-
clude a is false. Such inconsistencies are rarely this simple in
practice. The way they are discovered today is by acciden-
tally stumbling over them: the right set of features must be
selected to expose the error. Unfortunately, the number of
subformulas to examine is O(2"), where n is the number of
variables in a formula. Are there automated ways to find
model inconsistencies?

Explanations. Features can be automatically deselected by
numerical constraints (e.g., performance). It is possible for
users to specify constraints that are unsatisfiable (e.g., the
memory requirements of a program cannot exceed x and the
program must have feature Y, where memoryRequire-
ments (¥) >x). Explaining why there is no product for a given
set of constraints, and perhaps more importantly, how the sit-
uation can be rectified is key. Finding a minimal number of
violated constraints, which is vital to understandable expla-
nations, is a difficult problem. Model diagnosis research may
be relevant [10].

Model Driven Development (MDD). Mapping feature
selections in a feature model into other development artifacts
(requirements, architecture, code modules, test cases, docu-
mentation, etc.) is fundamental to MDD. As an example of
model and code integration, suppose the implementation of
feature F makes a reference to a variable or method that is
part of feature @ This means that if F is selected, then ¢ must
also be selected. It should not be possible to specify a prod-
uct p where F is selected and e is not. That a feature model
satisfies this constraint can be verified by a SAT solver.
More generally, verifying that other program representations
are consistent with their feature model is a significant
research challenge [6][3][11].

Artificial Intelligence (AI) Configurators. Consider a
product line of aircraft carriers. Each carrier may contain
several different kinds of aircraft (short-range and long-
range fighters), and each plane may itself be a member of a
product line. The planes on a carrier impose constraints on

Page 1



the carrier's design. A web of customizable objects would
be needed to describe a carrier (or other complex products)
[5]. Feature models must be generalized to describe these
“mega” products, and so too must tools that analyze and
visualize these models. Al configurators, tools that config-
ure constellations of objects, may be important for the anal-
ysis task [8][1].

Performance Scalability. How well do SAT solvers, BDD
tools, CSP solvers, and Al configurators perform with large
models? (We can even imagine description logic-based rea-
soners being used to analyze feature models). Even though
there has been an enormous increase in computing power in
the last decade, the problems of feature combinatorics
remain NP-hard and can take a long time to solve. Not all
tools and approaches will perform equally well. Which
tools should be used and when? Can the choice of which
tools to use be made automatically to minimize the time to
analyze feature models? Will it be necessary to integrate
different solvers?

3 Conclusions

Validating and analyzing product specifications will have
significant practical payoffs. The benefits are tools that
propagate constraints (so that incorrect specifications can
be automatically detected), that provide explanations when
design dead-ends are reached (and how to fix such designs),
and that automatically optimize configurations for specific
needs (to simplify program designs). Exposing the theory
that underlines feature models is central to this goal.
Answering these challenges will require close cooperation
between product-line engineers and researchers.

Acknowledgments. This work was support in part by
NSF’s Science of Design Project #CCF-0438786 and the
Spanish Science and Education Ministry (MEC) under con-
tract TIC2003-02737-C02-01 (AgilWeb). We thank K.
Pohl, P. Clements, J. McGregor, K. Czarnecki, O. Diaz, T.
Miénnistd, V. Lifschitz and D. Beuche for their helpful com-
ments on an earlier draft of this paper.

4 References

[1] T. Asikainen, T. Ménnistd, and T. Soininen. “Using a Config-
urator for Modelling and Configuring Software Product
Lines based on Feature Models”. Workshop on Software Vari-
ability Management for Product Derivation, Sofiware Prod-
uct Line Conference (SPLC3),2004.

[2] D. Batory, “Feature Models, Grammars, and Propositional
Formulas”, Software Product Line Conference, 2005.

[3] D. Batory and S. Thaker, “Towards Safe Composition of
Product-Lines”, Dept. Computer Sciences, University of
Texas, TR-06-33, 2006.

[4] D. Benavides, P. Trinidad, and A. Ruiz-Cortes, “Automated
Reasoning on Feature Models”, Conference on Advanced
Information Systems Engineering (CAISE), July 2005.

[5] K. Czarnecki and C.H. Peter Kim, “Cardinality-Based Fea-
ture Modeling and Constraints: A Progress Report”, OOP-
SLA Workshop on Software Factories, 2005.

[6] K. Czarnecki and K. Pietroszek. “Verifying Feature-Based
Model Templates Against Well-Formed OCL Constraints”,
Generative Programming and Component Engineering,
2006.

[7] K. Kang, S. Cohen, J. Hess, W. Nowak, and S. Peterson.
“Feature-Oriented Domain Analysis (FODA) Feasibility
Study”. Technical Report, CMU/SEI-90TR-21, Nov. 1990.

[8] S. Mittal and F. Frayman, “Towards a Generic Model of Con-
figuration Tasks”, 11th Int. Conference on Artificial Intelli-
gence, 1989, 1391-1401.

[9] S. Neema, J. Sztipanovits, and G. Karsai, “Constraint-Based
Design Space Exploration and Model Synthesis”, EMSOFT
2003, LNCS 2855, p. 290- 305.

[10] R. Reiter, “A Theory of Diagnosis from First Principles”,
Artificial Intelligence 32, Vol. 1, 1987, 57-96.

[11] K. Pohl, G. Bockle, F v.d. Linden, Software Product Line
Engineering: Foundations, Principles and Techniques,
Springer 2005.

Page 2



