
1

Don Batory and Taylor Riché
Department of Computer Science
University of Texas at Austin

Refinement and Optimization of
Streaming Architectures

• Model Driven Engineering (MDE) is paradigm that will
be increasing important to SW design & development

• focus on problem essentials, not accidental complexity
• frees us from low-level programming languages, platforms
• way of the future…. with some interesting implications

• Today’s presentation: a different view on MDE

• not the way MDE is practiced today
• show how sequential architectures (models) can be mapped to

parallelized or crash-fault-tolerant architectures (models) in a way
that can be explained, verified, built, and tested in a systematic
manner

Introduction

2

• Byzantine Fault Tolerant (BFT) and
Recoverable Crash-Fault-Tolerant (RCFT) Servers

• reimplementing designs of domain-experts to automate their work
• architectures of these servers are so complicated, we had to find a

way to convince ourselves of the correctness of our designs
• small handful of experts know how to build these servers

» about ½ seem to be at UTexas ☺
• need systematic way to help explain, verify, build, and test

Streaming Architectures

3

40%

• Classical & fundamental way to control design complexity
• our work builds on results of a long line of pioneers

(Labview 80, Gorlick 92, Broy 92, Moriconi 94, Garlan 96, Rumpe 97,
Kong 03, Clarke 06, …)

• use a standard component-connector model of application
• elaborate it by simple transformations
• use standard notion of hierarchical refinements (transformations)

Stepwise Development

5

• Controversial: adding new relationships are essential
• “extend” boxes with new ports, new capabilities

• New: optimizations are essential
• break abstraction boundaries to achieve efficiency or availability
• how non-functional “features” or “qualities” are added by transformations

Hierarchical Refinement is Not Enough!

6

• Show how complex architectures designed by experts can be:

• explained incrementally
• verified incrementally
• built incrementally
• tested incrementally

by non-experts from first principles – 2 very different domains
recoverable crash-fault-tolerant servers and
join parallelization in database machines

• Not just “cute” (nice-to-have)
• Essential to accomplish the above

• experts create these designs with implicit knowledge
• by making principles explicit, non-experts like you and me can participate

and appreciate the challenge that experts face & techniques they use

With These Missing Pieces

7

Series of Mini-Talks

8

Basics of Streaming
Architecture Designs

Hash Joins in
Database Machines

Recoverable
Crash-Fault-Tolerant

Servers

Conclusions

we
are
here

9

#1: Basics of Streaming Architectures

• Component-Connector Architecture is a directed graph
• box component or computation
• arrow communication path for messages, tuples

drawn in direction of data flow

• Semantics of box is clear from context

• Elide unnecessary details (sort key, sort order, sort type)

Basics

10

1, 50, 2, 62, 53 1, 2, 50, 53, 62

Hierarchical Refinement

11

parallelizing
refinement

Transformations

• Refinement is a transformation
• input pattern Æ output pattern

• All transformations we use
can be proven correct

• algebraic identity
• simple enough

that intuition suffices

• Correct by Construction

12

• Most details are not captured in architecture diagrams
• whether SORT box works correctly
• typically boxes don’t have proofs of correctness – need to test

Testing

13

"Beware of bugs in the above code; I have only proved it correct, not tried it."
– Donald Knuth

Testing Refinements

14

We identify tests at every level of abstraction.
The validity of these tests (properties) must hold after every refinement.

So as details are revealed, we accumulate tests to
verify the correctness of our implementation.

