Incremental Test Generation for
Software Product Lines

Engin Uzuncaova

{uzuncaov,khurshid

Sarfraz Khurshid

Dept. of Electrical and Computer Engineering
The University of Texas at Austin

}@ece.utexas.edu

Don Batory
Dept. of Computer Science
The University of Texas at Austin
batory@cs.utexas.edu

Abstract —Recent advances in mechanical techniques for systematic
testing have increased our ability to automatically find subtle bugs,
and hence to deploy more dependable software. This paper builds on
one such systematic technique, scope-bounded testing, to develop a
novel specification-based approach for efficiently generating tests for
products in a software product line. Given properties of features as first-
order logic formulas in Alloy, our approach uses SAT-based analysis to
automatically generate test inputs for each product in a product line. To
ensure soundness of generation, we introduce an automatic technique
for mapping a formula that specifies a feature into a transformation that
defines incremental refinement of test suites. Our experimental results
using different data structure product lines show that an incremental ap-
proach can provide an order of magnitude speed-up over conventional
techniques. We also present a further optimization using dedicated
integer constraint solvers for feature properties that introduce integer
constraints, and show how to use a combination of solvers in tandem for
solving Alloy formulas.

1 INTRODUCTION

The goal of software product lines is the systematic and
efficient creation of products. Features are used to specify
and distinguish products, where a feature is an incre-
ment in product functionality. Each product is defined
by a unique combination of features. As product line
technologies are applied to progressively more complex
domains, the need for a systematic approach for product
testing becomes more critical.

Software testing, the most commonly used methodol-
ogy for validating the quality of software, plays a vital
role in our ability to deploy more dependable software
by enabling us to find bugs before they manifest as
failures. Specification-based testing [13], [27], [28] is a pow-
erful technique that enables systematic testing of code
using rich behavioral specifications. The importance of
using specifications in testing was realized over three
decades ago [27], and approaches based on specifications
are widely used today. A typical approach generates test
inputs using an input specification and checks the pro-
gram using an oracle specification (correctness criteria).

An earlier version of this paper appeared at the 19th IEEE International
Symposium on Software Reliability Engineering (ISSRE 2008).
The first author now works at Microsoft, Seattle WA.

Several existing approaches can automatically generate
test inputs from a specification as well as execute the
program to check its outputs [33], [50].

For programs written in object-oriented languages, a
suitable specification language is Alloy [30]—a declara-
tive, first-order language based on relations. Alloy’s re-
lational basis and syntactic support for path expressions
enable intuitive and succinct formulation of structurally
complex properties of heap-allocated data structures,
which pervade object-oriented programs. The Alloy An-
alyzer [23]—a fully automatic tool based on proposi-
tional satisfiability solvers—enables both test generation
and correctness checking [33]. Given an Alloy formula
that represents desired inputs, the analyzer solves the
formula using a given bound on input size and enumer-
ates the solutions. Test inputs are generated by translat-
ing each solution into a concrete object graph on which
the program is executed. Correctness of the program
is then checked using another Alloy formula represent-
ing the expected relation between inputs and outputs.
The Alloy tool-set has been used to check designs of
various applications such as Intentional Naming System
for resource discovery in dynamic networks [33], static
program analysis for checking structural properties of
code [53], and formal analysis of security APIs [39].

While the analyzer provides the necessary enabling
technology for automated testing of programs with
structurally complex inputs, test generation using the
analyzer at present does not scale and is limited to
generating small inputs (e.g., an object graph with less
than ten nodes). To enable systematic testing of real
applications we need novel approaches that scale to
generation of larger inputs. The need is even greater
for software product lines due to the current lack of
support for analytical approaches for testing in this
domain as well as due to the combinatorial nature of
feature compositions [15].

This paper presents a novel approach for efficient test
generation by combining ideas from software product
lines and specification-based testing using Alloy. The
novelty of our work is two-fold. First, each product is

specified as a composition of features, where each feature
is specified as an Alloy formula. An Alloy property
of a program in a product line is thus specified as a
composition (conjunction) of the Alloy formulas for each
of the program’s features. Second, we use the Alloy
Analyzer to perform test generation incrementally; that
is, we execute the analyzer more than once but on
partial specifications, which are ideally easier problems
to solve, whereas the conventional use of the analyzer
solves a complete specification of a program to generate
tests. To ensure soundness of generation, we introduce
an automatic technique into our tool for mapping a
formula that specifies a feature into a transformation
that defines incremental refinement of test suites. We
present experimental results on a set of data structure
product lines showing that incremental test generation
can provide an order of magnitude speed-up over the
conventional use.

To illustrate, consider composing a feature f with a
base product b, which have specification formulas s; and
sp respectively. Assume we want to generate a test input
for the resulting product. Then the input specification is
¢ = sy \sy—any solution to this formula represents a test
input. Instead of solving the entire formula ¢ at once (as
is done conventionally), we first run the analyzer to solve
sp to generate an instance i, which is an assignment of
sets of tuples to relations in s;. Next, we run the analyzer
on sy while using 4 as a lower bound for the new instance,
i.e.,, a new instance must contain tuples in i, and may
contain additional tuples, for example, for relations in s
that are not in s,. Note that even though we execute the
analyzer twice, each execution is on a formula simpler
than ¢. Moreover, the second execution explores a much
smaller state space since 4;, the lower bound, already
prunes a significant part of the space.

Our incremental approach enables a novel re-use of
tests: tests that are generated for one product are directly
used to generate tests for another product. Considering
the large number of possible products in a product
line, such re-use is of great value and enables highly
optimized test generation.

We developed a prototype, Kesit, that implements our
approach based on the AHEAD theory [10] and uses the
recently developed Kodkod [54] model finding engine
for Alloy. We have used Kesit to generate tests for a
variety of data structure product lines and evaluated
the performance of incremental test generation. Exper-
imental results show that Kesit can provide an order
of magnitude speed-up over the conventional approach.
We believe approaches like Kesit, which increase the
feasibility of systematic testing will likely improve our
ability to deploy more dependable software.

This paper builds on our previous work on Kesit [57]
and makes the following contributions:

o Incremental test generation. We introduce the no-
tion of incremental generation of tests for testing
products from a product line;

o Mapping. We define a mapping from a feature

po=Dbase

p1=sizeebase

/

2, ps=searchesizeebase
&

pe=parentebase

p

& psz=searchebase

parent p

%
!

Fig. 1. Family of binary trees. Nodes represent products.
Arrows represent feature inclusion.

\ve@
%,

EEE

ps=parentesizeebase

“"e

pe=searcheparentebase

pr=searcheparentesizeebase

specification to a transformation among test suites
and show how to perform it automatically;

 Integer constraint solving for Alloy. We show how
a decision procedure for integer constraints can be
used in conjunction with SAT for solving Alloy
formulas;

o Implementation. Our prototype implementation
uses the AHEAD and Alloy tool-sets to automate
testing of product lines; and

o Evaluation. Experiments using a variety of data
structure product lines show significant speed-ups
over conventional techniques.

2 EXAMPLE

This section illustrates a simple product line of data
structures. We use AHEAD [10] and Alloy [30] notations
to explain our ideas. Section 5 presents a more sophisti-
cated example.

2.1 A product line of binary trees

Consider a family of binary trees [19]. While all trees
in this family are acyclic, they are differentiated on
whether their nodes have parent pointers, or whether
they have integer values satisfying search constraints,
or whether the trees cache the number of their nodes.
The base product is an acyclic binary tree [19], which
can be extended using a combination of three indepen-
dent features: size , parent , and search . We denote the
collection of the base program and its features as an
AHEAD model BT = {base, size, parent, search 1.

A tree is defined by an expression. For example, the
expression p = parent ebase, where ‘e’ denotes fea-
ture composition, defines a tree with parent pointers,
and similarly, the expression s = search ebase defines
a binary search tree (BST). Syntactically different ex-
pressions may be equivalent, e.g., size eparent ebase =
parent esize ebase since size and parent are indepen-
dent (i.e., commutative). Figure 1 characterizes the eight
distinct products of the BT family.

2.2 Alloy annotated Jakarta code

We next describe the basic class declarations and spec-
ifications that represent the BT family. The following
annotated code declares the base classes:

class BinaryTree {
/*@ invariant
@ all n: root. *(left + right) {
@ n lin n.(left + right)
@ lone n."(left + right)
@ no nleft & n.right }
@/

Node root; }
class Node {
Node left, right; }

A binary tree has a root node and each node has a
left and a right child. The invariant annotation in
comments states the class invariant, i.e., a constraint that
a BinaryTree object must satisfy in any publicly visible
state, such as a pre-state of a method execution [40].

