
Improving Incremental Development in AspectJ by Bounding Quantification

Roberto E. Lopez-Herrejon and Don Batory
Department of Computer Sciences

University of Texas at Austin
Austin, Texas, 78712 U.S.A.

{rlopez, batory}@cs.utexas.edu

Abstract that, besides global reasoning, aspect composition is also a
Incremental software development is a process of building
complex programs from simple ones by successively adding
programmatic details. It is an effective and common design
practice that helps control program complexity. However,
incrementally building software using aspects can be more
challenging than using traditional modules. AspectJ quantifi-
cation mechanisms do not distinguish different developmen-
tal stages, and thus pointcuts can capture join points from
later stages that they originally were not intended to advise.

In this paper we present an algebraic model to describe
aspects and their composition in AspectJ. We show that the
way AspectJ’s composes aspects plays a significant role in
this problem. We propose an alternative model to compose
aspects that improves the support for incremental develop-
ment. It bounds the scope of quantification and still pre-
serves the power of AspectJ. We also show how bounded
quantification contributes to aspect reuse.

1 Introduction

Incremental software development is a fundamental and
common programming practice. It aims at building complex
programs from simpler ones by adding programmatic
details. Traditional modularization techniques support incre-
mental development and rely on modular reasoning for this
task. Aspects are a powerful mechanism for modularizing
concerns that would otherwise be scattered and tangled with
the implementation of other concerns. However, incremen-
tally building software using aspects can be a more challeng-
ing task than using conventional modules as aspects usually
cut across several module boundaries.

Thus, it may seem that the complexity in incremental soft-
ware development comes from the need of global reasoning,
knowing the implementation details of all the modules in a
system and their relations, that crosscutting concerns entail
[7]. There exist many tools that can ameliorate global rea-
soning [3][4][5][9]. They provide different browser and
query capabilities to identify, modularize and understand
concerns.

In this paper, we present an algebraic model of AspectJ
aspects and their composition. Using this model, we show

contributing factor to the complexity of incremental devel-
opment using aspects. We propose an alternative model of
aspect composition to reduce this complexity by bounding
the scope of quantification while preserving the full power of
aspects. We also show how bounded quantification contrib-
utes to aspect reuse.

2 Incremental Development Example

Consider the incremental development of a class that repre-
sent points in a graphics application.

Step1. Class Point is the following Java file which defines
a one dimensional point (i.e., it has a single coordinate):

class Point {
int x;
void setX(int x) { this.x = x; }

} (1)

Step 2. A Y coordinate and its corresponding set method is
added to Point with an aspect like TwoD:

aspect TwoD {
int Point.y;
void Point.setY(int y) { this.y = y; }

} (2)

Using AspectJ, the composition (weaving) of these two files
using the command:

ajc Point.java TwoD.java

yields an augmented definition class Point below (we use
subscripts to denote the version of Point at a given step):1

class Point2 {
int x;
void setX(int x) { this.x = x; }
int y;
void setY(int y) { this.y = y; }

} (3)

Step 3. The next step is to count how many times the set
methods that modify the coordinates of a point are executed.
If we were to do this increment manually, we would need to

1. AspectJ uses more sophisticated rewrites that those shown here. The
resulting composed code snippets that we present illustrate the observable
behavior but not the actual output of ajc.
 1

dsb
Text Box
Software Engineering Properties and Languages for Aspect Technologies (SPLAT), March 2005.

add the underlined code and thus the composed class
Point becomes:

class Point3 {
int counter = 0;
int x;
void setX(int x) { this.x = x; counter++;}
int y;
void setY(int y) { this.y = y; counter++;}

} (4)

Alternatively, we can use aspects to modularize this
change:

aspect Counter {
int Point.counter = 0;

 after(Point p) : execution(* Point.set*(..))
&& target(p) {

p.counter++;
}

} (5)

And then weave Point and TwoD using the following com-
mand to yield a result functionally equivalent to (4):

ajc Point.java TwoD.java Counter.java

Step 4. It is now required that class Point contains color
information. This entails adding a member and a new set
method, the additions are underlined below:

class Point4 {
int x;
void setX(int x) { this.x = x; counter++;}
int y;
void setY(int y) { this.y = y; counter++; }
int counter;
int color =0;
void setColor(int c) { this.color = c; }

} (6)

Again this step can be expressed using an aspect such as:

aspect Color {
int Point.color =0;
void Point.setColor(int c) { this.color = c; }

} (7)

However, when woven with previous steps as in the follow-
ing command line:

ajc Point.java TwoD.java Counter.java
Color.java

The outcome is not that of (6) and is shown below as
Point’4. The difference is in method setColor which
also increments counter:

class Point’4 {
int counter = 0;
int x;
void setX(int x) { this.x = x; counter++;}
int y;
void setY(int y) { this.y = y; counter++; }

int color = 0;
void setColor(int c){

this.color=c; counter++;
}

} (8)

Thus programmers face the paradox that building software
incrementally using AspectJ and manually can yield differ-
ent results. To get the same effect of (6) using AspectJ, we
should have used a more constrained version of Counter
that advises only the setX and setY methods:

aspect Counter {
int Point.counter = 0;

 after(Point p) : (execution(* Point.setX(..))
|| execution(* Point.setY(..)))

