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Software design is an art. More often than not, designers rely on craftsmanship

and creativity for designing software products. Just as understanding of the structure of

atomic elements is critical to the natural sciences, it too is fundamental to the science

behind software engineering. Structural theories simplify our understanding of a convo-

luted mechanism and allow us to reason in a clear and concise manner. Therefore, decision

making can transcend subjective justification and move to quantitative and precise reason-

ing.

Feature-Oriented Programming and compositional programming embody ideas of

software decomposition structure. Feature-Oriented Programming treats Features as the

building-blocks that are composed to synthesize programs. Its convergence with algebraic

transformations has led to AHEAD - a simple algebraic model of Feature-Oriented Pro-

gramming. Within AHEAD, reasoning over simple algebraic structures enables codifica-

tion and mechanization of well-understood principles.

In this thesis we demonstrate just that by showing that critical properties of a

decomposition can be identified and verified efficiently. First, we introduce multidimen-

sional structures, a higher-order structural relationship within conventional decomposi-

tion. Multidimensional structures simplify a complex decomposition’s representation,

understanding, and compositional specification. However, not all decompositions are fit

for a multidimensional arrangement. We identify an essential property of orthogonality
vii



that a decomposition and its implementation must satisfy in order to warrant a multidi-

mensional structure. 

Next, we identify a class of errors that occur at module composition-time. These

composition errors are a result of unsatisfied dependencies when feature modules are com-

posed in arbitrary arrangements. AHEAD introduces architectural-level domain con-

straints that govern the compatibility of feature modules. 

Besides architectural-level composition constraints, there are also low-level

implementation constraints: a feature module can reference classes that are defined in

other feature modules. Safe composition is the guarantee that programs composed from

feature modules are absent of references to undefined classes, methods, and variables. We

show how safe composition can be guaranteed for AHEAD product lines using feature

models and SAT solvers.

The significance of this work lies in the generality of our approach. Multidimen-

sional structures are not unique to AHEAD; we demonstrate its applicability under any

form of decomposition. Likewise, safe composition also extends AHEAD. We draw an

analogy between safe composition and C++ linking errors. Moreover, we demonstrate

how non-code artifacts benefit from modularization as well as safe composition analysis.

In identifying and verifying key properties, we have also demonstrated how the

structural model of AHEAD can simplify our understanding and applicability of essential

principles. When the fundamental structure is well-understood, software design is amena-

ble to automation.
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Chapter 1

Introduction

"Perfection (in design) is achieved not when there is nothing more to add, but rather when

there is nothing more to take away."

-- Antoine de Saint-Exupéry 

1.1  Overview 
Structural theories are as elemental to program design as they are to the sciences

and mathematics. A structural theory is a fundamental way of thinking about relationships

within elements of a complex system; without which the simplicity and elegance of

description is lost. Principles of large-scale program design may also assume a mathemat-

ical form that simplifies their understanding and provides a disciplined way to think about

programs, their structure, and their supporting tools. In essence, simplicity of the approach

reduces complexity in software development. Such is an ambition of Software Engineer-

ing. 

Higher-level structured programming was one of the key innovations in reducing

complexity from lower-level program description. These ideas have been improved over

time, establishing abstraction and modularization as the pillars of structured programming

– the foundation of modern Software Engineering. We conjecture that the foundations of

tomorrow’s technology will not only leverage on these well established ideas, it will have

to scale to orders-of-magnitude larger programs. 
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The contribution of this thesis is to identify further structural relationships that are

prevalent within large scale program modularizations and provide the outline of a theory

that expresses its structure, manipulation, and synthesis mathematically, and from which

properties of a program can be derived from the program’s structural description. Such a

theory must be defined formally for two reasons: (a) to be able to evaluate its correctness

reliably, and (b) to be a reference for an understandable decomposition.

1.2  Problem Description
AHEAD is a model of program synthesis using Feature-Oriented Programming

and algebraic composition. Its aspiration came from one of the key ambitions of Software

Engineering: to manage complexity as software scales in size. In particular, AHEAD

embodies techniques to build systems compositionally - to break problems into manage-

able units - and to guarantee properties of composed systems. 

Both small and medium-scale programs have been constructed using these tech-

niques. During the process, a key observation was made: within a hierarchal product line

decomposition, there may be further structural relationships that are not best captured by

hierarchal modularization. This idea was later distilled into multidimensional models

within AHEAD, but it was not clear what constitutes as a dimension, or why certain

decomposition structures are not fit for a multidimensional model. 

Furthermore, having a larger number of modules also raises complexity in under-

standing relationships among them. Subsequently, properties that must hold for a decom-

position are neither easy to implement nor to verify, hindering its scalability. In practice, it

became increasingly difficult to maintain all modules in a consistent state - in particular,

without composition errors. There is a need for theory and tool-support for automated

analysis of decomposition properties. This thesis addresses the following questions: 

• What properties must a design have to warrant a multidimensional structure? 

• What are the properties necessary to ensure a product line lacks composition errors?

• How do we verify these properties?
2



1.3  Outline
This thesis is structured as follows:

In Chapter 2 we provide the necessary background. We first overview Feature-

Oriented Programming, product line engineering, and the fundamentals of AHEAD.

Chapter 2 ends with a rigorous treatment of multidimensional models as it forms the basis

of our subsequent work.

Next, in Chapter 3 we consider automated analysis of product line models. We

show how properties of safe composition can be achieved for AHEAD product lines by

using feature models and SAT solvers. We report our findings on several different product

lines to verify that these properties hold for all product line members. Some properties that

we analyze do not reveal actual errors, but rather designs that “smell bad” and that could

be improved.

Multidimensional models are revisited in Chapter 4. We revisit orthogonality and

develop an algorithm for verifying orthogonality of multidimensional models. Once again,

we provide results of the analysis carried over existing product lines. We also discuss how

errors revealed in our analysis can be fixed to make a model orthogonal. Chapter 4 con-

cludes with general perspective of this work and venues for future work.

Chapter 5 overviews the broader picture of our work. It restates the problem, our

solutions to those problems, and concludes with the main contributions and significance of

this work.
3



Chapter 2

Background.

"The purpose of abstraction is not to be vague, but to create a new semantic level 
in which one can be absolutely precise."
-- Edsger W. Dijkstra

2.1  Feature Oriented Programming
A software product line is a family of programs where each member differs from

others in a well-defined manner. The strength of product line engineering lies in the sys-

tematic and efficient creation of products. Features are commonly used to specify and dis-

tinguish members of a product line, where a feature is an increment in program

functionality. Features communicate a product’s characteristics clearly; they capture pro-

gram functionality concisely, and help delineate commonalities and variabilities in a

domain [28].

We have argued that if features are primary entities that describe products, then

modules that implement features should also be primary entities in software design and

program synthesis. This line of reasoning has lead us to compositional and declarative

models of programs in software product lines. A key focus in Feature Oriented Program-

ming (FOP) is the study of feature modularity in product lines. 

Product lines are commonly specified by describing features it may have. Further,

a program is declaratively specified by the list of features that it supports. Tools directly
4



translate such a specification into a composition of feature modules that synthesize the tar-

get program [6][10].

2.2  Formal Models of Product Lines
A feature model is a hierarchy of features that is used to distinguish products of a product

line [28][16]. Consider an elementary automotive product line that differentiates cars by

transmission type (automatic or manual), engine type (electric or gasoline), and the option

of cruise control. A feature diagram is a common way to depict a feature model.

Figure 2.1 shows the feature model of this product line. A car has a body, engine, trans-

mission, and optionally a cruise control. A transmission is either automatic or manual

(choose one), and an engine is electric-powered, gasoline-powered, or both:

 

Besides hierarchical relationships, feature models also allow cross-tree con-

straints. Such constraints are often inclusion or exclusion statements of the form ’if feature

F is included in a product, then features A and B must also be included (or excluded)’. In

the above product line a cross-tree constraint is that cruise control requires an automatic

transmission.

A feature diagram is a graphical depiction of a context-free grammar [27]. Rules

for translating feature diagrams to grammars are listed in Figure 2.2. A bracketed term [B]

means that feature B is optional, and term S+ means select one or more subfeatures of S. We

require that subfeature selections are not replicated and the order in which subfeatures

Figure 2.1  A Feature Diagram for a Car Product-Line
5



appear in a sentence is the order in which they are listed in the grammar [11]. That is, the

grammar enforces composition order.

A specification of a feature model is a grammar and its cross-tree constraints. A

model of our automotive product line is listed in Figure 2.3. A sentence of this grammar

that satisfies all cross-tree constraints defines a unique product and the set of all legal sen-

tences is a language, i.e., a product line [11].

Feature models are compact representations of propositional formulas [11]. Rules

for translating grammar productions into formulas are listed in Figure 2.2. (The

atmost1(A,B,C) predicate in Figure 2.2 means at most one of A, B, or C is true. See [21] p.

278.) The propositional formula of a grammar is the conjunction of the formulas for each

production, each cross-tree constraint, and the formula that selects the root feature (i.e., all

products have the root feature). Thus, all constraints except ordering constraints of a fea-

ture model can be mapped to a propositional formula. This relationship of feature models

and propositional formulas is essential to results on safe composition.

Figure 2.2  Feature Diagrams, Grammars, and Propositional Formulas

S

A B C

S

A B C

S

A B C

S : A [B] C ;

... S ...

S : A | B | C ;

... S+ ...

S : A | B | C ;

(S⇔A) ∧ (B⇒S) ∧ (C⇔S)

(S ⇔ A ∨ B ∨ C)
∧ atmost1(A,B,C)

S ⇔ A ∨ B ∨ C

diagram notation grammar propositional formulaconcept

and

alternative
(choose1)

or
(choose 1+)

// grammar of our automotive product line

Car : [Cruise] Transmission Engine+ Body ;

Transmission : Automatic | Manual ;

Engine : Electric | Gasoline ;

// cross-tree constraints

Cruise ⇒ Automatic ;

Figure 2.3  A Feature Model Specification
6



2.3  AHEAD
AHEAD is a theory of program synthesis that merges feature models with addi-

tional ideas [10]. First, each feature is implemented by a distinct module. Second, program

synthesis is compositional: complex programs are built by composing feature modules.

Third, program designs are algebraic expressions. The following summarizes the ideas of

AHEAD that are relevant to safe composition.

2.3.1  Algebras and Step-Wise Development

An AHEAD model of a domain is an algebra that consists of a set of operations,

where each operation implements a feature. We write M = {f, h, i, j} to mean model M has

operations (or features) f, h, i, and j. One or more features of a model are constants that

represent base programs:
f // a program with feature f
h // a program with feature h 

The remaining operations are functions, which are program refinements or exten-

sions:
i•x // adds feature i to program x
j•x // adds feature j to program x

where • denotes function composition and i•x is read as “feature i refines program x” or

equivalently “feature i is added to program x”. The design of an application is a named

expression (i.e., composition of features) called an equation:
prog1 = i•f // prog1 has features i and f
prog2 = j•h // prog2 has features j and h
prog3 = i•j•h // prog3 has features i, j, h

AHEAD is based on step-wise development [52]: one begins with a simple pro-

gram (e.g., constant feature h) and builds a more complex program by progressively add-

ing features (e.g., adding features i and j to h in prog3).

The relationship between feature models and AHEAD is simple: the operations of

an AHEAD algebra are the primitive features of a feature model; compound features (i.e.,

non-leaf features of a feature diagram) are AHEAD expressions. Each sentence of a fea-
7



ture model defines an AHEAD expression which, when evaluated, synthesizes that prod-

uct. The AHEAD model Auto of the automotive product line is:
Auto = { Body, Electric, Gasoline, Automatic, Manual, Cruise }

where Body is the lone constant. Some products (i.e., legal expressions or sentences) of this

product line are:
c1 = Automatic•Electric•Body
c2 = Cruise•Automatic•Electric•Gasoline•Body

c1 is a car with an electric engine and automatic transmission. And c2 is a car with both

electric and gasoline engines, automatic transmission, and cruise control.

2.3.2  Feature Implementations

Features are implemented as program refinements.

Consider the following example. Let the BASE feature encap-

sulate an elementary buffer class with set and get methods.

Let RESTORE denote a “backup” feature that remembers the

previous value of a buffer. Figure 2.4a shows the buffer

class of BASE and Figure 2.4b shows the buffer class of

RESTORE•BASE. The underlined code indicates the changes

RESTORE makes to BASE. Namely, RESTORE adds to the buffer

class two members, a back variable and a restore method,

and modifies the existing set method. While this example is

simple, it is typical of features. Adding a feature means add-

ing new members to existing classes and modifying existing

methods. As programs and features get larger, features can add new classes and packages

to a program as well. 

