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1. Introduction

Feature models are a well accepted means for expressing requirements in a domain
on an abstract level. They are applied to describe variable and common properties
of products in a software product line, and to derive and validate configurations of
software systems. Their industrial importance is increasing rapidly [Rie03].

Software product lines are already adopted for many different domains. For instance,
they are used to build automotive gasoline systems [STB+04] and software for product
lines of high-end televisions [Tre05] and mobile phones [vdLSR07].

A configuration is a combination of features. While a feature model identifies all valid
configurations, a change to the feature model possibly adds and removes products from
the software product line. Reasoning about feature model edits compares two given
feature models concerning to their valid configurations.

Automated analysis of feature models focuses on properties of a feature model, e.g.,
if a feature model contains at least one product or how many valid configurations it
describes [Man02, BTRC05, CK05, BRCTS06, Ben07]. Automated analysis only deals
with feature models as statically constructs. But feature model are developed such as
code and therefore they have to be edited. We propose that we need tool support for
reasoning about feature model edits.

In 2005, Czarnecki et al. has introduced specializations of feature models, i.e., feature
models that contain less products. They presented operations to specialize a feature
model [CHE05a, CHE05b, KC05]. Operations on feature models that maintain the
set of products or add new products to a software product line were presented by
Alves et al. [AGM+06].

The operations are only applied to a specific type of feature models. But as we will see in
Chapter 3, many different types can be found in the literature. The main disadvantage
of approaches using sound operations is that we cannot decide in which relation two
given feature models are, if we do not have the edits that transform one into the other.
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Sun et al. presented how equivalent feature models, i.e., that have all valid configurations
in common, can be identified using first-order logic [SZLW05]. Janota and Kiniry used
higher-order logic to identify if a feature model is a specialization of another, where
both feature models have to be defined on the same set of features [JK07].

The latter approach has a strong restriction. It does not apply to edits where we add
or delete features. Furthermore, we have found no empirical studies of the runtime for
the given approaches using first-order and higher-order logic.

In this thesis, we present how equivalent feature models, as well as specializations and
generalizations can be identified using satisfiability solvers. Therefore the input feature
models does not need to be defined on the same set of features. Moreover, we analyze
the runtime of our approach and show that it is practically computable even for large
feature models with 1000 features.

Structure of the Thesis

The remainder of the thesis is structured as follows. Chapter 2 contains the neces-
sary background to understand the following chapters. Feature models are introduced
with different representations. In addition we familiarize the reader with refactorings,
specializations and generalizations on feature models.

Chapter 3 present the feature model type that we use for our reasoning algorithm. We
discuss different properties of feature model types that can be found in the literature
and give transformations to the feature model type that we propose for reasoning.

We discuss the approach of operation sets in Chapter 4 in more detail. Then our
approach that uses propositional formula is presented. We begin with a very simple
idea and extend it so that it can be adopted to any pair of feature model of the type
presented in Chapter 3.

If the presented approach scales is evaluated in Chapter 5. We analyze the runtime for
random generated feature models. We experience an advantage of the feature model
type selected for our approach.

Chapter 6 gives an overview on related work. Finally, we summarize our results and
give a conclusion in Chapter 7.



2. Background

Software product lines bridges the gap between a fully custom-built single product and
the mass production of software. By using a flexible system architecture - built out
of a core, used by all members of the family and several variable components - the
application engineer can develop new applications within a short time period and with
less resources compared to conventional software development [SRP03].

Feature-oriented programming is an extension of the paradigm for object-oriented pro-
gramming [Pre97] and it can be used to build software product lines in terms of features.
Features are any prominent and distinctive aspects or characteristics that are visible to
various stakeholders, e.g., end-users, domain experts or developers [KKL+98].

A particular product line member is defined by a unique combination of fea-
tures [KCH+90]. A software product line is a set of products, whereas each product is
a legal combination of features. We call a combination of features a configuration.

2.1 Feature Models

Feature modeling is a technique for managing commonalities and variabilities within a
product line [CK05]. A feature model is a hierarchically organized set of features, that
is used as a compact representation of all possible products.

Feature models were introduced in the Feature-Oriented Domain Analysis in 1990
[KCH+90]. Since then different types of feature models were proposed. We discuss fea-
ture models more in detail in Chapter 3. In the following sections we give an overview
on the most important representations of a feature model.

2.1.1 Feature Diagrams

A feature diagram is a graphical representation of a feature model [KCH+90]. Every
feature has a parent feature except for one feature that we call the root feature. Features
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without children are called primitive and features that have children are called com-
pound [Bat05]. Semantically we want to express that whenever a feature is contained
in a product, we will also find its parent in the same product.

Usually we distinguish between the three group types in that a feature is connected to
its children (see Figure 2.1) [GFdA98, CE00, BLHM02, BSTRC06, CW07]. And -groups
have mandatory (filled circle) and optional feature (empty cirle). Mandatory features
are always selected when their parent is selected. The semantic of Alternative-groups
is that whenever the parent is selected, we have to choose exactly one of its children.
Or means that we have to choose at least one of the children.

Figure 2.1: Notations in Feature Diagrams

A feature diagram may also contain so called cross-tree constraints [Ben07]. Such
constraints may express that one feature requires another or that two feature mutually
exclude each other. Cross-tree constraints are often drawn as dashed arrows in feature
diagrams or written below the diagram.

2.1.2 Grammars

Grammars as a textual representation of feature models were introduced by Jong and
Visser [BLHM02]. They mapped feature diagrams to grammars. The language defined
by such a grammar belongs to the software product lines.

Every sentence equals to a product of the product line. It was proposed that a generated
parser based on the grammar can identify valid configurations. In Table 2.1 we have
listed grammar rules according to Figure 2.1.

Connection Grammar Propositional Formula
And S : A [B] C (S ⇒ A ∧ C) ∧ (A ∨B ∨ C ⇒ S)

Alternative T : D | E | F (T ⇔ D ∨ E ∨ F ) ∧ atmost1(D, E, F )
Or U : (G | H | I)+ (U ⇔ G ∨H ∨ I)

Table 2.1: Mapping Feature Models to Grammars and Propositional Formulas

2.1.3 Propositional Formulas

Propositional formulas can be seen as a logical representation of feature models. The
idea is simple. For every feature we have a variable (usually with the same name) and
assigning true to a variable means that the corresponding feature is selected. For all
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valid configurations the propositional formula has the boolean value true and for other
configurations false [Bat05].