&& target(p) {
p.counter++;

}
} (9)

A key principle of incremental software development is that
each step builds on previous steps. Thus a later step is not
expected to require invasive changes of earlier steps to
work correctly.

The problem is that AspectJ quantification cannot distin-
guish among developmental stages. In other words, point-
cuts can advise join points that by incremental design they
should not be advising. To solve this problem, we propose
to bound the scope of quantification so that a pointcut can
advise joint points exclusively from the current and earlier
development steps. If quantification is bounded this way,
aspect Counter would not need to change.

An obvious question readers could have in mind is: why
was Counter not defined like (9) in the first place? That
certainly would solve this problem, but we must consider
other properties of software modules that are also desirable
for aspects. Among them is reusability, thus we want to
treat aspects as modules and reuse them as is. For example,
suppose Counter is defined as (9), but now we want to
build program (8) instead. We would have to revise
Counter back to (5) as the version in (9) cannot be
reused. Later in Section 7 we elaborate more on how
bounded quantification enhances aspect reusability.

3 An Algebraic Model

We develop an algebraic model that reifies the intuitively
clear distinction between the concepts of inter-type decla-
rations (a.k.a. introduction) and pointcuts and advice in
AspectJ [3].

Throughout this paper, we refer to the pair of a pointcut and
the advice that uses it as a PCA. We present first a model of
inter-type declarations.
 2

3.1 A Model of Inter-Type Declarations
An aspect with an inter-type declaration (ITD) can be
understood as a function that maps an input program to an
output program. For instance, consider aspect TwoD in (2)
when woven with class Point of (1). We can model this
composition algebraically as:

Point2 = TwoD(Point) (10)

where Point is a value2, TwoD is a function that maps a
program with a Point class to a program that has the aug-
mented class Point2. In (10), the input program is class
Point, and the output program is class Point2.

Aspect TwoD is effectively adding (by means of ITDs) an
instance field and a set method to class Point. Thus,
appealing to intuition, we can rewrite (10) as a summa-
tion:

Point2 = TwoD + Point (11)

We call operation + concern addition. It takes two argu-
ments, which can be either a program or an ITD. Let P1 and
P2 be programs that modularize disjoint sets of classes, and
I1 and I2 be aspect files that contain ITDs that advise pro-
grams P1 and P2, respectively. The possibilities of the
semantics of concern addition are:

• Addition of two programs P1+P2 yields the union of
the classes of both programs.

• Addition of two ITDs I1+I2 yields a single aspect
file formed by the union of the contents of both I1

and I2.

• Addition of ITD and matching program I1+P1 yields
the classes of P1 with their I1 introductions.

• Addition of ITD and non-matching program P2+I1

or I1+P2 yields I1 and the classes of P2.

From the semantics of AspectJ’s ITDs, we can deduce sev-
eral properties of +.

Identity. Concern addition has an identity that we denote
by 0. If X is a program or an aspect file:

X = X + 0 = 0 + X (12)

In terms of code, 0 corresponds to an empty program (i.e., a
program that contains no classes).

Commutativity. Concern addition is commutative. The
order in which terms are added does not matter. This is con-
sistent with AspectJ in that no variable or method (defined
either in a class or ITD) can be introduced more than once3.

Associativity. Let A, B, and C be programs or aspects with
ITDs. To prove associativity, we must show that the follow-
ing holds:

(A + B) + C = A + (B + C)

If we regard operation + as a form of weaving mechanism,
an expression like (A + B) + C means: first weave A and B to
get a result and then weave that result with C. The proof of
this property follows from a case analysis of the four possi-
bilities of concern addition shown above. The details of the
proof are presented in the Appendix. What is important to
note though is that for AspectJ this property does not hold.
The reason is that the second and fourth cases of concern
addition (addition of two ITDs and the addition of ITDs to a
non-matching program) are not supported by AspectJ’s
weaver. Although our model is more general than AspectJ,
this is not crucial for the results later in this paper.

