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Abstract
Mechanized proof assistants are powerful verification tools,
but proof development can be difficult and time-consuming.
When verifying a family of related programs, the effort can
be reduced by proof reuse. In this paper, we show how to en-
gineer product lines with theorems and proofs built from fea-
ture modules. Each module contains proof fragments which
are composed together to build a complete proof of correct-
ness for each product. We consider a product line of pro-
gramming languages, where each variant includes metathe-
ory proofs verifying the correctness of its semantic defini-
tions. This approach has been realized in the Coq proof as-
sistant, with the proofs of each feature independently certifi-
able by Coq. These proofs are composed for each language
variant, with Coq mechanically verifying that the composite
proofs are correct. As validation, we formalize a core calcu-
lus for Java in Coq which can be extended with any combi-
nation of casts, interfaces, or generics.

1. Introduction
Mechanized theorem proving is hard: large-scale proof de-
velopments [13, 16] take multiple person-years and consist
of tens of thousand lines of proof scripts. Given the effort in-
vested in formal verification, it is desirable to reuse as much
of the formalization as possible when developing similiar
proofs. The problem is compounded when verifying mem-
bers of a product line – a family of related systems [2, 5] –
in which the prospect of developing and maintaining indi-
vidual proofs for each member is untenable.

Product lines can be decomposed into features – units of
functionality. By selecting and composing different features,
members of a product line can be synthesized. The challenge
of feature modules for software product lines is that their
contents cut across normal object-oriented boundaries [5,
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25]. The same holds for proofs. Feature modularization of
proofs is an open, fundamental, and challenging problem.

Surprisingly, the programming language literature is re-
plete with examples of product lines which include proofs.
These product lines typically only have two members, con-
sisting of a core language such as Featherweight Java
(FJ) [14], and an updated one with modified syntax, seman-
tics, and proofs of correctness. Indeed, the original FJ paper
also presents Featherweight Generic Java (FGJ), a modified
version of FJ with support for generics. An integral part of
any type system are the metatheoretic proofs showing type
soundness – a guarantee that the type system statically en-
forces the desired run-time behavior of a language, typically
preservation and progress [24].

Typically, each research paper only adds a single new fea-
ture to a core calculus, and this is accomplished manually.
Reuse of existing syntax, semantics, and proofs is achieved
by copying existing rules, and in the case of proofs, fol-
lowing the structure of the original proof with appropriate
updates. As more features are added, this manual process
grows increasingly cumbersome and error prone. Further,
the enhanced languages become more difficult to maintain.
Adding a feature requires changes that cut across the normal
structural boundaries of a language – its syntax, operational
semantics, and type system. Each change requires arduously
rechecking existing proofs by hand.

Using theorem provers to mechanically formalize lan-
guages and their metatheory provides an interesting testbed
for studying the modularization of product lines which in-
clude proofs. By implementing an extension in the proof as-
sistant as a feature module, which includes updates to ex-
isting definitions and proofs, we can compose feature mod-
ules to build a completely mechanized definition of an en-
hanced language, with the proofs mechanically checked by
the theorem prover. Stepwise development is enabled, and it
is possible to start with a core language and add features to
progressively build a family or product line of more detailed
languages with tool support and less difficulty.

In this paper, we present a methodology for feature-
oriented development of a language using a variant of FJ
as an example. We implement feature modules in Coq [8]
and demonstrate how to build mechanized proofs that can
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FJ Expression Syntax FGJ Expression Syntax

e ::= x
| e.f
| e.m (e)
| new C(e)
| (C) e

Z⇒
e ::= x

| e.f

| e.m 〈T〉 β (e)

| new C 〈T〉 β (e)

| (C 〈T〉 β) e

FJ Subtyping T <: T FGJ Subtyping ∆ δ ` T <: T

S<:T T<:V

S<:V
(S-TRANS)

T<:T (S-REFL)

class C extends D {. . .}
C<:D

(S-DIR)

Z⇒

∆ ` X<:∆(X) (GS-VAR) α

∆ δ `S<:T ∆ δ `T<:V

∆ δ `S<:V
(GS-TRANS)

∆ δ `T<:T (GS-REFL)

class C 〈X / N〉
β
extends D 〈V〉

β
{. . .}

∆
δ ` C 〈T〉

β
<: [T/X]

η
D 〈V〉

β
(GS-DIR)

FJ New Typing Γ ` e : T FGJ New Typing ∆; δΓ ` e : T

fields(C) = V f Γ ` e : U U<:V

Γ ` new C(e) : C
(T-NEW) Z⇒ ∆ ` C〈T〉

γ
fields(C 〈T〉 β) = V f

∆;
δ
Γ ` e : U ∆

δ ` U<:V

∆;
δ
Γ ` new C 〈T〉

β
(e) : C

(GT-NEW)

Figure 1: Selected FJ Definitions with FGJ Changes Highlighted

adapt to new extensions. Each module is a separate Coq file
which includes inductive definitions formalizing a language
and proofs over those definitions. A feature’s proofs can
be independently checked by Coq, with no need to recheck
existing proofs after composition. We validate our approach
through the development of a family of feature-enriched lan-
guages, culminating in a generic version of FJ with generic
interfaces. Though our work is geared toward mechanized
metatheory in Coq, the techniques should apply to different
formalizations in other higher-order proof assistants.

2. Background
2.1 On the Importance of Engineering
Architecting product lines (sets of similar programs) has
long existed in the software engineering community [18,
23]. So too has the challenge of achieving object-oriented
code reuse in this context [26, 30]. The essence of reusable
designs – be they code or proofs – is engineering. There is no
magic bullet, but rather a careful trade-off between flexibility
and specialization. A spectrum of common changes must be
explicitly anticipated in the construction of a feature and its
interface. This is no different from using abstract classes
and interfaces in the design of OO frameworks [7]. The
plug-compatibility of features is not an after-thought but is

essential to their design and implementation, allowing the
easy integration of new features as long as they satisfy the
assumptions of existing features. Of course, unanticipated
features do arise, requiring a refactoring of existing modules.
Again, this is no different than typical software development.
Exactly the same ideas hold for modularizing proofs. It is
against this backdrop that we motivate our work.

2.2 A Motivating Example
Consider adding generics to the calculus of FJ [14] to pro-
duce the FGJ calculus. The required changes are woven
throughout the syntax and semantics of FJ. The left-hand
column of Figure 1 presents a subset of the syntax of FJ, the
rules which formalize the subtyping relation that establish
the inheritance hierarchy, and the typing rule that ensures
expressions for object creation are well-formed. The corre-
sponding definitions for FGJ are in the right-hand column.

The categories of changes are tagged in Figure 1 with
Greek letters:

α. Adding new rules or pieces of syntax. FGJ adds type vari-
ables to parameterize classes and methods. The subtyping
relation adds the GS-VAR rule for this new kind of type.

β. Modifying existing syntax. FGJ adds type parameters to
method calls, object creation, casts, and class definitions.



FJ Fields of a Supertype Lemma FGJ Fields of a Supertype Lemma
Lemma 2.1. If S<:T and fields(T) = T f, then
fields(S) = S g and Si = Ti and gi = fi for all
i ≤ #(f). Z⇒

Lemma 2.2. If ∆ δ ` S<:T and fields( bound∆(T) η) =

T f, then fields( bound∆(S) η) = S g, Si = Ti and gi = fi for
all i ≤ #(f).