Features can be implemented in many ways. The way it is done in AHEAD is to

write program refinements in the Jak language, a superset of Java [10]. The changes

RESTORE makes to the buffer class is a refinement that adds the back and restore members

and refines the set method. This is expressed in Jak as:

class buffer {
int buf = 0;
int get() {return buf;}

 void set(int x) {
buf=x;

}
}

class buffer {
int buf = 0;
int get() {return buf;}
int back = 0;

 void set(int x) {
back = buf;
buf=x;

}
void restore() {
buf = back;

}
}

(a)

(b)

Figure 2.4  Buffer Variations
8



refines class buffer {
int back = 0;
void restore() { buf = back; }
void set(int x) { back = buf; Super.set(x); }

} (1)

Method refinement in AHEAD is accomplished by inheritance; Super.set(x) indi-

cates a call to (or substitution of) the prior definition of method set(x). By composing the

refinement of (1) with the class of Figure 2.4a, a class that is equivalent to that in

Figure 2.4b is produced. See [10] for further details.

2.3.3  Principle of Uniformity

A program has many representations beyond source code, including UML docu-

ments, process diagrams, makefiles, performance models, and formal specifications, each

written in its own language.

AHEAD is based on the Principle of Uniformity [9], meaning that all program

representations are subject to refinement. Put another way, when a program is refined, any

or all of its representations may change. AHEAD adopts a scalable notion of refinement:

impose a class structure on all artifacts, and refine such artifacts similar to code.

Consider an ant makefile [63], a typical non-Java artifact. Figure 2.5 shows how a

class structure can be imposed on an ant artifact: a project is a class, a property is a vari-

able, and a target is a method.

Refinements of a makefile involve adding new targets and properties (i.e., meth-

ods and variables) to a project (class), and extending existing targets (i.e., extending exist-

<project myMake>
<property name=”p”

value=”1”/>
<target main 
depends=”common”>
<compile A />
<compile B />
<compile C />

</target>
<target common>
<compile X>
<compile Y>

</target>
</project>

class myMake {
p = 1

void main() {
common();
compile A;
compile B;
compile C;

}
void common() {

compile X;
compile Y:

}
}

Figure 2.5  Makefile-Class Concept 
(a) (b)
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ing methods). Figure 2.6a shows an Ant artifact, Figure 2.6b shows a refinement, and

Figure 2.6c shows their composition. Refinements of a makefile involve adding new tar-

gets and properties (i.e., methods and variables) to a project (class), and extending existing

targets (i.e., extending existing methods).

In general, a class structure can be imposed on many different kinds of artifacts:

grammar files, expressions, HTML files, performance models, etc. Here we focus only on

Java /Jak artifacts and XML-ant artifacts in verifying properties of the model.

2.4  Multidimensional Designs
As early as high-school we are trained to decompose problems into sub-problems

and solve them independently. Not surprisingly, similar techniques have arisen in software

design. Given that we have been practicing divide-and-conquer technique, at some point

we have all observed that different people decompose a problem in different ways and still

come to the same result. This general observation leads us to the idea of Multidimensional

Designs. 

<project name="buffer">
<property name="back" value="0"/>
<target name="get">

<echo message="buf is ${buf}"/>
</target>
<target name="restore">

<antcall target="get"/>
<property name="buf" value="${back}"/>
<echo message="buf is ${back}"/>

</target>
</project>

<project name="buffer">
<property name="back" value="0"/>
<target name="get">

<echo message="buf is ${buf}"/>
</target>

</project>

<refine name="buffer">
<target name="restore">

<antcall target="get"/>
<property name="buf" value="${back}"/>
<echo message="buf is ${back}"/>

</target>
</project>

Figure 2.6  Ant Refinement Example

(a)

(b)

(c)
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2.4.1  Orthogonality

Underlying the idea of multidimensional decompositions is a crucial concept of

orthogonality. Orthogonality in mathematics and sciences pertains to condition of opposi-

tion. Lines at right angles are orthogonal. Two vectors are orthogonal if the sum of their

inner product is zero - i.e. they balance out. An experimental design with two factors is

orthogonal if any effects of one factor balances out effects of the other factor - i.e. sums to

zero. Likewise, in software design, the term orthogonality describes also an oppositional

relationship: two abstractions influencing each other, such that composition of either

abstraction is identical to the composition of other. We clarify this idea by example. 

Let us define a decomposition for a simple Expression evaluation program. The

program deals with simple arithmetic expressions such as 5 + 10, or 5 - x + 10, and can

perform two operations on any expression - print and evaluate. We describe two abstrac-

tions for the software: a set of Objects - Add, Subtract, Variable, Constant - and a set of

Operations - print and eval. Interestingly, we can show a unique relationship between

these two abstractions. Consider a matrix representation of this design illustrated in

Figure 2.7. Along one dimension operations have been decomposed into Print and Eval,

and along the other dimension Objects have been decomposed into Operators and Oper-

ands; operators are further decomposed into Add and Subtract, and operands into Variable

and Constant, thus forming a hierarchy of decomposition.

What is unique about this matrix? Both abstractions - objects and operations -

influence each other. The Add object influences operations print and eval since printing

and evaluating addition operator must be implemented by the program. Conversely, the

Figure 2.7  Expressions Matrix

Operations

Objects

Print Eval
Operators Add PrintAdd EvalAdd

Sub PrintSub EvalSub
Operands Variable PrintVar EvalVar

Constant PrintConst EvalConst
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Print operation influences all objects since functionality to print each type of operator and

operand must be implemented. The same holds for other units of either dimension. 

A matrix-entry is a module implementing functionality represented by its co-ordi-

nate within the matrix. Since Add operator influences Print operation, and vice versa,

PrintAdd, carries this very functionality - it prints the Add node. EvalAdd, lying at the

intersection of Add and Eval, evaluates the Add node. Likewise, all matrix-entries have a

responsibility dependent upon its position within the matrix.

If the matrix represented by this expression program is orthogonal, composing a

program through the Operations abstraction - i.e. print (of add, sub, var, const) and eval (of

add, sub, var, const) should be identical to composing the program through the Objects

abstraction - i.e. Add, Sub, Variable, Const. It follows that under the orthogonality con-

straint we would obtain an identical program regardless of the order in which abstractions

were composed. Figure 2.8 clarifies this idea, where + represents the composition opera-

tor. Composing Operations should lead to a semantically identical program as if Objects

had been composed (Figure 2.8a) - i.e. they balance out each other. By this line of reason-

ing we can conclude that going one step further to compose the remaining abstraction also

results in a semantically identical program (Figure 2.8b).

Print + Eval
Add + Sub + Variable 
+ Constant

PrintAdd + EvalAdd +
PrintSub + EvalSub +
PrintVar + EvalVar +
PrintConst + EvalConst

Figure 2.8  Different Compositions of the Expressions Matrix

Print + Eval
Add PrintAdd + EvalAdd
Sub PrintSub + EvalSub
Variable PrintVar + EvalVar
Constant PrintConst + EvalConst

Print Eval
Add + Sub + 
Variable + 
Constant

PrintAdd +
PrintSub +
PrintVar +
PrintConst

EvalAdd + EvalSub
+ EvalVar + Eval-
Const

Print + Eval
Add + Sub + Variable + 
Constant

PrintAdd + PrintSub +
PrintVar + PrintConst +
EvalAdd + EvalSub +
EvalVar + EvalConst

=

=

a)

b)
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Recap: Two abstractions are orthogonal if i) decompositions of both abstractions

influence each other, and ii) composing them in any order should result in an identical

program. 

Without satisfying property (i) the decomposition

does not warrant a matrix-like structure; without (ii) we can

not claim that the two dimensions of the matrix are balanced.

Figure 2.9 shows a 2D matrix that may satisfy property (ii),

but not property (i). Dimensions F and G do not influence

each other; it may well be a single dimensional design. Chapter 4 on orthogonality testing

contains examples where property (i) holds, and the product lines have been designed as a

multidimensional model, yet property (ii) does not hold.

When considering more than two abstractions, the orthogonality property can be

tested on any combination of 2 dimensions. Given abstractions {a, b, c,...}, if we find

that a is orthogonal to b, b is orthogonal to c, and a is orthogonal to c, then we construct a

3-dimensional orthogonal matrix of the design with dimensions a, b, and c. In general, for

the design to be n-dimensional we must have  pairs of abstractions that are orthogonal.

Note that Orthogonality is a property of a design, not just AHEAD designs (see

Appendix A). Thus, orthogonality property between abstractions does not mandate static-

code composition, it can well be observed under dynamic-runtime composition (such as

calling a module). It is not surprising that historically researchers have already observed

such unique relationships between abstractions where both abstractions influence each

other. 

During late 80s Tuscany [53] and Perry [54][55][56] had noted that systems may

be organized into multiple dimensions. In [54] Perry remarks: “It is increasingly common

that our software systems have multiple dimensions of organization...we have the notion of

features in telephone switching systems that often are orthogonal to the decomposition or

design structure — that is, multiple components cooperate in implementing some particu-

lar behavior”.

Figure 2.9  A 2D Matrix

Dim. F
F1 F2 F3

Dim
G

G1 a b c
G2 d - -
G3 e - -

n
2⎝ ⎠

⎛ ⎞
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His idea of orthogonality between Features and Design Structures is similar to the

property we have just described. For instance, he remarks that in a telephone switching

system, features are orthogonal to design structures. Features - such as recovery and log-

ging - influences design structures - such as node, link, and controller - and vice versa. As

a matter of fact, our experience has shown that operations and data structure abstractions

are commonly found to be orthogonal in numerous domains.

Furthermore, observe that a problem domain can be decomposed into orthogonal

abstractions but its implementation decomposes along only one abstraction. Without the

sophisticated compositional tools this is in fact the common practice. The orthogonality

property then demands that if the abstractions are orthogonal, it should not matter which

of the abstractions is decomposed. Put another way, if a problem is decomposed into

orthogonal abstractions, the designer has a choice in decomposing along either one of the

abstractions.

Reconsider the network program in Perry’s work. One could have chosen to

decompose along the Features dimension, leaving structures node, link, and controller tan-

gled within the feature decomposition. Alternatively, one could have decomposed the

problem into design structures, leaving features such as recovery and logging tangled tan-

gled within the design structure decomposition. Both decompositions are valid and could

implement the same program. In fact, the later alternative is the most common practice in

today’s Object-Oriented systems. 

As an aside, such observations were among the motivations for Aspect-Oriented

Programming (AOP) [65]. Under the Object-Oriented decomposition certain functionality

cuts-across the object decomposition, and we want to be able to decompose it further.

AOP, as with FOP, emerges out of a need to modularize in ways besides simply Objects. It

is indeed an instance of multidimensional designs, and a part of much bigger picture called

Multidimensional Separation of Concerns [66].
14



2.4.2  Multidimensional Separation of Concerns

Multidimensional abstractions have been explored in the 90s by Tarr, Ossher, and

Harrison under the incarnation of Multi-Dimensional Separation of Concerns (MDSoC)

[66][40]. MDSoC advocates that modularity can be understood as multidimensional

spaces, where dimensions represent different ways of decomposing or modularizing the

software - by classes, features, aspects, etc. Units along a dimension are particular

instances of that dimension’s unit of modularity (e.g., classes). Since each dimension mod-

ularizes with respect to a unique model of decomposition (e.g. class, feature), units of a

dimension may overlap on the same piece of code with multiple units of other dimensions.

Thus, for example, partitioning software by features “cross-cuts” a partition by classes,

and vice versa. The basic idea is illustrated in Figure 2.10.

Figure 2.10 shows two different modularizations of an Expression Evaluator. The

problem embodies set of operations as well as types of data on which operations are exe-

cuted. For example, type ModuloInt represents a result under modulo arithmetic. Under

the class decomposition, Int cuts-across feature modules Integer, add and multiply. The

same idea applies to class IntModP. 

class Node {
  abstract Node add(Node a);
  abstract Node mul(Node a);
}

class Int extends Node {
  int val;
  Int(int i){val=i;}

  Node add(Node a){
    Int b = (Int)a;
    return new Int(val+b.val)
  }

  Node mul(Node a){
    Int b = (Int)a;
    return new Int(val*b.val)
  }
}

//modulo arithmetic
class IntModP extends Node {  
  ...

Features Classes
Base Node

Int

IntModP

Integer

ModuloInt

add

multiply

add

multiply

Figure 2.10  Feature and Class decomposition of an Expression Evaluator
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In this example Classes are the first manner of decomposition, and Features are

secondary. Another way to put it: In AHEAD, features further modularize the collabora-

tion of classes. On the other hand, MDSoC promotes the increasingly popular view that

there is no single best manner of decomposition. Accordingly, no preference is given to a

particular dimension, all are treated equally.

In contrast to these ideas, this work’s contribution is to show that a single manner

of decomposition also possesses structural relationships that can be classified as multi-

dimensional decomposition. Our treatment of multidimensional design explores feature

modularity. 

Preliminary recognition of multi-dimensional structures (MDS) was reported in

[67] and [10]. Since then, our understanding of MDS within feature models has evolved

considerably. In the subsequent sections we present more general concepts of multi-

dimensional structures, and present theory and tools for automating development and

analysis of multidimensional designs. 

2.5  Multidimensional Designs in AHEAD
Multidimensional feature models are a fundamental design technique in AHEAD.

Each dimension provides a unique view of feature decompositions of the program. Unlike

other MDSoC approaches, a dimension here implies a unique abstraction of functionality,

and multiple dimensional structures provide multiple feature abstractions over the same

implementation.