Composition. TwoD is a composite inter-type declaration. It
modularizes the addition of both the setY method and the y
field. We can express TwoD algebraically as the sum of
primitive inter-type declarations:

TwoD = setY + y (13)

Which we could substitute into (11) to produce an equiva-
lent definition of Point2:

Point2 = setY + y + Point

3.2 A Model of PCAs
Consider the following aspect that consists of a single PCA
and displays a log message after execution of set methods
of class Point:

aspect Log {
pointcut logP():execution(* Point.set*(..));
after() : logP() {

System.out.println(“set called”);
}

} (14)

Advice code can be regarded as an implicit method declara-
tion and call. Our model of PCAs reifies the body of an
advice into an ITD method and a call to it. We also give an
explicit name to each PCA. Conceptually aspect Log in
(14) could be re-written as:

aspect Log {
static void Point.setCalled() {

System.out.println(“set called”);
}
LogP is after():execution(* Point.set*(..))

--> Point.setCalled();
} (15)

2. We can regard Point as a string that represent the class code.
3. Using declare precedence statements, AspectJ can override
ITDs [8]. We do not consider such cases in our current model.
 3

where LogP is the name given to the PCA. Of course, (15)
does not correspond to AspectJ syntax as advice is defined
by a method body not a method call. For this reason, we
call LogP declaration in (15) a pure PCA. Soon we will
see why this distinction is important and the underlying rea-
son behind it.

We can model aspect Log as a vector of two entries. The
first contains the pure PCA (LogP) and the second the rei-
fied advice setCalled:

Log = [LogP, setCalled] (16)

As another example, recall aspect Counter of (5). A “rei-
fied” version of that aspect could be:

aspect Counter {
CounterP is after(Point p):

execution(* Point.set*(..)) &&
target(p) --> Point.counterA(p);

static void Point.counterA(Point p){
p.counter++;

}
int Point.counter = 0;

} (17)

This aspect can be modeled as the vector:

Counter = [CounterP, counterA + counter] (18)

where counter is the term that adds variable counter to
class Point, similar to variable y in (13). Notice that the
second entry in the vector composes ITDs.

We want to express the idea of the application of a pure
PCA to a program. To do this, we need another operation
different from concern addition.

3.3 Concern Multiplication
We call operation * concern multiplication. It takes two
arguments, which can either be a PCA or a program. Let X1,
and X2 be pure PCAs and Y a program. The possibilities of
the semantics of concern multiplication are:

• Multiplication of two PCAs X1*X2 yields an aspect
file that contains both PCAs.

• Multiplication of a PCA and a program X1*Y yields
a program with the PCA X1 woven into program Y.

Suppose aspect A is the vector [m,a]. The result of apply-
ing A to P is:

P’ = A(P)
= m * (a + P) (19)

That is, A’s ITDs are added to P, and then the pure PCA m is
applied to the resulting program. Equation (19) follows
directly from AspectJ observable semantics. In particular, a
is added to P prior to multiplication because in AspectJ,
advice can advise itself.

As in the case of concern addition, we can deduce several
properties of *.

Identity. Concern multiplication has an identity that we
denote by 1. In terms of code, 1 corresponds to the null
PCA, the PCA that does not capture any join points. If P is a
program and m is a pure PCA:

P = 1*P
m = m * 1 = 1 * m (20)

Non-Commutativity. Concern multiplication is, in general,
non-commutative. Applying advice in different orders can
change the semantics of a program. Commutativity holds
only in the case where the set of join points of different
PCAs are disjoint.

Right-Associativity. In AspectJ, the order in which advice
is applied is generally undefined. This means that a pro-
grammer cannot know a priori4 the advice order simply by
looking at the pointcut and advice code. We model the pre-
cedence of PCA application by the order in which PCAs are
applied. If m1 and m2 are PCAs, m2*m1 means apply m1 first
and then apply m2. This entails that * is right-associative.

Distributivity. Concern multiplication is distributive over
concern addition. This follows from AspectJ observable
semantics as well. Let P be a program and m be a pure PCA,
and program P’ = m*P. Now suppose P = A+B+C, where A,
B, C are arbitrary Java files or ITDs. We have:

P’ = m * P
= m * (A + B + C)
= m*A + m*B + m*C

Operator * distributes over + because the right-hand argu-
ment of * defines the base code over which the PCA is
quantified. So if the base code is partitioned, the quantifica-
tion of the pointcut applies to each partition.

4 Composing Aspects

Given the above denotation of an aspect, we refer to the
first entry of the vector as the aspect multiplicative part
(denoted with m) and to the second entry as the additive part
(denoted with a).

