
Finite Map Spaces and Quarks:
Algebras of Program Structure

We present two algebras that unify the disparate software composition models of
Feature-Oriented Programming and Aspect-Oriented Programming. In one alge-
bra, a finite map space underlies program synthesis, where adding finite maps
and modifying their contents are fundamental operations. A second and more
general algebra uses quarks, a construct that represents both expressions and
their transformations. Special cases of our algebras correspond to existing sys-
tems and languages, and thus can serve as a foundation for next-generation tools
and languages for feature-based program synthesis.

1  Introduction

Software engineers define structures called programs and use tools to manipulate,
transform, and analyze them. Object-orientation uses packages, classes, and members
to structure a program. Compilers transform source structures to bytecode structures.
Refactoring tools transform source structures to refactored source structures. And
model-driven design (MDD) transforms models of one program representation to mod-
els of another. Software engineering is replete with such examples.

Composing structures, transforming structures, and defining relationships between
structures is the role of mathematics. Prior work in software product lines (SPLs) used
features to informally describe program synthesis as vector composition [48]. In this
paper, we formalize this result and unify it with other compositional models on Fea-
ture Oriented Programming (FOP) and Aspect Oriented Programming (AOP) [3][5]
[11][12][19][25][27][28][30][32][33][35][37][38][42][46][49]. We present two alge-
bras that define a blueprint for tools that manipulate different program artifacts (e.g.,
source code, grammars, makefiles) and realize many different composition models.
This is in contrast to the laborious, expensive, and error-prone ways that are now used
to build separate tools and languages for each program representation and for each
composition model [12][29][46]. Even more important is the long-term potential of
connecting results in mathematics to feature-based program design.

Feature-based program synthesis is governed by simple mathematics. A finite map is a
set of (name,value) pairs. In one algebra, a finite map space is shown to underlie pro-
gram synthesis, where adding finite maps and modifying their contents are fundamen-
tal operations. A second and more general algebra represents features as quarks, a
construct that represents expressions and their transformations. 
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The concrete justification, evaluation, and inspiration for our work are existing sys-
tems and languages that are special cases of our algebras. Our work can help others
understand, characterize, and compare software compositional approaches, and see the
fundamental mathematical abstractions that underlie this area of research.

2  Feature Oriented Programming

A feature is an increment in program functionality. A software product line is a family
of programs where no two programs have the same combination of features. Every
program in a product line has multiple representations (e.g., source, documentation).
When a feature is added to a program, any or all of the program’s representations may
change. Below we informally sketch the first two generations of FOP, GenVoca and
AHEAD [12], which have been used to build product-lines in many applications areas
(e.g. [5][10][12]). A third generation based on MDD is discussed in Section 6.

2.1  GenVoca: The First Generation

A GenVoca model of an SPL represents base programs as values (0-ary functions):

f // base program with feature f
h // base program with feature h

Features are unary functions:

i•x // adds feature i to program x
j•x // adds feature j to program x

where the operator • denotes function composition.

The design of a program is a named expression:

p1 = j•f // p1 has features j and f
p2 = j•h // p2 has features j and h
p3 = i•j•f // p3 has features i,j,f

The set of programs that can be defined by a GenVoca model is its product line.
Expression optimization is program design optimization, and expression evaluation is
program synthesis [10]. The correctness of feature compositions is addressed in
[13][47]. 

2.2  AHEAD: The Second Generation

AHEAD advanced GenVoca by revealing the internal structure of values and unary
functions as vectors and modifications to vectors. Every program has multiple repre-
sentations, such as source, documentation, bytecode, and makefiles. A GenVoca value
is a vector of representations of a program. For example, in a product line of parsers, a
base parser f is defined by its grammar gf, Java source sf, and documentation df. Pro-
gram f’s vector is f=[gf,sf,df]. (We denote vectors in bold font). 
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Note: another name for vector is “record”, which is more in line with conventional program-
ming language research [21][23]. However, we want to draw the connection of program syn-
thesis to vector arithmetic in this paper, and hence stress the vector analogy.

A GenVoca unary function maps a vector of program representations to a vector of
extended representations. Suppose feature j extends a grammar by Δgj (new rules and
tokens are added), extends source code by Δsj (new classes and members are added
and existing methods are modified), and extends documentation by Δdj. The vector of
deltas for feature j is j=[Δgj,Δsj,Δdj], which we call a delta vector.

The representations of a program are computed by vector composition [48]. The repre-
sentations for parser p1, which is produced by composing features j and f, are:

p1 = j•f  ; GenVoca expression
= [Δgj,Δsj,Δdj]•[gf,sf,df] ; substitution
= [Δgj•gf,Δsj•sf,Δdj•df] ; composition

That is, the grammar of p1 is the base grammar composed with its extension (Δgj•gf),
the source of p1 is the base source composed with its extension (Δsj•sf), and so on. 

Representations can have sub-representations, recursively. Every sub-representation
can be modeled as a vector, and can be transformed by delta vectors. In general, Gen-
Voca values are nested vectors and functions are nested delta vectors, where the • oper-
ator recursively composes nested vectors. This is the essence of AHEAD [7].

3  A Finite Map Space Algebra

A vector space is a fundamental mathematical structure; it is a collection of elements
called vectors that can be added and scaled [44]. Feature-based program synthesis sat-
isfies many properties of a vector space. In the following sections, we show the infor-
mal delta vectors of AHEAD are functions in a Finite Map Space (FMS), where finite
maps are added and their contents are extended or “scaled” by modifiers. Although we
use Java examples, our algebra applies to non-Java artifacts as well — see [12] for
grammars and makefiles and [2] for XML documents. 

3.1  An Informal Overview of Key Concepts

Feature-based synthesis is an incremental process that adds new members and classes
to a program and extends existing members. These actions are expressed by two oper-
ations: addition and modification.

3.1.1  Addition

Programs are values. Consider two values C and D that represent two differently named
Java classes C and D. The sum C+D produces a program (a value) that has both classes.
Conceptually, addition (+) is the union of these classes.
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Now consider values C1 and C2 of Figure 1a-b, both representing different declara-
tions of Java class C. The sum C1+C2 yields a single class that is the union of the mem-
bers of C1 and C2 (Figure 1c). That is, + produces the union of the contents of classes
with the same name.

Problems arise when adding classes that share a member. Consider the values D1 and
D2 of Figure 2a-b. Both define a class D with conflicting bar declarations. We don’t
want D1+D2 to yield a single class with both bar declarations (Figure 2c). Instead, we
flag this as an addition error A. Both declarations are replaced with a single declaration
with A indicating the error term in D1+D2 (Figure 2d).

Our choice of raising error A, as opposed to member replacement, stems from experi-
ence in feature-based development. Replacement occurs when a newer declaration
replaces an existing declaration. While member replacement is useful in class inherit-
ance, it is problematic in program synthesis. Replacement erases the semantics of a
member on which other features depend. Consequently, these features may no longer
work correctly [47]. Designs that avoid replacement avoid these problems.