Proof. By induction on the derivation of S<:T Proof. By induction on the derivation of ∆ δ ` S<:T

Case GS-VAR α S = X and T = ∆(X).
Follows immediately from the fact that bound∆(∆(X)) =

∆(X) by the definition of bound.
Case S-REFL S = T. Case GS-REFL S = T.

Follows immediately. Z⇒ Follows immediately.
Case S-TRANS S<:V and V<:T. Case GS-TRANS ∆ δ ` S<:V and ∆ δ ` V<:T.

By the inductive hypothesis, fields(V) = V h
and Vi = Ti and hi = fi for all i ≤ #(f). Again
applying the inductive hypothesis, fields(S) =
S g and Si = Vi and gi = hi for all i ≤ #(h). Since
#(f) ≤ #(h), the conclusion is immediate.

Z⇒
By the inductive hypothesis, fields( bound∆(V) η) = V h

and Vi = Ti and hi = fi for all i ≤ #(f). Again applying the
inductive hypothesis, fields( bound∆(S) η) = S g and Si = Vi
and gi = hi for all i ≤ #(h). Since #(f) ≤ #(h), the conclusion
is immediate.

Case S-DIR S = C, T = D, Case GS-DIR S = C 〈T〉 β , T = [T/X] ηD 〈V〉 β ,

class C extends D {S g; . . .}. class C 〈X / N〉
β
extends D 〈V〉

β
{S g; . . .}.

By the rule F-CLASS, fields(C) = U f; S g,
where U f = fields(D), from which the conclu-
sion is immediate.

Z⇒ By the rule F-CLASS, fields(C 〈T〉 β) = U f; [T/X] ηS g,

where U f = fields( [T/X] η D 〈V〉 β).

By definition, bound∆(V) = V for all non-variable types V η ,
from which the conclusion is immediate.

Figure 2: An Example FJ Proof with FGJ Changes Highlighted

γ. Adding new premises to existing typing rules. The up-
dated GT-NEW rule includes a new premise requiring
that the type of a new object must be well-formed.

δ. Extending judgment signatures. The added rule GS-VAR
looks up the bound of a type variable using a typing
context, ∆. This context must be added to the signature
of the subtyping relation, transforming all occurrences to
a new ternary relation.

η. Modifying premises and conclusions in existing rules.
The type parameters used for the parent class D in a class
definition are instantiated with the parameters used for
the child in the conclusion of GS-DIR.

In addition to syntax and semantics, the definitions of FJ and
FGJ include proofs of progress and preservation for their
type systems. With each change to a definition, these proofs
must also be updated. As with the changes to definitions
in Figure 1, these changes are threaded throughout existing
proofs. Consider the related proofs in Figure 2 of a lemma
used in the proof of progress for both languages. These lem-
mas are used in the same place in the proof of progress
and are structurally similar, proceeding by induction on the
derivation of the subtyping judgment. The proof for FGJ has
been adapted to reflect the changes that were made to its
definitions. These changes are highlighted in Figure 2 and
marked with the kind of definitional change that triggered

the update. Throughout the lemma, the signature of the sub-
typing judgment has been altered include a context for type
variablesδ . The statement of the lemma now uses the auxil-
iary bound function, due to a modification to the premises
of the typing rule for field lookupη . These changes are not
simply syntactic: both affect the applications of the induc-
tive hypothesis in the GS-TRANS case. The proof must now
include a case for the added GS-VAR subtyping ruleα. The
case for GS-DIR requires the most drastic change, as the ex-
isting proof for that case is modified to include an additional
statement about the behavior of bound.

As more features are added to a language, its metatheo-
retic proofs of correctness grow in size and complexity. In
addition, each different selection of features produces a new
language with its own syntax, type system, operational se-
mantics. While the proof of type safety is similar for each
language, (potentially subtle) changes occur throughout the
proof depending on the features included. By modularizing
the type safety proof into distinct features, each language
variant is able to build its type safety proof from a com-
mon set of proofs. There is no need to manually maintain
separate proofs for each language variant. As we shall see,
this allows us to add new features to an existing language
in a structured way, exploiting existing proofs to build more
feature-rich languages that are semantically correct.



We demonstrate in the following sections how each kind
of extension to a language’s syntax and semantics outlined
above requires a structural change to a proof. Base proofs
can be updated by filling in the pieces required by these
changes, enabling reuse of potentially complex proofs for
a number of different features. Further, we demonstrate how
this modularization can be achieved within the Coq proof
assistant. In our approach, each feature has a set of as-
sumptions that serve as variation points, allowing a feature’s
proofs to be checked independently. As long as an extension
provides the necessary proofs to satisfy these assumptions,
the composite proof is guaranteed to hold for any composed
language. Generating proofs for a composed language is thus
a straightforward check that all dependencies are satisfied,
with no need to recheck existing proofs.

3. The Structure of Features
Features impose a mathematical structure on the universe of
programming languages (including type systems and proofs
of correctness) that are to be synthesized. In this section, we
review concepts that are essential to our work.

3.1 Features and Feature Compositions
We start with a base language or base feature to which
extensions are added. It is modeled as a constant or zero-
ary function. For our study, the core Featherweight Java
cFJ language is a cast-free variant of FJ. (This omission is
not without precedent, as other core calculi for Java [28]
omit casts). There are also optional features, which are unary
functions, that extend the base or other features:

cFJ core Featherweight Java
Cast adds casts to expressions
Interface adds interfaces
Generic adds type parameters

Assuming no feature interactions, features are composed
by function composition (·). Each expression corresponds to
a composite feature or a distinct language. Composing Cast
with cFJ builds the original version of FJ:

cFJ // Core FJ

Cast · cFJ // Original FJ [14]

Interface · cFJ // Core FJ with Interfaces

Interface · Cast · cFJ // Original FJ with Interfaces

Generic · cFJ // Core Featherweight Generic Java

Generic · Cast · cFJ // Original FGJ

Generic · Interface · cFJ // core Generic FJ with

// Generic Interfaces

Generic · Interface // FGJ with

· Cast · cFJ // Generic Interfaces

3.2 Feature Models
Not all compositions of features are meaningful. Some fea-
tures require the presence or absence of other features. An

if statement, for example, requires a feature that introduces
some notion of booleans to use in test conditions. Feature
models define the compositions of features that produce
meaningful languages. A feature model is a context sensitive
grammar, consisting of a context free grammar whose sen-
tences define a superset of all legal feature expressions, and
a set of constraints (the context sensitive part) that eliminates
nonsensical sentences [6]. The grammar of feature model P
(below) defines eight sentences (features k, i, j are optional;
b is mandatory). Contraints limit legal sentences to those that
have at least one optional feature, and if feature k is selected,
so too must j.