Let A1 and A2 be aspects, where A1 = [m1,a1] and A2 =
[m2,a2]. The composition of A1 and A2, denoted by A2•A1,
is similar to vector addition:

A2•A1 = [m2*m1, a2+a1] (21)

That is, A2•A1 means apply A1 first and then A2. Thus A1 has
precedence over A2. The result is equivalent to summing

4. There are special rules that apply for certain types of advice when
advices are defined in either the same aspect or in others[3]. These rules
can help determine the order in few cases but not in general. Additionally,
declare precedence clauses can be used to enforce advice order.
 4

their additive parts, and multiplying their pure PCAs in pre-
cedence order, which we assume (without loss of general-
ity) to be in composition order.

We can model a base program P (a program without
aspects) as the vector [1,P]. The application of A1 and A2
to P is:

A2•A1•P = [m2,a2]•[m1,a1]•[1,P]
= [m2*m1*1, a2+a1+P]
= [m2*m1, a2+a1+P]

Still using vector arithmetic concepts, the result of a weav-
ing (i.e., aspects applied to a base program) is the length of
the resulting vector V, which we denote by |V| and is com-
puted by:

|V| = |[m,a]|
= m * a (22)

Thus, the length of A2•A1•P is:

|A2•A1•P| = (m2*m1)*(a2+a1+P) (23)

More generally, the weaving of aspects A1…An into pro-
gram P yields the augmented program:

|An•An-1•…•A1•P| =
(mn * mn-1 *…* m1) * (an + an-1 + … + a1 + P) (24)

This equation also follows directly from the observable
semantics of AspectJ weaving.

5 Difficulty with AspectJ

A difficulty of incremental development using AspectJ is
determining at each step the extent of the set of join points
defined by a pointcut. Stated differently, the programmer
needs to know if any of the pointcuts applied in previous
development steps affects the code added by current step or
later steps.

We can see this difficulty by expanding equation (23)
using the distributivity of * over +:

...= m2*m1*a2 + m2*m1*a1 + m2*m1*P (25)

The underlined term m1 indicates that applying A2 to a pro-
gram requires the designer to know how m1 affects a2. This
problem is aggravated when the number of aspects com-
posed is large. Expanding (24), these are the products that
cause problems in incremental development:

...*mi+2*mi+1*mi*mi-1*...*m2*m1*ai + ...

That is, a designer is required to know how previously
applied multipliers mj affect subsequently added terms ai,
where i>j.

For instance, in our example of Section 2, when developing
aspect Color it is necessary to check if previous pointcuts
affect it. In this case, aspect Counter, applied in the previ-

ous step, contains a pointcut that causes method setColor
to be advised and thus to incorrectly increment the counter.

We can express algebraically the example of Section 2 to
verify this issue:

Point = [1, setX + x]
TwoD = [1, setY + y]
Counter = [CounterP, counterA + counter]
Color = [1, setColor + color] (26)

And the weaving can be expressed in the following way
(see the Appendix for details):

|Color • Counter • TwoD • Point|
= counterP*setColor + color + counterA +
counter + counterP*setY + y +
counterP*setX + x (27)

The first element of the summation exposes the above-men-
tioned difficulty for incremental development.

6 An Alternative Composition Model

We propose an alternative model of aspect composition that
supports incremental development while retaining the
power of AspectJ. The idea is simply to treat aspect compo-
sition as function composition where quantification is
bounded to its current input. Recall equation (19). Starting
with the case when aspect A = [m,a] is applied to program
P the result is:

A(P) = m * (a + P)

The difference is that in the alternative model, vector arith-
metic (i.e., addition and length computation) used for com-
position and weaving is no longer required. Thus, the
alternative composition of n aspects is function composi-
tion:

An(An-1(...(A1(P))...)) = mn *(an + (mn-1 *
(an-1 + .. (m1 * (a1 + P))..))) (28)

As an example, consider the application of A1 and A2 to P,
using (28):

A2(A1(P))= m2 * (a2 + (m1 * (a1 + P)))
= m2 * (a2 + m1*a1 + m1*P)
= m2*a2 + m2*m1*a1 + m2*m1*P (29)

Notice that in this expression, the last two terms (m2*m1*a1
and m2*m1*P) are identical to those of expression (25), but
m1 disappears from the first term thus eliminating the need
to verify that previously applied multipliers do not affect
the current development step.

We can verify this in the example of Section 2. Starting
with the definitions of (26) and using (28) we have that:

Color(Counter(TwoD(Point)))
= setColor + color + counterA + counter +
counterP*setY + y + counterP*setX + x (30)
 5

where term counterP disappears from the first element of
the summation in (27). (See Appendix for details). Thus,
the alternative model eliminates the undesirable behavior,
from an incremental point of view, of method setColor
described in (8).

Does this alternative model have the same power as the
AspectJ model? We address this question in the next sec-
tion.

7 Comparison

All compositions in the AspectJ model can be expressed as
compositions in the alternative model. The converse does
not hold.