Addition scales [12]. Packages can be added, which produces a package that is the sum
of the classes in each input package; packages of packages can be added, and so on.
[12] shows non-code artifacts also have hierarchical structures which can be added.

3.1.2  Modification

A member of a class (including initializers and constructors) is a term. Features mod-
ify terms by specializing or extending their definitions. An important class of modifi-
cations are method extensions (as in mixins) and AOP advice application. Although
our model of modification is couched in terms of arbitrary modifications (and works
with them), it also provides a disciplined way of working with these special cases.

Each term has a name and a value. The name of a term uniquely distinguishes it from
other terms, and the value is the term’s program source. Term values are changed by a
modifier, which is a (selector, rewrite) pair. The selector identifies terms, and
the rewrite updates the value of a selected term. Modifiers come in two flavors: uni-
versal and unique existential.

(a) C1: class C { void foo() {...} }
(b) C2: class C { int bar; }
(c)  C1+C2: class C { void foo() {...}; int bar; }

Figure 1. Class Declarations and Their Sum

(a)  D1: class D { int bar; }
(b)  D2: class D { String bar=“4”; }
(c)  class D { int bar; String bar=“4”; }
(d)  D1+D2: class D { A bar; }

Figure 2. Inconsistent Term Error
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A universal modifier (UM) can change any or all terms of a program; it expresses a
structural property of a program that universally holds after the modifier is applied.
Suppose a print statement is to be appended to every get method in class C. To
express this as a UM, a selector qualifies the get method terms of C. The rewrite
appends a print statement to the body of each selected method. After this modifier is
applied, we know that all get methods of class C end with a print statement. 

In general, a UM is a classical pattern rewrite of a program transformation system [18].
Another way to write a UM is as advice in AOP [32]: an advice pointcut is a selec-
tor and an advice body is a rewrite. (Modifiers are a form of quantification [26]).
Although the effects of advice are traditionally understood as alterations in execution
flow, all advice, including cflow, can be implemented by static transformations. See
[29][35] for explanations of how aspect compilers realize cflow transformationally.

In contrast, a unique existential modifier (EM), expresses an existential property of a
design — that a particular term in a program is defined. The selector of an EM identi-
fies a term on the basis of the term’s name, not its value. If the term is defined, the
rewrite does nothing. If undefined, an existence error E is raised (i.e., E becomes the
new value of the term).

EMs are common in feature development. The functionality of a feature is often
invoked by adding method calls to existing hook methods. If these hook methods are
not present, the feature will not work correctly. Feature designs demand that hook
methods exist. Suppose a print statement is to be appended to the hook method m()
of class C. To express this design, we use a UM whose selector identifies the m()
method, and the rewrite appends the print. We also use an EM to ensure that m()
is defined.

In mixin-supported languages, an EM never exists separately and is always paired with
a UM that modifies the EM identified term. Such pairings are expressed by a variety of
OO techniques, including mixins, traits, virtual classes, and nested inheritance [27].
The essential idea is this: mixin for a method is a UM that uses the signature of the
method as its selector, and the body of the method as its rewrite. In AHEAD, a
mixin for method m() in the above example is:

void m() { Super.m(); print(“here”); }

where Super.m() is replaced with the original body of m(). An EM for this declara-
tion is implicit, because if m() has no prior definition, an existence error is raised [12].

In the next sections, we formalize the above ideas. We define primitive terms, their
addition and modification, and show how sets of terms, represented by finite maps, are
added and modified. The properties that we label in roman-numerals are those
required by a vector space. Later we extend our algebra to include EMs. We do so as
algebras without EMs are easy to manipulate manually; EMs can be added later to
express more precise feature designs.
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3.2  Primitive Terms

Consider any primitive term (a method, initializer, constructor, etc.) of a class. Each
term t has an identifying name, denoted t.name, and a value, denoted t.value. The
value of a term is its program source. Zero (0) denotes the null or undefined value.

Figure 3 is the lattice L of all values that can be assigned to
a term. Value 0 is the bottom (denoting null or undefined),
T is top (the E or A error), and the xi are non-zero elements
between 0 and T (0<xi<T) called normal values.

We simplify errors by unifying the E and A errors as T. In an
implementation, T has secondary information indicating the
source of the error (i.e., E or A). In a more elaborate version
of our theory, T is replaced by E and A, where A<E.

For example, consider the term that represents method m() in the last section. The lat-
tice for m() has value 0 (meaning m() is undefined), T (meaning m() has E or A
errors), and a normal value for every source code specification that could define m().

3.3  Term Addition

Term addition (+) is the join (least-upper-bound) operation of lattice L and has the fol-
lowing identities [24]:1

(i) associative: For all x,y,z∈L: x+(y+z)=(x+y)+z
(ii) commutative: For all x,y∈L: x+y = y+x
(iii) additive identity: For all x∈L: x+0=x

For example, adding two different normal values of m() yields T. Adding 0 to a normal
value of m() yields that value. And the order in which additions occur does not matter. 

A useful identity not required by a vector space is [24]:

x + x = x ; for all x∈L (1)

3.4  Universal Modifiers

Let D denote the set of all terms, and L denote the value lattice. A universal modifier μ
is an ordered pair (μs, μr), where μs:D→boolean is a term selector and μr:L→L is a
function that changes the value of a selected term. (Again, informally, think of μs as a
pointcut and μr as advice, but realize that the ideas of UMs are more general). Selec-
tors qualify terms on their name, value, or both. The application of μ to term t is
denoted μ⋅t. If the selector of μ does not qualify t (that is, μs(t) is false), t remains
unchanged. Otherwise, the value of t is updated by μr. 

1.  L is a join semi-lattice with universal bounds 0 and T [24].

T

x1 x2 ...

0
Figure 3. Value Lattice
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The updating rules of μr are simple: modification is strict — modifying an error
remains an error:

μr⋅T = T (2)

Modifying a normal value x yields another (usually different) normal value y:

μr⋅x=y ; 0<x<T and 0<y<T (3)

And zero is unchanged — advising nothing yields nothing:

μr⋅0 = 0 (4)

Note the generality of μr permits virtually arbitrary rewrites of normal values, such as a
rewrite that simplifies arithmetic expressions. Specific rewrites of μr model mixins and AOP
advice, but the generality of μr allows us to model almost any (future) value rewriting tech-
nology.

Let M denote the set of all universal modifiers. Using (2)-(4) it is easy to prove for
all modifier rewrites:
(iv) distributivity over addition: For all μ∈M and v,w∈L: μ⋅(v+w) = μ⋅v+μ⋅w

Modifiers are composed by function composition, which we denote by juxtaposition.
The composite modifier μ1μ2 means apply modifier μ2 then apply μ1.2

3.5  Finite Maps

Let us now scale addition and modification of individual terms to a container of terms
(i.e., a module). In general, a module is a hierarchy of nested containers [12]. The
essential concept is a container — a finite map that is a set of terms that are (name,
value) pairs [23]. The name of a term uniquely identifies the term in its container. In
the following sections, we define the operations of adding and modifying finite maps.
By doing so, we define a finite map space (FMS).