A feature diagram can be translated into a propositional formula using the rules given
in Table 2.1. The propositional formulas for each group are connected with the logical
and. Additionally we add the rule that the root feature is true in all products.

2.2 Feature Model Refactoring

As shown by Czarnecki et al. it is possible to transform a propositional formula to
a feature model, but since there are multiple feature models that map to equivalent
propositional formulas, the result is not necessarily unique [CW07]. An example for the
propositional formula A ∧B is given in Figure 2.2.

Figure 2.2: Feature Models Mapping to Equivalent Propositional Formulas

Equivalent propositional formulas identify the same software product line, since the they
describe the same valid combinations of features. That means we can have different
feature models that specify the same software product line. Therefore we call such
feature model equivalent [SZLW05] and call an edit that result in an equivalent feature
model a refactoring.

Definition 2.1. A refactoring is an edit made to a feature model without changing the
set of members that constitute its software product line.

We have found a definition of refactoring in terms of software product lines in the
literature that is slightly different [AGM+06]. Among to their definition adding products
to a software product line is also a refactoring. We are convinced that our definition is
closer to the definition of code refactorings by Fowler [Fow00].

Definition 2.2. Code refactoring is a change made to the internal structure of software
to make it easier to understand and cheaper to modify without changing its observable
behavior.

The definition of Alves et al. is inappropriate for two reasons. First, adding products
seems far away from ”make it easier to understand and cheaper to modify”. Second,
Fowler describes the two hat technique were we always should separate between refac-
toring and improving functionality, which we can apply for feature diagrams.
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2.3 Feature Model Edits

There are more categories of edits that can be found in the literature. Specializations
were introduced by Czarnecki et al. for the process of deriving configurations of a feature
model [CHE05a, CHE05b, KC05]. Specializations on cardinality-based feature models
were shown, that result in feature models where some products are deleted. We discuss
cardinality-based feature models more in detail in Chapter 3.

Specializations are defined formal by Janota and Kiniry [JK07], but both feature models
have to be defined on the same set of features. We allow feature models also to be defined
on different sets of features. For instance, we can remove an optional feature to achieve
a specialization.

Definition 2.3. A specialization is an edit made to a feature model that deletes but
does not add products to the software product line.

In other situations we might need the reverse of a specialization. Alves et al. presented
operations that maintain a software product line while adding new products, i.e., no
products are deleted [AGM+06]. As it is the opposite to a specialization, we call those
edits generalizations.

Definition 2.4. A generalization is an edit made to a feature model that adds but does
not delete products of the software product line.

We presented definitions for refactorings, specializations, and generalizations. But since
we can add products or not and we can delete products or not in an edit, there is one
case missing that is shown in Table 2.2.

No Products Added Products Added

No Products Deleted
Refactoring Generalization

Products Deleted
Specialization Arbitrary Edit

Table 2.2: Categories of Feature Model Edits

Usually we are not interested in arbitrary edits, because there is no application for
them. But we need a name for those edits that they can be identified. For the sake of
completeness we also define arbitrary edits.

Definition 2.5. An edit is called arbitrary if it is not a refactoring, specialization or
generalization.
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2.4 AHEAD and FeatureIDE

AHEAD is an abbreviation for Algebraic Hierarchical Equations for Application Design.
The AHEAD Tool Suite are tools for feature-oriented programming [BSR04]. The tools
introduce a new language named Jak that is an extension of Java. Java is extended in
order to express feature-oriented concepts.

The tools provide different steps in the feature-oriented development. Starting with
tools that allow the user to create a valid configuration based on a feature model, those
configurations can be used to compose Jak files and convert them to Java and compile
them.

FeatureIDE is an Eclipse-based integrated development environment for feature-
oriented programming [LAMS05]. It uses the AHEAD Tool Suite underneath to provide
the functionality for feature-oriented programming. Furthermore it supports the process
of designing feature models by a graphical editor and deriving configurations.

The reasoning algorithm presented in Chapter 4 is implemented in FeatureIDE. A view
can be opened that calculates the category of all edits since the feature model is last
saved, i.e., the user would know if the new feature model allows new products and if it
forbids already existing ones.
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3. Feature Model Types

This chapter introduces the GUIDSL Feature Model which is a feature model type
used for our reasoning algorithm presented in the following chapter. We study different
properties of feature models that we found in the literature and show how such feature
models can be converted into a GUIDSL Feature Model.

This study is important because we want to ensure that we do not implement reasoning
only for one particular feature model type, i.e., if there would be no transformation
from other known feature model types, we should not use this type.

Kang et al. introduced feature models in the Feature-Oriented Domain Analysis in
1990 [KCH+90]. As noticed by Schobbens et. al., afterwards, various extensions were
introduced to compensate for a purported ambiguity and lack of precision and expres-
siveness [SHTB07]. We give references to these publications along with the properties
they hold.

The remainder of this section is structured as follows. We present the GUIDSL Feature
Model in Section 3.1 and specify its semantics using a meta model. Section 3.2 discusses
several properties that distinguish different feature model types in the literature. We
describe how feature models owning a particular property can be transformed into a
GUIDSL Feature Model. Finally, we summarize our results in Section 3.3.

3.1 GUIDSL Feature Model

Batory presented a transformation between feature models and grammars [Bat05]. A
tool named GUIDSL takes a grammar as input and provides a graphical user interface to
create configurations. We examined allowed constructs in the grammar and analyzed
the meaning in GUIDSL to build a meta model. We name the feature model type
defined by this meta model GUIDSL Feature Model .

In the following, we explain the semantics of GUIDSL Feature Models in detail. The
reason that we choose this feature model type for reasoning is that we are able to convert
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almost all feature model type we found in the literature into a GUIDSL Feature Model.
But we found no feature model type, so that a GUIDSL Feature Model can be converted
into a feature model of this type. The reason is given at the end of this section. Another
advantage is recognized in Section 5.