Without loss of generality, consider composition (23) of
two aspects and a program in the AspectJ model. The key
insight is to refactor both aspects by reifying their multipli-
cative and additive parts into separate aspects and rearrang-
ing the composition expression. For aspects A1 and A2 the
reification yields four aspects:

Arm1 = [m1,0] and Ara1 = [1,a1]
Arm2 = [m2,0] and Ara2 = [1,a2] (31)

The suffix rm stands for reified multiplicative part and ra
stands for reified additive part. The AspectJ equation in
(23) can be expressed as:

Arm2 (Arm1 (Ara2 (Ara1 (P))))
= Arm2 (Arm1 (Ara2 + Ara1 + P)
= Arm2 * Arm1 * (Ara2 + Ara1 + P)
= m2 * m1 * (a2 + a1 + P) (32)

The above refactoring and translation of AspectJ composi-
tions to the alternative model is general and can be auto-
mated. The appendix illustrates how to obtain the
composition expression of AspectJ of the example in
Section 2 by using the alternative model.

Unfortunately, the reverse mapping — translating an arbi-
trary expression of the alternative model composition to
one in terms of AspectJ composition — is not possible. The
reason is that aspects affect all additive terms of a composi-
tion, regardless of when or how they were introduced. In
our example, AspectJ sticks the multiplicative term m1 into
the middle of the first term of (25). Certainly the pointcut
definition of m1 could be tweaked so that it does not affect
a2. However, doing that would require a use-specific inva-
sive change to the pointcut of m1. Different composition
expressions would require invasive modifications to m1, as
well as other PCAs. This is in contrast to the simple non-
invasive refactoring that occurs in the translation of the
alternative model, where invasive changes are not needed.

The alternative model also has implications in aspect reuse.
Recall the example of Section 2. Consider the following
scenario. A new development step requires adding a third

dimension, a Z coordinate, to class Point. We can express
this step as aspect ThreeD, defined similarly to TwoD (2).

Including all the steps, we want to build three different pro-
grams:

• A program that counts execution of setX and setY.

• A program that counts execution of setX, setY,
and setZ.

• A program that counts execution of all set methods,
including setColor.

Consider the implementation in AspectJ. To cover the three
programs, we would need three different versions of aspect
Counter. For the first program, we require the constrained
version in (9). For the second program, it is necessary to
further modify aspect Counter (9) to include execution of
setZ. For the third program the original aspect (5) suf-
fices.

On the other hand, the alternative model requires only the
original version of aspect Counter. The three programs are
expressed as follows:

• ThreeD(Color(Counter(TwoD(Point))))

• Color(Counter(ThreeD(TwoD(Point))))

• Counter(Color(ThreeD(TwoD(Point))))

Bounded quantification allows us to reuse aspects as-is
(without the need of any invasive changes) and makes
aspects behave like traditional modularization technologies
in terms of incremental development.

8 Related Work

There exist several tools to help identify, modularize, navi-
gate and understand aspects and the scope their pointcuts.
For instance, AJDT [2] provides IDE support in the Eclipse
environment for AspectJ. Other IDEs like Emacs, JBuilder,
and NetBeans also provide similar functionality. There are
specialized tools such as FEAT[9] that uses structural que-
ries to identify and describe concerns. Another tool is the
Concern Manipulation Environment (CME) [4], whose
goal is to provide support for the identification, encapsula-
tion, extraction, and composition of concerns. An overview
of concern modelling and supporting tools is in [5].

There has been previous work that addresses the global rea-
soning characteristic of AspectJ. Kiczales and Mezini [7],
propose the use of Aspect-Aware Interfaces to support mod-
ular reasoning. These interfaces capture the relationship
between base code and crosscutting concerns. Aspect-
Aware Interfaces describe, among other things, what advice
(its type and pointcuts) affect base code. By making this
relationship explicit, modular reasoning can be improved.
 6

Careful naming conventions could be imposed to cope with
unbounded quantification of AspectJ’s composition model.
However, doing that contradicts one of the core tenets of
AOP, obliviousness, which states that programmers should
not know about (and thus do not make provisions for)
future extensions [5]. Furthermore, regardless of the con-
vention used, the degree of flexibility and reusability is
compromised. For instance, if naming conventions were
imposed at each developmental stage, reuse would be hin-
dered when aspects were utilized in different stages for
which they were originally designed to work on. Part of the
problem lies at the shallow abstraction level at which point-
cuts work, which describe patterns in syntactic terms.
Despite the many alternatives proposed to improve pointcut
definition, such as [6], relying only on the pointcut lan-
guage as opposed to an architectural model is an approach
prone to have limitations.