Finite maps have many notations. AHEAD used sets; Apel et al. use trees (where a
node is a container and its children are its terms) [6]. A vector is another, where the
index of a component is a term’s name, and the component value is the term’s value.
We list terms in alphabetical order of their name.3 Vector [a b c] denotes a container
with terms a, b, and c. When a term has an undefined value, we use 0 to indicate this.
Thus vector [a b 0] denotes a container where term c has an undefined value. 

2.  There is also an identity modifier (1), which is the modifier that selects no terms. It leaves
terms intact when applied, i.e., for all v∈L:  1⋅v=v.

3.  The order of components in a vector is the order in which its terms must appear in source. For
example, the children of an XML node can be ordered. The XML node would be a vector
and its components would be the children in order of their listing. As Java imposes no order-
ing of classes within a package or members within a class, we use an alphabetical ordering.
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Note that a vector notation of finite maps is approximate: the number of terms in a
classical vector is fixed and does not vary over time. However, the number of terms in
a finite map can vary (as we will illustrate shortly). Again, we emphasize to readers
that when we use the term “vector”, we mean a notation for a finite map.

We use a compiler name-mangling technique to uniquely name Java class members
[50]. The name of a Java member is its identifier followed by the signature of its argu-
ments [50]. So field “int a;” has name “a”; and method “bool b(int y){...}”
has name “b(int)”. Different naming schemes may be needed for non-Java artifacts.

A class is a container whose members are terms. Consider the following definition of
Java class X:

class X { int a=5; bool b(int y){…}; } (5)

A vector for this class is X1=[a1 b1] with terms a1 and b1:

a1.name = “a”
a1.value = “int a=5;”
b1.name = “b(int)”
b1.value = “bool b(int y){…};”

Vector subscripts denote different definitions of a class. Our first definition of class X is X1.

A word on notation: if member c exists in class X in some program of a product line,
we write vector X1 as [a1 b1 0], leaving room for term c to be added later. As we are
using vectors to convey ideas, padding vectors with zeros is a notational issue, and not
a limitation of finite maps.

Now consider a second definition of X:

class X { int c; } (6)

Its vector is X2=[0 0 c2] where:

c2.name = “c”
c2.value = “int c;”

The source code of a vector v is its image, denoted by image(v). The image of X1 is
(5) and the image of X2 is (6).

Finally, the zero vector (0) has all terms with value 0. The image of X3=0 for class X is:

class X { }

3.6  Addition of Finite Maps

Vector addition sums corresponding components:

[x1 x2 … xm] + [y1 y2 … ym] = [x1+y1 x2+y2 … xm+ym] (7)
8



Using the rules for adding primitive terms, the sum X1+X2=X12=[a1 b1 c2] has the
image:

class X { int a=5; bool b(int y){…}; int c; }

A fourth definition of class X has vector X4 = [a4 0 0]:

class X { int a=8; }

where:

a4.name = “a”
a4.value = “int a=8;”

The image of X1+X4=X14=[a1+a4 b1 0]=[T b1 0] is:

class X { T a; float b(){…}; }

The error term (an A error, actually) arises because there are conflicting declarations of
member “a” in both X1 and X4.4

Vector addition satisfies the theorems below, which follow directly from lifting primi-
tive terms to vectors(i)-(iii):
(v) associative: For all u,v,w∈V: u+(v+w)=(u+v)+w
(vi) commutative: For all v,w∈V: v+w = w+v
(vii) identity element: For all v∈V and 0∈V: v+0=v

Any two vectors u,w∈V can be added. Some additions will produce vectors with errors.
Just as programs can be created with errors, the same holds for features. Feature mod-
els are used to limit feature compositions to those that do not produce errors [13][47].

3.7   Universal Modification of Finite Maps

Applying a universal modifier μ to a vector v, denoted μ⋅v, is equivalent to applying μ
to each term of v. That is, μ distributes over the terms of v:

μ⋅v = μ⋅[t1 … tn] = [μ⋅t1 … μ⋅tn] (8)

Intuitively, the justification for (8) comes from pattern rewrites in program transfor-
mation systems. That is, given an input pattern, replace it with an output pattern. Such
a pattern would be applied to all components of a program. (This is property (8)). The
same idea arises as quantification in AOP where advising a program is the same as

4.  Terms can have non-primitive values, which are vectors, and vectors can be added. Nested
vectors model module hierarchies [12]. Class and member modifiers (public, private),
class initializers, and implements clauses can also be modeled by specially-named terms of
a class. These terms may have vectors as values.
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advising each of its parts [8][35]. Our formalization is that a modifier can alter every
term of a container.

The universal modifier rewrite of a vector satisfies the following theorem, whose proof
follows from (8) and (iv).
(viii)distributivity over vector addition: For all μ∈M and v,w∈V: μ⋅(v+w) =

μ⋅v+μ⋅w

We will consider EMs shortly.

3.8  Finite Map Spaces

A Finite Map Space (FMS) is a collection of finite maps that can be added and modi-
fied, as defined in the previous sections. We identified key properties (in roman
numerals) that an FMS has in common with a vector space. However, a vector space
has additional requirements [44]. First, scalars can be both added and multiplied. The
modifiers (scalars) of FMSs are composed only via one operation (function composi-
tion); a second operation is lacking. Second, vector addition requires additive inverses
(i.e., negative values). Term values are program fragments — parse trees or strings:
there are no “negative” parse trees or strings. Terms can be removed via subtraction,
but this is not the same as an additive inverse. Third, multipliers and terms have the
same data types in vector spaces; in FMSs, modifiers are different from terms.

Although an FMS is not a vector space, drawing an analogy is useful, as the following
section demonstrates.

3.9  Perspective

3.9.1  AHEAD Features

One of the goals of this paper is to provide a precise definition of AHEAD features and
their compositions. We can now do so. In Section 2.2 we saw that every AHEAD fea-
ture was either a vector of values or a delta vector (i.e., a vector of deltas). A vector of
values is simply a vector in an FMS. A delta vector is a unary function f:V→V that
transforms vectors. Its general form is:

f(x) = I + μ⋅x (9)

where μ are the changes f makes to vector x and I is a vector of terms that f adds
(introduces) to x. FMSs allow us to “peer” inside features to reveal finer-grained struc-
tures of their organization and how these structures compose. For example, the
AHEAD expression of a program p=k•j•i expands into a sum of modified vectors:

p = k(j(i)) ; same as k•j•i
= Ik +μk⋅(Ij +μj⋅(Ii))
= Ik +μk⋅Ij +μkμj⋅Ii (10)
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where vector Ij denotes the collection of terms that are introduced by feature j and μj
are the modifications of j. Exposing additional internal structure makes it easier to
explain complex tasks, such as in [15], and the topic of the next section.