The invariant is written as a universally quantified
(keyword all) Alloy formula. The operator ‘.’ repre-
sents relational composition; ‘+” is set union; and “*” is
reflexive transitive closure. The expression root. * (left
+ right) represents the set of all nodes reachable from
root following zero or more traversals along left or
right edges. The invariant formula universally quanti-
fies over all reachable nodes. It expresses three properties
that are implicitly conjoined. (1) There are no directed
cycles; (the operator !’ denotes negation and ' de-
notes transitive closure; the keyword in represents set
membership). (2) A node has at most one parent; (the
operator °’ denotes relational transpose; the keyword
lone represents a cardinality constraint of less than or
equal to one on the corresponding set). (3) A node does
not have another node as both its left child and its
right child; (the operator ‘& denotes set intersection).

AHEAD provides a veneer, Jakarta, on Java to facil-
itate development of product lines [7]. The following
Jakarta code uses the keyword refines , which denotes
extension, to introduce the state that represents the
feature size and the refinement of the invariant:

refines class BinaryTree {
/+@ refines invariant

@ size = #root.
@/

*(left + right)

int size; }

Note (1) the new field size in class Node and (2) the
additional invariant that represents the correctness of
size : the value of size field is the number of nodes
reachable from root (inclusive). The Alloy operator ‘#’
denotes cardinality of a set. When this refinement is
applied to our original definition of BinaryTree , the
size field is added to BinaryTree and the the new
invariant is the conjunction of the original invariant with
the size refinement.

Similarly, we extend the base to introduce the
state representing the feature parent by refining class
BinaryTree and its invariant, and adding a new member
to class Node:

refines class BinaryTree {
/+@ refines invariant
@ no root.parent
@ all m, n: root. *(left + right) {
@ m in n.(left + right) <=> n = m.parent

@}
@/}

refines class Node {
Node parent; }

The correctness of parent is: (1) root has no parent node
(i.e., root.parent == null); and (2) if node mis the
left or right child of node n then n is the parent of
mand vice versa.
We extend the base to introduce search as follows.
refines class BinaryTree {

/+@ refines invariant
@ all n: root. =*(left + right) {

@ all nl: n.left. *(left + right) {
@ n.elem > nlelem }

@ all nr: n.right. *(left + right) {
@ n.elem < nr.elem }

@ }

@/}

refines class Node {
int element; }

The search constraint requires that the elements in the
tree appear in the correct search order: all elements in
the left sub-tree of a node are smaller than its element
and those in the right sub-tree larger.

2.3 Test generation

We next illustrate how to generate inputs for methods
defined in implementations of the products in the bi-
nary tree family. Since an input to a (public) method
must satisfy its class invariant, we must generate valid
inputs, i.e., inputs that satisfy the invariant. To illus-
trate, consider testing the size method in product
ps = search esize ebase:

/I returns the number of nodes in the tree
int size() { ... }

The method takes one input (the implicit input this).
Generating a test input for method size requires solving
ps’s class invariant, i.e., acyclicity, size, and binary search
constraints (from Figure 1). Given the invariant in Alloy
and a bound on the input size, the Alloy Analyzer can
systematically enumerate all structures that satisfy the
invariant; each structure represents a valid input for
size (and other methods that take one tree as input).
Given ps’s invariant, the analyzer takes 62 seconds on
average to generate a tree with 10 nodes: This represents
the conventional use of the analyzer.

We use incremental solving to generate a desired test
(Section 4). The commuting diagram in Figure 2 illus-
trates how our approach differs from the conventional
approach. The nodes s; represent specifications for test
generation for the corresponding products, e.g., so rep-
resents the base specification—the acyclicity constraint.
The nodes t ; represent the corresponding sets of test in-
puts. The horizontal arrow A, represents a refinement of

Fig. 2. BST commuting diagfam.

the class invariant, i.e., the addition of search constraints.
The vertical arrows 7 represent test generation using
Alloy Analyzer. A; represents a transformation of tests
for the base product into tests for search ebase; A; is
computed from A and t o using the analyzer (Section 4).
To generate tests t 3, the conventional approach follows
the path 7e A;. Our approach follows the alternative but
equivalent path A, e 7 (dotted arrows).

Given ps’s invariant, we invoke the analyzer thrice.
The total time it takes to generate a tree with exactly 10
nodes is 1.13 seconds on average, which is a 55x speed-
up. Since our approach re-uses tests already generated
for another product, when testing each product in a
product line, the overall speed-up can be even larger.
Detailed results are presented later in Section 5.2.

3 FEATURE ORIENTATION

A feature is an increment in program functionality. A
software product-line (SPL) is a family of programs where
no two programs have the same combination of features.

Every program in an SPL has multiple representations
or models (e.g., source, documentation, etc.). Adding
a feature to a program refines each of the program’s
representations. Furthermore, some representations can
be derived from other representations. These ideas have
a compact form when cast in terms of metaprogramming
and category theory. We show below how this is done
by a progression of models: GenVoca [8], AHEAD [9],
and FOMDD [5], [55].

3.1 GenVoca

GenVoca is a metaprogramming model of product-lines:
base programs are values and features are functions that
map programs to feature-refined programs. A GenVoca
model M = {fh,ij } of a product-line is an algebra,
where constants (zero-ary functions) are base programs:

f /I a base program with feature f
h /l a base program with feature h

and functions are program refinements:
i oX

i /l adds feature i to program X
] X

/Il adds feature j to program X

where e denotes function composition. The expression
aeb represents the composition of features a and b.
The design of a program is a named expression, e.g.:
p.=jef /[p 1 has features | and f

P2 =1 .Loh Il ' p 2 has features |, j, h
ps=je /Il p 3 has features j and h

The set of programs that can be defined by a GenVoca
model is its product-line. Expression optimization corre-
sponds to program design optimization, and expression
evaluation corresponds to program synthesis [6], [49].1

1. The use of one feature may preclude the use of some features
or may demand the use of others. Tools that validate compositions of
features are discussed elsewhere [4].

3.2 AHEAD

Every program has multiple representations or models:
a program has source code, documentation, bytecode,
makefiles, UML designs, etc. A vector of representations
for a program is a GenVoca constant. Base program f,
for example, has a statechart model cy, a Java source
code representation s y derived from its statechart model,
and a Java bytecode representation bs derived from its
source. Program f’s vectoris f = [c f, s s, b/].

A GenVoca function maps a vector of program rep-
resentations to a vector of refined representations. For
example, feature j simultaneously refines f’s statechart
model (to specify j), its source code (to implement j),
and its bytecode (to execute j). If Ac; is statechart re-
finement made by j , As; and Ab; are the corresponding
refinements of source and bytecode, function j is the
vector j = [Acj, As;, Abj].

The representations of a program, such as p;, are
synthesized by composing each base model with its
refinement:

p:= | of /I GenVoca expression
ACj;, ASj, Ab]’] o[C f1 S fs b f]
ACjeCy, AS;eSy, Abjobf]

That is, the statechart of p; is produced by composing
the base statechart with its refinement (Ac;ecy), the
source code of pi’s base with its refinement (As;esy),
and the bytecode of p;’s base with its refinement
(Abjeby).

3.3 Feature Oriented Model Driven Design

AHEAD captures the lockstep refinement of program
representations when a feature is composed with a pro-
gram. But there are additional functional relationships
among different representations that AHEAD does not
capture. For example, the relationship between Java
source sy of program f and its bytecode b is expressed
by javac . Thatis, javac is a transformation that maps s
to by. Similarly, one can imagine a transformation 7 that
maps a statechart c ¢ to its Java source s ¢. Unlike features
that represent refinement relationships between artifacts,
these transformations represent derivation relationships
between artifacts.

All of these relationships are expressed by a commuting
diagram, where objects denote program representations,
downward arrows represent derivations and horizontal
arrows denote refinements. These objects and arrows
define a category [45]. Figure 3 shows the commuting
diagram for program p2 = i ejeh = [c 5, S, bo].

(b‘l ps, l(/)&i lo
]]2 5]
jayac Jjayac javac
be g, M i
0] - o] 2]

Fig. 3. Commuting diagram.

A fundamental property of a commuting diagram is
that all paths between two objects represent equivalent
results, i.e.,, products. For example, one way to derive
the bytecode by of program p: (lower right in Figure 3)
from the statechart c, of program h (upper left) is to
immediately derive the bytecode b, and refine to b,
while another path immediately refines c, to c,, and
then derives bs:

AbjeAbjejavac er = javac ereAC;eAC;.

In general, there are () = 6 possible paths to derive
the bytecode b, of program p: from the statechart c, of
program h. Each path represents a metaprogram whose
execution synthesizes the target object (b:) from the
starting object (cx).

Traversing each arrow of a commuting diagram has
a cost. The shortest path between two objects in a
commuting diagram is a geodesic. A geodesic represents
the most efficient metaprogram that produces the target
object [5].