Figure 3.1 presents the meta model for GUIDSL Feature Models. Each GUIDSL Feature
Model has exactly one root feature. A root feature is always a compound feature. As
introduced in Chapter 2 compound features do have children. Therefore we know that
a GUIDSL Feature Model has at least two features.

Figure 3.1: Meta Model for GUIDSL Feature Models

Compound and primitive features are features which own a unique name and a boolean
value that specifies whether the feature is optional or mandatory. Each compound
feature is the parent from exactly one group. A group is a And -, Or -, or Alternative-
group.

An Alternative-group means that exactly one child is selected if the parent is selected.
For Or -groups one or more children are in a product if the parent is also in the product.
And -groups demand that all mandatory children are selected if the parent is selected.
A group contains at least one child.

We give a restriction additionally to the meta model. All features that are not contained
in an And -group are mandatory, i.e., the root and features contained in Alternative- or
Or -groups cannot be optional.
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We discussed the structure of features and give a detailed description of constraints.
A GUIDSL Feature Model can have any number of constraints. Where we define con-
straints recursively.

(i) A variable X is a constraint.

(ii) If X is a constraint, then ¬X is a constraint, too.

(iii) If X1, X2, ..., Xn with n > 1 are constraints, then (X1 ∧X2 ∧ ... ∧Xn),
(X1 ∨X2 ∨ ... ∨Xn), and choose1 (X1, X2, ..., Xn) are constraints, too.

While And and Or are known from propositional calculus, Choose1 means that one
constraint is true and all others are false.

Apart from fact that primitive features have no children there is a second difference
between primitive and compound features. Only primitive features are associated with
code, because GUIDSL only permits primitive features in configurations. The reason
can be found in the connection to grammars.

Grammars distinguish terminal and non-terminal symbols. The sentences of the lan-
guage defined by the grammar only contain terminal symbols, since all non-terminal
symbols are replaced by terminals.

We call compound features in GUIDSL Feature Models code-less features to express
that they are not associated with code. We draw code-less features in a different color,
that it can easily be seen which type is used at a specific diagram.

Hence all feature models we found in the literature do not deal with code-less features,
we discuss in this section how other feature models can be transformed into feature
models, where all compound features are code-less.

Schobbens et al. presented an algorithm to convert a feature model without code-less
features into one where compound features are not allowed to contain code [SHTB07].
For every compound feature S we add two code-less features P and Q, where Q and
S are children of P in an And and all children of S are moved to Q. The connection
type that S had before is set to Q. See Figure 3.2 for an example. Why the Or -group
is rendered slightly different in the right feature diagram is explained in Section 3.2.4.

The reason that we implemented reasoning on GUIDSL Feature Model is, that there is
no transformation for the opposite direction. Figure 3.3 shows a simple example of a
feature model with a code-less feature that has no counterpart in the other representa-
tion. The reason is, that the root in a feature model without code-less features occurs
in all products and the example has no such feature. Both A and B do not occur in all
products.
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Figure 3.2: Elimination of Compound Features Associated with Code

Figure 3.3: A GUIDSL Feature Model Inconvertible into other Feature Models

3.2 Property-based Transformations

This section discusses properties that we have abstracted to distinguish different feature
model types that can be found in the literature. The properties do not belong to the
graphical notation, i.e., how an Or -group is rendered at the feature diagram. We
only deal with properties that have an influence on the semantic and the software
product lines that can be expressed by the feature model type. We have structured our
abstracted properties into seven sections.

1. Groups: Which connections are allowed between a parent and its children?

2. Optional Features: Where in the feature model are optional features allowed?

3. Constraints: What kinds of constraints are permitted?

4. Several Groups: Is it approved that a feature can have more than one group?

5. Directed Acyclic Graphs: Can a feature have more than one parent?

6. Attributes: Are constraints defined on numerical values?

7. Cloning: Is it possible to clone features in the configuration process?

We give references where particular properties occur and show how feature models with
a special property can be transformed into GUIDSL Feature Models.
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3.2.1 Groups

Kang et al. are known for the first feature models. The presented a feature model type
that contains And - and Alternative-groups [KCH+90]. All following publications may
reference to this feature model type, but they also introduce Or -groups. We discussed
already the semantics of all three group types and hence they are all allowed in GUIDSL
Feature Models there is no need for a transformation.

We found different names for Alternative-groups such as One-of -group [dJV02], Mutex -
group [ZZM04], and Xor -group [GFdA98, vGBS01, CBB+03, Rie03, SRP03, BHST04,
CK05, KC05, CKK06, CW07, SHTB07, WSB+08]. We disapprove to other names than
Alternative, because Alternative is first published and there is no need for a new name.
In particular the name Xor -group is chosen inauspiciously, since the logical Xor has a
different meaning for three or more features, e.g., 1⊕ 1⊕ 0⊕ 1 ≡ 1.

Groups were first generalized with cardinalities by Riebisch et. al [RBSP02]. We assign
the group cardinality <n..m> to a group with k children, where n ≥ 0, n <= m, and
m ≤ k. Therefore we already know that the group cardinalities <1..1>, <1..k>, and
<k..k> as Alternative-, Or -, and And -groups. Group cardinalities are widespread in
literature on feature models, because several authors have adopted this idea [Rie03,
SRP03, BHST04, AMS04, BSTRC05, CK05, CHE05a, CHE05b, KC05, BRCTS06,
CKK06, JK07, WSB+08].

Hence we do not have such all these general <n..m>-groups in GUIDSL Feature Models,
we need to present a transformation. Let Y be a feature that has k children X1, ..., Xk

and the group cardinality <n..m>. The resulting feature model has only And -groups
where all features are optional. Furthermore we add the constraint∧

{i1,...,ik−n+1}⊆{1,...,k}

(¬Y ∨Xi1 ∨ ... ∨Xik−n+1
)

if n > 0 and if m < k we also add the constraint∧
{i1,...,im+1}⊆{1,...,k}

(¬Xi1 ∨ ... ∨ ¬Xim+1).