3.9.2  Feature Oriented Refactoring

Feature-oriented refactoring (FOR) is the inverse of feature composition: the goal is to
refactor a legacy application p into a composition of features, say p=k•j•i [33]. FOR
is done in three steps. First, the terms of p are partitioned, assigning each term to a fea-
ture. This is modeled by the addition of vectors, one vector per feature:

p = Ik + Ij’ + Ii’

Next feature-specific modifiers are factored out:

p = Ik + μk⋅Ij + μkμj⋅Ii ; where Ij’=μk⋅Ij and Ii’= μkμj⋅Ii

Finally, the expression is rewritten to define an FMS function for each feature:

p = Ik +μk⋅(Ij +μj⋅(Ii))
= k(j(i)) ; same as k•j•i

Note the above expression is identical to (10). In general, feature-refactoring code is
conceptually equivalent to factoring expressions, thus providing a simple way to
understand what is otherwise a complex and partially-automatable task. Interestingly,
FMSs can be extended with an annihilating modifier 0, where for all v∈V: 0⋅v=0. Then
the I vectors are analogs to basis vectors of a vector space, and the modifiers are vec-
tor coefficients.

3.9.3  Canonical Forms and Compositionality

Mathematics imposes constraints on the definition of features that are not immediately
obvious from a software engineering viewpoint. For example, (9) is a canonical form
of features, rather than:

F(x) = μ⋅(I+x) (11)

A software engineering argument for (11) is the following: if μ represents a program
invariant, then μ must be applied to all introductions of a program, including the intro-
ductions I of F. However, the main reason to prefer (9) is the property of composi-
tionality: a composition of features is another feature. Consider features H and G:

H(x) = Ih + μh⋅x
G(x) = Ig + μg⋅x

Their composition can be factored into form (9):

H•G(x) = Ih + μh⋅(Ig + μg⋅x)
= Ih + μh⋅Ig + μhμg⋅x
11



= (Ih + μh⋅Ig) + μhμg⋅x
= Ihg + μhg⋅x (12)

In contrast, we have been unable to do the same for (11):

H(x) = μh⋅(Ih + x)
G(x) = μg⋅(Ig + x)

H•G(x) = μh⋅(Ih + μg⋅(Ig + x))
= μh⋅Ih + μhμg⋅Ig + μhμg⋅x

(11) requires the same modifier to be applied to all summands, which is not the case
above. (9) satisfies the property of compositionality, but (11) does not. We explore
how advice can be applied program-wide in Section 4.

3.9.4  Hierarchical Scalability

A key strength of AHEAD is that containers (modules) at every level of abstraction are
governed by the same laws. This is useful in creating product lines of product lines.
Given a base product line M, we can define a feature G that extends M to yield an
enhanced product line M1=G•M. In effect, G modifies existing features of M and adds
new features. Given more features like G, a product line of product lines (i.e., a product
line of M variations) is formed. FMSs have this powerful property. A GenVoca model
can be expressed as a vector of values (V1 … Vm) and unary functions (F1 … Fp) with
zero padding for new features that might be added subsequently:

[V1 … Vm F1 … Fp 0 … 0]

Let x=[x1 … xn] be such a vector. The general form of a feature G for product line x
is:

G(x) = [ g1(x1) … gn(xn) ]
= [ i1+μ1⋅x1 … in+μn⋅xn ] (13)

G has the canonical form (9) as we show below. Let:

i = [i1 … in]
μ = μ1 … μn  ; any permutation as μi,μj

; are commutative for i≠j

Form (9) follows:

G(x) = [i1+μ1⋅x1 …  in+μn⋅xn] ; (13)
= [i1 … in] + [μ1⋅x1 … μn⋅xn] ; (7)
= i + [μ1⋅x1 … μn⋅xn] ; defn. i
= i + μ1 … μn⋅[x1 … xn] ; (8)5

5.  Each μi has selector that identifies a unique term of x. Repeated applications of (8)
removes each μi to apply to the entire vector.
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= i + μ1 … μn⋅x ; defn. x
= i + μ⋅x ; defn. μ

Applying the same laws at all levels of abstraction has practical value: it was funda-
mental in creating the AHEAD Tool Suite [12], implementations of multi-dimensional
separation of concerns [11], meta-models and software service packs [12], and of
course product lines of product lines [11].

3.9.5  Unique Existential Modifiers

Recall that an EM is a test for the existence of a particular term; the term’s value is
unchanged if it is not 0 (undefined), otherwise an error is produced. An EM is a special
modifier, denoted !, that is an ordered pair of functions (!s, !r). Again let D denote the
set of all terms and L denote the value lattice. Function !s:D→boolean is a selector
that identifies a single term of a vector and !r:L→L is the term value rewriting func-
tion. (Informally, think of !s as a pointcut that identifies a single term by name and !r
as an AspectJ declare error action, but again realize that the idea of EMs is more
general). The application of ! to term x is denoted !⋅x. If selector !s does not qualify x
(that is, !s(x) is false), the value of x is unchanged. Otherwise, the value of x is
updated by !r. Like UMs, ! applied to a vector equals the vector where ! is applied to
each term. Of course, only one term of the vector is actually selected:

!⋅v = !⋅[t1 … tn] = [!⋅t1 … !⋅tn] (14)

The updating rules of !r are strict — modifying an error remains an error, and normal
values are unchanged:

!r⋅T = T (15)

!r⋅v = v ; for all v∈L and 0<v<T (16)

The key mapping is:

!r⋅0 = T (17)

That is, if the term singled out by ! has an undefined value, then an (existential) error
is raised. Due to (17), ! does not distribute over addition (+). Basic identities involv-
ing !r are easy to prove, such as idempotence:

!1
r!1

rv = !1
rv ; for all v∈L (18)

That is, multiple applications of the same !r function are equivalent to a single appli-
cation, and EM and UM rewrites are commutative: 

μr!r⋅v = !rμr⋅v ; for all v∈L and μ∈M (19)

The canonical form of feature functions generalizes to:

F(x) = I + [!]μ⋅x (20)
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where [!] means the composition of one or more EMs is optional and μ is a single or
composite UM. It can be shown functions of the form (20) satisfy the property of
compositionality [16] (see Appendix II).

In general, expressions involving ! are more complicated to manipulate manually
although there is no problem for tools. FMS expressions can be developed without !
functions to explore a basic design concept (as we did with FOR in Section 3.9.2), and
add ! afterwards to impose EM constraints. As an example, the UM below expresses a
method extension in AOP:

void around():execution( void m()){ ..; proceed(); ..;}

and later it can be replaced by the method mixin:

void m(){ ..; Super.m(); ..; }

to additionally specify an EM to test that method m() exists.

3.9.6  Implementation

We show in Section 5 that existing systems implement special cases of FMSs. We
present an elementary example here to illustrate one possible concrete mapping of an
FMS to an implementation. There are many possibilities, and choosing a “good” one is
the subject of on-going work.