• Break encapsulations to achieve non-functional properties
• efficiency or availability
• applying algebraic identities that do not change design semantics

Key: Optimizations

15

Same HSPLIT box
(hash same attributes,
same hash function)

• Optimizations that reorder stateless computations
• ex: property that each Ai message is assigned to a single Bj stream

Exchanges

16

M

M

M

m streams
are merged

k streams
are produced

• Optimizations (exchanges) play havoc with tests
• Tests must be transformed

Optimizations and Tests

17

Rule: testing may
reintroduce

components &
connectors eliminated

by optimizations

Lastly, Extensions

• A transformation can extend the
capabilities of a box and add
new connectors

• Extensions add “features”

• Accomplished by preprocessors
#ifdef inclusion of extra code

• Or by more sophisticated means

18

X

X’

• Component-connector architecture is implementation model
• transformations progressively elaborate models
• each is a refinement or optimization
• each applies a behavioral substitution (Liskov)

• Every transformation is simple and can be proven correct

• Use tests to verify implementations

• Now, let look at some real examples…

Recap

19

20

#2: Recoverable
Crash-Fault-Tolerant

Servers

• Sequential server architecture has a cylinder topology

• Unroll cylinder by breaking along the seam

Overview

21

Ck S

M

R

M

R

R

serializer

demultiplexor

broadcast

assume server
updates state

• Transform a vanilla sequential server architecture to a

Recoverable, Crash-Fault-Tolerant Server

• consider CFT transformations first
• recovery transformations last

Our Goal

22

• Ability of a service to survive a number of failures

• Failure – when a box stops processing messages
• no messages pass through a failed box
• a failed box cannot create new messages
• assume each box executes on its own machine

– but multiple boxes can run on single machine
– if machine fails, all boxes on that machine fail
– failures do not propagate across machine boundaries

Crash-Fault-Tolerance

23

• Failures of network components

serializer ()
demultiplexor ()
broadcast (•)

affect a machine the same as pure software boxes
• ex: a machine can’t process requests if its network card stops working

• Do not depend on synchronous networks
• do expect eventual synchrony
• use retransmissions (in application, network protocol, or both) to deal

with transient packet loss

Standard Failure Assumptions

24

• Eliminate Single Points of Failure (SPoF)
• a failure of a single box (machine) causing the server abstraction to fail
• our current design has 3 SPoFs

• “Solve” problem by replicating boxes
• not only solution – we follow most advanced solution to date
• to appear SOSP 2009

Technical Goal of CFT

25

• Add an agreement node A⊥

• A⊥ is an ordered queue of messages,
passing messages one at a time to the server

• In effect, A⊥ does nothing it is a place holder for later refinements

Step 1: Agreement

26

M1

M1

Mn

Mn

Next steps replicate S, A⊥ boxes

• Make k copies of server
• Each server receives exactly the same sequence of messages from

the A⊥ abstraction
• QS collects a quorum of identical messages;

transmits message when a sufficient number of copies are received
• Refinement emulates abstraction of a single correct server

Step 2a: Replicate Servers

27

⊥ MMM R

R

s

R

R

R

• Make m copies of A⊥

• Client requests are routed by box Rt to some or all A replicas
• A replicas run an agreement protocol (Lamport 1998)

to decide which is the next client message to process
• A replicas vote and a quorum is taken by QA; when a sufficient number

of identical messages is received, QA forwards the message
• Refinement emulates abstraction of a single queue

Step2b: Replicate A⊥ Boxes

28

M

MM

M

AM

M

M

• The A replicas talk to each other; topology is conical

Pause…

29

• Ans#1: tolerate failure of multiple A boxes

tolerate f failures, need m = 2f+1 replicas of A

• Ans#2: a consistent order of requests is essential for
correct server behavior

• If S replicas processed client requests in different orders,
server replica states would diverge and responses from
different servers for a single client request would be
inconsistent

• Inconsistencies violate the one-correct-server abstraction

Why are A Replicas Needed?

30

Where We Are…

31

• Apply optimizations (exchanges) to eliminate SPoFs

• Define new (green) abstractions, and replace them with
implementations that have no SPoFs

Where We Are Going

32

• Each client request is sent to a subset of A replicas

Step 3a: (,Rt) Exchange

33

• Each quorum-decided request from replicated A boxes is
delivered to all Server replicas

Step 3b: (, Q, •) Exchange

34

• Each quorum-decided response from replicated S boxes is
received by a client box

Step 3c: (, QS,) Exchange

35

• All exchanges involve stateless computations
• state would require a heavy-weight solution (agreements, etc.)