P : [k] [i] [j] b; // context free grammar

k ∨ j ∨ i; // additional constraints

k⇒ j;

Given a sentence of a feature model (‘kjb’) a dot-product
is taken of its terms to map it to an expression (k · j · b). A
language is synthesized by evaluating the expression. The
feature model L that used in our study is context free:

L : [Generic] [Interface] [Cast] cFJ;

3.3 Multiple Representations of Languages
Every base language (cFJ) has multiple representations: its
syntax scFJ , operational semantics ocFJ , type system tcFJ ,
and metatheory proofs pcFJ . A base language is a tuple of
representations cFJ = [scFJ , ocFJ , tcFJ , pcFJ]. An optional
feature i extends each representation: the language’s syn-
tax is extended with new productions4si, its operational se-
mantics are extended by modifying existing rules and adding
new rules to handle the updated syntax 4oi, etc. Each of
these changes is modeled by a unary function. Feature i is a
tuple of such functions i = [4si,4oi,4ti,4pi] that update
each representation of a language.

The representations of a language are computed by com-
posing tuples element-wise. The tuple for language FJ =
Cast · cFJ is:

FJ = Cast · cFJ
= [4sC,4oC,4tC,4pC] · [sFJ , oFJ , tFJ , pFJ]
= [4sC · sFJ ,4oC · oFJ ,4tC · tFJ ,4pC · pFJ]

That is, the syntax of FJ is the syntax of the base sFJ com-
posed with extension 4sC, the semantics of FJ are the base
semantics oFJ composed with extension 4oC, and so on.
In this way, all parts of a language are updated lock-step
when features are composed. See [5, 12] for generalizations
of these ideas.

3.4 Feature Interactions
Feature interactions are ubiquitous. Consider the Interface
feature which introduces syntax for interface declarations:

J ::= interface I {Mty}



This declaration may be changed by other features. When
Generic is added, the syntax of an interface declaration
must be updated to include type parameters:

J ::= interface I 〈X / N〉 {Mty}

Similarly, any proofs in Generic that induct over the deriva-
tion of the subtyping judgement must add new cases for
the subtyping rule introduced by the Interface feature.
Such proof updates are necessary only when both features
are present. The set of additional changes made across all
representations is the interaction of these features, written
Generic#Interface.1

Until now, features were composed by only one operation
(dot or ·). Now we introduce two additional operations:
product (×) and interaction (#). When designers want a set
of features, they really want the ×-product of these features,
which includes the dot-product of these features and their
interactions. The ×-product of features f and g is:

f× g = (f#g) · f · g (1)

where # distributes over dot and # takes precedence over dot:

f#(g · h) = (f#g) · (f#h) (2)

That is, the interaction of a feature with a dot-product is the
dot-product of their interactions.× is right-associative and #
is commutative and associative.2

The connection of × and # to prior discussions is sim-
ple. To allow for feature interactions, a sentence of a feature
model (‘kjb’) is mapped to an expression by a ×-product of
its terms (k× j× b). Equations (1) and (2) are used to re-
duce an expression with × operations to an expression with
only dot and #, as below:

p = k× j× b // def of p

= k× ( j#b · j · b ) // (1)

= k#(j#b · j · b) · k · (j#b · j · b) // (1)

= k#j#b · k#j · k#b · k · j#b · j · b // (2) (4)

1 Our Generic#Interface example is isomorphic to the classical example
of fire and flood control [15]. Let b denote the design of a building. The
flood control feature adds water sensors to every floor of b. If standing
water is detected, the water main to b is turned off. The fire control
feature adds fire sensors to every floor of b. If fire is detected, sprinklers
are turned on. Adding flood or fire control to the building (e.g. flood · b
and fire · b) is straightforward. However, adding both (flood · fire · b)
is problematic: if fire is detected, the sprinklers turn on, standing water is
detected, the water main is turned off, and the building burns down. This
is not the intended semantics of the composition of the flood, fire, and b
features. The fix is to apply an additional extension, labeled flood#fire,
which is the interaction of flood and fire. flood#fire represents the
changes (extensions) that are needed to make the flood and fire features
work correctly together. The correct building design is flood#fire·flood·
fire · b.
2 A more general algebra has operations×, #, and · that are all commutative
and associative [4]. This generality is not needed for this paper.

Language p is synthesized by evaluating expression (4).
Interpreting modules for individual features like k, j, and
b as 1-way feature interactions (where k#j denotes a 2-way
interaction and k#j#b is 3-way), the universe of modules in a
feature-oriented construction are exclusively those of feature
interactions.

An ×-product of n features results in O(2n) interactions
(i.e. all possible feature combinations). Fortunately, the vast
majority of feature interactions are empty, meaning that they
correspond to the identity transformation 1, whose proper-
ties are:

1 · f = f · 1 = f (3)

Most non-empty interactions are pairwise (2-way). Occa-
sionally higher-order interactions arise. The ×-product of
cFJ, Interface, and Generic is:

Generic× Interface× cFJ
= Generic#Interface#cFJ · Generic#Interface
· Generic#cFJ · Generic · Interface#cFJ
· Interface · cFJ

= Generic#Interface · Generic · Interface · cFJ
which means that all 2- and 3-way interactions, except
Generic#Interface, equal 1. In our case study, the com-
plete set of interaction modules that are not equal to 1 is:

Module Description
cFJ core Featherweight Java
Cast cast

Interface interfaces
Generic generics

Generic#Interface generic and interface interactions
Generic#Cast generic and cast interactions

Each of these interaction modules is represented by a tuple
of definitions or a tuple of changes to these definitions.

4. Decomposing a Language into Features
We designed features to be monotonic: what was true be-
fore a feature is added remains valid after composition, al-
though the scope of validity may be qualified. This is stan-
dard in feature-based designs, as it simplifies reasoning with
features [2].

All representations of a language (syntax, operational
semantics, type system, proofs) are themselves written in
distinct languages. Language syntax uses BNF, operational
semantics and type systems use standard rule notations, and
metatheoretic proofs are formal proofs in Coq.

Despite these different representations, there are only two
kinds of changes that a feature makes to a document: new
definitions can be added and existing definitions can be mod-
ified. Addition is just the union of definitions. Modification
requires definitions to be engineered for change.

In the following sections, we explain how to accomplish
addition and modification. We alert readers that our tech-



niques for extending language syntax are identical to ex-
tension techniques for the other representations. The critical
contribution of our approach is how we guarantee the cor-
rectness of composed proofs, the topic of Section 5.1.

4.1 Language Syntax
We use BNF to express language syntax. Figure 3a shows
the BNF for expressions in cFJ, Figure 3b the production
that the Cast feature adds to cFJ’s BNF, and Figure 3c
the composition (union) of these productions, that defines
the expression grammar of the FJ = Cast · cFJ language
(Figure 1).

e ::= x
| e.f
| e.m(e)
| new C(e) ;

(a)

e ::= (C) e ;

(b)

e ::= x
| e.f
| e.m(e)
| new C(e)
| (C) e ;

(c)

Figure 3: Union of Grammars

Modifying existing productions requires foresight to an-
ticipate how productions may be changed by other features.
(This is no different from object-oriented refactorings that
prepare source code for extensions – visitors, frameworks,
strategies, etc. – as discussed in Section 2.) Consider the
impact of adding the Generics feature to cFJ and Cast:
type parameters must be added to the expression syntax
of method calls and class types now have type parameters.
What we do is to insert variation points (VP), a standard
concept in product line designs [1], to allow new syntax to
appear in a production. For syntax rules, a VP is simply the
name of an (initially) empty production.