Note that GUIDSL Feature Models allow arbitrary constraints with ∧, ∨, and ¬. An
example for the group cardinality <2..2> and a group with three children is given in
Figure 3.4.

3.2.2 Optional Features

Optional features in And -groups are allowed in all publications and so for GUIDSL Fea-
ture Models, too. But some publications also allow features to be optional beyond And -
groups, i.e., in Or - and Alternative-groups [CE00, vDK02, dJV02, CBB+03, ZZM04].

This property was first presented by Czarnecki and Eisenecker involved with necessary
normalizations to prevent redundancies at the feature diagram. The reason is that
whether one or more optional features appear in Or - and Alternative-groups are optional
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Figure 3.4: Cardinalities in GUIDSL Feature Models

Figure 3.5: Redundant Representations with Or and Alternative [Rie03]
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and which is not decisive. If there is an optional feature within such a group, then it
is also allowed that the parent is selected, but none of its children. These equivalent
feature diagrams were also proposed by Riebisch (see Figure 3.5).

Furthermore Riebisch presented that an Or -group with an optional feature is equivalent
to an And -group where all children are optional. This is already a transformation into
a GUIDSL Feature Model, because an And -group where all children are optional is
allowed in GUIDSL Feature Models.

There are proposals that only permit the normalized feature models, i.e., either all
or no optional feature occur in such groups [LAMS05, SZLW05]. Moreover all feature
models that have group cardinalities are able to express the normalized versions, because
Alternative-groups with optional features are equivalent to <0..1>-groups. Therefore
all Alternative-groups that contain optional features can be transformed into GUIDSL
Feature Models as shown in Section 3.2.1.

3.2.3 Constraints

Constraints were introduced as composition rules [KCH+90, KKL+98, AMS04, JK07]
and also referenced to as additional constraints [Beu03, WLS+05, KC05, CKK06,
CW07], non-grammar constraints [Bat05], logical constraints [AGM+06], and cross-
tree constraints [BRCTS06, BSTRC06, TBRC+06, TBKC07, WSB+08]. We use the
term constraint, since it it mostly used.

The feature model type presented by Kang et al. involves two different constraints
[KCH+90]. Given two features A and B, we can express that A requires B or that A
and B mutually exclude each other (A mutex B). Because A excludes B is equivalent
to B excludes A, mutually is often omitted. Depends [BSTRC05, TBRC+06] and in-
cludes [BRCTS06, BSTRC06] is sometimes used instead of requires. We can also find
incompatible-with for excludes [AMS04].

These both constraints are usually supported by feature models. Therefore we give
not references to all these feature model types. Since A requires B ≡ ¬A ∨ B
and A excludes B ≡ ¬A ∨ ¬B we know that these simple constraints can be ex-
pressed in GUIDSL Feature Models. Feature model types that do not support con-
straints [vGBS01, dJV02, CHE05a, CHE05b] do not have to be converted due to this
property.

Aside from Batory [Bat05] also other publications allow arbitrary [CE00, RBSP02,
Beu03, SRP03, CK05, Bat05, AGM+06, CKK06, CW07, TBKC07] or self-defined con-
straints [ZZM04]. All these constraints can be converted into GUIDSL constraints,
since {∧,∨,¬} is expressive complete as known from propositional calculus, i.e., we can
express every boolean function on a set of variables.

3.2.4 Several Groups

GUIDSL Feature Models only allow one group per feature. To be more precise, for every
compound feature. But we have found 14 publications with examples [CE00, dJV02,
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CBB+03, ZZM04, SZLW05, LAMS05, WLS+05, CHE05a, CHE05b, AGM+06, CW07]
or meta-models [Beu03, BSTRC05, KC05] where more than one group type with the
same parent is permitted.

Cao et al. were the first that have proposed that there are different notations of feature
models [CBB+03]. They called it mixture of feature representations and presented a
transformation to eliminate such occurrences (see Figure 3.6).

Figure 3.6: Elimination of Several Groups [CBB+03]

Note that in general, this transformation is not a refactoring, because we add two
features that are contained in all products which contain F . But this is a refactoring if
we assume that F1 and F2 are code-less features, i.e., they are not intended to appear
in products. Since F1 and F2 are compound features and in GUIDSL Feature Models
all compound features are code-less, this is the transformation of several groups into
GUIDSL Feature Model.

We argued that it is no restriction for GUIDSL Feature Models to forbid several groups.
But Bontemps et al. presented a formal semantic for FODA feature model, i.e., the first
feature models presented by Kang et al. in 1990, that forbids several groups [BHST04].
We think this is a strong restriction since most people have interpreted FODA feature
models different.

The generic semantic for feature models by Schobbens et al. is based on this previous
semantic and was aimed to give a semantic to the most published and used feature
models [SHTB07]. They presented a strong theory, but since it does not apply to the
most of our referenced literature, we cannot use it to give transformations generically.

Whenever we deal with feature models where several types are not allowed, we draw
a half circle for Or - and Alternative-groups. We recommend that people dealing with
those feature models use this notation in future publications, so that readers can easily
identify the feature model type. Again, this is important because the above transfor-
mation is not a refactoring, if we do not deal with code-less features.

3.2.5 Directed Acyclic Graphs

The GUIDSL Feature Model guarantees that a feature has at most one parent. But
there are feature model types in the literature that also allow multiple parents [GFdA98,
KKL+98, CE00, RBSP02, Beu03, BHST04, ZZM04, CW07, SHTB07], i.e., feature
models are no longer trees, they are directed acyclic graphs (see Figure 3.7).
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Figure 3.7: A Feature Model with Multiple Parents [SHTB07]

We presented in Section 2.1.3 that a feature model can be converted into a propositional
formula. This is done by generating a propositional formula for every group, that
represents exactly the same restriction. An algorithm that converts a feature model
with multiple parents into a GUIDSL Feature Model, could work as follows.

If a feature model contains a feature with more than one parent, we remove one of these
connections and add the according propositional formula as constraint. It can happen
that a another child of this connection has no longer a parent. In this case we add
this feature as an optional feature to its old parent. We repeat this procedure until all
features have at most one parent.