Figure 4a shows a class D with members s and t. D’s vector is D=[0 0 s t]. (Only
stubs for s and t are present; their details are not significant). Figure 4b shows a
refinement of class D that adds members q and r, and has a piece of advice that colors
all existing members boldRed. This refinement is the function F(x)=[q r 0 0] +
boldRed⋅x. That is, F boldRed-modifies its input program x and adds terms q and r.
Figure 4c is the image of F(D): all members in D are advised in boldRed and the
resulting vector is [q r boldRed⋅s boldRed⋅t].

This example scales to packages by replacing “class” with “package”, interpreting
q-t as individual classes, and boldRed as an aspect file with advice. Although spe-
cific details are elided, the essential idea of composition is the same.

When AHEAD was implemented, virtually the same algorithm was used for compos-
ing (i.e., summing, modifying) different program representations. Because separate
composition tools were written (sometimes in different languages) for different pro-
gram representations, we could not reuse common code nor enforce a consistent defi-

class D {
s;
t;
}

class D {
q;
r;
advise: boldRed;

}

class D {
q;
r;

boldRed⋅s;
boldRed⋅t;

}

(a)
(b)

(c)Figure 4. An Example
14



nition of composition. Similar problems have occurred in other projects, e.g., Hyper/J
[46] and aspect weavers for different languages [28]. FMS provides a blueprint for
building a single tool to implement these operations once, thereby achieving code
reuse and definition consistency.

Here is how we envision a tool that implements FMSs: there will be a class G whose
objects are parse trees or XML trees, thus providing a standard way to represent all
kinds of program representations. G methods are operations on G objects, such as sum
and modify. Modifications are (selector, rewrite) pairs which would use standard trans-
formation system techniques for searching trees and performing tree replacements
[29]. Representation-specific twists on G methods will inevitably arise, and this would
be handled by subclassing G. Parsers would map different representations (makefiles,
Java programs, grammars, etc.) to G objects and then G methods are invoked. Unpars-
ers would map transformed G objects back to their original representations. In effect,
our tool would be an object-oriented framework for manipulating different program
representations. Simonyi’s Intentional Programming is a prototype of these ideas [42].
A possible type system for FMSs is gDeep [7].

4  Quarks

A characteristic of AspectJ is that advice is always applied to an entire program, which
is the base program and every aspect [15]. To illustrate, let B denote the base program
of Figure 5a and A1 and A2 be the aspects of Figure 5b-c. Both aspects introduce an
increment method and advise the execution of increment methods.

Figure 5d shows the program P1 that AspectJ produces when A1 is applied to B; there
are two increment methods and both are advised. Figure 5e shows the program P2
when A2 and A1 are applied to B, where A2 is applied after A1.6 The resulting program
has three increment methods, and all are advised by A1 and A2. Again the idea is that
advice is always applied to all introductions of the base program and its aspects.7

class C { // program P2
int a = 0;
void inc() {a++; outA1();

outA2();} 
void inc2(){a=a+2; outA1();

outA2();}
void inc3(){a=a+3; outA1();

outA2();}
}

class C {
int a = 0;
void inc() {a++;}

}

aspect A1 {
void C.inc2() {a=a+2;} // i1

after(): execution(void C.inc*())

{ outA1(); } // μ1

aspect A2 {
void C.inc3() {a=a+3;} // i2

after(): execution(void C.inc*())

{ outA2(); } // μ2

class C { // program P1
int a = 0;
void inc() {a++; outA1();} 
void inc2(){a=a+2; outA1();}

}

Figure 5. Aspects and Woven Aspects

(a)

(b)

(c)

(d)

(e)
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Applying advice after all introductions have been made is useful in implementing cer-
tain kinds of invariants [43], e.g. “every call to method m() must be followed by a call
to method q()”. Of course, the invariant holds immediately after the modifier is
applied, but not necessarily after subsequent modifiers are applied. (This is the prob-
lem of aspect interaction [22]).

Here is a general mathematical description of what is happening. When aspect A1,
which has advice μ1 and introduction i1, is applied to base program B whose FMS
expression is b, the resulting program P1 has the expression μ1⋅(i1+b). When aspect
A2, which has advice μ2 and introduction i2, is applied to P1, the resulting program P2
has the expression μ2μ1⋅(i2+i1+b). That is, A2 transforms expression μ1⋅(i1+b) into
μ2μ1⋅(i2+i1+b). In effect, aspects are an expression rewrite: introductions of the base
program and all aspects are first added together and only then advice is applied. The
shape of a program expression produced by AspectJ is distinctive [35]:

μn…μ1⋅(in+…+i1+b) (21)

In contrast, the feature functions of FMSs yield program expressions with a different
shape (where feature Fj has modifier μj and introduction ij):

in + μn⋅in-1 + μnμn-1⋅in-2 + … + μnμn-1…μ1⋅b (22)

The images (programs) of (21) and (22)
can be quite different. Figure 6a shows the
composition A1(B) and Figure 6b the compo-
sition A2(A1(B)), where A1(x)=i1+μ1⋅x
and A2(x)=i2+μ2⋅x are FMS functions. Nei-
ther program matches any of the woven
AspectJ programs of Figure 5d-e. Note only
the inc() method in Figure 6a is advised by
μ1 as μ1 modifies its input b. Similarly inc()
and inc2() are advised by μ2 in Figure 6b,
as μ2 modifies its input (i1+μ1⋅b). In general,
the set of programs that can be produced by
AHEAD and similar systems is different than
the set producible by AspectJ when comparable features are used [35]. We want a tech-
nology that can synthesize both sets of programs, and more.

6.  In AspectJ parlance, A2 has precedence over A1. Note that AOP precedence has the opposite
meaning in mathematics: AOP precedence means apply later, not apply first.

7.  More generally, AspectJ advice can modify advice bodies. By mapping advice bodies to
introduced methods [35][41], there is a simple and uniform rule for AspectJ advice: it
applies to all introductions of the base program and all introductions of all aspects.

class C { // program A1(B)
int a = 0;

void inc() {a++; outA1();} 
void inc2(){a=a+2;}

} (a)

class C { // program A2(A1(B))
int a = 0;
void inc() {a++; outA1();

outA2(); } 
void inc2(){a=a+2; outA2();}
void inc3(){a=a+3; }

} (b)

Figure 6. FMS-Synthetic Programs
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To unify both, we distinguish modifiers that are applied immediately as in (9) to the
current state of a program, from modifiers whose application is delayed until all fea-
tures have been composed. The former, called immediate modification, is basic to the
incremental development of programs (e.g., extreme programming), and the latter
called delayed modification is basic to AspectJ.

Quarks express these distinctions by generalizing FMS functions to admit delayed
modifiers. The vanilla quark represents a feature as a triple <γ,i,λ> where γ is a
delayed modifier, λ is an immediate modifier, and i is an FMS vector. A base program
i is represented by the quark <1,i,1>, where 1 is the identity modifier (see footnote
2). An FMS function F(x)=I+μ⋅x is <1,I,μ>, where the I and μ coefficients of F are
the right-most components of the quark, and 1 is the delayed modifier.