Figure 4a-b shows the VPs TPm added to method calls in
the cFJ expression grammar and TPt added to class types in
the cFJ and Cast expression grammars. Figure 4c shows the
composition (union) of the revised Cast and cFJ expression
grammars. Since TPm and TPt are empty, Figure 4c can be
inlined to produce the grammar in Figure 3c.

Now consider the changes that Generic makes to ex-
pression syntax: it redefines TPm and TPt to be lists of type
parameters, thereby updating all productions that reference
these VPs. Figure 5a shows this definition. Figure 5b shows
the productions of Figure 4c with these productions inlined,
building the expression grammar for Generic · Cast · cFJ.

Replacing an empty production with a non-empty one
is a standard programming practice in frameworks (e.g.
EJB [19]). Framework hook methods are initially empty and
users can override them with a definition that is specific to
their context. We do the same here.

e ::= x
| e.f
| TPm e.m (e)
| new ( TPt C) (e);

TPm ::= ε;
TPt ::= ε;

(a)

e ::= ( TPt C) e;

(b)

e ::= x
| e.f
| TPm e.m (e)
| new ( TPt C) (e)
| ( TPt C) e;

TPm : ε;
TPt : ε;

(c)

Figure 4: Modification of Grammars

TPm ::= 〈T〉;
TPt ::= 〈T〉;

e ::= x
| e.f
| 〈T〉 e.m (e)
| new (〈T〉 C) (e)
| (〈T〉 C) e;

(a) (b)

Figure 5: The Effect of Adding Generics to Expressions

These are simple and intuitively appealing techniques for
defining and composing language extensions. As readers
will see, these same ideas apply to rules and proofs as well.

4.2 Reduction and Typing Rules
The judgments that form the operational semantics and type
system of a language are defined by rules. Figure 6a shows
the typing rules for cFJ expressions, Figure 6b the rule that
the Cast feature adds, and Figure 6c the composition (union)
of these rules, defining the typing rules for FJ.

fields(C) = V f

Γ ` e : U U<:V

Γ ` new C(e) : C
(T-NEW)

...

(a)

Γ ` e0 : D D<:C

Γ ` e0 : C
(T-UCAST)
(b)

fields(C) = V f

Γ ` e : U U<:V

Γ ` new C(e) : C
(T-NEW)

...
Γ ` e0 : D D<:C

Γ ` e0 : C
(T-UCAST)
(c)

Figure 6: Union of Typing Rules

Modifying existing rules is analogous to language syn-
tax. There are three kinds of VPs for rules: (a) predicates
that extend the premise of a rule, (b) relational holes which
extend a judgement’s signature, and (c) functions that trans-



form existing premises and conclusions. Predicate and rela-
tional holes are empty by default. The identity function is
the default for functions. This applies to both the reduction
rules that define a language’s operational semantics and the
typing rules that define its type system.

To build the typing rules for FGJ, the Generic feature
adds non-empty definitions for the WFc(D, TPt C) predicate
and for the D relational hole in the cFJ typing definitions.
(Compare Figure 6a to its VP-extended counterpart in Fig-
ure 7a). Figure 7b shows the non-empty definitions for these
VPs introduced by the Generic feature, with Figure 7c
showing the T-NEW rule with these definitions inlined.

WFc(D, TPt C)
fields( TPt C) = V f

D; Γ ` e : U
D ` U<:V

D; Γ`new( TPt C)(e) : TPt C
(T-NEW)

T
WFc(ε, C, ε)

D := ε

(a)

∆ ` 〈T〉C ok
WFc(∆, 〈T〉 C)

D := ∆

(b)

∆ ` 〈T〉C ok
fields(〈T〉C) = V f

∆;Γ ` e : U
∆ ` U<:V

∆;Γ `new(〈T〉C)(e) :〈T〉C
(GT-NEW)

(c)

Figure 7: Building Generic Typing Rules

4.3 Theorem Statements
Variation points also appear in the statements of lemmas and
theorems, enabling the construction of feature-extensible
proofs. Consider the lemma in Figure 8 with its seven VPs.

TPt : VP for Class Types
TPm : VP for Method Call Expression
µ : VP for Method Types
D : Relational Hole for Typing Rules
WFmc(D,µ, TPm) : Predicate for T-INVK
WFne(D, TPt C) : Predicate for T-NEW
ΦM(TPm,µ, T) : Transformation for Return Types

Lemma 4.1 (Well-Formed MBody). If
mtype(m, TPt C) = µ V → V, and with WFne(D, TPt C)
mbody(TPm, m, TPt C) = x.e, where WFmc(D,µ, TPm),
then there exists some N and S such that
D ` TPt C<:N and D ` S<:ΦM(TPm,µ, V) and
D; x : ΦM(TPm,µ, V), this : N ` e : S.

Figure 8: VPs in a Parameterized Lemma Statement

Different instantiations of VPs produce variations of the
original productions and rules, with the lemma adapting

accordingly. Figure 9 shows the VP instantiations and the
corresponding statement for both cFJ and FGJ (ε stands for
empty in the cFJ case) with those instantiations inlined for
clarity.

Without an accompanying proof, feature-extensible the-
orem statements are uninteresting. Ideally, a proof should
adapt to any VP instantiation or case introduction, allow-
ing the proof to be reused in any target language variant. Of
course, proofs must rule out broken extensions which do not
guarantee progress and preservation, and admit only “cor-
rect” new cases or VP instantiations. This is the key chal-
lenge in crafting modular proofs.

5. Implementing Feature Modules in Coq
The syntax, operational semantics, and typing rules of a lan-
guage are embedded in Coq as standard inductive data types.
The metatheoretic proofs of a language are then written over
these encodings. Figure 10a-b gives the Coq definitions for
the syntax of Figure 3a and the typing rules of Figure 7a. A
feature module in Coq is realized as a Coq file containing
its definitions and proofs. The target language is itself a Coq
file which combines the definitions and proofs from a set of
Coq feature modules.

Definition TP_m := unit.
Definition TP_t := unit.
Inductive C : Set :=

| ty : TP_t → Name → e.
Inductive e : Set :=

| e_var : Var → e
| fd_access : e → F → e
| m_call : TP_m → e → M → List e → e
| new : C → List e → e.

(a)
Definition Context := Var_Context.
Definition WF_c (gamma : Context)(c : C):= True.
Inductive Exp_WF : Context → e → Ty → Prop :=

| T_New : forall gamma c us tp d_fds es,
WF_c gamma (ty tp c) →
fields (ty tp c) d_fds →
Exps_WF gamma es us →
subtypes gamma us d_fds →
Exp_WF gamma (new (ty tp c) es) (ty tp c).
...

(b)

Figure 10: Coq Encoding of Fig. 4a and Fig. 7a.