A visual depiction of this idea is shown in Figure 2.11. Depending on the task, one

may want to view the Feature abstractions, or the Data Structure abstractions. Given these

two views we can represent it within a 2-dimensional matrix, where each cell represents a

module whose responsibility is denoted by its coordinate. So in the Expressions matrix of

Figure 2.7 module PrintAdd carries functionality to print out an Addition operator, module

EvalVar evaluates the value of a variable node, and so forth.
16



2.5.1  Multidimensional AHEAD Model

To be more precise, consider the AHEAD model F = {F1, F2, ...Fn}. Let pro-

gram G = F8+F4+F2+F1 be a program that is synthesized from F. We can rewrite G’s specifi-

cation as:

,

where (8,4,2,1) is the sequence of indices to be

summed.

F is a 1-dimensional model. An n-dimensional

model uses n FOP models to specify the features (or

indices) along a particular dimension. A 3-dimensional

model M is depicted in Figure 2.12. It uses A={A1, A2,

... Aa}, B={B1, B2, ... Bb}, and C={C1, C2, ... Cc} as

dimensional models. The entries of this matrix define model M={M111, ... Mabc}, which has

a*b*c features, where Mijk implements the combined features (Ai, Bj, Ck). 

AHEAD models with more than 1 dimensions are called Multidimensional Mod-

els (MDMs). In a n-dimensional model, a program is specified by n equations, one per

dimension. For the 3-D model of Figure 2.12, a program P in the product-line of M would

be defined by 3 equations, such as:

Figure 2.11  Two Views of a Single Code Base

R e c o v e r y L o g g in g

C o d e

 N o d e

F e a tu re

S t ru c tu re

C o n t ro lle r L in k

G Σi 8 4 2 1, , ,( )∈ Fi=

Figure 2.12  A 3D FOP Model
A 1 A 2 A 3 A 4

B 1

B 2

B 3

B 4

C 1

C 2
C 3

C 4

A 1 A 2 A 3 A 4

B 1

B 2

B 3

B 4

C 1

C 2
C 3

C 4

C 1

C 2
C 3

C 1

C 2
C 3

C 4
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P = A6 + A3 + A1
P = B7 + B4 + B3 + B2
P = C9 + C1

This specification is translated into an M equation by summing the elements of M

along each dimension, using the equations above. That is:

One of the advantages of multidimensional models is conciseness. Given n

dimensions with d features per dimension, program module complexity is O(dn). How-

ever, specification complexity is only O(dn). Thus, multidimensional models make the

application of FOP more scalable as program specifications are exponentially shorter.

The other advantage is understandability. Since MDMs delineate structural rela-

tionships between abstractions, they help us understand how abstractions and modules that

implement them are related. See Appendix A for examples.  

2.5.2  Properties of AHEAD Models

Multidimensional models rely on the property of orthogonality for consistency.

But how do we ensure that an AHEAD model is orthogonal? The first condition, that

abstractions (dimensions) should influence each other is a prerequisite for there to be mul-

tiple dimensions within the model. How we verify the second condition, that an MDM can

be composed along any dimension, is the subject of Chapter 4 on Orthogonality Testing. 

The utility of MDMs is that we can specify exponentially large composition of

modules through essentially linear length MDM specification. As the number of feature

modules increase, it becomes increasingly important to automatically verify certain prop-

erties of the model. While dealing with fewer feature modules it may be possible to manu-

ally verify or design such properties, but doing so quickly becomes intractable as the

number of modules increase. One such property is to ensure that no feature module may

be absent of type dependencies - that is, all possible compositions will compile without

dependency errors. How we verify this property is the subject of this next chapter on Safe

Composition.

P Σi 6 3 1, ,( )∈ Σj 7 4 3 2, , ,( )∈ Σk 9 1,( )∈ Mijk=
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Chapter 3

Safe Composition

"I have not failed. I've just found 10,000 ways that won't work."

--Thomas Edison 

3.1  Overview
The essence of software product lines is the systematic and efficient creation of

products. In AHEAD a program is typically specified declaratively by the list of features

that it supports. Tools directly translate such a specification into a composition of feature

modules that synthesize the target program [6][10].

Not all features are compatible. Feature models or feature diagrams are commonly

used to define the legal combinations of features in a product line. In addition to domain

constraints, there are low-level implementation constraints that must also be satisfied. For

example, a feature module can reference a class, variable, or method that is defined in

another feature module. Safe composition is the guarantee that programs composed from

feature modules are absent of references to undefined classes, methods, and variables.

More generally, safe composition is a particular problem of safe generation: the guarantee

that generators synthesize programs with particular properties [47][51][49][25]. There are

few results on safe generation of product lines [33][17].

When composing feature modules, a problem that can arise is that there may be

references to classes or members that are undefined. The AHEAD tool suite has multiple

ways to compose feature modules to build a product. We can compile individual feature
19



modules and let AHEAD compose their bytecodes to produce the binary of a product

directly, or compose the source files and then compile them. Regardless of the approach, it

is possible to discover errors (i.e., reference to undefined elements) during the last phase

of composition/compilation. This may be too late. In other words, we need to ensure apri-

ori that all variables, methods, and classes that are referenced in a generated program are

indeed defined. And we want to ensure this property for all programs in a product line,

regardless of the specific approach to synthesize products. This is the essence of safe com-

position.

The core problem is illustrated in the fol-

lowing example. Let PL be a product line with three

features: base, addD, and refC. Figure 3.1 shows

their modules. base is a base feature that encapsu-

lates class C with method foo(). Feature addD

introduces class D and leaves class C unchanged.

Feature refC refines method foo() of class C; the

refinement references the constructor of class D.

Now suppose the feature model of PL is a single

production with no cross-tree constraints:

PL : [refC] [addD] base ; // feature model

The product line of PL has four programs that represent all possible combinations

of the presence/absence of the refC and addD features. All programs in PL use the base

feature. Question: are there programs in PL that have type errors? As PL is so simple, it is

not difficult to see that there is such a program: it has the AHEAD expression refC•base.

Class D is referenced in refC, but there is no definition of D in the program itself. This

means one of several possibilities: the feature model is wrong, feature implementations

are wrong, or both. Designers need to be alerted to such errors. In the following, we define

some general compositional constraints (i.e., properties) that product lines must satisfy.

class C {
void foo(){..}

}

class D {...}

refines class C {
void foo(){

... new D() ...
Super.foo();

}
}

(a) base

(b) addD

(c) refC

Figure 3.1  Three Feature Modules
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3.2  Properties of Safe Composition

3.2.1  Refinement Constraint 

Suppose a member or class m is introduced in features X, Y, and Z, and is refined by feature

F. Products in a product line that contain feature F must satisfy the following constraints to

be type safe:

(i) X, Y, and Z must appear prior to F in the product’s AHEAD expression (i.e., m must

be defined prior to be refined), and 

(ii) at least X, Y, or Z must appear in every product that contains feature F.

Property (i) can be verified by examining the feature model, as it linearizes fea-

tures. Property (ii) requires the feature model (or rather its propositional formula) to sat-

isfy the constraint:
F ⇒ X ∨ Y ∨ Z (2)

By examining the code base of feature modules, it is possible to identify and col-

lect such constraints. These constraints, called implementation constraints, are a conse-

quence of feature implementations, and may not arise if different implementations are

used. Implementation constraints can be added to the existing cross-tree constraints of a

feature model and obeying these additional constraints will guarantee safe composition.

That is, only programs that satisfy domain and implementation constraints will be synthe-

sized. Of course, the number of implementation constraints may be huge for large pro-

grams, but a majority of implementation constraints will be redundant. Theorem provers,

such as Otter [5], could be used to prove that implementation constraints are implied by

the feature model and thus can be discarded.

Czarnecki in [17] observed the following: Let PLf be the propositional formula of

product line PL. If there is a constraint R that is to be satisfied by all members of PL, then

the formula (PLf ∧ ¬R) can not be satisfiable. If it is, we know that there is a product of PL

that violates R. To make our example concrete, to verify that a product line PL satisfies

property (2), we want to prove that all products of PL that use feature F also use X, Y, or Z.
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A satisfiability (SAT) solver can verify if (PLf ∧ F ∧ ¬X ∧ ¬Y ∧ ¬Z) is satisfiable. If it is,

there exists a product that uses F without X, Y, or Z. The variable bindings that are returned

by a solver identifies the offending product. In this manner, we can verify that all products

of PL satisfy (2).

Note: We are inferring composition constraints for each feature module; these

constraints lie at the module’s “requires-and-provides interface” [18]. When we compose

feature modules, we must verify that their “interface” constraints are satisfied by a compo-

sition. If composition is a linking process, we are guaranteeing that there will be no linking

errors.

3.2.2  Superclass Constraint 

Super has multiple meanings in the Jak language. The original intent was that

Super would refer to the method that was being refined. Once a method void m() in a

class C is defined, it is refined by a specification of the form:

void m() {... Super.m(); ... } (3)

(In AOP-speak, (3) is an around method for an execution pointcut containing the

single joinpoint of the m() method). However, if no method m() exists in class C, then (3)

is interpreted as a method introduction that invokes its corresponding superclass method.

That is, method m() is added to C and Super.m() invokes C’s inherited method m(). To

test the existence of a superclass method requires a more complex constraint.

Let feature F introduce a method m into class C and let m invoke m() of its super-

class. Let Hn be a superclass of C, where n indicates the position of Hn by the number of

ancestors above C. Thus H0 is class C, H1 is the superclass of C, H2 is the super superclass of

C, etc. Let Supn(m) denote the predicate that is the disjunction of all features that define

method m in Hn (i.e., m is defined with a method body and is not abstract). If features X and

Y define m in H1, then Sup1(m)=X∨Y. If features Q and R define m in H2, then

Sup2(m)=Q∨R. And so on. The constraint that m is defined in some superclass is:
F ⇒ Sup1(m) ∨ Sup2(m) ∨ Sup3(m) ∨ ... (4)
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In short, if feature F is in a product, then there must also be some feature that

defines m in a superclass of C. The actual predicate that is used depends on C’s position in

the inheritance hierarchy.

Note: it is common for a method n() of a class C to invoke a different method

m() of its superclass via Super.m(). Constraint (4) is also used to verify that m() is

defined in a superclass of C.

3.2.3  Reference Constraint 

Let feature F reference member m of class C. This means that some feature must

introduce m in C or m is introduced in some superclass of C. The constraint to verify is:
F ⇒ Sup0(m) ∨ Sup1(m) ∨ Sup2(m) ∨ ... (5)

Note: By treating Super calls as references, (5) subsumes constraints (2) and (4).

Note: a special case of (5) is the following. Suppose C is a direct subclass of class

S. If C is introduced in a product then S must also be introduced. Let c be the default con-

structor of C which invokes the default constructor m of S. If feature F introduces C and

features X, Y, and Z introduce S, then (5) simplifies to:
F ⇒ Sup0(m) // same as F ⇒ X ∨ Y ∨ Z (6)

3.2.4  Single Introduction Constraint 

More complicated properties can be verified in

the same manner. An example is when the same member

or class is introduced multiple times in a composition,

which we call replacing. While not necessarily an error,

replacing a member or class can invalidate the feature

that first introduced this class or member. For example,

suppose feature A introduces the Value class, which

contains an integer member and a get() method

(Figure 3.2a). Feature B replaces — not refines — the

get() method by returning the double of the integer

class Value {
int v;
int get() 
{ return v; }

}

refines class Value {
int get() 
{ return 2*v; }

}

class Value {
int v;
int get() 
{ return 2*v; }

}

(a) A

(b) B

(c) B•A

Figure 3.2  Overriding Members
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member (Figure 3.2b). Both A and B introduce method get(). Their composition, B•A,

causes A’s get method to be replaced by B’s get (see Figure 3.2c). If subsequent features

depend on the get() method of A, the resulting program may not work correctly.

It is possible for multiple introductions to be correct; in fact, we carefully used

such designs in building AHEAD. More generally, such designs are symptomatic of inad-

vertent captures [31]: a member is inadvertently named in one feature identically to that of

a member in another feature, and both members have different meanings. In general, these

are “bad” designs that could be avoided with a more structured design where each member

or class is introduced precisely once in a product. Testing for multiple introductions can

either alert designers to actual errors or to designs that “smell bad”. We note that this prob-

lem was first recognized by Flatt et al in mixin compositions [19], and has resurfaced else-

where in object delegation [30] and aspect implementations [4].

Suppose member or class m is introduced by features X, Y, and Z. The constraint

that no product has multiple introductions of m is:

atmost1(X,Y,Z) // at most one of X,Y,Z is true (7)

The actual constraint used depends on the features that introduce m. 

3.2.5  Abstract Class Constraint 

An abstract class can define abstract methods (i.e., methods without a body). Each

concrete subclass C that is a descendant of an abstract class A must implement all of A’s

abstract methods. To make this constraint precise, let feature F declare an abstract method

m in abstract class A. (F could refine A by introducing m, or F could introduce A with m). Let

feature X introduce concrete class C, a descendant of A. If F and X are compatible (i.e., they

can appear together in the same product) then C must implement m or inherit an implemen-

tation of m. Let C.m denote method m of class C. The constraint is:
    F ∧ X ⇒ Sup0(C.m) ∨ Sup1(C.m) ∨ Sup2(C.m) ∨ … (8)

That is, if abstract method m is declared in abstract class A and C is a concrete class

descendant of A, then some feature must implement m in C or an ancestor of C.
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Note: to minimize the number of constraints to verify, we only need to verify (8)

on concrete classes whose immediate superclass is abstract; A need not be C’s immediate

superclass.