9 Conclusions and Future Work

We showed how AspectJ composition has analogies to vec-
tor arithmetic and why it complicates incremental develop-
ment. Further, we presented an alternative model of
composition that treats aspect composition as function com-
position. The alternative model preserves the full power of
AspectJ while eliminating AspectJ’s need to verify that pre-
vious aspects do not affect the current development step. It
can also improve aspect reuse.

We plan to implement this model, using the Aspect Bench
Compiler (ABC) [1]. The reification of aspect advice as an
ITD can be hidden thereby keeping the AspectJ syntax
intact. However, to evaluate the full benefit of the alterna-
tive model, we will need to extend AspectJ syntax. We
believe simple changes can be made to an AspectJ com-
piler, as mostly what we will be doing is changing the scope
of the multiplication operation.

There are several issues yet to be resolved. For instance,
aspects can extend other aspects. Thus, it is an open ques-
tion how can inheritance be integrated into our model.
Along the same lines, there are other elements of AspectJ
static model that have not been considered in our paper,
such as declare parents and declare implements
clauses that can change the relationships between classes
and interfaces.

Also, the alternative model should be extended to more
clearly address the following issues: aspects with more than
one PCA, definition of abstract pointcuts, use of the same
pointcut in several advice, different types of join points
other than execution, other types of advice such as
before and around.

We believe that all the above-mentioned changes will not
affect substantially the core results presented in this paper.

Acknowledgements. We thank Oege de Moor, Jeff Gray,
Christian Lengauer, Jia Liu, Mark Grechanik, Sahil Thaker,
and Wiliam Cook for their comments on drafts of this
paper.

This research is sponsored in part by NSF's Science of
Design Project #CCF-0438786.

10 References

[1] Aspect Bench Compiler. http://www.aspectbench.org
[2] Aspect Developement Tools. http://www.eclipse.org/ajdt
[3] AspectJ. Programming Guide. http://aspectj.org/

doc/proguide

[4] Concern Manipulation Environment (CME)
http://www.eclipse.org/cme/

[5] R.E. Filman, T. Elrad, S. Clarke, M. Aksit. Aspect-Oriented
Software Development. Addison-Wesley, 2004

[6] K. Gybels, J. Brichau. “Arranging Language Features by
More Robust Pattern-based Crosscuts”. AOSD (2003)

[7] G. Kiczales, M. Mezini. “Aspect-Oriented Programming and
Modular Reasoning”. International Conference on Software
Engineering (ICSE) 2005 (to appear).

[8] R. Laddad. AspectJ in Action. Practical Aspect-Oriented
Programming. Manning, 2003

[9] G. Murphy, A. Lai, R.J. Walker, M.P. Robillard, “Separating
Features in Source Code: An Exploratory Study”. ICSE
(2001).

11 Appendix

Proof of Associativity of +. To prove associativity, we
must show that the following holds:

(A + B) + C = A + (B + C)

Thus we must consider the four cases of concern addition
identified in Section 3.1, meaning that A and B have those
four combinations. For each of those four cases, we identify
the relevant combinations to substitute term C in the above
equality. We omit the cases that can be obtained by com-
muting terms. Let Ii and Pi be ITDs and programs respec-
tively. Two terms match (can be woven together) if the have
the same subscripts, otherwise they do not match.

Case 1. A=P1, B=P2. (P1+P2) yields programs P1 and P2.

• C=I1. Adding I1 yields I1-extended class P1 and
class P2. Conversely, addition of P2 + I1 yields the
same class and ITD that when added to class P1 results
in the I1-extended P1 class and class P2. Thus the
property holds for the this case.

• C=I3. The property holds because the addition of the
two sides of the equation yields classes P1 and P2, plus
the non-matching ITD I3.

• C=P3. The property holds trivially.
 7

Case 2. A=I1, B=I2. (I1+I2) yields ITDs I1 and I2.

• C=P1. Adding P1 yields I1-extended class P1 and I2.
Conversely, addition of I2 + P1 yields P1 and I2 that
when added to I1 results in the I1-extended P1 class
and I2. Thus the property holds for the this case.

• C=P3. The property holds because addition on both
sides yields I1, I2, and class P3.

• C=I3. The property holds trivially in this case.

Case 3. A=I1, B=P1. (I1+P1) yields I1-extended class P1.

• C=I1’. Adding I1’ yields class P1 extended with I1

and I1’. Conversely, extending P1 with I1’ and
later with I1 also yields class P1 extended with I1

and I1’.

• C=I2. Adding I2 yields extended class P1 and I2.
Conversely, adding P1 and I2 yields that class and
ITD, when added to I1 yields I1-extended class P1

and I2.

• C= P2. Similar to previous proof.

Case 4. A=I1, B=P2. (I1+P2) yields I1 and P2.

• C=P1. Adding P1, yields extended class P1 and P2.
Conversely, adding P2 + P1, yields both classes, and
when added I1 results in extended class P1 and P2.