As shown in Figure 10, each feature includes the default
definitions for its variation points. When composed with fea-
tures that provide new definitions for a variation point, these
definitions are updated for the target language. In the case
of syntax, the final definition of a VP is the juxtaposition of
the definitions from each of the features. For abstract pred-
icates, the target predicate is the conjuction of all the VP



TPt : ε; TPm : ε; µ : ε;

D := ε
T

WFmc(ε, ε, T)
T

WFne(ε, C)
ΦM(ε, ε, T) := T

Lemma 4.1 (cFJ Well-Formed MBody). If mtype(m, C) =
V→ V and T with mbody(m, C) = x.e where T, then there
exists some N and S such that ` C<:N and ` S<:V and
x : V, this : N ` e : S.

TPt : T; TPm : T; µ : 〈Y / P〉;

D := ∆ ∆ ` U ok ∆ ` U<:[U/Y]P
WFmc(∆, 〈Y / P〉, U)

∆ ` 〈T〉C ok
WFne(∆, 〈T〉C)

ΦM(〈T〉, 〈Y / P〉, U) := [T/Y]U

Lemma 4.1 (FGJ Well-Formed MBody). If
mtype(m, 〈T〉C) = 〈Y / P〉V → V and ∆ ` 〈T〉C ok
with mbody(〈U〉, m, 〈T〉C) = x.e, where ∆ ` U ok
and ∆ ` U<:[U/Y]P, then there exists some N and
S such that ∆ ` 〈T〉C<:N and ∆ ` S<:[U/Y]V and
∆; x : [U/Y]V, this : N ` e : S

Figure 9: VP Instantiations for cFJ and Generic and the resulting statements of Lemma 4.1 for cFJ and FGJ

definitions. The Coq encoding of expressions the Cast, and
Generic features and the result of their composition with
cFJ is given in Figure 11.

Inductive e : Set :=
| cast : C → e → e.

Cast

Definition TP_m := list Type.
Definition TP_t := list Type.

Generic

Definition TP_m := (list Type, unit).
Definition TP_t := (list Type, unit).
Inductive C : Set :=

| ty : TP_t → Name → e.
Inductive e : Set :=

| e_var : Var → e
| fd_access : e → F → e
| m_call : TP_m → e → M → List e → e
| new : C → List e → e
| cast : C → e → e.

Cast · Generic · cFJ

Figure 11: Coq Encoding of Fig. 3b and Fig. 5a-b.

In the discussion so far, composition has been strictly syn-
tactic: definitions are directly unioned together or defaults
are replaced. Modular reasoning within a feature requires
a more semantic form of composition that is supported by
Coq. OO frameworks are implemented using inheritance and
mixin layers [3], techniques that are not available in most
proof assistants. Our feature modules instead rely on the
higher-order parameterization mechanisms of the Coq the-
orem prover to support case extension and VPs. Modules
can now be composed within Coq by instantiating param-
eterized definitions. Using Coq’s native abstraction mecha-
nism enables independent certification of each of the feature
modules.

Figure 12 shows a concrete example of crafting an ex-
tensible inductive definition in Coq. The target language of

FJ = Cast · cFJ is built by importing the Coq modules for
features cFJ and Cast. The target syntax is defined as a new
data type, e, with data constructors cFJ and Cast from each
feature. Each constructor wraps the syntax definitions from
their corresponding features, closing the inductive loop by
instantiating the abstract parameter e’ with e , the data type
for the syntax of target language.

Inductive e (e’ : Set): Set :=
| e_var : Var → e
| fd_access : e’ → F → e
| m_call : e’ → M → List e’ → e
| new : Ty → List e’ → e.

cFJ.v
Inductive e (e’ : Set) : Set :=

| e_cast : Ty → e’ → e.

cast.v

Require Import cFJ.
Require Import cast.
Inductive e : Set :=

| cFJ : cFJ.e e → e
| cast : cast.e e → e.

FJ.v

Figure 12: Syntax from cFJ and Cast Features and their
Union.

These parameters also affect data types which reference
open inductive definitions. In particular, the signature of typ-
ing rules and the transition relation are now over the pa-
rameter used for the final language. Exp_WF from Fig. 10b
ranges over the complete set of expressions from the final
language, so its signature becomes ∀ e’ : Set, Context
→ e’ → Ty → Prop. Of course, within a feature mod-
ule these rules are written over the actual syntax definitions
it provides. In order for the signatures to sync up, these
rules are parameterized by a function that injects the syn-
tax defined in the feature module into the syntax of the final



language. Since the syntax of a module is always included
alongside its typing and reduction rules in the target lan-
guage, such an injection always exists.

Parameterization also allows feature modules to include
VPs, as shown in Figure 13. The VPs in each module are ex-
plicitly represented as abstract sets/predicates/functions, as
with the parameter TP_m used to extend the expression for
method calls in cFJ.v. Other features can provide appropriate
instantiations for this parameter. In Figure 13, for example,
FGJ.v builds the syntax for the target language by instantiat-
ing this VP with the definition of TP_m given in Generic.v.
Alternatively, the syntax of cFJ can be built from the same
inductive definition from cFJ using the default definition of
TP_m it provides.

Definition TP_m := unit.
Inductive cFJ_e (e : Set) (TP_m : Set): Set :=

| e_var : Var → cFJ_e
| fd_access : e → F → cFJ_e
| m_call : TP_m → e → M → List e → cFJ_e
| new : C → List e → cFJ_e.

cFJ.v
Definition TP_m := List Ty.

Generic.v

Require Import cFJ.
Require Import Generic.
Definition TP_m := Generic.TP_m.
Inductive e : Set :=

| cFJ : cFJ_e e TP_m → e

FGJ.v

Figure 13: Coq Syntax from cFJ with a Variation Point, and
its Instantiation in FGJ.

5.1 Crafting Modular Proofs
Rather than writing multiple related proofs, our goal is to
create a single proof for a generic statement of a theorem.
This proof is then specialized for the target language by in-
stantiating the variation points appropriately. Instead of sep-
arately proving the two lemmas in Figure 2, the cFJ feature
has a single proof of the generic Lemma 5.1 (Figure 14).
This lemma is then specialized to the variants FJ and FGJ
shown in Figure 2. The proof now reasons over the generic
subtyping rules with variation points, as in the case for S-
Dir in Figure 14. The definition of these holes depends on
the set of features included in the final language, so from the
(human or computer) theorem prover’s point of view, they
are opaque. Thus, this proof becomes stuck when it requires
knowledge about behavior of Φf.

In order to proceed, the lemma must constrain possible
VP instantiations to those that have the properties required
by the proof. In the case of Lemma 5.1, this behavior is that
Φf must be the identity function for non-variable types and
that ΦSD maps class types to class types. For this proof to

Lemma 5.1. If ∆ ` S<:T and fields(Φf(∆, T)) = T f,
then fields(Φf(∆, S)) = S g, Si = Ti and gi = fi for all
i ≤ #(f).

Case S-DIR
S = TP0 C, CP0 class C extends TP1 D {S g; . . .},
T = ΦSD(TP0, CP0, TP1 D).
By the rule F-CLASS, fields(ΦSD(TP0, CP0, TP1 D)) =
U h with fields(TP0 C) = U h;ΦSD(TP0, CP0,S) g. As-
suming that for all class types TP2 D

′, Φf(∆, TP2 D′) =
TP2 D

′ and ΦSD(TP0, CP0, TP2 D′) returns a class type,
Φf(∆,ΦSD(TP0, CP0, TP1 D)) = ΦSD(TP0, CP0, TP1 D). It
follows that T f = fieldsΦSD(TP0, CP0, TP1 D)) = U h
from which the conclusion is immediate.