4 OUR APPROACH

This section describes our specification-based approach
for test generation for systematic testing of implementa-
tions synthesized from an SPL. We developed a FOMDD
model of our approach; specifications and tests are ob-
jects in the model, and transformations among tests and
specifications are arrows (Section 4.1). We developed
two key transformations that automate test generation
using the Alloy Analyzer; we concretize the instances
generated by the analyzer into Java object graphs that
form test suites (Section 4.2).

4.1 FOMDD model

For specification-based testing, the FOMDD models of
our SPLs are defined as follows. Each program p of an
SPL can be viewed as a pair: a specification s and a set
of testinputst,ie.,p = [s, f] .A featuref refines both
a specification (Asy) and its test suite (At f).

In specification-based testing, the user provides a spec-
ification s and its refinement As, i.e., additional proper-
ties. To generate tests, we need a transformation 7 that
maps a specification s to its corresponding tests t . Also
implementing test refinement At, i.e., a mapping from
old tests to new tests, enables alternative techniques for
test generation. We use the Alloy Analyzer to implement
7. In addition, we use the analyzer to implement trans-
formation 7 that automatically computes At: 7" maps
a test suite t and a specification refinement As to a
corresponding test refinement At. Figure 2 shows the
commuting diagram that corresponds to program po, =
[s 0. t o] composed with feature search .

4.1.1 Objects

An Alloy formula consists of a first-order logic constraint
over primary variables (relations). An Alloy instance
represents a valuation to these relations such that the

formula evaluates to true. Mathematically, an instance
i is a function from a set of relations R to a power
set of tuples 2T where each tuple consists of indivisible
atoms, i.e., i: R -> 2 T, where T is the set of all tuples in
the bounded universe of discourse. Thus, for each Alloy
relation, an instance gives a set of tuples that represents
a value of the relation.

Recall that to solve a formula, the Alloy Analyzer uses
a scope that bounds the universe of discourse. The Kod-
kod back-end of the Alloy Analyzer [54] allows a scope
to be specified using two bounds: a lower bound and
an upper bound on the set of tuples that any valuation
of a relation may take. Any instance must satisfy the
following property: for every relation, each tuple in the
lower bound must be present in the instance and no
tuple that is not in the upper bound may be present
in the instance. Mathematically, a bound b is a pair of
two functions: a lower bound | and an upper bound u,
each of type R -> 27. An instance can equivalently be
viewed as bound b = [, u] wherel = u.

Thus, in our model, a specification s is a pair of a
formula f and a bound b, i.e., s = [f, b] ; a test suite
t is a set of instances.

The specification refinement arrow As for specifica-
tions = [f, b] may refine the formula f or the bound
b or both, i.e.,, and As = [Af, Ab]. AHEAD’s Jakarta
notation provides the keyword refines to denote refine-
ment. We overload this keyword to represent refinement
of specifications. Refinement of a formula f transforms it
into formula f A Af, where Af represents the additional
constraint. Refinement of a bound further restricts the
lower or the upper bound or both.

The transformation arrow 7 represents test generation
from the given specification. The test suite refinement ar-
row At enables an alternative test generation technique.
The transformation arrow 7’is a function from a test suite
and a specification refinement to a test suite refinement.
Implementing 7° provides an implementation for At.

4.1.2 Paths

In a commuting diagram, all paths that start at a desired
specification and terminate at a desired test suite are
equivalent, i.e., following any path gives the same test
suite (up to isomorphism), in particular TeAs = At e7.
However, not all paths have the same associated cost,
ie. test generation along certain paths can be more
efficient than others. Note that in the presence of feature
interactions (Section 7), it may not be practical to traverse
some At arrows.

4.2 Test generation

Implementations of transformations 7 and 7’ enable alter-
native techniques for test generation for products from a
product line. The conventional use of the Alloy Analyzer
allows a fully automatic implementation of 7: execute the
analyzer on specification s and enumerate its instances.
However, the conventional use of the analyzer restricts

TestSuite 7(SpecificationRefinement As,
TestSuite suite) {
=0

As.formula();

TestSuite suite
Formula formula =

foreach (Test test: suite) {
Bound bound = As.bound().update(test);
suite “ = suite ~ + Alloy.solve(formula, bound);

}

return suite

}

Fig. 4. Test refinement algorithm. The algorithm takes
as input a specification refinement and a test suite, and
outputs a new test suite subject to the given refinement.

any path (in a commuting diagram) from a specification
s to a test suite t to contain horizontal arrows that
are labeled As only. This restriction requires performing
transformation 7 after all specification refinements have
been performed, i.e., constraint solving is performed
on the most complex of the specifications along any
equivalent path.

As specification formulas become more complex, exe-
cution of 7 becomes more costly. For example, the ana-
lyzer takes one minute to generate an acyclic structure
with 35 nodes. In contrast, the generation of an acyclic
structure that also satisfies search constraints with only
16 nodes does not terminate in 1 hour.

4.2.1 Algorithm

We provide an algorithm (Figure 4), which enables a
fully automatic implementation of the transformation
7. The algorithm assumes the monotonicity of feature
semantics: when feature f is composed with base b, the
resulting product’s properties are a conjunction of b’s
properties and f’s properties (Section 8). The impact
of feature interactions on incremental test generation is
discussed in Section 7.

The algorithm takes as input a test suite t and a
specification refinement As, and computes a new test
suite, which refines the tests in ¢ with respect to the
constraints in As. The algorithm enables an incremental
approach to test generation using successive applications
of test refinement: to generate tests for a product that is
composed of a base and a desired set of features, first
generate a test suite for the base, and then iteratively
refine the suite with respect to each of the features.
In the specification-tests commuting diagram, we thus
follow the path that starts with a vertical 7 arrow and
then consists solely of horizontal At arrows. Indeed,
our algorithm also enables other paths to be followed
in the commuting diagram and hence it enables new
approaches for test generation (Section 7).

The algorithm transforms each test from the given
suite into a test for the new suite. Incorporating the old
test into the bound for the analyzer’s search guarantees
the satisfaction of old constraints; in addition, the new
solution includes valuations for the new relations intro-
duced by the feature and satisfies the new constraints

(b)
Fig. 5. Test inputs. (a) An acyclic binary tree. (b) An
acyclic binary search tree with elements 0, 1, and 2.

on these relations. Indeed, for features that constrain
existing relations, the Alloy Analyzer may be unable to
refine certain original tests, in which case the algorithm
filters them out.

In general, our algorithm 7’ implements an arbitrary
relation from a given test suite (suite) and a specification
refinement (As) to a desired test suite: (1) a particular test
in suite may be refined into several new tests; and (2)
certain tests in suite may not be refined and are just
ignored by the algorithm. A common case is when each
test is refined to (at most) one test, i.e., 7’ is a (partial)
function. Note that 7/ may not map two distinct tests
onto the same new test (because the values of relations
in original tests are not modified), i.e., 7" is injective.

Illustration. Consider the commuting diagram for
binary search trees (Figure 2). The following valuation
represents a test input i from test suite t ¢ for the base
specification formula acyclic , as shown in Figure 5 (a).
The small unlabeled square represents the BinaryTree
atom BTO; nodes No, Ni, N> are Node atoms. Edges repre-
sent valuations of binary relations:

BinaryTree = { BTO }

Node = { NO, N1, N2 }

root = { <BTO, NO> }

left = { <NO, N1> }

right = { <NO, N2>}

Now consider transforming the test i into a test
i~ for the specification formula of s3, which represents
acyclic A search . We run the analyzer on the for-
mula search and set the lower and upper bounds for
BinaryTree , Node, root , left and right to the values
in input i . The analyzer generates i~ by adding to the
relations in i the new relations element and Int that
models a set of integers:

Int = {0, 1 2}

element = { <NO, 1> <N1, 0>, <N2, 2>}

Figure 5 (b) graphically illustrates this tree, which is
indeed a binary search tree.

Correctness. We next argue the soundness and com-
pleteness (with respect to the given input bounds) of
our approach. We outline a simple induction argument.
Consider generating tests for product p, = fpe...ef1ef,
where fy is a base product and each f; (i > 0) is a
feature. The induction base case holds trivially since the
tests for the base are generated using a direct application
of the Alloy Analyzer. For the induction step, consider
generating test suite ¢4 for product pyp4;1 using test
suite t; for product py, where t; consists of exactly all
the valid tests for py.

The soundness follows from the fact that the invoca-
tion of the analyzer does not change any values of rela-
tions that appear in pi. Thus, constraints for p;, continue
to be satisfied. Moreover, since the analyzer directly
solves the constraints in the specification refinement, any
solution it generates satisfies the additional constraints of
pr+1 by definition. Thus, if the invocation of the analyzer
returns a solution, it satisfies all constraints for pgy;.
(Indeed, some tests for p;, may simply be filtered out.)