Vanilla quarks are composed by the operation •:

<γ2,i2,λ2>•<γ1,i1,λ1> = <γ2γ1,i2+λ2⋅i1,λ2λ1> (23)

Intuitively, (23) encodes a generalization of FMS function composition. FMS func-
tions F(x)=i2+λ2⋅x and G(x)=i1+λ1⋅x are the quarks <1,i2,λ2> and <1,i1,λ1>.
Their composition G•F(x)=i2+λ2⋅i1+λ2λ1⋅x is the quark <1,i2+λ2⋅i1,λ2λ1>. The
generalization of (23) is that left-most term of a quark (which is “1” in the F and G
functions) lists the delayed modifiers that are to be applied. So if feature F had delayed
modifier γ2 it would be represented by the quark <γ2,i2,λ2>.

Quarks are composed by •, like features in GenVoca models. The reason is that quarks
are a more general way to implement features. A formal reason is that a GenVoca
model is a monoid: features are composed (by function composition), composition is
associative, and there is the unit element (identity function). Quarks are also monoids,
identities (23)-(25), as we show below.

The identity quark is <1,0,1>, where 0 is the zero vector:

<1,0,1>•<γ,i,λ> = <γ,i,λ>•<1,0,1> = <γ,i,λ> (24)

Quark composition is not commutative and is associative: 

<γ3,i3,λ3>•[<γ2,i2,λ2>•<γ1,i1,λ1>] =
[<γ3,i3,λ3>•<γ2,i2,λ2>]•<γ1,i1,λ1> (25)

The proof of (25) is straightforward.

Finally, the image of a quark is the expression that it represents, namely the introduc-
tions that have accumulated in the quark times the accumulated global modifiers:

image(<γ,i,λ>) = γ⋅i (26)
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The image() operation is intended to be applied to a quark where all features have been
composed. λ does not appear in the final expression γ⋅i, as it has been applied to the accu-
mulated introductions represented by i. The next section illustrates this idea.

Note that quarks are more abstract than the feature functions of a FMS (9). Quarks
require two applications of image() to produce a source code representation. The first
application converts a quark into an expression, and the second application converts
the expression into source.

5  Implemented Special Cases

Static composition models that are exemplified by different tools and their research
communities are special cases of quarks. We denote arbitrary advice by α, and the
advice of a mixin by δ. We exclude EMs for simplicity.

Immediate Mixins. The composition models of AHEAD, Jx [38], gbeta [25], Class-
box/J [19], and Jiazzi [36] use immediate mixins and the delayed modifier 1 (identity):

B = <1,Ib,1>
F = <1,If,δf>
G = <1,Ig,δg>

image(G•F•B) 
= image(<1,Ig,δg>•<1,If,δf>•<1,Ib,1>)
= image(<1,Ig+δg⋅If+δgδf⋅Ib,δgδf>)

= Ig+δg⋅If+δgδf⋅Ib // compare with (22)

Delayed Advice. The composition model of AspectJ uses delayed advice and 1 as the
immediate modifier:

B = <1,Ib,1>
F = <αf,If,1>
G = <αg,Ig,1>

image(G•F•B)
= image(<αg,Ig,1>•<αf,If,1>•<1,Ib,1>)
= image(<αgαf,Ig+If+Ib,1>)

= αgαf⋅(Ig+If+Ib) // compare with (21)

Immediate Mixins and Delayed Advice. CaesarJ [37] and FeatureC++ [3] both use
delayed advice and immediate mixins:

B = <1,Ib,1>
F = <αf,If,δf>
G = <αg,Ig,δg>

image(G•F•B)
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= image(<αg,Ig,δg>•<αf,If,δf>•<1,Ib,1>)
= image(<αgαf,Ig+δg⋅If+δgδf⋅Ib,δgδf>)

= αgαf⋅(Ig+δg⋅If+δgδf⋅Ib)

In general, quarks provide a compact way to express and differentiate a variety of well-
known composition models.

5.1  Perspective

Quantification. We noted earlier that modifiers express universal and unique existen-
tial quantification. Quarks add an extra dimension to features: immediate modifiers
express bounded quantification (i.e., quantifiers over a program’s terms at an incom-
plete state of its design), and delayed modifiers express unbounded quantification (i.e.,
quantifiers over a program’s terms at a complete state of its design) [35]. Both kinds of
quantification arise in program development.

Implementation. Quarks extend an FMS implementation by queuing the application
of delayed modifiers until an image() operation is invoked. Delayed and immediate
modifiers can be differentiated syntactically in languages by the presence of a
“delayed” or “immediate” keyword that prefaces a modifier declaration, e.g.:

immediate after(): pointcut { advice-body }
delayed void m() { Super.m(); print(“hi”); }

The above after advice is applied immediately to an input program, while the
delayed mixin is evaluated after all features have been composed. A delayed mixin
with an identity rewrite ensures that a particular term exists in a program.

Families of Quarks. In addition to immediate and delayed advice, higher-order advice
— or modifiers of modifiers (MOMs) — has been explored [30][49][5]. MOMs come
in delayed or immediate flavors, allowing a family of quarks to be created. One quark
might have immediate modifiers and MOMs. Another could also have delayed MOMs.
Modifiers of MOMs could be also defined, creating even more sophisticated quarks.
See Appendix I. Vanilla quarks will be sufficient for most applications. 

6  Related and Future Work

We previously cited prior work on mixins and aspects that provided a concrete ground-
ing for FMSs [3][5][11][12][19][25][27][28][30][32][33][35][37][38][42][46][49]. In
this section, we review a broader context in which FMSs can be placed.

There is a vast literature on program algebras and design calculi (e.g. [1][20][9][40])
which are intended to help calculate correct programs from formal specifications. The
rules of a calculus assure the preservation of specified functionality and properties.
The programming model is to incrementally transform or refine a formal specification
to code in such a way that the code is mathematically consistent with the specification.
Our work is different in its focus on (a) feature and aspect-oriented development, (b)
19



their role in creating software product-lines, and (c) relating existing systems that syn-
thesis programs to vector arithmetic. There is no explicit formal specification of
requirements. Instead, product requirements are specified by the user's choice of fea-
tures, and an FMS expression represents both the feature choices and the metaprogram
that generates the desired product. Although not a focus of this paper, the development
of correct programs by composing features is reviewed in [17].

Writing programs that manipulate other programs as data is metaprogramming. Pro-
gram manipulation of FMS expressions is an example. Applying an image operation to
translate an expression to a program is staged generation or staged metaprogramming
— i.e., writing generators of generators [45]. As quarks require two applications of
image() to yield program source, mapping a quark to source is an example of 2-
staged metaprogramming.

The origin of FMSs lies in [34][35], which suggested that step-wise development of
programs could be expressed by simple algebras. This paper formalizes these algebras
as FMSs and quarks. A next step is to support vector (finite map) subtraction. Subtrac-
tion arises in the refactoring of programs and product lines, where classes and class
members can be deleted (see Appendix IV). Refactorings also appear to be structure-
preserving maps between GenVoca models [15][16] (see Appendix III).