Figure 14: Generic Statement of Lemmas 2.2 and 2.1 and
Proof for S-Dir Case.

hold for the target language, the instantiations of Φf and ΦSD
must have this property. More concretely, the proof assumes
this behavior for all instantiations of Φf and ΦSD, produc-
ing the new generic Lemma 5.2. In order to produce the de-
sired lemma, the target language instantiates the VPs and
provides proofs of all the assumed behaviors. Each feature
which supplies a concrete realization of a VP also provides
the necessary proofs about its behavior. The assumptions of
a proof form an explicit interface against which it is written.
The interface of a feature module is the union of all these as-
sumptions together with the the set of lemmas about the be-
havior of its VP instantiations and definitions it provides. As
long as the features included in the target language provide
proofs satisfying this interface, a feature’s generic proofs can
be specialized and reused in their entirety.

Lemma 5.2. As long as Φf(∆, V) = V for all non-vari-

able types V and ΦSD maps class types to class types,
if ∆ ` S<:T and fields(Φf(∆, T)) = T f, then
fields(Φf(∆, S)) = S g, Si = Ti and gi = fi for all
i ≤ #(f).

We also have to deal with new cases. Whenever a new rule
or production is added, a new case must be added to proofs
which induct over or case split on the original production or
rule. For FGJ, this means that a new case must be added to
Lemma 5.2 for GS-Var. When writing an inductive proof, a
feature provides cases for each of the rules or productions it
introduces. To build the proof for the target language, a new
skeleton proof by induction is started. Each of the cases is
discharged by the proof given in the introducing feature.

5.2 Engineering Extensible Proofs in Coq
Each Coq feature module contains proofs for the extensi-
ble lemmas it provides. To get a handle on the behavior of



opaque parameters, Coq feature modules make explicit as-
sumptions about their behavior. Just as definitions were pa-
rameterized on variation points, proofs are now parameter-
ized on a set of lemmas that define legal extensions. These
assumptions enable separate certification of feature mod-
ules. Coq certifies that a proof is correct for all instantiations
or case introductions that satisfy its assumptions, enabling
proof reuse for all compatible features.

As a concrete example, consider the Coq proof of Lemma
5.3 given in Figure 16. The cFJ feature provides the state-
ment of the lemma, which is over the abstract subtype rela-
tion. Both the Generic and cFJ features give proofs for their
definitions of the subtype relation. Notably, the Generic
feature assumes that if a type variable is found in a Context
Gamma, it will have the same value in app_context Gamma
Delta for any Context Delta. Any compatible extension
of Context and app_Context can thus reuse this proof.

Lemma 5.3 (Subtype Weakening). For all contexts
Γ and ∆, if Γ ` S<:T, Γ;∆ ` S<:T.

Figure 15: Weakening lemma for subtyping.

To build the final proof, the target language inducts over
subtype, as shown in the final box of Figure 16. For each
constructor, the lemma dispatches to the proofs from the
corresponding feature module. To reuse those proofs, each
of their assumptions has to be fulfilled by a theorem (e.g.
TLookup_app’ satisfies TLookup_app). The inductive hy-
pothesis is provided to cFJ_Weaken_subtype_app for use
on its subterms. As long as every assumption is satisfied
for each proof case, Coq will certify the composite proof.
There is one important caveat: proofs which use the induc-
tive hypothesis can only do so on subterms or subjudge-
ments. By using custom induction schemes to build proofs,
features can ensure that this check will always succeed. The
cFJ_subtype_ind induction scheme used to combine cFJ’s
cases in the first box of Figure 16 is an example.

5.3 Feature Composition in Coq
Each feature module is implemented as a Coq file which
contains the inductive definitions, variation points, and
proofs provided by that feature. These modules are certified
independently by Coq. Once the feature modules have been
verified, a target language is built as a new Coq file. This
file imports the files for each of the features included in the
language, e.g. “Require Import cFJ.” in Figure 12. First,
each target language definition is built as a new inductive
type using appropriately instantiated definitions from the
included feature modules, as shown in Figures 12 and 13.
Proofs for the target language are then built using the proofs
from the constituent feature modules per the above discus-
sion. Proof composition requires a straightforward check
by Coq that the assumptions of each feature module are
satisfied, i.e. that a feature’s interface is met by the target

Variables (app_context : Context → Context → Context)
(FJ_subtype_Wrap : forall gamma S T,
FJ_subtype gamma S T → subtype gamma S T).

Definition Weaken_Subtype_app_P
delta S T (sub_S_T : subtype delta S T) :=
forall gamma, subtype (app_context delta gamma) S T.

Lemma cFJ_Weaken_Subtype_app_H1 :
forall (ty : Ty) (gamma : Context),
Weaken_Subtype_app_P _ _ _ (sub_refl ty gamma).

Lemma cFJ_Weaken_Subtype_app_H2 : forall c d e gamma
(sub_c : subtype gamma c d) (sub_d : subtype gamma d e),
Weaken_Subtype_app_P _ _ _ sub_c →
Weaken_Subtype_app_P _ _ _ sub_d →
Weaken_Subtype_app_P _ _ _ (sub_trans _ _ _ _ sub_c sub_d).

Lemma cFJ_Weaken_Subtype_app_H3 :
forall ce c d fs k’ ms te te’ delta CT_c
bld_te, Weaken_Subtype_app_P _ _ _

(sub_dir ce c d fs
k’ ms te te’ delta CT_c bld_te).

Definition cFJ_Weaken_Subtype_app :=
cFJ_subtype_ind _ cFJ_Weaken_Subtype_app_H1
cFJ_Weaken_Subtype_app_H2 cFJ_Weaken_Subtype_app_H3.

Variables (app_context:Context → Context → Context)
(TLookup_app : forall gamma delta X ty,

TLookup gamma X ty →
TLookup (app_context gamma delta) X ty).

(GJ_subtype_Wrap : forall gamma S T,
GJ_subtype gamma S T → subtype gamma S T).

Definition Weaken_Subtype_app_P :=
cFJ_Pinitions.Weaken_Subtype_app_P _ _ subtype app_context.

Lemma GJ_Weaken_Subtype_app : forall gamma
S T (sub_S_T : GJ_subtype gamma S T),
Weaken_Subtype_app_P _ _ _ sub_S_T.
cbv beta delta; intros; apply GJ_subtype_Wrap.
inversion sub_S_T; subst.
econstructor; eapply TLookup_app; eauto.

Qed.
Fixpoint Weaken_Subtype_app gamma S T
(sub_S_T : subtype gamma S T) :
Weaken_Subtype_app_P _ _ _ sub_S_T :=
match sub_S_T return Weaken_Subtype_app_P _ _ _ sub_S_T with
| cFJ_subtype_Wrap gamma S’ T’ sub_S_T’ ⇒
cFJ_Weaken_Subtype_app _ _ _ _ _ _ cFJ_Ty_Wrap _ _ _ CT
_ subtype GJ_Phi_sb cFJ_subtype_Wrap app_context _ _ _

sub_S_T’ Weaken_Subtype_app
| GJ_subtype_Wrap gamma S’ T’ sub_S_T’ ⇒
GJ_Weaken_Subtype_app _ _ Gty _ TLookup subtype
GJ_subtype_Wrap app_context TLookup_app’ _ _ _ sub_S_T’
end.