Note: Although this does not arise in the product lines we examine later, it is pos-

sible for a method m that is abstract in class A to override a concrete method m in a super-

class of A. (8) would have to be modified to take this possibility into account.

3.2.6  Interface Constraint 

Let feature F refine interface I by introducing method m or that F introduces I

which contains m. Let feature X either introduce class C that implements I or that refines

class C to implement I (i.e., a refinement that adds I to C’s list of implemented interfaces).

If features F and X are compatible, then C must implement or inherit m. Let C.m denote

method m of class C. The constraint is:
   F ∧ X ⇒ Sup0(C.m) ∨ Sup1(C.m) ∨ Sup2(C.m) ∨ ... (9)

This constraint is identical in form to (8), although the parameters F, X, and m may

assume different values.

3.2.7  Perspective

We identified six properties ((2),(4)-(9)) that are essential to safe composition. We

believe these are the primary properties to check. We know that there are other constraints

that are particular to AHEAD that could be included; some are discussed in Section 3.5.1.

Further, using a different compilation technology may introduce even more constraints to

be checked (see Section 3.5.2). 

To determine if we have a full compliment of constraints requires a theoretical

result on the soundness of the type system of the Jak langauge. To place such a result into

perspective, we are not aware of a proof of the soundness of the entire Java language. A

standard approach for soundness proofs is to study a representative subset of Java, such as

Featherweight Java [26] or ClassicJava [20]. Given a soundness proof, it should be possi-
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ble to determine if any constraints are missing for that language subset. To do this for Jak

is a topic of future work.

3.2.8  Beyond Code Artifacts

The ideas of safe composition transcend code artifacts [17]. Consider an XML

document; it may reference other XML documents in addition to referencing internal ele-

ments. If an XML document is synthesized by composing feature modules [10], we need

to know if there are references to undefined elements or files in these documents. Exactly

the same techniques that we outlined in earlier sections could be used to verify safe com-

position properties of a product line of XML documents. We believe the same holds for

product lines of other artifacts (grammars, makefiles, etc.) as well. The reason is that we

are performing analyses on structures that are common to all kinds of synthesized docu-

ments; herein lies the generality and power of our approach.

3.3  Generalizing to Multiple Dimensions
One of the motivations for safe composition is to efficiently analyze product lines with

large set of feature modules. Multidimensional models succicntly specify a higher-order

structure of a large number of possible modules. Therefore we argue that designs that use

multidimensional models will benefit the most from safe composition analysis. Our analy-

sis of safe composition thus far has assumed a single-dimensional decomposition. Fortu-

nately it is easy to generalize these ideas to multidimensional model. We demonstrate how

below.

Let us first distinguish key differences in specifying a single-dimensional and a

multidimensional model. Figure 3.3 shows two product lines consisting of four feature

modules a,  b, c, and d. Both are identical, yet their specification carries different form. A

single-dimensional model’s grammar and constraints reference feature modules them-

selves. The Safe composition ideas we have demonstrated so far are over this type of spec-

ification. The process is straightforward: for the product line shown in Figure 3.3, analyze
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modules {a,..,d}, and append constraints (from Section 3.2) regarding presence of

these modules to the grammar that, when satisfied, would describe a safe composition

error.

Multidimensional models are specified over dimensions and their units. Individ-

ual feature modules are mapped to a coordinate system within those dimensions. For

example, to map the model of Figure 3.3A to Figure 3.3B we would construct a mapping

as follows:

a -->  (W and Y)

b -->  (X and Y)

c -->  (W and Z)

 d -->  (X and Z)

The above mapping can be read as: "Replace a  with (W and Y), replace b  with

(X and Y)", and so forth. Hence, constraints within Figure 3.3A translate to:

(X and Z) <=> ((W and Z) and (X and Y))

(W and Z) => (X and Z)

Now, Y and W are always selected in model Figure 3.3b, hence they are always

"true".  The above generated constraints simplify to:

(X and Z) <=> (Z and X)

Figure 3.3  An identical one and two dimensional feature model

Single Dimension of Decomposition

a b c d
Dimension One

Dim.

Two

W X

Y a b

Z c d

Grammar: a [b] [c] [d]
Constraints:
 d <=> (c and b)
 c => d

Grammar : DimOne DimTwo
 DimOne : W [X]
 DimTwo : Y [Z]
Constraints:
 Z => X

(A) (B)
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Z => (X and Z)

The first constraint is always true, thus, the multidimensional model of

Figure 3.3B carries only the second constraint, which is further simplified to:

Z => X

Translation of safe composition constraint to a representation suitable for multidi-

mensional models is straightforward. In the case of the model in Figure 3.3B we analyze

modules {a,..,d} and append constraints describing presence of these modules. The

only difference being that in the constraint each module is replaced by conjunction of units

where the module is placed. For example, if through code analysis we find that module c

references a type defined in module d, this means c => d and we would append the con-

straint c and !d1 to the product line model.  This translates to:

(W and Z) and !(X and Z) (10)

Now, because W can not be absent according to the model in Figure 3.3, and because Z

requires X, conjunction of the original model and (10) can not be satisfied - i.e. there is no

assignment that violates the constraint: c => d. This particular constraint passes the safe

composition test; another may not. We still need to validate all dependency constraints.

Safe composition verification is independent of the dimensionality of the model

representation since there is direct mapping from the module to its coordinate representa-

tion in the model.

3.4  Results
We have analyzed the safe composition properties of many AHEAD product lines.

Table 1 summarizes the key size statistics for several of the Java product lines that we ana-

lyzed. Note that the size of the code base and average size of a generated program is listed

both in Jak LOC and translated Java LOC.

1. The constraint that must hold is c => d. In order to verify this we append (c and !d) to the original model,
and let the SAT-solver find an assignment that violates the constraint.
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The properties that we verified for the Java product lines are grouped into five categories:

• Refinement (2),

• Reference to Member or Class, includes (4) and (5)

• Single Introduction (7)

• Abstract Class (8)

• Interface (9).

We also analyzed two XML product lines of ant files. Ant files also demand

product line modularization since one or more features may require the build process to be

customized. Hence, a product line which modularizes Java artifacts may also require Ant

file modules to be decomposed within its features. Table 2 summarizes statistics for two

XML product lines that we analyzed.

The properties that we verified for XML product lines are grouped into three categories:

• Refinement (2),

• Reference to Member or Class, includes (4) and (5)

• Single Introduction (7)

Abstract classes and Interfaces are not present in the simple mapping from XML

structure to the class structure illustrated in Section 2.3.3. Henceforth, we refer only to the

Product 
Line

# of 
Features

# of 
Programs 

Code Base
Jak/Java LOC

Program 
Jak/Java LOC

Graph (GPL) 18 80 1800/1800 700/700
Prevayler (PPL) 7 20 2000/2000 1K/1K

Bali (BPL) 17 8 12K/16K 8K/12K
Jakarta (JPL) 70 56 34K/48K 22K/35K

TABLE 1. Java Product Line Statistics

Product 
Line

# of 
Features

# of 
Programs 

Code Base
XML LOC

Program 
XML LOC

Ahead Tools (ATS) 12 200 3200 400
Pink Creek  (PCP) 23 9700 2086 1329

TABLE 2. XML-ant Product Line Statistics
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class structure and not the XML structure. Like with Java code, XML code modules are

analyzed to extract dependencies in the form of safe composition constraints.

For each constraint, we generate a theorem to verify that all products in a product

line satisfy that constraint. We report the number of theorems generated in each category.

Note that duplicate theorems can be generated. Consider features Y and ExtendY of

Figure 3.4. Method m in ExtendY references method o in Y, method p in ExtendY refer-

ences field i in Y, and method p in ExtendsY refines method p defined in Y. We create a

theorem for each constraint; all theorems are of the form ExtendY⇒Y. We eliminate dupli-

cate theorems, and report only the number of failures per category. If a theorem fails, we

report all (in Figure 3.4, all three) sources of errors. Finally, we note that very few abstract

methods and interfaces were used in the product lines of Table 1. So the numbers reported

in the last two categories are small.

We conducted our experiments on a Mobile Intel Pentium 2.8 GHz PC with 1GB

memory running Windows XP. We used J2SDK version 1.5.0_04 and the SAT4J Solver

version 1.0.258RC [45].

3.4.1  Graph Product Line

The Graph Product-Line (GPL) is a family of graph applications that was inspired by

early work on modular software extensibility [19][42]. Each GPL application implements

one or more graph algorithms. A feature model for GPL, consisting of 18 distinct features,

is listed in Figure 3.5.

class D { 
static int i;
static void o() {..}
void p() {..}

}

class C {
void m() { D.o(); }

}

refines class D {
void p() {

Super.p();
D.i=2;

}
}

Figure 3.4  Sources of ExtendY⇒Y

(a) Y

(b) ExtendY
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A GPL product implements a graph. A graph is either Directed or Undi-

rected. Edges can be Weighted with non-negative integers or Unweighted. A graph

application requires at most one search algorithm: depth-first search (DFS) or breadth-first

search (BFS), and one or more of the following algorithms:

Vertex Numbering (Number): A unique number is assigned to each vertex.

Connected Components (Connected): Computes the connected components of

an undirected graph, which are equivalence classes under the reachable-from relation. For

every pair of vertices x and y in a component, there is a path from x to y.

Strongly Connected Components (StrongC): Computes the strongly connected

components of a directed graph, which are equivalence classes under the reachable rela-

tion. Vertex y is reachable from vertex x if there is a path from x to y.

Cycle Checking (Cycle): Determines if there are cycles in a graph. A cycle in a

directed graph must have at least 2 edges, while in undirected graphs it must have at least

3 edges.

Minimum Spanning Tree (MSTPrim, MSTKruskal): Computes a Minimum

Spanning Tree (MST), which contains all the vertices in the graph such that the sum of the

weights of the edges in the tree is minimal.

Single-Source Shortest Path (Shortest): Computes the shortest path from a

source vertex to all other vertices.
// grammar 

GPL : Driver Alg+ [Src] [Wgt] Gtp ;
Gtp : Directed | Undirected ;
Wgt : Weighted | Unweighted ;
Src : BFS | DFS ;
Alg : Number | Connected | Transpose StronglyConnected
    | Cycle | MSTPrim | MSTKruskal | Shortest ;
Driver : Prog Benchmark ;

%% // cross-tree constraints

Number ⇒ Src ;
Connected ⇒ Undirected ∧ Src ; 
StronglyConnected ⇒ Directed ∧ DFS ;
Cycle ⇒ DFS ;
Shortest ⇒ Directed ∧ Weighted ;
MSTKruskal ∨ MSTPrim ⇒ Undirected ∧ Weighted ;
MSTKruskal ∨ MSTPrim ⇒ ¬(MSTKruskal ∧ MSTPrim) ; // mutual excl.

Figure 3.5  Graph Product Line Model
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Not all combinations of GPL features are possible. The rules that govern compati-

bilities are taken directly from algorithm texts and are listed in Figure 3.6, and as cross-

tree constraints in Figure 3.5. Note: MSTKruskal and MSTPrim are mutually exclusive

(the last constraint listed in Figure 3.5); at most one can appear in a GPL product.

The code base of the 18 GPL features is 1800 Jak (or 1800 Java) LOC. Enumerat-

ing the GPL product line yields 80 different programs, where a typical program has 5 fea-

tures and its average source size is 700 Jak (or 700 Java) LOC.

Results. Table 3 summarizes our analysis of GPL. In total, we generated 615 the-

orems, of which 551 were duplicates. Analyzing the GPL feature module bytecodes, gen-

erating theorems and removing duplicates, and running the SAT solver on the remaining

64 theorems took 3 seconds.

There was one error (or rather a “bad smell” warning), which occurs when the

Graph.setEdge() method is introduced more than once. This “bad smell” stems from

the inability of AHEAD to refine the argument list of a method. The base feature of a GPL

application is either a Directed or Undirected graph. Both features introduce a Graph

class whose add-an-edge method should be:

void addEdge( Vertex start, Vertex end ); (11)

Algorithm
Required
Graph Type

Required
Weight

Required 
Search

Vertex Numbering Any Any BFS, DFS
Connected Components Undirected Any BFS, DFS
Strongly Connected Components Directed Any DFS
Cycle Checking Any Any DFS
Minimum Spanning Tree Undirected Weighted None
Shortest Path Directed Weighted None

Figure 3.6  Feature Constraints in GPL

Constraint # of 
Theorems

Failures

Refinement Constraint 42 0
Reference to Member or a Class 546 0
Introduction Constraint 27 1
Abstract Class Constraint 0 0
Interface Constraint 0 0

TABLE 3. Graph Product Line Statistics
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The Weighted feature converts the Directed or Undirected graph into a

weighted graph and the method that adds an edge should be refined with a weight parame-

ter:

void addEdge( Vertex start, Vertex end, int weight ); (12)

As AHEAD does not support this kind of refinement (and interestingly, neither do

the AspectJ or Hyper/J tools), we decided to define addEdge with a weight parameter that

was ignored in the Directed or Undirected implementations, but have addEdge over-

ridden with an implementation that used the parameter in the Weight feature. Every GPL

program includes a Driver feature that loads and executes the program’s algorithms. For

Driver to be general, it reads files that encode weighted graphs, which means that it

always invokes the refined addEdge method (12). If the program implements unweighted

graphs, the weight parameter is ignored.