The completeness follows from the monotonicity of
feature semantics: any valid test input for a product
must satisfy properties of all its features. Let ;41 be an
arbitrary valid test input for pyii. Let i; be an input
that has the same values as iy for all relations in pg
and contains no other values for any relation. Then by
the monotonicity property, i) is a valid input for py.
Thus, by the induction hypothesis, i, € t;. Therefore,
the foreach loop performs an iteration that refines iy.
Since the analyzer enumerates all solutions, ;, can spawn
several new inputs and the output of the solver includes
all of them. Thus, one of the solutions returned by its
invocation must be iy11 (up to isomorphism). Hence,
ip+1 is generated by the algorithm. Therefore, all valid
inputs for pi1 are generated.

4.2.2 Concretization

To use an instance as a test input to a Java program, we
need to concretize the instance, i.e., translate it into a Java
object graph. The translations are automatic when the
only primary variables in Alloy formulas are relations
that correspond to declared object fields. The TestEra
tool [33] (Section 8) implements these translations. A
user may choose to define formulas using an abstraction
over the concrete object fields; then the user defines a
specialized translation from an abstract instance to a
concrete object graph [42], [52].

5 EVALUATION

The section presents an evaluation of our incremental
approach to test generation using two subject product
lines: binary trees and intentional names [1]. Section 2
introduced the binary tree product line. Section 5.1 de-
scribes the intentional naming product line. We tabu-
late and discuss the results for enumerating test inputs
using the conventional approach and our incremental
approach (Section 5.2).

The basis of our evaluation is a performance compari-
son for test generation between the traditional approach
and our incremental approach. Specifically, we measure
and compare the time taken by these two approaches
for generating test inputs. Section 7.1 discusses how our
approach enables more effective testing.

All experiments were performed on a 1.8GHz Pentium
M processor using 512MB of RAM. All SAT formulas
were solved using MiniSat [25]. Our tool Kesit uses
the Java API of the Kodkod back-end [54] of the Alloy
Analyzer.

51

The Intentional Naming System (INS) [1] is a resource
discovery architecture for dynamic networks. INS is
implemented in Java; the core naming architecture is
about 2000 lines of code. In previous work [33], we
modeled INS in Alloy and discovered significant bugs
in its design and implementation. Here, we show how
incremental test generation gives a significant speed-up
over the conventional approach.

We present the Alloy models that represent test inputs.
Note that the models do not represent the data structures
at the concrete representation level because INS’s Java
implementation uses container classes that are not di-
rectly supported in Alloy. We model the data structures
at an abstract level using Alloy’s sets and relations.
Doing so necessitates writing specialized translations
for concretizing Alloy instances into Java objects; we
developed these translations in previous work [42].

INS allows describing services using their properties.
This enables client applications to state what service they
want without having to specify where in the network
topology it resides. Service properties in INS are de-
scribed using intentional names, which are implemented
using name-specifiers—hierarchical arrangements of alter-
nating levels of attributes and values. Attributes classify
objects. Each attribute has a value that further classifies
the object. A wildcard may be used if any value is accept-
able. An attribute together with its value form an av-pair;
each av-pair has a set of child av-pairs. The av-pairs
form a tree structure. Services advertise themselves to
name resolvers that maintain a database to store mappings
between name-specifiers and name records, which include
information about the current service locations. To test
the correctness of key INS algorithms, we must generate
advertisements and queries as test inputs.

We differentiate each product in the intentional name
product line based on whether there are attribute and
value nodes, or whether attributes and values have
labels satisfying the constraints for a name-specifier, or
whether the trees have pointers from their leaf value-
nodes to name-records. The following AHEAD model
describes this family: INS = {base, attr-val, label,
record }.

The base product for INS is a rooted tree of nodes:

Intentional naming

sig LabelTree {

Node root;

Set<Node> nodes;

children: nodes one -> (nodes -
H

nodes = root. *children

some root.children

no root.”children

root)

}
sig Node {}

The Alloy keyword sig declares a basic set. LabelTree is
a set of atoms that model trees. The field root introduces
a relation of type LabelTree x Node ; this relation is
a total function. The field nodes introduces a relation
of type LabelTree x Node ; the keyword set declares
nodes to be an arbitrary relation. The field children

conventional incremental
product total refine- time speed
vars clause time ment vars clause re; total up
Binary Search Tree (scope=10)
base 210 19618 19 n/a n/a n/a n/a n/a n/a
size @ base 242 20905 23 size 32 1092 21 40 0.58 X
parent e base 310 21404 21 | parent 100 442 12 29 0.72%x
search e base 370 30139 5627 | search 160 4773 170 189 | 29.77x
parent e size ® base 342 22691 21 size 32 1092 21 51 0.41x
parent 100 442 11
search e size @ base 562 38856 | 62059 size 32 1092 21 1125 | 55.16x
search 320 11852 1085
search e parent e base 470 31975 4280 | parent 100 442 12 200 | 21.40x
search 160 4773 169
search e parent e size ® base 662 40642 | 76809 size 32 1092 21 1156 | 66.44%
parent 100 442 11
search 320 11852 1105
NS (scope=16)
base 288 74939 132 n/a n/a n/a n/a n/a n/a
attr-val @ base 832 97576 281 attr — val 544 24468 665 811 0.35%
label o attr-val e base 1952 | 178139 16625 attr — val 544 24468 665 1144 14.53 x
label 1120 17475 347
record o label o attr-val e base 1969 179596 11224 attr-val 544 24468 665 1174 9.56 X
label 1120 17475 347
record 17 25 30
TABLE 1
Performance results for the subject product lines. Times are in milliseconds.
introduces a ternary relation of type LabelTree x Node
x Node. For a LabelTree | , I.children represents the no. Wildcard."label."attr
edge-set of the tree. The keyword one ensures each node no Wildcard. label."val.children
except root has exactly one parent. no (nodes-root) attr abel &
Next, we add the attr-val feature to base: (nodes-root).val.label
refines sig LabelTree {} all n: nodes { all i, j: n.children {
disj[i,j] => i.attr.label != j.attr.label}}
all n,m: nodes { }
disj[n,m] = n.attrl!_zm.attr refines sig Attribute { label: Label }
disjn,m] => n.vall=m.val refines sig Value { label: Label }
} sig Label {}
. . one sig Null, Wildcard extends Label {}
refines sig Node {
ai. Anribute, Next, we add the record feature to
label eattr-val ebase to represent an advertisement.

}
sig Attribute {}
sig Value {}

We use the Jakarta keyword refines

to denote re-

finement of Alloy specifications. Note that Alloy does
not support refinement, however, we show how Alloy
models can be built using refinement. Each node in the

tree now represents an av-pair

and has an attribute and

a value. This refinement transforms the simple rooted
tree in to an AVTree.

Next, we add the label

feature to attr-val ebase.

In INS, attributes and values are defined as free-form
strings that are defined by applications for classifying
objects. For example, to classify the services provided
by a certain provider, ‘service’ can be used as the class

(attribute

) and "printer” and ‘camera’ as the the classi-

fications (values) under the "service’ class. We use label
to allow re-use of attributes and values in a tree to
represent a labeled AVTree, i.e., a query:

refines sig LabelTree {}

{

root.attr.label = Null
root.val.label = Null

Null tin
((nodes-root).val.label +
(nodes-root).attr.label)

Each name-specifier has a pointer from each of its leaf
value-nodes to a name-record:

refines sig LabelTree {
name_record: Record
H{

all n: nodes |
no n.children <=> n.val in nameRecord.values

sig Record { values: set Value }

5.2 Results

Table 1 presents the experimental results for the two
subject product lines. The conventional approach is test
generation with the latest Alloy tool-set, whereas incre-
mental refers our Kesit approach. For each product, we
tabulate the number of primary variables, the number
of CNF clauses and the total time for the conven-
tional approach. We also tabulate the number of addi-
tional Boolean variables, the number of additional CNF
clauses, the additional time taken to refine previously
generated tests and the total time for our incremental
approach. The last column shows the speed-up.