Figure 16: Coq proofs of Lemma 5.3 for the cFJ and
Generic features and the composite proof.

language. Currently each piece of the final language is com-
posed by hand in this straightforward manner; future work
includes automating feature composition directly.

6. Implementation of the FJ Product Line
We have implemented the six feature modules of Section 3.4
in the Coq proof assistant. Each contains pieces of syntax,
semantics, type system, and metatheoretic proofs needed by
that feature or interaction. Using them, we can built the
seven variants on Featherweight Java listed in Section 3.23.

While we achieve feature composition by manually in-
stantiating these modules, the process is straightforward and
should be mechanizable. Except for some trivial lemmas, the

3 The source for these feature modules and language variants can be found
at http://www.cs.utexas.edu/users/bendy/MMMDevelopment.php.



Module Lines of Code in Coq
cFJ 2612 LOC
Cast 463 LOC

Interface 499 LOC
Generic 6740 LOC

Generic#Interfaces 1632 LOC
Generic#Cast 296 LOC

Figure 17: Feature Module Sizes

proofs for a final language are assembled from proof pieces
from its constituent features by supplying them with lemmas
which satisfy their assumptions. Importantly, once the proofs
in each of the feature modules have been certified by Coq,
they do not need to be rechecked for the target language.
A proof is guaranteed to be correct for any language which
satisfies the interface formed by the set of assumptions for
that lemma. This has a practical effect as well: certifying
larger feature modules takes a non-trivial amount of time.
Figure 18 lists the certification times for feature modules
and all the possible language variants built from their com-
position. By checking the proofs of each feature in isolation,
Coq is able to certify the entire product line in roughly the
same amount of time as the cFJ feature module. Rechecking
the work of each feature for each individual product would
quickly become expensive. Independent certification is par-
ticularly useful when modifying a single feature. Recertify-
ing the product line is a matter of rechecking the proofs of
the modified features and then performing a quick check of
the products, without having to recheck the independent fea-
tures.

cFJ 1.6 1m 36s
Generic 7.3833 7m 23s Cast 0m 4s
All Other Features 0.6667 0m 40s Interface 0m 2s
All Products 1.9333 1m 56s Generic#Cast 0m 12s

Generic#Interface 0m 22s

uFJ 0m 1s
FJ 0m 2s
uIFJ 0m 2s
IFJ 0m 2s
GFJ 0m 44s
FGJ 0m 44s
GiFJ 0m 11s
iGFJ 0m 10s

avg
FJ_Tactics 0.88 0.81 1.36 1.34 1.09 1.15 0.85 1.07

cFJ 0.7878 cFJ 41.14 40.24 50.61 53.75 52.12 50.59 42.44 47.27
Generic 2.9317 Cast 5.94 5.51 5.21 5.40 5.56 5.38 5.95 5.56
All Other Features 0.6593 Interface 4.06 4.48 3.85 3.97 4.09 3.98 4.44 4.12
All Products 1.1485 Generic 172.79 171.80 178.57 178.78 169.30 171.15 188.94 175.90

Generiic_Cast 7.93 7.49 8.52 8.09 7.54 7.66 10.49 8.25
Generic#Interface 21.27 20.88 19.85 21.24 20.80 21.84 25.49 21.62

uFJ 2.48 2.33 2.33 2.38 2.43 2.38 2.56 2.41
FJ 3.27 2.90 2.92 2.97 2.97 2.92 3.29 3.03
iFJ 3.96 3.37 3.45 3.43 3.54 3.61 3.70 3.58
uIFJ 3.09 3.14 2.87 2.83 2.87 2.97 3.34 3.02
GFJ 11.93 11.28 12.95 11.43 11.64 11.74 13.64 12.09
FGJ 13.09 12.94 13.99 12.61 12.52 12.60 15.00 13.25
GiFJ 14.54 15.27 14.95 14.38 15.28 14.72 18.44 15.37
FiGJ 12.39 14.10 15.77 18.92 14.38 18.34 19.23 16.16
total 64.75 65.33 69.23 68.95 65.63 69.28 79.20 68.91
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Figure 18: Certification Times for Feature Modules and All
Language Variants.

7. Discussion and Future Work
Relying on parameterization for feature composition allows
feature modules to be built and independently certified by
Coq “out of the box” with the same level of assurance. With
this approach, a familiar set of issues is encountered when
a new feature is added to a product line. Ideally, a new fea-
ture would be able to simply update the existing definitions

and proofs, allowing language designers to leverage all the
hard work expended on formalizing the original language.
Some foresight, called domain analysis [22], allows lan-
guage designers to predict VPs in advance, thus enabling
a smooth and typically painless addition of new features.
What our work shows is a path for the structured evolution
of languages. But of course, when unanticipated features are
added using this style of composition, additional engineering
may be required.

Existing definitions can be extended and reused as long
as they already have the appropriate VPs and their inductive
definitions are left open. For example, once class definitions
have a variation point inserted for interfaces, the same VP
can also be extended with type parameters for generics.
Similarly, once the definition of subtyping has been left
open, both interfaces and generics can add new rules for the
target language.

Proof reuse is almost as straightforward: as long as an
extension is compatible with the set of assumptions in a
proof’s interface, the proof can be reused directly in the
final language. A new feature is responsible for providing
the proofs that its extension satisfies the assumptions of the
original base language.

Refactoring is necessary when a new feature requires
VPs that are not in existing features. A feature which
makes widespread changes throughout the base language
(i.e. Generic), will probably make changes in places that
the original feature designer did not anticipate. In this situ-
ation, as mentioned in Section 2.1, existing features have to
be refactored to allow the new kind of extension by inserting
variation points or breaking open the recursion on inductive
definitions. Any proofs over the original definition may have
to be updated to handle the new extensions, possibly adding
new assumptions to its interface.

Feature modules tend to be inoculated from changes in
another, unless they reference the definitions of another fea-
ture. This only occurs when two features must appear to-
gether: modules which resolve feature interactions, for ex-
ample, only appear when their base features are present.
Thus, it is possible to develop an enhanced language incre-
mentally: starting with the base and then iteratively refac-
toring other features, potentially creating new modules to
handle interactions. Once a new feature has been fully in-
tegrated into the feature set, all of the previous languages in
the product line should still be derivable. If two features F
and G commute (i.e. F · G = G · F) their integration comes
for free as their interaction module is empty (i.e. F#G = 1).

A new feature can also invalidate the assumptions of an
existing feature’s proofs. In this case, assumptions might
have to be weakened and the proof refactored to permit
the new extension. Alternatively, if an extension breaks the
assumption of an existing proof, the offending feature can
simply build a new proof of that lemma. This proof can then
be utilized in any other proofs which used that lemma as



an assumption, replacing the original lemma and allowing
the other proofs to be reused. In this manner, each proof is
insulated from features which break the assumptions of other
lemmas. Again, all of this is just another variation of the
kinds of problems that are encountered when one generalizes
and refactors typical object-oriented code bases.