• C=P3. Holds trivially.

• C=I2. Adding I2, yields extended class P2 and I1.
Conversely, P2 + I2 yields extended class P2 that
when added I1, yields extended class P2 plus I1.

Derivation of AspectJ composition of (27). The super-
scripts indicate the multiplicative (m) or additive (a) part of
the aspects of (26).

|Color • Counter • TwoD • Point|
= [Colorm, Colora] • [Counterm, Countera] •

[TwoDm, TwoDa] • [Pointm, Pointa]
= (Colorm * Counterm * TwoDm * Pointm) *

(Colora + Countera + TwoDa + Pointa)
= (1 * counterP * 1 * 1) *

(Colora + Countera + TwoDa + Pointa)
= counterP * (Colora + Countera + TwoDa + Point)
= counterP*Colora + counterP*Countera +

counterP*TwoDa + counterP*Pointa
= counterP*setColor + counterP*color +

counterP*counterA + counterP*counter +
counterP*setY + counterP*y +
counterP*setX + counterP*x

= counterP*setColor + color + counterA +
counter + counterP*setY + y +
counterP*setX + x (33)

Summation elements such as counterP*counter are
reduced to the additive part (ITD or program), counter in
this case, because the additive term does not contain join
points captured by the PCA.

Derivation of (30). The superscripts indicate the multipli-
cative (m) or additive (a) part of the aspects of (26).

Color(Counter(TwoD(Point)))=
Colorm*(Colora + (Counterm * (Countera +

(TwoDm * (TwoDa + Point)))))
= Colorm * (Colora + (Counterm *

(Countera + TwoDm*TwoDa + TwoDm*Point)
= Colorm * (Colora + Counterm*Countera +
Counterm*TwoDm*TwoDa + Couterm*TwoDm*Point)

= Colorm * Colora + Colorm * Counterm * Countera +
Colorm * Counterm * TwoDm * TwoDa +
Colorm * Counterm * TwoDm * Point

= Colora + counterP * Countera +
counterP * TwoDa + counterP * Point

= setColor + color + counterP*counterA +
counterP*counter + counterP*setY +
counterP*y + counterP*setX + counterP*x

= setColor + color + counterA + counter +
counterP*setY + y + counterP*setX + x (34)

AspectJ composition of Section 2 using the alternative
model. The fist step is to reify the aspects of (26):

Pointrm=[Pointm,0] Pointra=[1,Pointa]
TwoDrm=[TwoDm,0] TwoDra=[1,TwoDa]
Counterrm=[Counterm,0] Counterra=[1,Countera]
Colorrm = [Colorm,0] Colorra=[1,Colora] (35)

Superscript rm stands for reified multiplicative part and ra
stands for reified additive part. Thus the composition in the
alternative model that achieves the same result as (27) is:

Colorrm(Counterrm(TwoDrm(Pointrm(Colorra
(Counterra(TwoDra(Pointra)))))))

= Colorrm(Counterrm(TwoDrm(Pointrm(
Colorra + Counterra + TwoDra + Pointra))))

= Counterrm (Colorra+ Counterra+ TwoDra+ Pointra)
= counterP * (Colorra+Counterra+TwoDra+Pointra)
= counterP * Colora + counterP * Countera +
counterP * TwoDa + counterP * Pointa

= counterP*setColor + counterP*color +
counterP*counterA + counterP*counter +
counterP*setY + counterP*y +
counterP*setX + counterP*x

= counterP*setColor + color + counterA +
counter + counterP*setY + y +
counterP*setX + x (36)

The first equality comes from the aspect multiplication
identity and (19). The second equality uses aspect multi-
plication and addition identities and (19). The third equal-
ity uses addition and multiplication identity, equation (19),
and substitutes Counterrm by counterP. The fourth equal-
ity uses distributivity of * over + and substitutes Pointa by
Point to yield the same result as (27). The last two equal-
ities expand the multiplicative and additive parts and apply
distributivity and identity laws.
 8

	Improving Incremental Development in AspectJ by Bounding Quantification
	Roberto E. Lopez-Herrejon and Don Batory Department of Computer Sciences University of Texas at A...
	Abstract
	1 Introduction
	2 Incremental Development Example
	class Point { ���int x; ���void setX(int x) { this.x = x; } } (1)
	aspect TwoD { ���int Point.y; ���void Point.setY(int y) { this.y = y; } } (2)
	class Point2 { ���int x; ���void setX(int x) { this.x = x; } ���int y; ���void setY(int y) { this...
	class Point3 { ���int counter = 0; ���int x; ���void setX(int x) { this.x = x; counter++;} ���int...
	aspect Counter { ��int Point.counter = 0; � after(Point p) : execution(* Point.set*(..)) �������&...
	class Point4 { ���int x; ���void setX(int x) { this.x = x; counter++;} ���int y; ���void setY(int...
	aspect Color { �int Point.color =0; �void Point.setColor(int c) { this.color = c; } } (7)
	class Point’4 { ���int counter = 0; ���int x; ���void setX(int x) { this.x = x; counter++;} ���in...
	aspect Counter { ��int Point.counter = 0; � after(Point p) : (execution(* Point.setX(..)) �������...