We generated 100 test inputs for each product and
the tabulated times represent the average time to gen-
erate a single test for the product. We tabulate results

conventional ——
incremental -------

..... e

xxxxxxxxxxx

xxxxxxxxxxx

“““““““““““

ol R
0 2 4 6 8 1012 14 16 18 20 22 24 26 28 30

(d) searchebase

[S - I
0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30

(e) searchesizeebase

ol v - P
0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30

(f) searcheparentebase

0
0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30

(g) searcheparentesizeebase

X

e i R R

Py S
0 2 4 6 8 10 12 14 16

(h) attr-valebase

18 20 22 24 26 28

Py S e e
0 2 4 6 8 10 12 14 16 18 20 22 24 26 28

(i) labeleattr-valebase

(j) recordelabeleattr-valebase

Fig. 6. Performance charts for the subject product lines: Binary Tree (a-g) and INS (h-j). In each graph, the x-axis
shows the scope and the y-axis shows the time measurements (in seconds). Also, in each graph, solid line plots the
results using the conventional approach and dashed line plots the results using the incremental approach.

for binary trees with 10 nodes and intentional names
with 16 nodes; these scopes are representative of the
general characteristics we have observed during the
experiments. Figure 6 graphically illustrates the results
for various other sizes. As mentioned earlier, a prod-
uct can be generated following different paths in the
corresponding commuting diagrams: For each product,
we show the results for which Kesit most significantly
outperformed the traditional approach.

Experiments show that Kesit can provide a speed-
up of over 66x. However, it does not always provide
a speed-up and for some products, we observe a slow
down in comparison with the conventional approach
such as size ebase and parent ebase. While we expect
SAT problems with fewer primary variables to be easier
to solve, we observe that applying our algorithm to re-
finements that involve simple constraints introduces an
overhead. Therefore, the conventional approach seems
to be more efficient for simple refinements. However,
for more complex constraints, such as search , our incre-
mental approach performs significantly better. Parallel to
that, as the scope increases, the performance improve-
ment Kesit provides becomes more significant not only
for complex constraints but also for the simple ones.
The experiment results pertaining larger scopes are not
presented in this paper due to space considerations.

We obtain the highest speed-up for the search refine-
ment in the Binary Tree subject. With the conventional
approach, going beyond the scope of 12 seems infeasible.
Our incremental approach enables SAT solvers to handle
significantly larger scopes because the resulting SAT

problems are much simpler. For example, generating
test cases for binary tree with the search constraints
involves 30139 clauses in the conventional approach,
but Kesit works with only 19618 and 4773 clauses for
the base and search features respectively. We observe
this effect with the INS model too. The number of
primary variables and clauses are greater (i.e., 1128
and 80645 respectively) for the conventional approach
due to the complexity and size of the complete model.
However, incremental generation reduces the problem
to two smaller refinements, attr-val and label , which
involve smaller numbers of variables and clauses. The
experiment results for INS spanning a range of scopes
is shown in Figure 6.

To summarize, a key strength of Kesit is to solve more
complex problems and reach larger scopes. There are two
key findings that we have observed during our experi-
ments: (1) for simple refinements, Kesit's performance
is comparable to the conventional approach, and (2)
for complex refinements, Kesit significantly outperforms
the conventional approach. Moreover, since Kesit allows
solving the complete problem using sub-problems that
have significantly fewer variables and clauses, Kesit
provides an approach that promises better scalability
and allows more effective testing strategies (Section 7.1).

6 OPTIMIZATION

Alloy has a basic support for integers. Integer expres-
sions have primitive integer values and arithmetic opera-
tors allow addition, subtraction and comparison. Similar
to non-integer relations, there is a scope defined on the

scope | conventional incremental
base search
AA Z3
8 2.164 0.023 | 0.056 | 0.030
16 > 1hr 1.926 | 0.160 | 0.069
24 > 1hr 9.785 | 1.712 | 0.115
32 >1hr | 52216 | 2.753 | 0.282
36 > 1 hr | 140.640 | 45.099 | 0.292
TABLE 2

Comparison of the Alloy Analyzer(AA) with Z3 for
ps=search ebase. Times are in seconds.

integer values as well. A bound of k for integer atoms
limits integer values to be between -2"~! and 2%~!-1. For
example, a scope of 4 on integer values generates a range
of integer atoms from -8 to 7.

As previously discussed, we observed the most signifi-
cant performance improvements during our experiments
for the search feature of the binary tree product line
(Figure 6 (d-g)). This is mainly because of the additional
integer atoms introduced by this feature and the relative
impact of this feature on the size of the boolean formula
(in terms of the number of variables and clauses). Our
incremental approach benefits from working on smaller
and ideally simpler problems. However, as the scope
increases, larger instances are generated, and both con-
ventional and incremental approaches face a scalability
problem. Column 4 in Table 2 shows the growth of
the analysis time for the search feature for incremental
approach.

This section presents an optimization to our approach
to provide more efficient analysis for integer constraints.
Instead of the Alloy Analyzer, we use a specialized in-
teger constraint solver. We illustrate our approach using
the search feature from the binary tree product line.

6.1 Z3: SMT Solver

An alternative approach to solve integer constraints is to
use a dedicated integer constraint solver such as Z3 [21].
Instead of relying on the analyzer’s encoding and the
underlying SAT solver, we implemented a translator
from Alloy to Z3. The translator takes an Alloy formula
as input and uses the Z3 ANSI C API to generate the
input formulas for Z3. The result of Z3’s analysis is
translated back to Alloy.

Z3 is an efficient satisfiability modulo theories (SMT)
solver. SMT is a generalized form of boolean satisfiabil-
ity, where input formulas are evaluated with respect to
combinations of theories such as arithmetic, bit-vectors,
arrays, and uninterpreted functions. While such decision
problems can also be solved by general SAT solver, the
main advantage of SMT solvers is the tight integra-
tion between satisfiability analysis with theory-specific
solvers.

Our overall approach has two keys steps:

1) Use the previously generated (partial) instance to
partially evaluate the additional constraints; and

10

2) Translate the resulting constraints to the input lan-
guage of Z3.

Illustration. Consider the binary tree instance shown
in Figure 5 (a). The translator performs a partial evalu-
ation of the following search constraint with respect to
the tree instance:

all n: root. *(left + right) {
all nl: n.left. *(left + right) | n.elem > nl.elem
all nr: n.right. *(left + right) | n.elem < nr.elem

}

The translator traverses the abstract syntax tree of this
nested quantified formula and generates the following
input formula for Z3:

NO > N1
N2 > NO

8 <= NO <= 7
8 <= N1 <= 7
8 <= N2 <=7

Each of {NO, N1, N2 } represents an integer variable

bounded by the scope defined on the integers, in this
case 4.

6.2 Evaluation

Table 2 tabulates the results pertaining to the compar-
ison between the Alloy Analyzer and Z3 for product
ps=search ebase. The table also includes the results for
the conventional use of the analyzer. The tabulated times
are in seconds and averaged over 50 instances. For
the incremental approach, base product is generated
using the Alloy Analyzer and the search feature is
solved using the Analyzer and Z3. Columns 2 and 3
shows the impact of increasing scope on the analyzer’s
performance. Whereas, the impact on Z3’s performance
is minimal thus Z3 scales better compared to both con-
ventional and the incremental approach using the Alloy
Analyzer only.

7 DiscuUssION AND FUTURE WORK
7.1 How our approach helps test better

The conventional use of Alloy for specification-based
(black-box) testing enables scope-bounded testing—where
a program is tested against all small inputs (e.g., all
binary search trees with up to 5 nodes)—which has
effectively been used for achieving high code coverage
in library code and for finding deep semantic bugs in
applications [34], [52]. Our work shows how to scale
test generation to larger inputs. For these inputs, how-
ever, scope-bounded testing may be impractical, since
there may be too many inputs to test against even if
they can be generated more efficiently. The ability to
generate larger inputs, nonetheless, enables novel testing
techniques that are likely to be more effective at find-
ing bugs, e.g., (1) it enables a new strategy for black-
box testing—test exhaustively on all small inputs and
selectively on larger inputs—that is likely more effective
than scope-bounded testing, which only uses small in-
puts; (2) it enables efficient specification-based, white-box

techniques, e.g., where constraints from pre-conditions
are conjoined with path conditions (built using symbolic
execution [26], [35], [36]) to direct generation to specific
code paths that require larger inputs [51].

7.2 Testing larger product lines

We demonstrated how our approach provides efficient
test generation for two small product lines using speci-
fications. To apply a specification-based approach to test
real product lines, possibly with hundreds of features, re-
quires addressing two key challenges: (1) the availability
of specifications; and (2) the scalability of test generation.

Similar to many other real applications, software prod-
uct lines are rarely accompanied by detailed specifi-
cations. However, recent advances in specification lan-
guages, specifically their tighter integration with pro-
gramming languages in the form of annotations [38],
hold promise for a wider use of specifications in product
lines. In a new project on infrastructure development,
we are initiating an effort to write specifications for a
suite of product-lines from AHEAD, which we expect
will provide a platform for more rigorous evaluation
and comparison of techniques for testing product-lines
as well as provide insights into how specifications for
product lines may be structured to reduce the burden of
writing specifications.

Moreover, the recent advances in constraint solving
technology are likely to make systematic testing of
product lines viable. Witness, for example, the recent
resurgence of symbolic execution due to advances in
our ability to solve constraints from path conditions.
Our approach to incremental generation provides a key
step at more efficiently utilizing off-the-shelf solvers for
product line testing, in particular, and constraint solving
for checking of code, in general.