Perhaps a cleaner redesign would be to have the Weight feature add method (12)

and make (11) private, so that (11) could not be used if the Weight feature is present in a

program. However, this change would complicate the Driver feature as it would either

invoke (11) or (12). Our analysis revealed this compromise.

3.4.2  Prevayler Product Line

Prevayler is an open source application written in Java that maintains an in-mem-

ory database and supports plain Java object persistence, transactions, logging, snapshots,

and queries [43]. We refactored Prevalyer into the Prevaler Product Line (PPL) by giving

it a feature-oriented design. That is, we refactored Prevalyer into a set of feature modules,

some of which could be removed to produce different versions of Prevalyer with a subset

of its original capabilities. Note that the analyses and errors we report in this section are

associated with our refactoring of Prevayler into PPL, and not the original Prevayler

source2. The code base of the PPL is 2029 Jak LOC with seven features:

• Core — This is the base program of the Prevayler framework.
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• Clock — Provides timestamps for transactions.

• Persistent — Logs transactions.

• Snapshot — Writes and reads database snapshots.

• Censor — Rejects transactions by certain criteria.

• Replication — Supports database duplication.

• Thread — Provides multiple threads to perform transactions.

A feature model for Prevayler is shown in Figure 3.7. Note that there are con-

straints that preclude all possible combinations of features.

Results. The statistics of our PPL analysis is shown in Table 4. We generated a

total of 882 theorems, of which 791 were duplicates. To analyze the PPL feature module

bytecodes, generate and remove duplicate theorems, and run the SAT solver to prove the

91 unique theorems took 14 seconds.

We performed two sets of safe composition tests on Prevalyer. In the first test, we

found 15 reference constraint violations, of which 8 were unique errors, and 12 multiple-

introduction constraint errors. These failures revealed an omission in our feature model:

we were missing a constraint “Replication ⇒ Snapshot”. After changing the model

(to that shown in Figure 3.7) we found 11 reference failures, of which 4 were unique

errors, and still had 12 multiple-introduction failures. These are the results in Table 4.

Two reference failures were due to yet another error in the feature model that went

undetected. Feature Clock must not be optional because other all features depend on its

functionality. We fixed this by removing Clock’s optionality.

2. We presented a different feature refactoring of Prevayler in [37]. The refactoring we report here is similar to an aspect
refactoring of Godil and Jacobsen [22].

// grammar 
PREVAYLER : [Thread] [Replication] [Censor] 
 [Snapshot] [Persistent] [Clock] Core ;

//constraints
Censor ⇒ Snapshot;
Replication ⇒ Snapshot;

Figure 3.7  Prevayler Feature Model
34



A third failure was an implementation error. It revealed that a code fragment had

been misplaced — it was placed in the Snapshot where it should have been placed in

Replication. The last failure was similar. A field member that only Thread feature

relied upon, was defined in the Persistent feature, essentially making Persistent

non-optional if Thread is selected. The error was corrected by moving the field member

into Thread feature.

Making the above-mentioned changes resolved all reference constraint failures,

but 12 multiple-introduction failures remained. They were not errors, rather “bad-smell”

warnings. Here is a typical example. Core has the method:
public TransactionPublisher publisher(..) {

return new CentralPublisher(null, ...);
}

Clock replaces this method with:
public TransactionPublisher publisher(..) {

return new CentralPublisher(new Clock(), ...);
}

Alternatively, the same effect could be achieved by altering the Core to:
ClockInterface c = null;
public TransactionPublisher publisher(..) {

return new CentralPublisher(c, ...);
}

And changing Clock to refine publisher():
public TransactionPublisher publisher(..) {

c = new Clock();
return Super.publisher(..);

}

Our safe composition checks allowed us to confirm by inspection that the replace-

ments were performed with genuine intent.

Constraint # of Theorems Failures
Refinement 39 0
Reference to Member or a Class 830 11
Single Introduction 12 12
Abstract Class 0 0
Interface 1 0

TABLE 4. Prevayler Statistics
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3.4.3  Bali

The Bali Product Line (BPL) is a set of AHEAD tools that manipulate, transform,

and compose AHEAD grammar specifications [10]. The feature model of Bali is shown in

Figure 3.8. It consists of 17 primitive features and a code base of 8K Jak (12K Java) LOC

plus a grammar file from which a parser can be generated. Although the number of pro-

grams in BPL is rather small (8), each program is about 8K Jak LOC or 12K Java LOC

that includes a generated parser. The complexity of the feature model of Figure 3.8 is due

to the fact that our feature modelling tools preclude the replication of features in a gram-

mar specification, and several (but not all) Bali tools use the same set of features.

The statistics of our BPL analysis is shown in Table 5. We generated a total of

3453 theorems, of which 3358 were duplicates. To analyze the BPL feature module byte-

codes, generate and remove duplicate theorems, and run the SAT solver to prove the 95

unique theorems took 4 seconds.

We found several failures, some of which were due to duplicate theorems failing,

and the underlying cause boils down to two errors. The first was a unrecognized depen-

dency between the requireBali2jcc feature and the require feature, namely

requireBali2jcc invokes a method in require. The feature model of Figure 3.8

allows a Bali tool to have requireBali2javacc without require. A similar error was

Bali : Tool [codegen] Base ;

Base : [require] [requireSyntax] collect 

visitor bali syntax kernel;

Tool : [requireBali2jak] bali2jak
  | [requireBali2jcc] bali2jcc
  | [requireComposer] composer
  | bali2layerGUI bali2layer bali2layerOptions ;

%%

composer ⇒ ¬codegen;
bali2jak ∨ bali2layer ∨ bali2javacc ⇔ codegen;
bali2jak ∧ require ⇒ requireBali2jak; // 1
bali2jcc ∧ require ⇒ requireBali2jcc; // 2
composer ∧ require ⇒ requireComposer; // 3
require ⇒ requireSyntax;

Figure 3.8  Bali Feature Model
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the requireComposer feature invoked a method of the require feature, even though

require need not be present. These failures revealed an error in our feature model. The

fix is to replace rules 1-3 in Figure 3.8 with:

Bali2JakTool ⇒ (require ⇔ requireBali2jak);     // new 1

Bali2jccTool ⇒ (require ⇔ requireBali2jcc);     // new 2

BaliComposerTool ⇒ (require ⇔ requireComposer); // new 3

We verified that these fixes do indeed remove the errors.

Another source of errors deals with replicated methods (i.e., multiple introduc-

tions). When a new feature module is developed, it is common to take an existing module

as a template and rewrite it as a new module. In doing so, some methods are copied verba-

tim and because we had no analysis to check for replication, replicas remained. Since the

same method overrides a copy of itself in a composition, no real error resulted. This error

revealed a “bad smell” in our design that has a simple fix — remove replicas.

We found other multiple introductions. The kernel feature defines a standard

command-line front-end for all Bali tools. To customize the front-end to report the com-

mand-line options of a particular tool, a usage() method is refined by tool-specific fea-

tures. In some tools, it was easier to simply override usage(), rather than refining it, with

a tool-specific definition. In another case, the overriding method could easily have been

restructured to be a method refinement. In both cases, we interpreted these failures as “bad

smell” warnings and not true errors.

Constraint # of Theorems Failures
Refinement 42 0
Reference to Member or a 
Class

3334 7

Single Introduction 18 7
Abstract Class 41 0
Interface 18 0

TABLE 5. Bali Product Line Statistics
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3.4.4  Jakarta Product Line

The Jakarta Product Line (JPL) is a set of AHEAD tools that manipulate and

transform Jak files [9]. There are 70 different features that can be composed to build 56

different products. The average number of features per product is 15, and the average size

of a JPL program is about 22K Jak LOC or 35K Java LOC that includes a generated

parser. The code base is 48K Jak LOC plus grammar files from which parsers can be gen-

erated. The statistics of our JPL analysis is shown in Table 6. We generated a 23480 theo-

rems, of which 22987 were duplicates. To analyze the JPL code base, identify and prove

the 493 unique theorems took 33 seconds.

Our analysis uncovered multiple errors in JPL. One revealed an unexpected

dependency between a feature sm5 that added state machines to the Jak language and a fea-

ture ast that added metaprogramming constructs to Jak [6]. An example of the ast

metaprogramming constructs in Jak is:

e = exp{ 3+x }exp;

which assigns the parse tree for expression ‘3+x’ to variable e. In effect, ast adds LISP-

like quote and unquote to the Jak language. Jak preprocessors replace exp{3+x}exp with

an expression of nested parse tree node constructors. The sm5 feature translates state

machine specifications into Java, and uses ast metaprogramming constructs to express

this translation. Compiling a Jak file requires it to be translated first to its Java counterpart,

and then javac is used to compile the Java file. In this translation, calls to methods

belonging to the ast feature appear in the Java expansion of ast metaprogramming con-

structs. Although the Jak source for sm5 does not reference methods in ast, its Java trans-

Constraint # of 
Theorems

Failures

Refinement Constraint 701 0
Reference to Member of a Class 22142 3
Introduction Constraint 247 58
Abstract Class Constraint 358 0
Interface Constraint 32 0

TABLE 6. Jakarta Product Line Statistics
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lation does. This implementation dependency was not obvious. We decided that the error

is not in our feature implementations, but rather in the JPL feature model: the constraint

(the use of the sm5 feature requires the inclusion of the ast feature) needs to be added.

The most interesting revelation was the discovery of three real errors in JPL fea-

ture modules, all having to do with multiple introductions of the same method. Unlike pre-

vious errors of this type, the overriding methods were not replicas. Two of the methods

returned different String values of method names and method signatures, the difference

being that one version trimmed strings of leading and trailing blanks, while the other did

not. The third example was less benign, revealing that JPL tools were not processing error

messages involving nested interfaces within classes and interfaces correctly.

Our analysis also revealed a situation where a feature introduced several methods

in a class, and a subsequent feature removed (stubbed) the functionality of these methods.

(The original definition of the methods wrote data to a file; the removal or stubbing elimi-

nated file writing). This is another “bad smell” in JPL’s design; a better design would pro-

vide one feature for file writing and another for no-op action. By making this functionality

explicit, the overall program design becomes clearer.

3.4.5  Ahead Tool Suite

Ahead Tool Suite (ATS) is a collection of tools for Feature-Oriented Programming

using the AHEAD model. Bali product line and Java Product Line are two of several tools

within this collection. While feature variations of these two tools do not require variations

in the build process, variations of tools to be included in ATS (such as include/exclude

bali/java) do necessiate changes to the Ant makefile. The grammar for the ATS product

line is shown in Figure 3.9.

. 

• core  is the base constant feature module

• reform is a tool for reformatting jak code with indentation, line-breaks, etc.

• jedi is a tool for extending and composing javadoc-like documentation 

• jrename, jak2java are modules required for compilation of jak code
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• bali is a module for extending and composing BNF form grammar

• xak supports giving class structure to XML documents

• xc composes xak XML code

• cpp is C++ composition tool

• Gui modules are GUI tools for building AHEAD applications

• bcjak2java provides compiler support for converting bali-jak to java

• jak2aj provides compiler support for converting jak code to AspectJ code

The code base of the 12 ATS features is 3200 XML LOC. We discovered three

errors in the model. Features core, drc, and jrename were missing from the grammar.

Figure 3.9 is a result of fixing these errors. 

Table 7 summarizes our analysis of ATS after fixing the model. In total, we gener-

ated 829 theorems, of which 807 were duplicates. Analyzing the ATS feature module’s

XML files, generating theorems and removing duplicates, and running the SAT solver on

the remaining 22 theorems took 10 seconds.

// grammar 

APL : core Java [Xml] [cpp] [Gui] [drc] [bc] [aj] :: mainAPL ;

Java: [reform] [jedi] [jrename] jak2java bali :: mainJava ;

Xml : xc | xak ;

Gui : [me] [mmatrix] guidsl [web] :: mainGUI ;

bc  : [bcjak2java] :: mainBc ;

aj  : [jak2aj] :: mainAj ;

%% // constraints

bc implies mmatrix ;
me implies mmatrix ;

Figure 3.9  ATS Product Line Model
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3.4.6  Pink Creek Product (PCP)

The PinkCreek product line is a family of web portals. A web portal is a web-site

that provides a single point-of-access to the resources available on the internet - such as

email, weather, news, etc - and allows for its customization. A web-portlet is a reusable

web-component representing one of the services on a portal web-site. The code for a given

service may span web user interface, middleware and backend code. Another way to

understand portlets is to consider it as a cross-section of a typical multi-tier architecture. A

portlet is in essence a feature of the portal web site.