Understanding program synthesis as FMS arithmetic captures the lock-step refinement
of program representations. Other functional relationships that are not captured are
derivations — deriving one program representation (.class) from another (.java).
Derivations are central to model-driven design (MDD). Capturing both refinement and
derivation relationships among artifacts can be compactly expressed by category the-
ory, which is the basis for the third generation of FOP [14][48]. 

Apel et al. have developed a feature algebra that models features as trees, called fea-
ture structure trees (FSTs) [6]. Features are composed by tree superimposition and by
tree traversals and rewrites. Unlike FMSs, the FST algebra abandons commutativity of
summation in favor of replacement. Introductions and mixin modifiers are unified, and
advice is treated distinctly from mixins. Also, a separate operation is proposed to mod-
ify advice.

7  Conclusions

Software engineers define structures called programs that are added and transformed
during program development. Finite Map Spaces (FMSs) capture the elementary
mathematics that lies behind feature-based program construction. The simplicity of
FMSs allowed us to show how diverse languages and tools implement special cases of
FMSs. Further, FMSs enabled us to demonstrate the usefulness of a concise and uni-
fied explanation of different composition models. Our work can help others under-
stand, characterize, and compare software compositional approaches, and see the
fundamental mathematical operations that underlie this area of research. It is not acci-
dental that we see the same ideas invented over and over again in different software
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composition languages and tools; these ideas are part of a larger paradigm that we are
only now beginning to understand. 

The long-term contribution of this paper is to lay the groundwork for understanding
the activities of program design and construction from a simple mathematical perspec-
tive. From a product line viewpoint (where program synthesis can be scripted), the
mathematical nature of program development becomes evident. Although we focussed
on one activity in this paper (feature-based program synthesis), our approach can be
generalized to account for other activities (e.g., refactorings and MDD) by admitting
other operations, such as subtraction and derivation, and relationships, such as homo-
morphisms [15]. This paper takes us a step forward in our quest to define a pragmatic
mathematics of program construction.
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Appendix I.    Modifiers of Modifiers

In addition to immediate and delayed advice, researchers have explored higher-order
advice or modifiers of modifiers [30][49]. Suppose feature B advises the set() and
get() methods of a Buffer to trap changes to its state:

pointcut changesState() : 
execution( void Buffer.put*(int) ) ||
execution( void Buffer.get*() );

Now suppose another feature adds method clear() to reinitialize Buffer contents.
To capture calls to it, the changesState pointcut should be updated to:

pointcut changesState() : 
execution( void Buffer.put*(int) ) ||
execution( void Buffer.get*() ) || 
execution( void Buffer.clear() );

FMSs have two primitives: terms and modifiers of terms. We need a third to modify
advice: a modifier of a modifier (MOM). A MOM  is a (selector, rewrite) pair. Its
pointcut s:M→boolean selects modifiers of a quark’s image. Its rewrite r:M→M
is a function that maps a modifier to a new modifier. If the selector does not qualify
a modifier, the modifier is unchanged.

Suppose the image of a quark is expression e:

e = γ2γ1⋅(i3+λ3⋅(i2+λ2⋅i1))

Let [μ] denote the modifier that results in applying  to modifier μ. MOM  rewrites e
to (e):

(e) = [γ2] [γ1]⋅(i3+ [λ3]⋅(i2+ [λ2]⋅i1))

That is, all modifiers of e may be altered by . (Readers will note that this is a form of
distribution or quantification, where  is applied to all modifiers of an expression).
Again, only if the modifier is selected by the MOM’s selector will the MOM’s
rewrite be applied.
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MOMs are functions that are composed by function composition, which we denote by
juxtaposition. The composite MOM 1 2 means apply 2 first then 1. The set of MOMs

 is a monoid:

• associative: For all , , ∈ , we have ( )  = ( ) 

• identity element: there exists an element ∈ , such that for all ∈ , =  =

. 

To see how MOMs fit into quarks, we have to step back and recognize that a quark is
an abstract representation of an expression, the quark’s image. Taking the image of a
quark composition A•B is equivalent to a transformation τ that maps the image of B to
the image of A•B:

A=<γa,ia,λa>
B=<γb,ib,λb>

image(A•B) = γaγb⋅(ia+λa⋅ib) 
= τ(γb⋅ib) = τ(image(B))

Transformations like τ can be hard to write; composing quarks and projecting an image
is easier. But if τa could be defined, it would be a tree (expression) rewrite.

The grammar below defines the structure of all quark images:

I : I + I // vector addition
| i // primitive vector
| M⋅I // scalar multiplied vector
;

M : MM // compound modifier
| μ // primitive modifier
;

Let  be the rewrite that is performed by applying a MOM  to a quark’s image. The
expression rewrite rules are:

(I+I) → (I) + (I)
(i) → i
(M⋅I) → (M)⋅ (I)
(MM) → (M) (M)
(μ) → [μ]

That is, the rewriting of a quark image is a function that maps images to images. Com-
position of rewrites is denoted by juxtaposition. The composite rewrite 1 2 means
apply rewrite 2 first then 1.
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The strawberry quark has introductions (i), immediate modifiers (λ), delayed modifi-
ers (γ), and delayed MOMs ( ): < ,γ,i,λ>. This means that MOMs are applied when
the image of the program’s quark is computed. The image of a strawberry quark is:

image(< ,γ,i,λ>) = (γ⋅i)

Strawberry quarks are composed by the operation •:

< 2,γ2,i2,λ2>•< 1,λ1,i1γ1,> = < 2 1,λ2λ1,i2+λ2⋅i1,γ2γ1>

The justification for () is the same as (23). 

The identity strawberry quark is <1,1,0,1>:

<1,1,0,1>•< ,γ,i,λ> = < ,γ,i,λ>•<1,1,0,1> = < ,γ,i,λ>

Composition of strawberry quarks is associative:

< 3,γ3,i3λ3,>•[< 2,γ2,i2λ2,>•< 1,γ1,i1,λ1>] =
[< 3,γ3,i3,λ3>•< 2,γ2,i2,λ2>]•< 1,γ1,i1,λ1> (27)

To prove (27), we compose the left hand side of (27):

< 3,γ3,i3,λ3>•[< 2,γ2,i2,λ2>•< 1,γ1,i1,λ1>]
= < 3,γ3,i3,λ3>•< 2 1,δ2λ1,i2+λ2⋅i1,λ2λ1>
= < 3 2 1,γ3γ2γ1,i3+λ3⋅i2+λ3λ2⋅i1,λ3λ2λ1> (28)

Now we compose the right side:

[< 3,γ3,i3,λ3>•< 2,γ2,i2,λ2>]•< 1,γ1,i1,λ1>
= < 3 2,γ3γ2,i3+λ3⋅i2,λ3λ2>•< 1,γ1,i1,λ1>
= < 3 2 1,γ3γ2γ1,i3+λ3⋅i2+λ3λ2⋅i1,λ3λ2λ1> (29)

(28) and (29) are equal, q.e.d.