7.3 Solving Alloy formulas using multiple solvers

Our approach to incremental test generation naturally
lends itself to an application of a combination of spe-
cialized decision procedures. Section 6 showed how to
use an off-the-shelf SMT solver in conjunction with SAT
to more efficiently solve binary search tree constraints.
Given a pure integer constraint, it is natural to expect
that a dedicated integer constraint solver will perform
better than a SAT solver on simple integer constraints,
such as the “less-than” constraints that represent bi-
nary search. A key contribution our approach makes
is to demonstrate how to use a combination of solvers
even when integer constraints are interleaved with non-
integer constraints [56], e.g., consider the following con-
straint for a sorted, doubly-linked, circular list, say {:

all n: Lheader. *next |
n.next != Lheader => n.key < n.next.key

Note the integer part of the constraint applies only
subject to a certain constraint on non-integers. Hence we
cannot directly separate the constraints into a conjunc-
tion of integer constraints and non-integer constraints.

11

Our insight is to use partial evaluation to boil down such
mixed constraints into integer constraints by unrolling
the quantifiers and using concretized values for non-
integer variables.

Since SMT solvers already support a variety of deci-
sion procedures using sophisticated partitioning strate-
gies, an alternative technique [32] for utilizing multiple
solvers for Alloy is to solve Alloy formulas by translating
Alloy to the input language of an SMT solver, such as Z3,
e.g., by modeling relations in Alloy as arrays in SMT. An
advantage of this approach is that it immediately enables
the use of multiple solvers. A disadvantage is that since
it involves an encoding from one data model (relational)
to another (array-based), it may create a (partial) loss of
semantic structure that can be exploited at the level of
the problem domain but not at the level of the solving
domain. We plan to further investigate SMT for Alloy.

Our incremental generation approach follows the par-
tial assignments and backtracking approaches in SAT and
SMT solvers. However, a key advantage is that our
approach applies at the level of Alloy formulas, i.e., the
level of the problem domain, and can utilize the high
level problem structure. The advantage of having (some)
high level structure during analysis is demonstrated
by the SERA framework [60], which encodes Alloy to
sequential circuits [24], which are imperative and stateful,
and therefore permit succinct encodings, e.g., by using
loops to represent quantifiers, and enable the use of tech-
niques for transformation-based verification (a popular
technique for hardware verification) [37]. Experimental
results show that sequential circuits enable significantly
faster solving than CNF formulas, primarily because the
re-writing techniques for TBV, such as compositional
minimization and abstraction, can utilize the problem
structure.

We believe it is possible to communicate some high
level structure to SAT solvers in an explicit fashion by
modifying the interface and implementation of a solver,
e.g., to prioritize the partial assignments using heuristics.
We plan to investigate this further.

In ongoing work, we are generalizing our incremental
approach for Alloy to show how Alloy formulas can be
solved efficiently using a suite of different solvers, in-
cluding string solvers, e.g., the Java String Analyzer [14],
and set constraint solvers, in addition to SAT and SMT.

7.4 Memory usage and Alloy/SAT

There are two basic metrics for evaluating systematic
analyzers, such as the Alloy Analyzer: time taken and
(peak) memory used. Our evaluation in this paper fo-
cuses on time taken, and shows how the incremental
approach, Kesit, is more efficient. Since Kesit solves
formulas with fewer variables and clauses, the number
of conflict clauses maintained by SAT during its search is
expected to be smaller, and hence the amount of memory
required is also expected to be smaller than for the
conventional approach.

Fig. 7. Specification-tests commuting for BST. The path
with bold arrows is ps: search erebalance ebase.

Monitoring the memory usage confirms that Kesit
outperforms the conventional approach. Specifically, for
the binary search tree product with base and search
features, Kesit has a peak memory usage of 4.5MB
whereas the conventional approach uses 25MB (to gen-
erate 50 inputs with 8 nodes). Similarly, for the Inten-
tional Naming System product with base, attr-val
and label features, Kesit has a peak memory usage of
7.9MB whereas the conventional approach uses 36MB (to
generate 50 names with 10 nodes).

While it is important to prevent memory usage from
becoming too high, SAT solvers can avoid running out
of memory by discarding new conflict clauses when the
memory usage approaches a pre-defined upper bound.
However, the presence of conflicts allow the solvers to
do more efficient pruning. Thus, Kesit allows SAT to
more effectively utilize the pruning algorithms than the
conventional approach, and to scale better.

7.5 Evaluating Alternative Paths

FOMDD suggests that the conventional and incremental
approaches are only two of many other approaches for
generating tests, and that a combination of conventional
and incremental may in fact be more efficient.

Figure 7 illustrates a three-dimensional commuting
diagram for balanced binary search trees as described
earlier. Our incremental approach is represented by a
pair of paths in this cube, starting from base specification
so to test t3 that first descends and then walks the
bottom of the cube:

search ebalance erebase

balance esearch erebase

The conventional approach, in contrast, follows a dif-
ferent set of paths that walks the top of the cube before
descending:

Tesearch ebalance ebase

Tebalance esearch ebase

Clearly, there are other paths, and among them is a
more efficient generation strategy. The path with bold
arrows reflects this alternative strategy, where we first
solve for base and balance constraints together and then
incrementally solve for search constraints:

search erebalance ebase

The reason why this alternative path is more efficient
is that many solutions of the base program are discarded
when additional constraints (e.g., search or balance) are

12

path time | #filtered
conv p1: Tesearch ebalance ebase 4.87 0
p2: Tebalance esearch ebase

incr p3: search ebalance erebase 1.34 315
(basic) pa: balance esearch erebase | 43.04 315
incr ps: search eTebalance ebase | 0.178 0
(mixed) | pe: balance eresearch ebase | 18.39 860
results are averaged over 50 inputs

TABLE 3
Comparison of different paths. Path p5 is optimal. Times
are in seconds.

added. It is actually cheaper to start with a slightly more
complex specification, generate and extend its solutions,
than starting from the base.

We discovered this optimal path by examining all
paths (see Table 3) [55]. Note that the number of in-
stances that are filtered (meaning that the number of
solutions that are subsequently discarded as they do not
extend to solutions of more complex programs) is an
important indicator of a path’s performance. We recently
developed a constraint prioritization approach that can
assist in identifying a geodesic (i.e., an optimal path) for
test generation; details are described elsewhere [58].

7.6 Feature Interactions and other characteristics

While features often represent additional program func-
tionality as we assumed in incremental test generation,
one of the key issues in feature-based development is
accounting for feature interactions [41], where features
may replace existing functionality. Although it has been
the subject of a large body of research [12], much about
feature interactions is still not well understood.

FOMDD allows features to have a more profound
impact on properties than can be expressed by conjunc-
tion. An interaction occurs when a feature replaces (not
just extends) existing constraints. In general, features
can transform a property of a program (such as replac-
ing an existing constraint with another, thus disrupting
the monotonic increase that we assumed earlier), in
which case our incremental approach may not apply
directly. Certainly, an incremental approach could apply
to feature compositions from the point of the last non-
monotonic (i.e., last property-replacing) feature. And it
might apply if replaced properties are simply removed
from earlier features in order to emulate monotonic
compositions. In any case, this will be an interesting
subject for future research.

In addition to feature interactions, product lines in
general may have other characteristics that limit a direct
application of our incremental approach. For example, if
the products in a product line have minimal sharing, in-
cremental generation may not provide significant speed-
ups. Similarly, for more general composition operators,
new test refinement operators need to be defined. We
plan to build on our work to develop new techniques
that allow handling a wider class of product lines.

8 RELATED WORK

This paper presents an incremental test generation
approach for specification-based testing of software
product lines developed using the FOMDD (AHEAD)
methodology [9]. This section discusses related work
on modeling and testing of product lines, incremen-
tal testing techniques in more broader context, and
specification-based testing techniques that use the Alloy
tool-set.

8.1 Modeling and testing of product lines

FOMDD is one of several methodologies for product line
development [2], [20], [29], [46]. While our incremental
approach uses FOMDD’s AHEAD as an enabling tech-
nology, we believe our core ideas can serve as a basis for
new analysis techniques for other methodologies too—
for testing end products by defining test refinement for
different composition operators, and for analyzing feature
models (which define constraints among features) using
incremental algorithms.

Testing software product lines is a relatively young
area of research. Nebut et al. [15] states that software
product line processes still lack support for testing end-
products using methods and techniques that are based
on specific features of a product line, i.e.,, commonality
and variability. While classical testing approaches can be
applied in the product line domain, the very nature of
feature composition and the large number of possible
product configurations introduce a serious challenge for
scalability. Much of the literature in testing software
product lines focuses on planning and assessment of
software testing [11], [18], [43]. Our approach intro-
duces an opportunity for tailoring the practices from
the classical testing domain with respect to the specific
requirements of software product lines.