In Figure 3.8 the result of the algorithm used for the above example is shown. Note
that the primitive features might also have to be eliminated before or afterwards. For
simplicity this is not done with our example.

Figure 3.8: Elimination of Multiple Parents

3.2.6 Attributes

The first publications arguing that attributes (also called properties or parameters) are
a useful extension to feature models were proposed in 2003 [Beu03, SRP03]. They state
that any number of attributes can be associated with a feature. We give a conceived
example in Figure 3.9, where the Java version of several libraries is gathered.

An attribute is any characteristic of a feature that can be measured. We distinguish
between basic attributes that are directly related to a feature and derived attributes that
are calculated from other attributes. The domain of an attribute is the space of possible
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Figure 3.9: A Feature Model with Global Attributes

values of an attribute. A domain can be discrete (e.g., integer, boolean, enumeration)
or continuous (e.g., real) [BTRC05].

In our example in Figure 3.9 the Java version of specific solvers are basic attributes. The
Java version for JavaSolver is derived. It is the maximum of the values of its children.
The domain of these attributes is the enumeration {1.0, 1.1, 1.2, 1.3, 1.4, 1.5, 1.6}. A
constraint is given which only allows Java versions that are already available for Mac
OS, if the feature MacOS is selected.

The example can be transformed into a GUIDSL Feature Model (see Figure 3.10).
Therefore we have to convert all constraints defined on attributes. In this case we
know that BDDlibrary cannot be selected if MacOS is selected. All other configurations
defined by the feature diagram are possible. In addition, we delete all attributes from
the feature model, because they have no influence on further analysis.

Figure 3.10: Elimination of Global Attributes

Beuche distinguishes between global and local attributes. The value of a global attribute
is stored together with the feature inside the feature model and is considered to be part
of the feature model. A local feature attribute value is stored in a configuration, so the
value may be different in another configuration [Beu03].

All attributes in our example are global, because they are specified in the feature
model. We can eliminate all global attributes as shown our example. Therefore we
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can also convert feature models from all publications where attributes are meant to be
global [AMS04, BTRC05, BRCTS06, Ben07, JK07, WSB+08].

Czarnecki et al. has published feature models that contain attributes which can be
either local or global [CK05, CHE05a, CHE05b, KC05, CKK06]. It depends if the
value is already set in the feature model or not. If not, only a domain is given. Usually
it is not possible to convert local attributes into GUIDSL Feature Model, because these
attributes are needed for the configuration process.

For example, one could extend our example in Figure 3.9 by a user defined Java version
which is used to compile the feature modeling framework. We cannot eliminate the
attribute-based constraint, since we do not know the compile version in the modeling
process.

Note that in general there is a main gap between local attributes and automated analysis
of feature models. For instance, what is the number of products defined by a feature
model that contains a local attribute A with the domain integer? Should we count all
possible configurations (i.e., A = 1, A = 2, A = 3, . . .)?

3.2.7 Cloning

Czarnecki et al. presented a feature model type that introduces feature cardinali-
ties [CK05, CHE05a, CHE05b, KC05, CKK06]. A feature cardinality is assigned to
every feature. Optional feature have the feature cardinality [0..1], features in groups
except And -groups and mandatory have the cardinality [1..1]. In general, [m..n] de-
notes that a feature can occur in a configuration between m and n times. The feature
cardinality [m..∗] means that there is no upper bound on the number of cloned features
(see Figure 3.11).

Figure 3.11: A Feature Model with a Cloneable Feature [CK05]

We present two transformations to GUIDSL Feature Models. Both variants convert the
feature cardinality [m..n] into a group cardinality <m..n>. Because group cardinalities
does not allow ∗, we replace ∗ in this case by the number of features in the new created
group. B denotes the feature whose feature cardinality needs to be eliminated.

The first transformation creates all configurations of the subtree rooted by B (see
Figure 3.12). Note that this is only possible, if there is an upper bound on the number
of configurations. In general, it is not possible if we have local attributes. But since we
already know that local attributes cannot be eliminated (see Section 3.2.6), we are able
to use this transformation.
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Figure 3.12: Elimination of Clonable Feature - First Variant

First, we have created code-less features S and T using the algorithm given in Sec-
tion 3.1. Second, we created new subfeatures T1, ..., T4 and added all possible configu-
rations. Third, we added a constraint for the upper bound n = 3. We would also need
to add an constraint for the lower bound, but m = 0 in this case.

The second transformation creates a new group that contains n-times the subtree of B
as in the original feature model (see Figure 3.13). This transformation is only possible
if n 6= ∗. Contrary to the above transformation, we do not need the constraint for the
upper bound as there are only n children. But in addition we need constraints to ensure
that all Ti represent different configurations.

Figure 3.13: Elimination of Clonable Feature - Second Variant

Hence the transformation of feature models with clonable features into GUIDSL Feature
Model is possible if we do not allow local attributes. The first transformation is used.
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If the upper bound of the feature cardinality is not ∗, we might choose the second
transformation in case it smaller.

3.3 Summary

We presented a feature model type named GUIDSL Feature Model. A meta-model was
presented for a precise semantics. We noticed that GUIDSL Feature Model is the only
type we know that supports the notion of code-less features. Therefore this feature
model type can express software product lines that cannot be expressed in any other
feature model type.

We analyzed 35 publications that introduced new feature models, presented formal se-
mantics or techniques for automated analysis. Seven properties were abstracted that
distinguish several feature model types from each other. We shown representative fea-
ture model types for every feature and how they are different from GUIDSL Feature
Model.

For the feature model types of 30 publications we presented transformation into
GUIDSL Feature Models [KCH+90, GFdA98, KKL+98, CE00, vDK02, vGBS01,
RBSP02, dJV02, CBB+03, Beu03, Rie03, SRP03, BHST04, AMS04, ZZM04, SZLW05,
BSTRC05, LAMS05, WLS+05, BTRC05, AGM+06, BRCTS06, BSTRC06, TBRC+06,
Ben07, CW07, JK07, SHTB07, TBKC07, WSB+08].

We are able to transform the cardinality-based feature models presented in the left 5
publications, if they do not contain local variables [CK05, CHE05a, CHE05b, KC05,
CKK06]. But we have claimed that this is not only a problem of our approach. Until
know there are is no automated analysis support for feature models with local attributes.