PinkCreek Product is a web-portlet that provides flight reservation capabilities to

different web-portals. Its functionality is roughly: (i) search for flights, (ii) present flight

options, (iii) select flights, and (iv) purchase tickets. Figure 3.10 shows the AHEAD

model of PCP product line.

The code base for build process (makefile) of 23 PCP features is 2086 XML LOC.

In total, we generated 89 theorems, of which there were 76 duplicate theorems. Analyzing

Constraint # of 
Theorems

Failures per
Category

Refinement Constraint 11 0
Reference to Member or a Class 818 0
Introduction Constraint 0 0

TABLE 7. ATS Statistics

// grammar 

FBP : BASE Container [INCLUDE_SOURCE_CODE] [INCLUDE_JAVADOC] :: 
MainGpl ;

Container : EXO_TOMCAT | EXO_JBOSS | EXO_JONAS ;

%%

EXO_JBOSS implies EXO_JBOSS ;

Figure 3.10  PCP Product Line Model
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PCP feature module’s XML files, generating theorems, removing duplicates, and running

the SAT solver on the remaining 13 theorems took 2 seconds. 

Table 8 summarizes our analysis of PCP Product Line. We encountered 2 failures,

one of which was a multiple-introduction warning. The second error revealed an error in

our model: feature Container was declared optional when it shouldn’t be. Figure 3.10

shows our model of PCP after fixing this error.

3.5  Related and Future Work

3.5.1  Other Safe Composition Constraints

The importance of ordering features in a composition can be limited to defining a

class or method prior to refining it. We verified these requirements in our product lines and

found no errors. However, it is possible in AHEAD for features to reference methods that

are added by subsequently composed features. Here is a simple example.

The modules for features Base and Ref are shown in Figure 3.11. Base encapsu-

lates class C that has a method foo() which invokes method bar(). Module Ref refines

class C by introducing method bar(). The composition Ref•Base is shown in

Figure 3.11c.

Constraint # of 
Theorems

Failures per
Category

Refinement Constraint 1 1
Reference to Member or a Class 84 0
Introduction Constraint 4 1

TABLE 8. PCP Statistics
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Observe that Ref•Base (Figure 3.11c) satis-

fies our safe composition constraints, namely there

are no references to undefined members. But the

design of Base does not strictly follow the require-

ments of stepwise development, which asserts after

each step in a program’s development, there should

be an absence of references to undefined members.

Base does not have this property (i.e., it fails to sat-

isfy the Reference constraint (5) as bar() is unde-

fined).

We can circumvent this problem by

rewriting Base as Base1 in Figure 3.12, where

Base1 includes an empty bar() method. Com-

posing Base1 with Ref overrides the bar()

method, and the composition of Ref•Base1 is

again class C of Figure 3.11c. Now both expressions Base1 and Ref•Base1 satisfy our safe

composition properties. Unfortunately this revised design raises the warning of multiple

introductions. 

Satisfying the strict requirements of stepwise development is not essential for safe

composition. Nevertheless, it does lead to another set of interesting automated analyses

and feature module refactorings that are subjects of future work.

3.5.2  Related Work

Undefined methods and classes can arise in the linking or run-time loading of pro-

grams when required library modules cannot be found [38]. Our work addresses a variant

of this problem from the perspective of product lines and program generation.

Safe generation is the goal of synthesizing programs with specific properties.

Although the term is new [25], the problem is well-known. The pioneering work of

Goguen, Wagner, et al using algebraic specifications to create programs [51], and the work

class C {
void foo() {
 bar();

}
}

refines class C {
bar() {..}

}

class C {
void foo() {
 bar();

}
void bar() {..}

}

Figure 3.11  Ordering Example

(a) Base

(b) Ref

(c) Ref•Base

class C {
void foo() {
 bar();

}
void bar(){};

}

Figure 3.12  Improved Base Design
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at Kestrel [47] to synthesize programs from formal models are examples. Synthesis and

property guarantees of programs in these approaches require sophisticated mathematical

machinery. AHEAD relies on simple mathematics whose refinement abstractions are vir-

tually identical to known OO design concepts (e.g., inheritance).

MetaOCaml adds code quote and escape operations to OCaml (to force or delay

evaluation) and verifies that generated programs are well-typed [49]. Huang, Zook, and

Smaragdakis [25] studied safe generation properties of templates. Templates are written in

a syntax close to first-order logic, and properties to be verified are written similarly. Theo-

rem provers verify properties of templates. Our work is different: feature modules are a

component technology where we verify properties of component compositions. The clos-

est research to ours, and an inspiration for our work, is that of Czarnecki and Pietroszek

[17]. Unlike our work, they do not use feature modules. Instead, they define an artifact

(e.g., specification) using preprocessor directives, e.g., include this element in a specifica-

tion if a boolean expression is satisfied. The expression references feature selections in a

feature model. By defining constraints on the presence or absence of an element, they can

verify that a synthesized specification for all products in a product line is well-formed.

Our work on safe composition is an instance of this idea. Further, as AHEAD treats and

refines all artifacts in the same way, we believe our results on safe composition are appli-

cable to non-code artifacts as well, as we explained in Section 3.2.8. Demonstrating this is

a subject of future work.

Our approach to compile individual feature modules and to use bytecode compo-

sition tools follows the lead of Hyper/J [40]. However, our technique for compiling feature

modules is provisional. We analyze feature source code to expose properties that must be

satisfied by a program in which a feature module can appear. Krishnamurthi and Fisler

analyze feature/aspect modules that contain fragments of state machines, and use the

information collected for compositional verification [32][33].

Our work is related to module interconnection languages (MILs) [18][44] and

architecture description languages (ADLs) [46] that verify constraints on module compo-

sitions. When feature modules are used, a feature model becomes an MIL or ADL. A more
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general approach, one that encodes a language’s type theory as module composition con-

straints, is exemplified by work on separate class compilation [2]. Recent programming

languages that support mixin-like constructs, e.g., Scala [39] and CaesarJ [4], suggest an

alternative approach to defining, compiling, and composing feature modules. Interest-

ingly, the basic idea is to define features so that their dependencies on other features is

expressed via an inheritance hierarchy. That is, if feature F extends definitions of G, F is a

“sub-feature” of feature G in an inheritance hierarchy. Neither Scala or CaesarJ use feature

models, which we use to encode this information. At feature composition time, a topolog-

ical sort of dependencies among referenced features is performed, which linearizes their

composition. The linearization of features is precisely what our feature models provide.

One of the advantages that feature models offer, which is a capability that is not evident in

Scala and CaesarJ, is the ability to swap features or combinations of features. To us, as

long as grammar and cross-tree constraints are satisfied, any composition of features is

legal. It is not clear if Scala and CaesarJ have this same flexibility. In any case, we believe

our work may be relevant to these languages when safe composition properties need to be

verified in product line implementations.

Propagating feature selections in a feature model into other development artifacts

(requirements, architecture, code modules, test cases, documentation, etc.) is a key prob-

lem in product lines [42]. Our work solves an instance of this problem. More generally,

verifying properties of different models (e.g., feature models and code implementations of

features) is an example of Model Driven Design (MDD) [48][34][23][12]. Different views

or models of a program are created; interpreters extract information from multiple models

to synthesize target code. Other MDD tools verify the consistency of different program

(model) specifications. Our work is an example of the latter.

We mentioned earlier that aspects can be used to implement refinements. AHEAD

uses a small subset of the capabilities of AspectJ. In particular, AHEAD method refine-

ments are around advice with execution pointcuts that capture a single joinpoint. Aspect

implementations of product lines is a topic of current research (e.g., [1][14]), but examples
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that synthesize large programs or product lines are not yet common. Never the less, the

techniques that we outlined in this Chapter should be relevant to such work.

3.6  Summary
We examined safe composition properties in this chapter, which ensure that there

is an absence of references to undefined elements (classes, methods, variables) in a com-

posed program’s implementation for all programs in a software product line. We mapped

feature models to propositional formulas, and analyzed feature modules to identify their

dependencies with other modules. Not only did our analysis identify previously unknown

errors in existing product lines, it provided insight into how to create better designs and

how to avoid designs that “smell bad”. Further, the performance of using SAT solvers to

prove theorems was encouraging: non-trivial product lines of programs of respectable size

(e.g., product lines with over 50 members, each program of size 35K LOC) could be ana-

lyzed and verified in less than 30 seconds. For this reason, we feel the techniques pre-

sented are practical.

Our work is but a first step toward more general and useful analyses directed at

software product lines. We believe this will be an important and fruitful area for future

research.
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Chapter 4

Orthogonality Testing

"Beware of bugs in the above code; I have only proved it correct, not tried it."

-- Donald E. Knuth

4.1  Overview
Multidimensional models posit natural occurrence of orthogonal abstractions in

program decompositions. While we do not pursue here techniques for deriving such

abstractions, we focus solely on verifying an implementation for orthogonality once the

right abstractions have been designed. 

The idea of orthogonality is of balanced abstractions. That is, two abstractions

influence each other to an equal degree, such that either choice of decomposition is yields

the same result. With automated composition technologies such as AHEAD it is further

possible to simultaneously decompose along multiple abstractions. One of the tenets of

this approach is the ability to synthesize software modules that capture different design

viewpoints or perspectives. 

This rests on a fundamental assumption: different projections of the code-base

should be consistent. If they are inconsistent, then the abstractions are not defined to be

balanced, and we may obtain decompositions that represent different programs. Likewise,

any edits that we perform on a view may not correspond to correct functionality in another

view. Stated differently, to produce consistent views of a multidimensional code-base and

allow programmers to edit these views, the underlying multidimensional model must sat-
47



isfy the orthogonality property: the same program will be produced when matrix dimen-

sions are summed in any order. The orthogonality property is an algebraic property of

summation commutativity. For a 2-dimensional model A, the orthogonality property is

expressed by:

For n dimensions, there are n! different summation orders, all of which must pro-

duce syntactically equivalent results. In reality, we want to guarantee semantic equiva-

lence. Unfortunately, guaranteeing semantic equivalence is a much harder problem.

Syntactic equivalence implies semantic equivalance, and it is a simpler problem to solve. 

Given this definition of orthogonality we describe our orthogonality test and an

algorithm for testing if a multidimensional model is orthogonal. We outline the basic

approach and our results in the following sections.

4.2  Example of a Non-Orthogonal Model
The primary problem we trying to solve is to verify orthogonality of an implementation of

a multidimensional model. But first we demonstrate how non-orthogonal abstractions

arise. To see this, consider a slightly condensed version of the Expression model from

Figure 2.7. For brevity, only Variable and Add units are present along the Object dimen-

sion. The revised matrix is shown in Figure 4.1. 

One possible implementa-

tion of the Expression product line

is shown in Figure 4.2. Feature

PrintVar introduces class Var with

the method print and some data

members. It also adds a class Test, which creates a Var object and prints it. Feature EvalVar

refines classes Var and Test introduced in PrintVar. It introduces a method to evaluate the

ΣiΣjAij ΣjΣiAij=

Figure 4.1  Smaller Expressions Matrix

Operations
Print Eval

Objects Variable PrintVar EvalVar
Add PrintAdd EvalAdd
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value of a variable, and appends the test to print out the value of Var object created by

PrintVar.

Feature PrintAdd introduces a class Add, with data members and print operation.

It also refines Test, introduced by PrintVar, by printing out an Add node. EvalAdd feature

refines PrintAdd’s Add class by introducing an operation to evaluate the value of an Add

node, and refines the Test class to print out the value of an Add node.

This particular implementation does not satisfy the orthogonality property. Aggre-

gating Operations and then Objects produces:

class Var{

 public int value;
 public String name;

 print(){
   Sys.println(name+"="+value);
 }
}

class Test{
 main(){
   Var var = new Var();
   var.name="x"; var.value=10;
   var.print();

 }
}

refines class Var {

  int eval(){
    return value;
  }
}

refines class Test{
  main(){
    Super().main();
    Sys.println(var.eval())
  }
}

class Add{

 public Var left;
 public Var right;

 print(){
   Sys.println(
     left.eval()+"+"+right.eval());
 }
}

refines class Test{
 main(){
  Super().m();
  Var left = new Var();
  var right = new Var();
  left.name="a"; right.name="b";
  left.value=2; right.value=3;
 
  Add add = new Add();
  add.left=left; add.right=right;

  add.print();
 }
}

refines class Add {

  int eval(){
    return left.eval()+right.eval();
  }
}

refines class Test{
  main(){
    Super().main();
    Sys.println(add.eval())
  }
}

PrintVar EvalVar

PrintAdd EvalAdd

Figure 4.2  Feature Implementation of the Expression Product Line
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PrintVar + EvalVar + PrintAdd + EvalAdd (13)

Aggregating Objects and then Operations produces:

PrintVar + PrintAdd + EvalVar + EvalAdd (14)

When the program of equation (13) is run it outputs:   x=10, 10, 2+3, 5. The pro-

gram of equation (14) outputs: x=10, 2+3, 10, 5. Therefore, in this implementation, com-

position of EvalVar and PrintAdd does not commute. There are essentially two reasons

why it can not be composed in two different orders.