	3 An Algebraic Model
	3.1 A Model of Inter-Type Declarations
	Point2 = TwoD(Point) (10)
	Point2 = TwoD + Point (11)
	X = X + 0 = 0 + X (12)
	TwoD = setY + y (13)

	3.2 A Model of PCAs
	aspect Log { �pointcut logP():execution(* Point.set*(..)); �after() : logP() { ����System.out.pri...
	aspect Log { ��static void Point.setCalled() { ����System.out.println(“set called”); ��} ��LogP i...
	Log = [LogP, setCalled] (16)
	aspect Counter { ���CounterP is after(Point p): ��������execution(* Point.set*(..)) && target(p) ...
	Counter = [CounterP, counterA + counter] (18)

	3.3 Concern Multiplication
	P’ = A(P) = m * (a + P) (19)
	P = 1*P m = m * 1 = 1 * m (20)

	4 Composing Aspects
	A2·A1 = [m2*m1, a2+a1] (21)
	|V| = |[m,a]| = m * a (22)
	|A2·A1·P| = (m2*m1)*(a2+a1+P) (23)
	|An·An-1·…·A1·P| = ��(mn * mn-1 *…* m1) * (an + an-1 + … + a1 + P) (24)

	5 Difficulty with AspectJ
	...= m2*m1*a2 + m2*m1*a1 + m2*m1*P (25)
	Point = [1, setX + x] TwoD = [1, setY + y] Counter = [CounterP, counterA + counter] Color = [1, s...
	|Color · Counter · TwoD · Point| = counterP*setColor + color + counterA + ��counter + counterP*se...

	6 An Alternative Composition Model
	An(An-1(...(A1(P))...)) = mn *(an + (mn-1 * �����������(an-1 + .. (m1 * (a1 + P))..))) (28)
	A2(A1(P)) = m2 * (a2 + (m1 * (a1 + P))) = m2 * (a2 + m1*a1 + m1*P) = m2*a2 + m2*m1*a1 + m2*m1*P...
	Color(Counter(TwoD(Point))) = setColor + color + counterA + counter + ��counterP*setY + y + count...

	7 Comparison
	Arm1 = [m1,0] and ��Ara1 = [1,a1] Arm2 = [m2,0] and �� Ara2 = [1,a2] (31)
	Arm2 (Arm1 (Ara2 (Ara1 (P)))) ��= Arm2 (Arm1 (Ara2 + Ara1 + P) ��= Arm2 * Arm1 * (Ara2 + Ara1 + P...

	8 Related Work
	9 Conclusions and Future Work
	10 References
	[1] Aspect Bench Compiler. http://www.aspectbench.org
	[2] Aspect Developement Tools. http://www.eclipse.org/ajdt
	[3] AspectJ. Programming Guide. http://aspectj.org/ doc/proguide
	[4] Concern Manipulation Environment (CME) http://www.eclipse.org/cme/
	[5] R.E. Filman, T. Elrad, S. Clarke, M. Aksit. Aspect-Oriented Software Development. Addison-Wes...
	[6] K. Gybels, J. Brichau. “Arranging Language Features by More Robust Pattern-based Crosscuts”. ...
	[7] G. Kiczales, M. Mezini. “Aspect-Oriented Programming and Modular Reasoning”. International Co...
	[8] R. Laddad. AspectJ in Action. Practical Aspect-Oriented Programming. Manning, 2003
	[9] G. Murphy, A. Lai, R.J. Walker, M.P. Robillard, “Separating Features in Source Code: An Explo...

	11 Appendix
	|Color · Counter · TwoD · Point| = [Colorm, Colora] · [Counterm, Countera] · ��[TwoDm, TwoDa] · [...
	Color(Counter(TwoD(Point)))= ���Colorm*(Colora + (Counterm * (Countera + ���������(TwoDm * (TwoDa...
	Pointrm=[Pointm,0] ����Pointra=[1,Pointa] TwoDrm=[TwoDm,0] ������TwoDra=[1,TwoDa] Counterrm=[Coun...
	Colorrm(Counterrm(TwoDrm(Pointrm(Colorra ������(Counterra(TwoDra(Pointra))))))) = Colorrm(Counter...