Kahsai et al. [31] recently developed a specification-
based approach that uses the CSP-CASL [47] specifica-
tion language as a basis of generating event sequences
as test inputs. The approach is illustrated using a remote
control product line. Our incremental generation tech-
nique has a different focus: it addresses product line im-
plementations that manipulate dynamic data structures
that require structural constraint solving.

Denger et al. [22] conducted an empirical study to
compare code inspections and functional testing in the
context of product lines using defect finding potential.
Their study provides a basis for comparing new analyt-
ical techniques for testing software product lines using
a metric based on the ability to find faults.

8.2

Pap et al. [44] introduce a bounded incremental algo-
rithm to automatically re-generate tests cases for de-
terministic finite state machine models. They assume a
changing specification for an existing model and utilize
an existing test case of the previous version to generate

Incremental testing techniques

13

a complete test with the same fault detection capability.
Their approach, although applied in a different domain,
carries the same fundamental principles as far as using
the changes in the specifications to refine the generated
test cases. The key difference, however, is that we in-
crementally solve constraints that are richer than those
represented by state machines.

Approaches for regression testing [48] bear similari-
ties to our work. A key problem addressed by these
approaches is of test selection: a code-based selection
technique attempts to identify a subset of existing tests
that are likely to reveal faults in the modified program.
Our incremental generation contrasts with test selection
since we do not select tests from a given suite but instead
we refine given tests using constraint solving.

Barrett et al. [3] present an incremental approach for
translating first-order logic formulas into SAT problems.
Instead of translating the entire formula up front, they
translate it incrementally as the search is conducted
by the SAT solver. This approach deals with the SAT
solver semantics and interacts directly with the solver.
In contrast, our approach works at a higher level and
manipulates Alloy formulas. The two approaches are
thus complementary and can be used in conjunction to
further optimize test generation.

Recently Cohen et al. [17] investigated the use of
incremental satisfiability solvers for generating interac-
tion test suites. Their algorithm uses the incremental
solver MiniSAT [25] to optimize the AETG [16] test
generation algorithm. Incremental SAT solvers have a
direct application for incremental test generation and we
plan to explore their use in testing product lines.

8.3 Alloy for specification-based testing

The TestEra framework [33], [42] introduced the use
of Alloy for scope-bounded testing. TestEra generates
inputs using preconditions and checks program cor-
rectness using postconditions written in Alloy. Scope-
bounded testing has been used to generate high qual-
ity test suites, which provided high code coverage for
library code and found subtle bugs in stand-alone ap-
plications, including a fault-tree analyzer [52].

The use of Alloy for test generation requires a two step
process: (1) generation of Alloy instances that represent
desired inputs at an abstract level; and (2) translation of
abstract instances into concrete tests, say as Java object
graphs. Initial work on using Alloy for test generation
modeled concrete inputs up to isomorphism, i.e., an ab-
stract input represented essentially all elements of a
concrete input. The fault-tree analyzer study [52] used a
novel approach of generating an input fault tree by first
generating an abstract structure that represented only a
part of the input using the Alloy Analyzer, and then
translating the abstract structure into several concrete
fault trees as inputs, where additional input elements
were added through a combinatorial assignment.

Kesit, the incremental approach presented in this pa-
per for testing product lines, shows how to leverage a

product-line setting for separation of constraints, and
to use multiple invocations of the same solver or use
different solvers, in synergy. Kesit provides significantly
more efficient generation than TestEra. Kesit not only
generates tests more efficiently than TestEra, but also
scales to generation of larger inputs, which enables novel
strategies for software testing. To illustrate, bounded
exhaustive testing can be complemented by testing on
selected larger inputs that are generated using the same
constraints (as discussed in Section 7). To our knowl-
edge, Kesit is the first framework for specification-based
testing of software product lines using Alloy.

Alloy’s traditional use for specification-based testing
has been in a black-box setting, where the internal struc-
ture of code under test is not used to guide test gen-
eration. A more recently developed framework Whis-
pec [51] shows how to use Alloy in a white-box setting,
similar to generalized symbolic execution [35] or concolic
execution [50]. We expect Kesit’s incremental generation
to optimize Whispec’s performance.

While this paper focuses on the use of Alloy for
test generation, Alloy has various other applications,
including modeling and checking of designs of software
artifacts [30], and static analysis of code [59]. We believe
our approach will enable new efficient analyses to sup-
port checking of not only the implementations but also
the designs of product lines.

9 CONCLUSIONS

Testing software product lines is an important and dif-
ficult problem. We presented a novel technique that in-
crementally generates tests for product lines represented
using the AHEAD methodology. Our key insight to test
generation comes from the definition of a feature: an
increment in program functionality. We introduced an
automatic technique for mapping a formula that specifies
a feature into a transformation that defines incremental
refinement of test suites. Our approach performs test
generation incrementally. The experimental results with
our prototype Kesit show that incremental test gener-
ation provides significant performance improvements
over the conventional use of the Alloy tool-set for test
generation.

This paper focused on the basic underpinnings of a
specification-based approach for testing product lines.
We hope our work will provide a catalyst for a wider use
of specifications in product-line development and allow
creation of new approaches that scale systematic testing
to real product-lines. We believe incremental approaches
hold much promise, not just in the context of product
lines but also in the more general software testing con-
text, e.g., for refining tests for regression testing.

ACKNOWLEDGMENTS

This material is based upon work partially supported
by the NSF under Grant Nos. CCF-0438786, CCEF-
0724979, 11S-0438967, CCF-0702680, and CCF-0845628,
and AFOSR grant FA9550-09-1-0351.

14

REFERENCES

[1] W. Adjie-Winoto, E. Schwartz, H. Balakrishnan, and J. Lilley. The
design and implementation of an intentional naming system. In
Proc. of the 17th ACM Symposium on Operating Systems Principles
(SOSP), Kiawah Island, SC, December 1999.

[2] T. Asikainen, T. Soininen, and T. Minnist. A Koala-based
approach for modelling and deploying configurable software
product families. In 5th International Workshop Software Product-
Family Engineering (PFE), 2003.

[3] C. W. Barrett, D. L. Dill, and A. Stump. Checking satisfiability of
first-order formulas by incremental translation to SAT. In Proc. of
the 14th Int’l Conference on Computer Aided Verification, July 2002.

[4] D. Batory. Feature models, grammars, and propositional formulas.
In Proc. of the 9th Int’l Software Product Line Conference (SPLC), 2005.

[5] D. Batory. From implementation to theory in program synthesis.
In Proc. of the 34th Annual ACM Symposium on the Principles of
Programming Languages, 2007. Keynote.

[6] D. Batory, G. Chen, E. Robertson, and T. Wang. Design wizards
and visual programming environments for genvoca generators.
IEEE Transactions on Software Engineering, 26(5):441-452, May 2000.

[7] D. Batory, B. Lofaso, and Y. Smaragdakis. JTS: tools for imple-
menting domain-specific languages. In Proc. Int’l Conference on
Software Reuse, 1998.

[8] D. Batory and S. O'Malley. The design and implementation of
hierarchical software systems with reusable components. Comm.
of the ACM, 1(4):355-398, 1992.

[9] D. Batory, J]. N. Sarvela, and A. Rauschmayer. Scaling step-
wise refinement. In Proc. of the 25th Int’l Conference on Software
Engineering, 2003.

[10] D. Batory, J. N. Sarvela, and A. Rauschmayer. Scaling step-wise
refinement. IEEE Transactions on Software Engineering, 30(6):355—
371, June 2004.

[11] A. Bertolino and S. Gnesi. PLUTO: A test methodology for
product families. In 5th International Workshop Software Product-
Family Engineering (PFE), 2003.

[12] M. Calder, M. Kolberg, E. H. Magill, and S. Reiff-Marganiec.
Feature interaction: a critical review and considered forecast.
Computer Networks, 41(1):115-141, 2003.

[13] J. Chang and D. J. Richardson. Structural specification-based
testing: Automated support and experimental evaluation. In Proc.
of the 7th ACM SIGSOFT Symposium on the Foundations of Software
Engineering, September 1999.

[14] A. S. Christensen, A. Mpller, and M. 1. Schwartzbach. Precise
analysis of string expressions. In 10th International Static Analysis
Symposium (SAS), 2003.

[15] Y. L. T. Clémentine Nebut and].-M. Jézéquel. System testing of
product lines: From requirements to test cases. In Software Product
Lines - Research Issues in Engineering and Management, pages 447—
478. Springer, 2006.