First, PrintAdd’s print method references EvalVar’s eval operation. This is permit-

ted in the product line of equation (13) since PrintAdd is composed after EvalVar. How-

ever it fails under the tenet of step-wise refinement when composed using equation (14). A

module can not reference a member before it is composed into the program.

The second reason why this implementation lacks orthogonality is apparent from

the output of two compositions. Both PrintAdd and EvalVar extend method main in the

Test class so that, when composed in different order, these two modules execute the test

operation in different order.

Both of these errors can be fixed easily. We leave the solution to a later section on

Results of the Bali product line orthogonality test.

4.3  Orthogonality Test
The test for orthogonality can be expressed by a sim-

plified 2-d matrix A. in Figure 4.3. Let sum (+) denote the

composition operator. We need to prove that the program that

is produced by summing rows and then columns is identical to

the program that is produced by summing columns and then

rows:
a11 + a21 + a12 + a22 = a11 + a12 + a21 + a22 (15)

By cancelling modules whose order is preserved, we can simplify (15) to be:
a21 + a12 = a12 + a21 (16)

Figure 4.3  2D Cube A

a11 a12
a21 a22
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That is, the sum of the bottom left and upper right quadrants must commute. This

is possible in FOP only if a21 and a12 satisfy the following conditions:

(a) they do not define or extend the same method or variable1

(b) they do not refer to members added by each other2

4.3.1  Orthogonality of a Single Multidimensional Program

For any given program both conditions can be verified. The difficulty is doing so

efficiently for larger multidimensional models. Consider model H of Figure 4.4. We can

partition H into quadrants by choosing a pivot points along each point in the grid. All we

need to do is to verify that no element in the upper quadrant redefines, extends, or refer-

ences a method or variable in any element of the lower quadrant, and vice versa. That is,

there are no depencencies between two modules located at right-diagonal. We must per-

form this test for all elements in the shaded regions of H. Consider a 2-dimensional cube

where both dimensions are of size d, then this is a O(d2) operation since there are O(d2)

elements within the two quadrants. Furthermore, as there are (d-1)2 pivot points in a d*d

matrix, verifying orthogonality using this method takes O(d4) time. 

1.That is, each adds and extends non overlapping sets of members
2.Doing so would impose an ordering

Figure 4.4  2D Model, H

A1 A2 A3 A4

B1

B2

B3

B4

B5

Pivot Point
 (2,2)
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For an n-dimensional cube, we must show that each pair of dimensions is orthog-

onal. To do this we have to choose every pair of dimensions (imagine that an n-dimen-

sional cube has been collapsed to 2-dimensions) and apply the test in the previous

paragraph. There are  = O(n2) dimension pairs, and each test of an n-dimensional

model for all pivot points takes O(d4) time. So a brute force algorithm has an efficiency of

O(n2d4). For even reasonable values of n and d, brute-force is infeasible.

We devised a more efficient algorithm to test for orthogonality. Our insight: to test

condition (a) requires two passes of the code-base. The first pass collects data on members

that are defined in all features, and the second pass identifies member refinements. If cube

entry Mi,j..k refines a member defined in feature Mi’,j’..k’, then we need to check if coordi-

nates (ij..k) and (i’j’..k’) fall into conflicting (shaded) quadrants for some pivot point. For

n dimensions, there are  dimension pairs to test, which is O(n2).

Verifying condition (b) can be accomplished in a similar way. The test is if cube

entry Mi,j..k references a member defined in feature Mi’,j’..k’ then coordinates (ij..k) and

(i’j’..k’) cannot fall into conflicting (shaded) quadrants. 

4.3.2  Orthogonality of a Product Line Model

Now consider a multidimensional (cube) model that represents an entire product

line. Projections of this cube yield sub-cubes whose aggregation produces particular pro-

grams of the product line. As there can be an exponential number of possible sub-cubes,

the problem of verifying the orthogonality of a cube is significantly harder.

We can test the orthogonality of a product-line cube by extending the algorithm of

the previous section. The difference is an additional third condition. If cube entries Mc1 and

Mc2 are found to conflict, where c1 and c2 are different n-dimensional coordinates, we need

to know if Mc1 and Mc2 could ever be in the same product. (Cube entries can conflict if they

never appear in the same program). We can make such a determination by using a SAT or

CSP solver and the propositional formula representation of product-line’s feature model.

n
2⎝ ⎠

⎛ ⎞

n
2⎝ ⎠

⎛ ⎞
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Briefly, we know c1 is an n-tuple of features (f1, f2, …fn), one feature per dimension. c2 has a

corresponding n-tuple (g1, g2, …gn). To see if these collections of features can appear in a

product, we set their corresponding variables to be true in the propositional formula of our

multidimensional model. If the SAT or CSP solver finds an assignment that satisfies the

formula, we know Mc1 and Mc2 can appear together in a product.

Running a SAT or CSP solver can take time that is exponential in the number of

variables. As feature models capture architectural abstractions of a product line, not only

do they carry much fewer elements than its implementation, they change slowly compared

to feature module source code. If a feature model hasn’t changed, we can cache the results

of a solver to remember particular feature compatibilities. In fact, multiple references

between same feature module pairs need not be put through a SAT solver more than once.

We simply cache results.

4.4  Results
Using the technique just described we have efficiently analyzed several AHEAD

multidimensional product lines. TABLE 8. shows key statistics for Bali, Graph, and Java

product-lines. 

Orthogonality validation was carried out on Pentium-4 3GHz with 1GB memory,

running Windows XP Professional Edition. Using the technique described in the previous

section we were able to verify a large product line with more than 30K LOC and 70 fea-

tures within only 20 seconds. The brute force approach would have demanded much more

Product 
Line

Dim. # of 
Features

# of 
Programs 

Code Base
Jak/Java LOC

Program 
Jak/Java 

LOC

Time to 
Run

(seconds)
Bali Product Line 2 17 8 12K/16K 8K/12K 5

Graph Product Line 2 18 80 1800/1800 700/700 3
Java Product Line 3 70 56 34K/48K 22K/35K 20

TABLE 8.  Product Line Statistics
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running time. The Java Matrix and GPL passed without any orthogonality failures. The

Bali matrix on the other hand had several failures.

4.4.1  Bali

Bali is a grammar-specification language designed to produce parsers for AHEAD

tools suite [10]. Unlike conventional techniques (lex/yacc), Bali supports composable

grammar specification. Thus, a product line implemented in Bali represents a family of

language parsers. 

The implementation of Bali tools is itself designed to be a product line. The Bali

model has two dimensions, one for language dialects and the other for tools. There are

only two language dialects: with, and without, and 4 tools. Its AHEAD model is repre-

sented in Figure 4.5.

A matrix representation of Bali feature design is illustrated in Figure 4.6. Along

the language dialect dimension, Core feature must be selected, leaving withReqFeature

optional. Along the tools dimension the Base feature and one of the tools must be selected.

The first category of errors was due to a feature module referencing methods that

are defined in another feature module located at right-diagonal. For instance, the module

require was referencing driver( ) method in a tester class defined within bali2jak,

bali2javacc, bali2layer, and composer. As a consequence, language dialect dimension can

not be aggregated before aggregating the tools dimension; withReqFeature depends upon

presence of one of the tools. Fortunately there is an easy fix. Move the driver() method up

Bali : Lang Tools ;

Lang : core CoreFeatures ;
CoreFeatures : withRequireFeature
             | without;

Tools: base [codeGen] Tool :: BaliTools;
Tool : bali2jak :: Bali2JakTool
     | bali2javacc :: Bali2javaccTool
     | baliComposer :: BaliComposerTool
     | bali2layer :: Bali2layerTool;

%%
BaliComposerTool implies not codeGen;
Bali2JakTool or Bali2layerTool or Bali2javaccTool iff codeGen;

Figure 4.5  Bali Grammar
54



to the kernel module, and let individual tools refine it. Hence, require module will refer-

ence a method defined in the kernel module. 

We clarify this design fix in the figure below. Figure 4.7A contains features 1, 2,

and 3 within a 2D matrix, where feature 3 references the foo() method that is defined in

feature 2. When rows are composed before columns the resulting composition order is

Feature 1 + Feature 3 + Feature 2. This leads to a back-reference, which is a violation of

step-wise refinement paradigm: step-wise compositions should maintain consistent, work-

ing programs. We fix this in Figure 4.7B by introducing foo() method in Feature 1. Feature

3 can maintain its reference to foo() and the composition Feature 1 + Feature 3 will com-

pile.

The second category of errors arose from feature modules located at right-diago-

nal to each other refining the same method. As a consequence these two feature modules

can not commute. Modules require and codegen were refining the same method, which is

 TOOLS

Base CodGen Bali2Jak Bali2Javacc
Bali
Composer Bali2Layer

L
A
N
G.

Core kernel, bali, 
visitor, col-
lect

codegen bali2jak bali2javacc composer bali2layer, 
b2lOptns, 
b2lGUI

WithReqFea-
ture

require reqComposer reqB2Javacc reqComposer

Without

Figure 4.6  Bali Matrix

main(){
 ..
}

foo(){
  ...
}

bar(){
 foo();
}

main(){..}

foo(){...}

foo(){
 Super().main();
 ...
}

bar(){
 foo();
}

Feature 1 Feature 2

Feature 3

Feature 1 Feature 2

Feature 3

(A) (B)
Figure 4.7  Fixing a Back References
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defined in bali. In order to fix this problem we need to enforce order of operation and cre-

ate non-overlapping members to be refined. An example follows.

Figure 4.8A shows implementation of three feature modules within a 2D matrix.

Features 2 and 3 refine method main(), which is introduced in feature 1. Hence, features 2

and 3 do not commute. Aggregating along one dimension produces a, b, c order of opera-

tion and aggregating along the other produced a, c, b order. 

To fix this we introduce in feature 1 method two() to be refined by feature 2, and

method three() to be refined by feature 3. Our fixed implementation is shown in

Figure 4.8B. Now aggregating in either order executes operations in a, b, c order.

4.5  Perspective and Future Work
The two properties required for verifying orthogonality that we identified are an

artifact of AHEAD’s static-code composition technique. It is entirely dependent on mixin-

based composition and the underlying implementation language semantics (i.e. java). For

instance, verifying composition commutativity of AspectJ [68] modules may contain a

different set of constraints. Likewise with other languages such as C# and C++. It is even

more puzzling to imagine how one would verify commutativity of components that are

composed at run-time, i.e., call each other through a well-defined interface. For example,

main(){
 a
}

main(){
 Super().main();
 b
}

main(){
 Super().main();
 c
}

main(){
 a
 two();
 three();
}

two(){}
three(){}

two(){
 Super().main();
 b
}

three(){
 Super().main();
 c
}

Feature 1 Feature 2

Feature 3

Feature 1 Feature 2

Feature 3

(A) (B)

Figure 4.8  Fixing a Non-orthogonal Implementation
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given three components {A, B, C} we want to verify that A calls B calls C is identical to

A calls C calls B. 

To verify commutativity of modules under different manner of composition we

need to verify semantic equivalence of programs. One approach is to include predicates

over some level of abstraction, and prove that both programs under consideration satisfy

the predicates. Theorem provers such as Otter [58][5] have been used successfully to auto-

mate such proofs, however the task of verifying equivalence of programs is far from auto-

mated. Mulmuley in [59] develops theoretical grounds for semantic equivalence using an

abstract algebraic model of typed lambda calculus. His model, Inclusive Predicate Logic,

has an advantage of being mechanizable, yet as with other approaches, predicates are pro-

vided manually. A more promising approach to automate program verification is Sym-

bolic Model Checking [60][61][62]. We believe that such techniques could be used to

identify if within two programs transitions lead to different states, proving that they are

semantically unequal.

We have circumvented proving semantic equivalence by identifying constraints

that must hold in order for AHEAD composition to be equivalent. These constraints

exploit the fact that syntactic commutativity implies semantic commutativity. Our con-

straints are simply an empirical insight; we can not prove that these two properties are suf-

ficient to guarantee commutativity. To do so, we would need to analyze the semantics of

operations within Java [20] or at least the more constrained Featherweight Java [26]. This

proof is left as a direction for future work.

We have argued that under step-wise refinement a module can not reference or

assume presence of any member of another module that has not been composed. This

property provides us with clean composability semantics of function composition. For

instance, consider variable  x and functions f, g and h defined as follows:

x : integer

f(y) : y2

g(y) : y +2

h(y) : cos(y)
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Assume a product line model permits only the following function compositions: x,

f(x), g(f(x)), and h(g(f(x))). In the function composition h(g(f(x))), f can not assume

the presence of functions g, or h. So, f can not be defined in terms of g or h (e.g. f(y) : y2 +

g(y) ). A function can, however, assume the presence of constructs from which it is built

and that are not input parameters. Hence, f can be defined in terms of the square function

and h can be defined in terms of cos.