Future work includes creating a new module-level com-
position operator that eases the burden of integrating new
features. Ideally, this operator will allow subsequent features
to extend a feature’s definitions with new cases or variations
without modifying the feature and to provide patches to al-
low existing proofs to work with the extended definitions. As
alluded to earlier, by operating at the module level, this oper-
ator would automate the tedious piece-by-piece composition
currently employed to build target languages.

8. Related Work
The Tinkertype project [17] is a framework for modularly
specifying formal languages. Features consist of a set of
variants of inference rules with a feature model determining
which rule is used in the final language. An implementation
of these ideas was used to format the language variants used
in Pierce’s Types and Programming Languages [24]. This
corresponds to our notion of case introduction. Importantly,
our approach uses variations points to allow variations on
a single definition. This allows us to construct of a single
generic proof which can be specialized for each variant, as
opposed to maintaining a separate proof for each variation.
Levin et al. consider using their tool to compose handwrit-
ten proofs, but these proofs must be rechecked after compo-
sition. In contrast, we have crafted a systematic approach
to proof extension that permits the creation of machine-
checkable proofs. After a module’s proofs are certified, they
can be reused without needing to be rechecked. As long as
the module’s assumptions hold, the proofs are guaranteed to
hold for the final language.

Stärk et. al [27] develop a complete Java 1.0 compiler
through incremental refinement of a set of Abstract State
Machines. Starting with ExpI, a core language of impera-
tive Java expressions which contains a grammar, interpreter,
and complier, the authors add features which incrementally
update the language until an interpreter and compiler are de-
rived for the full Java 1.0 specification. The authors then
write a monolithic proof of correctness for the full language.
Later work casts this approach in the calculus of features [2],
noting that the proof could have been developed incremen-
tally. While we present the incremental development of the
formal specification of a language here, many of the ideas
are the same. An important difference is that our work fo-
cuses on structuring languages and proofs for mechanized
proof assistants, while the development proposed by [2] is
completely by hand.

Thüm et. al [29] consider proof composition in the veri-
fication of a Java-based software product line. Each product

is annotated with invariants from which the Krakatoa/Why
tool generates proof obligations to be verified in Coq. To
avoid maintaining these proofs for each product, the authors
maintain proof pieces in each feature and compose the pieces
for an individual product. Their notion of composition is
strictly syntactic: proof scripts are copied together to build
the final proofs and have to be rechecked for each prod-
uct. Importantly, features only add new premises and con-
junctions to the conclusions of the obligations generated by
Krakatoa/Why, allowing syntactic composition to work well
for this application. As features begin to apply more subtle
changes to definitions and proofs, it is not clear how to effec-
tively syntactically glue together Coq’s proof scripts. Using
the abstraction mechanisms provided by Coq to implement
features, as we have, enables a more semantic notion of com-
position.

The modular development of reduction rules are the fo-
cus of Mosses’ Modular Structural Operational Semantics
[20]. In this paradigm, rules are written with an abstract la-
bel which effectively serves as a repository for all effects,
allowing rules to be written once and reused with different
instantiations depending on the effects supported by the fi-
nal language. Effect-free transitions pass around the labels
of their subexpressions:

d X−→ d′

let d in e X−→ let d′ in e
(R-LETB)

Those rules which rely on an effectual transition specify that
the final labeling supports effects:

e
{p=p1[p0]...}
−−−−−−−−→ e′

let p0 in e
{p=p1...}
−−−−−−−−→ let p0 in e

(R-LETE)

These abstract labels correspond to the abstract contexts
used by the cFJ subtyping rules to accommodate the updates
of the Generic feature. In the same way that R-LETE de-
pends on the existence of a store in the final language, S-
VAR requires the final context to support a type lookup op-
eration. Similarly, both R-LETB and S-TRANS pass along
the abstract labels / contexts from their subjudgements.

Both Boite [9] and Mulhern [21] consider how to extend
existing inductive definitions and reuse related proofs in the
Coq proof assistant. Both only consider adding new cases
and rely on the critical observation that proofs over the ex-
tended language can be patched by adding pieces for the
new cases. The latter promotes the idea of ’proof weaving’
for merging inductive definitions of two languages which
merges proofs from each by case splitting and reusing exist-
ing proof terms. An unimplemented tool is proposed to au-
tomatically weave definitions together. The former extends
Coq with a new Extend keyword that redefines an existing
inductive type with new cases and a Reuse keyword that
creates a partial proof for an extended datatype with proof
holes for the new cases which the user must interactively fill



in. These two keywords explicitly extend a concrete defini-
tion and thus modules which use them cannot be checked
by Coq independently of those definitions. This presents a
problem when building a language product line: adding a
new feature to a base language can easily break the proofs
of subsequent features which are written using the original,
fixed language. Interactions can also require updates to exist-
ing features in order to layer them onto the feature enhanced
base language, leading to the development of parallel fea-
tures that are applied depending on whether the new feature
is included. These keyword extensions were written for a
previous version of Coq and are not available for the current
version of the theorem prover. As a result of our formula-
tion, it is possible to check the proofs in each feature module
independently, with no need to recheck proof terms when
composing features.

Chlipala [10] proposes a using adaptive tactics written in
Coq’s tactic definition language LTac [11] to achieve proof
reuse for a certified compiler. The generality of the approach
is tested by enhancing the original language with let expres-
sions, constants, equality testing, and recursive functions,
each of which required relatively minor updates to exist-
ing proof scripts. In contrast to our approach, each refine-
ment was incorporated into a new monolithic language, with
the new variant having a distinct set of proofs to maintain.
Our feature modules avoid this problem, as each target lan-
guage derives its proofs from a uniform base, with no need
to recheck the proofs in existing feature modules when com-
posing them with a new feature. Adaptive proofs could also
be used within our feature modules to make existing proofs
robust in to the addition of new syntax and semantic varia-
tion points.

9. Conclusion
Mechanically verifying artifacts using theorem provers can
be hard work. The difficulty is compounded when verifying
all the members of a product line. Features, transformations
which add a new piece of functionality, are a natural way of
decomposing a product line. Decomposing proofs along fea-
ture boundaries enables the reuse of proofs from a common
base for each target product. These ideas have a natural ex-
pression in the evolution of formal specification of program-
ming languages, using the syntax, semantics, and metathe-
oretic proofs of a language as the core representations. In
this paper, we have shown how introductions and variation
points can be used to structure product lines of formal lan-
guage specifications.

As a proof of concept, we used this approach to imple-
ment features modules that enhance a variant of Feather-
weight Java in the Coq proof assistant. Our implementation
uses the standard facilities of Coq to build the composed
languages. Coq is able to mechanically check the proofs
of progress and preservation for the composed languages,
which reuse pieces of proofs defined in the composed fea-

tures. Each extension allows for the structured evolution of
a language from a simple core to a fully-featured language.
Harnessing these ideas in a mechanized framework trans-
forms the mechanized formalization of a language from a
rigorous check of correctness into an important vehicle for
reuse of definitions and proofs across a family of related lan-
guages.
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