AFM. The Aspect Feature Modules [4] use strawberry quarks, where immediate mod-
ifiers are mixins, delayed modifiers are advice, and MOMs are mixin modifiers ( ) that
individually target one piece of advice for extension:

B = <1,1,Ib,1>
F = < f,αf,If,δf>
G = < g,αg,Ig,δg>

image(G•F•B)
= image(< g,μg,Ig,δg>•< f,μf,If,δf>•<1,1,Ib,1>)
= image(< g f,μgμf,Ig+δg⋅If+δgδf⋅Ib,δgδf>)

= R (μgμf⋅(Ig + δg⋅If + δgδf⋅Ib))
= ( f[μg] f[μf]⋅(Ig + f[δg]⋅If + f[δg] f[δf]⋅Ib))
= g f[μg] g f[μf]⋅(Ig g f[δg]⋅If+ g f[δg] g f[δf]⋅Ib)
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Appendix II.    Canonical Forms Using !

In this section, we show that the composition of two functions in form (20) yields
another function in the same form. Without loss of generality, consider the following
feature functions F, G, and H that modify the value of single term. This allows us to
drop the r superscripts from ! and μ, as we assume the selectors of ! and μ have quali-
fied the term.

F(x) = if + !μf⋅x ; uses !
G(x) = ig + !μg⋅x ; uses !
H(x) = ih + μh⋅x ; does not use !

We need the following identities, whose proof follows a case analysis:

!(x+!y) = x + !y ; for all x,y∈L (30)

!(x+y) = x + y ; for all x: 0<x<T and
; for all y∈L (31)

Consider the composition of functions F and G that use !:

F•G = if + !μf⋅(ig + !μg⋅x) ; defn of F,G
= if + !(μf⋅ig + μf!μg⋅x) ; (8)
= if + !(μf⋅ig + !μfμg⋅x) ; (19)
= if + μf⋅ig + !μfμg⋅x ; (30)
= (if + μf⋅ig) + !μfμg⋅x ; (i)
= ifg + !μfg⋅x ; form (20)

Now consider the composition of functions where only the inner function uses !:

H•G = ih + μh⋅(ig + !μg⋅x) ; defn of H,G
= ig + (μh⋅ig + μh!μg⋅x) ; (8)
= ih + (μh⋅ig + !μhμg⋅x) ; (19)
= (ih + μh⋅ig) + !μhμg⋅x ; (i)
= ihg + !μhg⋅x ; form (20)

Lastly consider composing functions where only the outer function uses !:

G•H = ig + !μg⋅(ih + μh⋅x) ; defn of G,H
= ig + !(μg⋅ih + μhμg⋅x) ; (8) (32)

Expression (32) contains a subexpression of the form !(m+n), (where m=μg⋅ih and
n=μhμg⋅x), which cannot be simplified without more information. For any implemen-
tation of function H, we will know the value of ih: it will either be zero, a normal
value, or an error. A case analysis shows that such information is sufficient to guaran-
tee that (32) can be rewritten into form (20). 
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Case 0: ih=0
G•H = ig + !(μg⋅ih + μhμg⋅x) ; (32)

= ig + !(μg⋅0 + μhμg⋅x) ; ih=0
= ig + !(0 + μhμg⋅x) ; (4)
= ig + !μhμg⋅x ; (iii) and (20)

Case 1: 0<ih<T

G•H = ig + !(μg⋅ih + μhμg⋅x) ; (32)
= ig + μg⋅ih + μhμg⋅x ; (31)
= (ig + μg⋅ih) + μhμg⋅x ; (20)

Case 2: ih=T

G•H = ig + !(μg⋅ih + μhμg⋅x) ; (32)
= ig + !(μg⋅T + μhμg⋅x) ; ih=T
= ig + !(T + μhμg⋅x) ; (2)
= ig + !(T) ; lattice L
= ig + T ; (15)
= T ; (20)

Note in Case 2, we could define G•H=T+x, or G•H=T+0⋅x if we had annihilators, to match
the exact form of (20).

We know that the composition of two functions that do not use ! can be written into
the form (20). Thus, functions that use ! preserve the compositionality property —
the result is always in the form of (20). q.e.d.

Appendix III.    FMS Homomorphisms

A homomorphism is a map from one structure to another that preserves meaning.
Common object-oriented refactorings, like rename member, rename class, and move
member, preserve the meaning of a program and intuitively define a homomorphism
between the original program structure and its refactored structure.8 

Let FMS1=<V1,M1> and FMS2=<V2,M2> where V1, V2 are sets of vectors, and M1, M2
are sets of modifiers. Let: hV: V1→V2 and hM:M1→M2. A property of hV is that it pre-
serves the underlying value lattice L. h=<hV,hM>:FMS1→FMS2 is a FMS-Homomor-
phism if for all μ∈M1 and v∈V1:

hV(μ⋅v) = hM(μ)⋅hV(v) (33)

and for all vectors v1,v2∈V1:

hV(v1+v2) = hV(v1)+hV(v2) (34)

8.  Commonly refactorings are called meaning preserving and “structure” altering. In mathemat-
ics, “structure” denotes meaning, so there is a misalignment of conventional and mathemati-
cal use of the term “structure”.
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We conjecture that common object-oriented refactorings are FMS homomorphisms
(see [15] for details). 

Appendix IV.    Subtraction

Let x, y, z be values of lattice L. Term subtraction is governed by the following rules:

x - 0 = x (35)

x - y = 0 ; if y>0 (36)

That is, subtracting 0 does not alter a value, and subtracting a non-zero value yields 0.

Subtraction is not commutative and is left-associative (i.e., x-y-z = ((x-y)-z)). It
is easy to prove the following identity:

x - (y+z) = x - y - z (37)

and that UMs distribute over subtraction:

μ⋅(x-y) = μ⋅x - μ⋅y (38)

(38) can be simplified since modifiers do not effect the result of subtraction:

-μ⋅y = -y (39)

Lifting term subtraction to vector subtraction means that the difference of two vectors
equals the differences between their respective components:

[x1 x2 … xm] - [y1 y2 … ym] = [x1-y1 x2-y2 … xm-ym] (40)

Subtraction permits features to delete or replace terms. The general form of a feature F
that adds vector I, subtracts vector S, and modifies existing vectors by μ is:

F(x) = I + μ⋅(x-S) (41)

(41) satisfies the notion of compositionality in Section 3.9.3. That is, compositions of
functions of form (41) are also of form (41).

To allow quarks to admit subtraction, another term needs to be added. A vanilla quark
generalizes to a 4-tuple <γ,i,s,λ>, here called a chocolate quark, where γ is the glo-
bal modifier, i is the vector of introductions to be added, s is the vector of introduc-
tions to be subtracted, and λ is the local modifier. Defining chocolate quark
composition, chocolate quark identity, and associativity is left as an exercise.
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