When we introduce constraints to the above model, for instance: f <=> g, only

three of the four compositions are valid: x, g(f(x)), and h(g(f(x))). This constraint

enforces functions f and g to be applied in a composed form. Let j be f.g, then the three

valid compositions can be defined as x, j(x)), and h(j(x)). Functions f and g are not

parameters to j, so j can assume the presence of g and f, showing that functions g and f can

also assume each other’s presence. For example, if g(y) is defined as y+2, and f(y) as y2 +

g(y), composition j(x)=g(f(x)) has the definition: (x2 + (x +2)) + 2. Function f back-ref-

erences g but we are still able to resolve the complete definition of all function composi-

tions in the product line. If f did not require g, we could not resolve h(f(x)) because g is

absent.

Put another way, back-references between two modules may be allowed when the

referencing module requires the presence of the module being referred to.

With this insight we can relax the second requirement of orthogonality, that two

modules located at right-diagonal of a matrix must not refer to members added by each

other, if an only if, both modules are guaranteed by the model to be present in all products.

In fact, we may safely remove the entire constraint since safe composition validation

already reports any references to possibly undefined members.

4.6  Summary
As with other engineering disciplines Software Engineering aims to introduce

greater predictability in software construction. Within the domain of product line designs,

and in particular multidimensional designs, we have identified a key property that the soft-
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ware should carry: dimensional orthogonality. The significance of this work is that we can

automatically verify the orthogonality property of a multidimensional AHEAD design,

thus demonstrating predictable results - that further aggregation of any dimensions,

regardless of the order, will all result in a consistent view of the program. 

The approach rests on proving commutativity of modules that are placed within

sub-matrices at right-diagonals. We have showed how such verification can be carried out

efficiently by identifying potential interferences between modules that must commute, and

using SAT solvers to identify module compatibility. Furthermore, we have verified three

AHEAD multidimensional product lines for orthogonality.

Given that multidimensional product lines have been built without verification of

orthogonality, one may wonder what would have happened if a multidimensional model

had not been orthogonal. In practice, we may find that with larger designs not all dimen-

sional decompositions are completely orthogonal. This means one of two things: 1) our

design can be improved to make the model orthogonal, or 2) we can restrict operations on

the model.

While we have argued that orthogonality is an essential property, is not com-

pletely necessary for the software to work provided we forego certain operations. If a

dimensional feature model’s implementation lacks orthogonality property it simply means

that we must impose an ordering among dimensions and we can not compose units of

dimensions in arbitrary order. Hence, we no longer have the luxury of generating different

views of the multidimensional model. 

Furthermore, we argue that the utility of multidimensional models is limited with-

out the ability to create multiple views of decompositions. We conclude that while it is cer-

tainly possible to create multidimensional models of product lines without ensuring the

orthogonality property, in order to reap real benefits of this approach all multidimensional

models must be validated for orthogonality.
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Chapter 5

Conclusions 

The importance of product lines in software development will progressively

increase. Successful products spawn variations that often lead to the creation of product

lines [41]. Coupled with this is the desire to build systems compositionally, and to guaran-

tee properties of composed systems. A confluence of these research goals occurs when

modules implement features and programs of a product line are synthesized by composing

feature modules. 

AHEAD theory and tools are a realization of this idea. The contribution of this

thesis has been to extend applicability of AHEAD’s ideas by identifying and analyzing

properties that product lines must maintain. First, we have identified a unique property

between abstractions that warrants a higher-order structure in its design. Next, we

described compositional properties that all product line implementations must carry.

Doing so, we have shown that i) AHEAD’s ideas scale to large code-bases, and ii) tech-

niques for automating analysis of programs can be constructed with relative ease due to

simplicity of AHEAD’s compositional semantics.

This thesis answers the following questions: 

• What properties must a design have to warrant a multidimensional structure? 

• What are the properties necessary to ensure a product line lacks composition errors?

• How do we verify these properties?
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We have argued that the answer to the first question revolves around orthogonal

abstractions. Two abstractions are declared orthogonal if they equally influence each

other. Put another way, further decomposition of either abstraction must be related to fur-

ther decomposition of the other abstraction such that decomposing solely along either

choice of abstraction yields an identical result. Orthogonal abstractions are synonymous

with dimensions, where decomposition units of the abstraction forms the units along a

dimension.

We have shown that even if a multidimensional design is thought to be orthogo-

nal, its implementation may not be so. The idea behind verifying orthogonality is to show

that decomposing along either of the abstraction produces the same program. Equiva-

lently, we may also first decompose along both abstractions, and then verify whether

aggregating one dimension is equivalent to aggregating the other. Under AHEAD’s com-

positional model this verification amounts to test for commutativity of two feature module

composition that lie at right-diagonal to each other. 

We derive an algorithm for testing commutativity of feature modules that is more

efficient than the naive brute-force approach. Results of orthogonality test on several

existing multidimensional product lines revealed a flaw in Bali product line. It also con-

firmed our claim that our improved algorithm is tractable on larger product lines.

The other property that a product line must hold is lack of composition errors.

Safe composition is the guarantee that a product line implementation is absent of composi-

tion errors. Within AHEAD, this property amounts to lack of references to undefined ele-

ments (classes, methods, variables) in a composed program’s implementation for all

programs in a product line. We have identified five constraints that must hold for any pro-

gram being synthesized by the product line. Analysis of several existing product lines of

respectable size revealed previously unknown errors and provided insight into creating

better designs. Further, we were able to run these tests on 35K LOC product lines within

30 seconds, demonstrating feasibility of our approach on large code bases.

Even though our results are over programs of repectable size, the foundation of

next-generation of software engineering practices will have to scale to orders-of-magni-
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tude larger programs. We have argued that the principles of large-scale program designs

will assume a clear mathematical form that simplifies their understanding and provides a

disciplined way to think about their structure and properties. 

Feature-Oriented Programming is one such structural theory in software engineer-

ing that aims to reduce complexity and reason at the level of feature constructs. We have

demonstrated that by thinking at the structural level we can readily derive higher-order

structural relationships, identify properties that a program’s structure must hold, and rea-

son about them in a much more efficient and automated manner. This work is but a step

toward a science of software design and analysis.
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Appendix A 

Dimensions in Object Decomposition

6.1  Overview
We argued that multidimensional decomposition captures a structural relationship

not seen easily within conventional hierarchal decomposition. Furthermore, we believe

that these structural relationships surpass a particular manner of decomposition. Conse-

quently, multidimensional relationships exist in Feature, Object, as well as Aspect decom-

position. In this section we show benefits of discovering multidimensional structures

within conventional Object-Oriented decompositions. 

Decomposing a given problem into appropriate sub-problems relies at best on the

designer's judgment and draws from past experiences. When a designer must decide

between alternative choices, his knowledge of a decomposition's properties is typically

used to guide his judgment. Multidimensional structures provide a clearer understanding

of structural relationships within the domain, delineate design choices, and help clarify

properties of a decomposition. We demonstrate this via two examples. 

6.2  The Visitor Pattern
In Object-Oriented decomposition, a visitor pattern is a recurring problem of sep-

arating common operations from an object structure (class). The Visitor pattern promotes

modifiability of operations - in particular adding new operations to existing object struc-

tures without modifying those structures.
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The visitor pattern is a behavioral pattern. However, the solution itself has a struc-

ture. Its structure is commonly depicted by a UML class diagram. We demonstrate that

these design patterns and their alternatives can be understood better given an appropriate

multidimensional structure. 

Recall the expression product line of Figure 2.7? Let the expression tree nodes be

object structures, and let print and evaluate be operations we wish to factor out as visitors.

Figure 6.1 shows the UML diagram of a solution using the Visitor design pattern. 

Nodes Add, Subtract, Variable, and Constant form the structures that must be vis-

ited via an accept method. Given an instance of the expression (x + 2) - 5, to print it a

PrintVisitor object is created and the root node Sub is visited by calling Sub.accept(Vis-

itor v). The Sub node calls visitor's Sub-specific visit operation, and passes the Visitor

down to its children.

Abstractions operations and node structures in the expression evaluator are

orthogonal. Operations Print and Eval must be performed on each node, and nodes Add,

Sub, etc. require both operations Print and Eval. The matrix in Figure 6.2 captures this

relationship. Note that Node.* represents all other modules of the node structure dimen-

sion that are not listed explicitly. Likewise for Visitor.*. 

Figure 6.1  UML Diagram of a Visitor Pattern

Node.* Add Sub Var Const

Visitor.*

Print Visitor

Eval Visitor

Node Structures

O
pe

ra
tio

ns

Figure 6.2  Expression Evaluator Matrix
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Given this matrix how must one structure the implementing classes? The visitor

pattern's solution is shown in Figure 6.3, where each box represents a module (Class).

Nodes are fully

decomposed into Add,

Sub, Var, and Const

classes. However, print-

ing functionality is not

fully decomposed. It is

represented by the class PrintVisitor, which cohesively captures printing functionality, yet

is not cohesive from the point of view of node structures because it contains functionality

related to different node structures within the single class. The same holds with Eval. As a

consequence, it promotes modifiability of operations. Adding or modifying an operation

deals only with a single module. It is equivalent to adding a row in the matrix. On the

other hand, adding a new node structure, such as Multiply, is not well supported. This is

equivalent to adding a column in the matrix shown in Figure 6.3.

This trade-off in

modifiability is apparent

under the matrix view of

orthogonal dimensions.

Figure 6.4 shows an

alternate decomposi-

tion. If modifiability of node structures it to be promoted, we would not decompose struc-

ture classes further into operations. For instance, the Add class will encapsulate all

functionality related to the Add node.

Note: AHEAD MDMs enable decomposing along both dimensions (Figure 6.2),

and one would aggregate along the node structure dimension or the operations dimension

to produce decomposition views similar to Figure 6.3 and Figure 6.4, respectively.

Node.* Add Sub Var Const

Visitor.*

Print Visitor

Eval Visitor

Node Structures

O
pe

ra
tio

ns
Figure 6.3  Expression Eval.’s Visitor Pattern Matrix
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PrintLib

EvalLib

PrintVisitor

EvalVisitor
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Eval Visitor

Node Structures
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ns

Figure 6.4  Expression Eval.’s Alternate Matrix

Add Sub Var ConstPrintLib

EvalLib
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6.3  C++ Style Templates
Templates make certain classes and operation generic so that they can be applied

on input of various types. Template markers such as Queue<T>( ) can be read as Queue of

type T, where the precise type of T is resolved at composition-time. 

Consider an implementation of Containers Queue and Stack. Queue contains oper-

ations enqueue, dequeue, clear, etc. and Stack contains push, pop, clear, etc. Both must

operate on an arbitrary set of objects {A..Z}. As with the Expression Evaluator, are dimen-

sions operations and type structures orthogonal? 

The Queue problem and the Expression Evaluator problem are similar in many

respects but there are also some key differences. Both have a notion of structures and oper-

ations that seem to be orthogonal to each other. Within the Expression Evaluator the set of

structures are finite and known, but typically a Queue operates on arbitrary object struc-

ture that may not be known apriori. Operations in Expression Evaluator are structure-spe-

cific (print an Add node, print a Var node), whereas Queuing operations are not (enqueue

an object by adding a pointer to it). Hence, the code for enqueuing, dequeuing, etc. will

not change as new structures are added. It is for this reason that the second dimension

must not be operations, but containers (i.e., one abstraction up). Operation of a Queue are

not influenced by different object types! Containers, on the other hand, are orthogonal to

Object Types. Object types {A..Z} require Queue and Stack containers, and each Container

must contain Object type-specific data -  Queue of type A, Stack of  type B, etc.

Hence, the visitor pattern is not adequate, it will replicate code for operations.

Templates solve this problem easily by making the container classes and their operations

generic. One way of understanding this solution is by considering its orthogonal dimen-

sions. Figure 6.5 shows a matrix where Containers and Object Type are orthogonal. Black

boxes show modules that are implemented by the programmer. Greyed boxes show mod-

ules generated by the STL preprocessor. 

We have shown that one way to understand solutions that templates provide is by

considering the multidimensional structure of the problem domain. Templates essentially
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allow an object-oriented decomposition to factor out a functionality common among mul-

tiple modules - here Queuing and Stacking. Extending this view, templates of templates -

for instance, Queue<Stack<T>>, are 3-dimensional orthogonal relationships.

Template specialization also fits in with this view. Specialization simple corre-

sponds to manually providing code for a module that is generated by the preprocessor gen-

erator - i.e. one of the greyed boxes in Figure 6.5.

6.4  Perspective
Orthogonal dimensions are abundant in nature. Here we have surveyed the Visitor

design pattern and Templates. We have also discovered similar orthogonal dimensions in

several other design patterns, for instance: Abstract Factory, and Model-View-Controller.

Many of the tools and techniques that have been developed to counter short-com-

ings of object-oriented decomposition can be understood in terms of multidimensional

structures. Tradeoffs in modifiability are typically - but not always - symptomatic of mul-

tidimensional structural relationship between abstractions. Discovering such dimensional

relationships within a problem’s decomposition structure helps understand the decomposi-

tion, assists in deciding which technique should be used to solve a problem, and how to

structure the modules that implement orthogonal abstractions.

We have touched only the surface of these ideas. We believe there are many more

examples to be studied and lessons to be learnt for techniques of multidimensional

abstractions to be mastered. 

A B ... Z

Queue

Stack

Object Type

C
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Figure 6.5  Solution Using Templates
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