The main advantage of our property-based transformations is, that it can be used to
convert feature model types that are not yet published into GUIDSL Feature Models,
if they are just new combinations of the shown properties. Therefore GUIDSL Feature
Model can now be used for automated analysis and reasoning, since other representa-
tions can be converted by tools.
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4. Reasoning

Edits on a feature model produce a new feature model. We are interested how the
semantics of the old feature model changes, i.e., its software product line. Given two
feature models, we want to decide whether the edit is an refactoring, specialization,
generalization or an arbitrary edit.

This section is structured as follows. First, we show an existing approach that uses
sound operation sets to ensure that a transformation is a refactoring or a generalization.
We analyze if it is suitable for reasoning about feature model edits.

The following sections cover the reasoning based on propositional formula. In Section 4.2
we show how satisfiability solvers (SAT solver) can be used to examine semantic changes
of feature models. It is a very intuitive approach that seems easy to implement and
not practically computable for large feature models. As far as our experience goes both
speculations are wrong.

In Section 4.3 we present a technique that we call simplified reasoning. Through the
decrease of its time and space complexity it is now practical to reason for large feature
models.

The implementation is not straightforward. Problems arise if both feature models do
not have all features in common, e.g., if we add an optional feature. We present solu-
tions separately for features that contain code (Section 4.4) and for code-less features
(Section 4.5).

4.1 Operation sets

In 2006, Borba et. al. has presented a technique to generally identify refactorings
and generalizations1 for feature models [AGM+06]. A set of four sound operations is

1Note that our generalization is equal to their refactoring and what we call refactoring is a bi-
refactoring according to their definition.
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used to identify refactorings. They have a second set containing 12 operations that are
generalizations.

All operations are written generally, that they cover many particular cases. So when-
ever we use only the operations of one of those sets to change a feature model, we
automatically know how the software product line changes. Specialization operations
are not needed because they are the reversed generalization operations.

The authors have not shown the completeness of those operation sets. This means that
whenever we make changes that do not correspond to any of those operations, we do
not know anything about the consequences for the product line.

In fact, we have found different operations (refactorings and generalizations) that are not
contained in the given sets. We refer again to Figure 2.2 on Page 5 where a mandatory
feature is switched with its parent. This refactoring is not presented in [AGM+06].

At least this shows us that it is not obvious to build a complete set of operations to
cover all refactorings and generalizations. A proof might be complicated, too. But
given a sound complete set for refactorings and generalizations, how could we realize
those operations in an editor?

First, we could implement an editor with different modes (e.g., a refactoring mode). For
each mode we have a set of available operations. If the change a user wants to make
to a feature model is not one of the primitive operations, the user has to determine
which combinations will achieve the edit. Possibly there is no such combination. But
that the user does not find a combination, does not mean that there is no combination
of primitive operations. Hence it would not tell us that the edit is not allowed in this
mode (e.g., it is no refactoring).

Second, we can imagine that a theorem prover would be able to compute, whether
changes to a feature model are a combination of basic operations from one of the given
sound operation sets.

Hence we do not have complete operation sets, we consider a way using propositional
formula in the following sections.

4.2 Reasoning with Propositional Formulas

In this section, we discuss reasoning based on propositional formulas. As introduced in
Section 2.1.3, we can transform a feature diagram into a propositional formula. Together
with the cross-tree constraints, we get a representation of the feature model in terms of
propositional formulas.

We need some symbols to describe our algorithms compactly. In the following P (f)
denotes the propositional formula representing the feature model f . We also assign a
software product line L(f) to a feature model f , that contains a product, if and only if
the propositional formula is true, where a feature variable is true, if and only if it is
contained in the product.
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We have defined refactoring, specialization, generalization and arbitrary edit based on
set relations. To examine the relation of two software product lines L(f) and L(g), we
only need to define how L(f) ⊆ L(g) is represented in propositional formula P (f) and
P (g). The boolean value of L(f) ⊆ L(g) and L(g) ⊆ L(f) tells us, in which relation
L(f) and L(g) are.

A simple approach for feature models f and g that contain the same set of features can
be found in the literature [JK07]. A basic idea they discuss is the following.

(L(f) ⊆ L(g)) ≡ (P (f)⇒ P (g)) (4.1)

This formula follows our intuition. P (f) ⇒ P (g) means that P (f) contains all con-
straints of P (g) and maybe more. Therefore all products of the according software
product line L(f) are contained in L(g).

We want to compute whether P (f) ⇒ P (g) is valid for all allocations of boolean
values to variables using a SAT solver. SAT solvers are able to compute whether a
given formula is satisfiable or unsatisfiable. Since we are interested if a propositional
formula X is valid, we check if its negation ¬X unsatisfiable. The following equation
shows, how we can compute ¬X with X = P (f)⇒ P (g) [TBKC07].

¬(P (f)⇒ P (g)) ≡ ¬(¬P (f) ∨ P (g)) ≡ P (f) ∧ ¬P (g) (4.2)

SAT solvers usually accept a conjunction of several logical operators that are based
on literals. But we are not able to put in interleave logical operators, e.g., ¬(A ∧
(C ∨D)). Therefore we have to convert propositional formulas into conjunctive normal
form (CNF). There are three steps to do and every step has to ensure the semantics.

1. Eliminate all logical operators except AND, OR and NOT.

2. Relocate all NOT operations to the lowest level.

3. Convert all parts where an AND is on a lower level than an OR.

Example. Given two feature models f and g we want to compute the relation of their
software product lines L(f) and L(g). The feature models we consider are shown in
Figure 4.1.