Why So Simple?

36

Final CFT Result

37

No SPoF

Testing CFT Abstractions

38

Really Quick (!) Tour of
Recovery Transformations

39

• Just as databases can recover from machine failures,
so too can servers

• Recovery limits the situations where clients see
unresponsive server abstraction

• Recovery is added by a series of transformations,
not unlike the transformations to add CFT

Overview

40

Recovery Transformation

41

CFT
Server

Architecture

Recoverable
CFT

Server
Architecture

Changes: New Relationships

42

CFT
Server

Architecture

Recoverable
CFT

Server
Architecture

Servers now talk to A boxes
(new relationships are added)

Changes: New Relationships

43

CFT
Server

Architecture

Recoverable
CFT

Server
Architecture

A and S boxes are extended
(new ports, capabilities added)

incrementally
adding features
to existing boxes

• Incrementally explained design created by experts to map
a vanilla server to a recoverable, crash-fault-tolerant server

• withstand failures
• we are using component-connectors to explain, automate their designs

• Still a lot of engineering left to do; but our design provides
guidance on how to build, test these systems incrementally

• Now look at a very different domain where a sequential
architecture is mapped to a parallel architecture using
exactly the same principles

Quick Recap

44

45

#3: Parallelizing Hash Joins in
Database Machines

• Gamma was (maybe still is) the most sophisticated relational
database machine ever built in academics

• University of Wisconsin late 1980’s early 1990s

• Look at how hash joins were parallelized

• fundamental result in parallelizing joins
• representative of commercial systems today

• presented in a new way
• derive Gamma hash join architecture from first principles

Gamma Database Machine

46

• Hash join takes 2 streams of tuples (A,B) as input and produces the
join of these streams (A*B)

• Algorithm:
• read all of stream A into memory in a hash table
• read B stream one record at a time;

hash B’s record and join it to all A record’s with the same key
• linear algorithm

• How did Gamma’s Designers parallelize HJOIN?

Sequential Hash Join Architecture

47

x y x

z x y y*yx*xx*x

Next Slides Explain Derivation

48

• Because joins are the most complex operator, increase
efficiency by reducing the size of its input streams

• Used Bloom filters to eliminate B tuples that do not join
with A tuples

First Refinement

49

• Bloom filtering is a common technique for disqualifying tuples from
further processing

• Algorithm:
• clear bit map M
• read each A tuple, hash its key, and mark corresponding bit in M
• output each tuple A
• after all A tuples read, output M

BLOOM Box

50

x y x

0 0 01 1

• The filtering part of Bloom filters
• eliminates B tuples that cannot join with A tuples

• Algorithm:
• read bit map M
• read each tuple of B, hash its key: if corresponding bit in M is not set discard

tuple (as it will never join with A tuples)
• else output tuple

BFILTER Box

51

01 1

z x y

• Expose inner details of HJOIN box
• Can prove correctness of this refinement

The First Refinement

52

x y x
01 1

z x y

y*yx*xx*x

• As we refine, we accumulate and apply tests at every level
of abstraction

Testing

54

Parallelize Each Box
in this Architecture:

• Algorithm:
• HSPLIT stream A
• compute Bloom filter on each substream
• reconstitute stream A
• form merge bit maps to produce single bit map M

Parallelization of BLOOM Box

55

• Algorithm:
• split M into M1…Mn and distribute
• hash split stream B
• filter B substreams in parallel
• reconstitute stream B’

Parallelization of BFILTER Box

56

always hash split
streams A and B

using the same hash
function! This gives

us properties on which
to optimize!