[16] D. M. Cohen, S. R. Dalal, M. L. Fredman, and G. C. Patton. The
AETG system: An approach to testing based on combinatorial
design. IEEE Transactions on Software Engineering, 23(7):437-444,
1997.

[17] M. B. Cohen, M. B. Dwyer, and J. Shi. Exploiting constraint
solving history to construct interaction test suites. Testing: Aca-
demic and Industrial Conference Practice and Research Techniques -
MUTATION, pages 121-132, 10-14 Sept. 2007.

[18] M. B. Cohen, M. B. Dwyer, and J. Shi. Coverage and adequacy in
software product line testing. In Proc. of the ISSTA 2006 workshop
on Role of software architecture for testing and analysis, NY, July 2006.

[19] T. H. Cormen, C. E. Leiserson, and R. L. Rivest. Introduction to
Algorithms. The MIT Press, Cambridge, MA, 1990.

[20] K. Czarnecki and K. Pietroszek. Verifying feature-based model
templates against well-formedness ocl constraints. In 5th Interna-
tional Conference Generative Programming and Component Engineer-
ing (GPCE), 2006.

[21] L. de Moura and N. Bjerner. Z3: An efficient SMT solver. In Proc.
of the 14th Int’l Conference on Tools and Algorithms for Construction
and Analysis of Systems, Budapest, Hungary, April 2008.

[22] C. Denger and R. Kolb. Testing and inspecting reusable product
line components: first empirical results. In ACM/IEEE International
Symposium on Empirical Software Engineering (ISESE), 2006.

[23] D.Jackson. Alloy: A lightweight object modeling notation. ACM
Transactions on Software Engineering and Methodology, 11(2):256—
290, April 2002.

[24]

[25]

[26]

[27]

(28]

[29]

(30]

[31]

(32]

(33]

[34]

(35]

[36]

[37]

[38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

[47]

(48]

S. A. Edwards. The challenges of hardware synthesis from C-like
languages. In Design Automation and Test in Europe, 2005.

N. Een and N. Sorensson. An extensible SAT-solver. In Proc. of
the 6th Int’l Conference on Theory and Applications of Satisfiability
Testing, Italy, May 2003.

P. Godefroid, N. Klarlund, and K. Sen. Dart: directed automated
random testing. In PLDI "05: Proceedings of the 2005 ACM SIGPLAN
conference on Programming language design and implementation, 2005.
J. Goodenough and S. Gerhart. Toward a theory of test data
selection. IEEE Transactions on Software Engineering, June 1975.
W. Grieskamp, Y. Gurevich, W. Schulte, and M. Veanes. Generat-
ing finite state machines from abstract state machines. In Proc. of
the Int’l Symposium on Software Testing and Analysis, July 2002.

S. A. Hendrickson and A. van der Hoek. Modeling product
line architectures through change sets and relationships. In 29th
international conference on Software Engineering (ICSE), 2007.

D. Jackson. Software Abstractions: Logic, Language and Analysis. The
MIT Press, Cambridge, MA, 2006.

T. Kahsai, M. Roggenbach, and B.-H. Schlingloff. Specication-
based testing for software product lines. In Sixth IEEE International
Conference on Software Engineering and Formal Methods (SEFM),
2008.

S. A. Khalek and S. Roychowdhury. Modeling linked data
structures using SMT solvers. Class Project Report for Khur-
shid’s Graduate Course on Verification and Validation of Software
(EE382C-3), 2008.

S. Khurshid. Generating Structurally Complex Tests from Declarative
Constraints. PhD thesis, Dept. of Electrical Engineering and Com-
puter Science, Massachusetts Institute of Technology, December
2003.

S. Khurshid and D. Marinov. Checking Java implementation of a
naming architecture using TestEra. In S. D. Stoller and W. Visser,
editors, Electronic Notes in Theoretical Computer Science (ENTCS),
volume 55. Elsevier Science Publishers, 2001.

S. Khurshid, C. Pasareanu, and W. Visser. Generalized symbolic
execution for model checking and testing. In Proc. of the 9th Int’l
Symposium on Theoretical Aspects of Computer Software, Warsaw,
Poland, April 2003.

J. C. King. Symbolic execution and program testing. Comm. of the
ACM, 19(7):385-394, 1976.

A. Kuehlmann and J. Baumgartner. Transformation-based verifi-
cation using generalized retiming. In Computer-Aided Verification,
2001.

G. T. Leavens, A. L. Baker, and C. Ruby. Preliminary design
of JML: A behavioral interface specification language for Java.
Technical Report TR 98-06i, Department of Computer Science,
Iowa State University, June 1998.

A. H. Lin. Automated analysis of security APIs. Master’s thesis,
Department of Electrical Engineering and Computer Science,
Massachusetts Institute of Technology, May 2005.

B. Liskov and J. Guttag. Program Development in Java: Abstraction,
Specification, and Object-Oriented Design. Addison-Wesley, 2000.

J. Liu, D. Batory, and S. Nedunuri. Modeling interactions in
feature oriented software designs. In Proc. of the the 8th Int’l
Conference on Feature Interactions in Telecommunications and Software
Systems, 2005.

D. Marinov and S. Khurshid. TestEra: A novel framework for
automated testing of Java programs. In Proc. of the 16th IEEE
Int’l Conference on Automated Software Engineering, San Diego, CA,
November 2001.

H. Muccini and A. van der Hoek. Towards testing product line
architectures. In Proc. of the Int’l Workshop on Test and Analysis of
Component-Based Systems, Warsaw, Poland, April 2003.

Z. Pap, M. Subramaniam, G. Kovécs, and G. A. Németh. A
bounded incremental test generation algorithm for finite state
machines. In Proc. of the 7th Int’l Workshop on Formal Approaches
to Testing of Software, 2007.

B. C. Pierce. Basic Category Theory for Computer Scientists. The MIT
Press, Cambridge, MA, 1991.

K. Pohl and A. Metzger. Variability management in software
product line engineering. In 28th International Conference on
Software Engineering (ICSE), 2006.

M. Roggenbach. CSP-CASL—a new integration of process algebra
and algebraic specification. Theoretical Computer Science, 2006.

G. Rothermel and M.]. Harrold. Analyzing regression test

[49]

(50]

[51]

(52]

(53]

[54]

[55]

[56]

[57]

(58]

[59]

[60]

15

selection techniques. IEEE Transactions on Software Engineering,
22(8):529-551, 1996.

P. G. Selinger, M. M. Astrahan, D. D. Chamberlin, R. A. Lorie,
and T. G. Price. Access path selection in a relational database
management system. In Proc. of the ACM SIGMOD Int’l Conference
on Management of Data, 1979.

K. Sen, D. Marinov, and G. Agha. CUTE: A concolic unit testing
engine for C. In Proc. of the 13th ACM SIGSOFT Symposium on the
Foundations of Software Engineering, Lisbon, Portugal, September
2005.

D. Shao, S. Khurshid, and D. Perry. Whispec: White-box testing
of libraries using declarative specifications. In ACM SIGPLAN
Symposium on Library-Centric Software Design, Montreal, Canada,
October 2007.

K. Sullivan, J. Yang, D. Coppit, S. Khurshid, and D. Jackson.
Software assurance by bounded exhaustive testing. In Proc. of
the Int’l Symposium on Software Testing and Analysis, 2004.

M. Taghdiri. Inferring specifications to detect errors in code.
In Proc. of the 19th IEEE Int’l Conference on Automated Software
Engineering, Washington, DC, 2004.

E. Torlak and D. Jackson. Kodkod: A relational model finder.
In Proc. of the 13th Int'l Conference on Tools and Algorithms for
Construction and Analysis of Systems, Braga, Portugal, March 2007.
S. Trujillo, D. Batory, and O. Diaz. Feature oriented model driven
development: A case study for portlets. In Proc. of the 29th Int’l
Conference on Software Engineering, Minneapolis, MN, May 2007.
E. Uzuncaova. Efficient Specification-based Testing Using Incremental
Techniques. PhD thesis, University of Texas at Austin, 2008.

E. Uzuncaova, D. Garcia, S. Khurshid, and D. Batory. Testing
software product lines using incremental test generation. In
Proc. of the 19th International Symposium on Software Reliability
Engineering, Redmond, WA, Nov 2008.

E. Uzuncaova and S. Khurshid. Constraint prioritization for
efficient analysis of declarative models. In Proc. of the 15th Int’l
Symposium on Formal Methods, Turku, Finland, May 2008.

M. Vaziri. Finding Bugs Using a Constraint Solver. PhD thesis,
Computer Science and Artificial Intelligence Lab, MIT, 2003.

F. Zaraket, A. Aziz, and S. Khurshid. Sequential circuits for
relational analysis. In Proc. of the 29th Int’l Conference on Software
Engineering, Minneapolis, MN, May 2007.