First, we are interested whether all products of L(f) are contained in L(g). Concerning
Equation 4.1 and 4.2 we convert ¬(P (f)⇒ P (g)) into CNF using the above discussed
steps. In the last step we have removed all clauses that are always true, i.e., that contain
a variable positive and negative. Furthermore we have removed literals that already
occur in a disjunction.
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(a) FM f (b) FM g

Figure 4.1: Example for Reasoning using Propositional Formulas

¬(P (f)⇒ P (g))

≡ P (f) ∧ ¬P (g)

≡ (S ∧ (S ⇒ (A ∧B)) ∧ ((A ∨B)⇒ S))

∧¬(S ∧ (S ⇔ (A ∨B)) ∧ (A⇒ B))
1≡ (S ∧ (¬S ∨ (A ∧B)) ∧ (¬(A ∨B) ∨ S))

∧¬(S ∧ ((¬S ∨ (A ∨B)) ∧ (¬(A ∨B) ∨ S)) ∧ (¬A ∨B))
2≡ (S ∧ (¬S ∨ (A ∧B)) ∧ ((¬A ∧ ¬B) ∨ S))

∧(¬S ∨ ((S ∧ (¬A ∧ ¬B)) ∨ ((A ∨B) ∧ ¬S)) ∨ (A ∧ ¬B))
3≡ S ∧ (¬S ∨ A) ∧ (¬S ∨B) ∧ (¬A ∨ S) ∧ (¬B ∨ S)

∧(¬S ∨ S ∨ A ∨B ∨ A) ∧ (¬S ∨ S ∨ A ∨B ∨ ¬B)

∧(¬S ∨ S ∨ ¬S ∨ A) ∧ (¬S ∨ S ∨ ¬S ∨ ¬B)

∧(¬S ∨ ¬A ∨ A ∨B ∨ A) ∧ (¬S ∨ ¬A ∨ A ∨B ∨ ¬B)

∧(¬S ∨ ¬A ∨ ¬S ∨ A) ∧ (¬S ∨ ¬A ∨ ¬S ∨ ¬B)

∧(¬S ∨ ¬B ∨ A ∨B ∨ A) ∧ (¬S ∨ ¬B ∨ A ∨B ∨ ¬B)

∧(¬S ∨ ¬B ∨ ¬S ∨ A) ∧ (¬S ∨ ¬B ∨ ¬S ∨ ¬B)

≡ S ∧ (¬S ∨ A) ∧ (¬S ∨B) ∧ (¬A ∨ S) ∧ (¬B ∨ S)

∧(¬S ∨ ¬B ∨ A) ∧ (¬S ∨ ¬B)

A SAT solver can be asked if the last or the second last formula is satisfiable and it will
answer, that the given formula is unsatisfiable. For this simple example it can easily
be proven. We know that S has to be true. But if S is true, B has to be true due to
(¬S ∨B) and false due to (¬S ∨ ¬B), what is impossible.

Since ¬(P (f) ⇒ P (g)) is unsatisfiable, we know that L(f) ⊆ L(g). In an analogous
manner we can show that L(f) ⊇ L(g) is not correct. Therefore we know that L(f) ⊂
L(g) and the edit on feature model f to achieve feature model g is a generalization.

Complexity. When we map a feature diagram to a propositional formula and add also
the cross-tree constraints, we get a big conjunction of smaller propositional formulas.
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Converting it into a CNF only consist of converting all its parts into CNF and do the
above defined step 4 for the whole formula. Table 4.1 shows how to convert rules that
are generated from our feature diagram.

Connection Propositional Formula Conjunctive Normal Form
(S ⇒ A ∧ C)∧ (¬S ∨ A) ∧ (¬S ∨ C)∧

And
(A ∨B ∨ C ⇒ S) (¬A ∨ S) ∧ (¬B ∨ S) ∧ (¬C ∨ S)

(¬T ∨D ∨ E ∨ F )∧
Alternative

(T ⇔ D ∨ E ∨ F )∧
(¬D ∨ T ) ∧ (¬E ∨ T ) ∧ (¬F ∨ T )∧

atmost1 (D, E, F )
(¬D ∨ ¬E) ∧ (¬D ∨ ¬F ) ∧ (¬E ∨ ¬F )

(¬U ∨G ∨H ∨ I)∧
Or (U ⇔ G ∨H ∨ I)

(¬G ∨ U) ∧ (¬H ∨ U) ∧ (¬I ∨ U)

Table 4.1: Conversion of Feature Diagram Rules to CNF

In CNF we get longer propositional formulas whereas each disjunction does not contain
more variables than participated at a connection (number of children plus one). There-
fore we look at the number of generated formula more in detail. k denotes the number
of children in a connection.

The number of disjunctions when we convert an And to CNF is Θ(k), because we
have between k and 2k disjunctions of two literals. For Or we have exactly k + 1
disjunctions and get Θ(k), too. The conversion of atmost1 is more expensive. For
every two variables we have to generate one rule containing two litarals. Hence we have
exactly k + 1 + 1

2

(
k
2

)
= 1

4
k2 + 3

4
k + 1 disjunctions, i.e., Θ(k2).

Overall for a feature diagram with c connections with at most m children we can get
up to O(c ·m2) disjunctions in a CNF. Let n denote the number of features. Then we
know that m < n and c ≤ n−m. Thus we know that O(n2) is an upper bound for the
number of disjunctions for all tree constraints in CNF.

What about cross-tree constraints? As mentioned in Chapter 3 we want to consider
arbitrary propositional formula as cross-tree constraints. It is complicated to give an
upper bound, but we give an example to show how expensive it can be.

Example. We consider the following cross-tree constraint and its CNF.

(A ∧ ¬B) ∨ (¬C ∧ ¬D) ∨ (¬E ∧ F ∧G)

≡ (A ∨ ¬C ∨ ¬E) ∧ (A ∨ ¬C ∨ F ) ∧ (A ∨ ¬C ∨G)

∧(A ∨ ¬D ∨ ¬E) ∧ (A ∨ ¬D ∨ F ) ∧ (A ∨ ¬D ∨G)

∧(¬B ∨ ¬C ∨ ¬E) ∧ (¬B ∨ ¬C ∨ F ) ∧ (¬B ∨ ¬C ∨G)

∧(¬B ∨ ¬D ∨ ¬E) ∧ (¬B ∨ ¬D ∨ F ) ∧ (¬B ∨ ¬D ∨G).

In this example we have 2 · 2 · 3 = 12 disjunctions in a conjunction after the conver-
sion into CNF. Let x be the number of conjunctions in a disjunction and each of the
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conjunctions contains at most m literals, then we get up to O(mx) disjunctions as a
result.