• Algorithm:
• split both streams using same hash function
• A and B tuples can join only if they have the same hash key
• perform n joins (rather than n2) in parallel
• reconstitute join

Parallelization of HJOIN Box

57

• Substitute parallel implementations for each box
• Note 3 optimizations are possible
• Here are the first two…

Hierarchical Refinement

58

A*B

• Stream A is hash split into A1…An, reconstituted, then hash split again
• MERGE – HSPLIT combination is the identity map
• Optimization – get rid of MERGE-HSPLIT

• Same for stream B

A Better View

59

• Still one more optimization to perform…

Applying Optimizing Rewrite

60

• Elegant
• Easier to remember the derivation than the design itself (!)
• Each step can be proven correct, so the final design is correct
• Not whole picture: exchange rewrites are applied when HJOIN boxes are composed

see our paper or original Gamma papers

The (Almost) Final Design

61

• “Octopus-like” harness for test of BFILTER box
• Again, a lot of engineering is still left, but we have a clear

big picture on how to proceed…

Testing…

62

63

#4: Conclusions and Future Work

• Experts create and build non-obvious architectures that
take time to understand

• details are accessible to only domain experts
and only after a considerable effort to appreciate

• our experience confirms this, but offers hope…

• by revealing domain knowledge incrementally in the context of MDE
where details of architecture models are progressively revealed,
non-experts can more easily appreciate, participate and contribute in
their construction

State of Art

64

• Don’t create complex designs instantaneously
• Come from simpler designs, recursively
• Showing relationship of simple designs to complex designs enables us to

understand and verify our designs, build and test them better
• Ideas are not just “cute” – essential to above goals

Remember

65

• MDE-based tool set to allow designers to explore interactively a design
space by defining and composing transformations

• To be able to synthesize systems from these models
• Providing a new dimension of activities in MDE
• Vary designs in a verifiable way

Next Steps

66

• Clear that ideas are being reinvented in different contexts

• not accidental – evidence we are working toward general paradigm

• Starting down a road that we (community) must travel

• affords new opportunities to improve “trustworthiness”
• can verify architectures (which we didn’t have or couldn’t do before)
• make architecture design, testing, and explanation easier and more

structured before
• expose domain-independent principles underlying software design

• Science of Design

Closing Observations

67

68

	Refinement and Optimization of Streaming Architectures
	Introduction
	Streaming Architectures
	Stepwise Development
	Hierarchical Refinement is Not Enough!
	With These Missing Pieces
	Series of Mini-Talks
	#1: 	Basics of Streaming Architectures
	Basics
	Hierarchical Refinement
	Transformations
	Testing
	Testing Refinements
	Key: Optimizations
	Exchanges
	Optimizations and Tests
	Lastly, Extensions
	Recap
	#2:	Recoverable �	 Crash-Fault-Tolerant �	 Servers
	Overview
	Our Goal
	Crash-Fault-Tolerance
	Standard Failure Assumptions
	Technical Goal of CFT
	Step 1: Agreement
	Step 2a: Replicate Servers
	Step2b: Replicate A^ Boxes
	Pause…
	Why are A Replicas Needed?
	Where We Are…
	Where We Are Going
	Step 3a: („,Rt) Exchange
	Step 3b: („, Q, ·) Exchange
	Step 3c: („, QS, ƒ) Exchange
	Why So Simple?
	Final CFT Result
	Testing CFT Abstractions
	Really Quick (!) Tour of�Recovery Transformations
	Overview
	Recovery Transformation
	Changes: New Relationships
	Changes: New Relationships
	Quick Recap
	#3:	Parallelizing Hash Joins in�	 Database Machines
	Gamma Database Machine
	Sequential Hash Join Architecture
	Next Slides Explain Derivation
	First Refinement
	BLOOM Box
	BFILTER Box
	The First Refinement
	Testing
	Parallelize Each Box �in this Architecture:
	Parallelization of BLOOM Box
	Parallelization of BFILTER Box
	Parallelization of HJOIN Box
	Hierarchical Refinement
	A Better View
	Applying Optimizing Rewrite
	The (Almost) Final Design
	Testing…
	#4:	Conclusions and Future Work
	State of Art
	Remember
	Next Steps
	Closing Observations
	Slide Number 68