Limitations. We have encountered that cross-tree constraints are usually much easier
to convert, because their structure is not so far away from a CNF. But we have to be
aware of the fact, that there might be constraints that cannot be converted into CNF
practically. In the following we treat cross-tree constraints as practical convertible into
CNF.

Are we able to convert the part ¬P (g) into CNF? Practically it is not possible. We
have tried this for all our feature models and in every case the default Java heap space
was not enough to compute it. The problem is that we get a big disjunction of smaller
propositional formula after step 2 (de Morgan’s Theorem).

It is exactly the same problem as shown in the above example. But there is one big
difference: we cannot assume that P (g) is practical convertible into CNF. The reason is,
that feature diagrams always consist of rules that are conjunctive related. Its negation
will ever be a disjunction of all its negated rules. In the following section we will show
an approach to avoid the conversion of ¬P (g) into CNF.

In this section, we have shown how to reason on feature model edits using propositional
formula. The calculation of a CNF that is associated to a feature model takes at most
O(n2) time for tree constraints and exponential time for cross-tree constraints, where n
denotes the number of features. For reasoning as shown in this section we also need the
CNF of the negated propositional formula, what needs exponential time and is practical
not possible.

4.3 Simplified Reasoning

There is a simple way to reduce the costs, mentioned in the previous section. Whenever
we talk about feature models f and g, we assume that they have some differences but
they also may have a lot of rules that are identical. We can rewrite P (f) and P (g) by

P (f) = pf ∧ c

P (g) = pg ∧ c

where c are the identical rules and pf are rules that are contained in P (f) but not
in P (g). P (f) ⇒ c is always true, because P (f) ∧ ¬c ≡ pf ∧ c ∧ ¬c is unsatisfiable.
Combined with 4.2 we get the following equivalence.

¬(P (f)⇒ P (g)) ≡ P (f) ∧ ¬pg (4.3)

This simply reduces the amount of n to n′ ≤ n, but we still have this fast growing
function and it is only possible to make small changes to the feature model f . The
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propositional formula pg is a conjunction of n′ rules R1, R2, ..., Rn′ . Together with 4.3
we state the following simplification.

¬(P (f)⇒ P (g)) ≡ P (f) ∧ ¬(R1 ∧R2 ∧ ... ∧Rn′)

≡ P (f) ∧ (¬R1 ∨ ¬R2 ∨ ... ∨ ¬Rn′)

≡ (P (f) ∧ ¬R1) ∨ (P (f) ∧ ¬R2) ∨ ... ∨ (P (f) ∧ ¬Rn′) (4.4)

That means we ask a SAT solver up to n′-times if P (f)∧¬Ri is satisfiable. If only one of
these conjunctions is satisfiable, then ¬(P (f)⇒ P (g)) is satisfiable, too. Because this
means that P (f)⇒ P (g) is not valid, we can stop if we find a satisfiable conjunction.

How expensive is the conversion of each ¬Ri into CNF? It is easy if we assume that
pg is already in CNF. We can transform pg into CNF as described in the last chapter.
Hence all Ri are disjunctions of literals, what makes it easy to convert.

We have presented an algorithm called simplified reasoning. Contrary to reasoning
that is already mentioned in the literature, this is a new strategy to reduce the costs.
Compared to the complexity of the afore shown reasoning it is no longer necessary to
compute the CNF of a negated feature model, what makes it possible to compute even
for larger feature models.

4.4 Extension for Adding and Removing Features

Until now we only talked about feature models that have the same features. But what
if we add or delete features? The next chapter will give an example that we need to add
additional informations, to the model that does not have a feature the other feature
model has.

It seems obvious that 4.1 holds, but this statement is just valid if g was only produced
by changes on the feature model f that do not change the set of contained features.
i.e., we cannot create or delete features to produce g out of f . In the following we give
an counter example for not yet convinced readers.

Example. Figure 4.2 contains a feature model f were we have added an optional feature
C to get feature model g. We know that this is a generalization because g contains all
products of f and more.

Lets look at P (f) and P (g) to see, if P (f)⇒ P (g) holds.

P (f) = (S ∧ (S ⇔ (T ∨D)) ∧ (T ⇒ B) ∧ ((A ∨B)⇒ T ))

P (g) = (S ∧ (S ⇔ (T ∨D)) ∧ (T ⇒ B) ∧ ((A ∨B ∨ C)⇒ T ))

P (f)⇒ P (g) holds if and only if the following four formulas hold.
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(a) FM f (b) FM g

Figure 4.2: Example were the Presented Approach is Incorrect

P (f) ⇒ S

P (f) ⇒ (S ⇔ (T ∨D))

P (f) ⇒ (T ⇒ B)

P (f) ⇒ ((A ∨B ∨ C)⇒ T )

We assign the value true to the variables S, D and C and the value false to T , A
and B, to show that P (f) ⇒ P (g) is not valid. The fourth formula is false for these
values. This means that P (f)⇒ P (g) is not valid.

But we know that the transformation from f to g is a generalization, which requires
P (f) ⇒ P (g). Therefore the presented approach does not work for feature models,
which have different sets of features.

We will now show an improved approach that works for Figure 4.2, too. The idea is
simple: A feature that is not contained in a feature model cannot be selected. We have
to add this information to the propositional formula. The problem exists because we
put both propositional formulas together in one. Every feature that is not contained
in a feature model, does not occur in its propositional formula. That means it can be
selected, while it is not contained in the feature model.

For every feature A that is contained in g but not in f we add the new clause ¬A to
the conjunction P (f) resulting in P ′(f). Analogously we add a new clause ¬B to the
conjunction P (g) for every feature B that is contained in f but no longer in g resulting
in P ′(g).

(L(f) ⊆ L(g))⇔ (P ′(f)⇒ P ′(g)) (4.5)

The algorithms reasoning and simplified reasoning have to be extended, if we allow
edits that create or delete features. We simply add an additional constraint ¬F to a
model for every feature F that is not contained in the feature model, but in the second
one.
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4.5 Extension for Code-less Features

The algorithm presented in the previous section returns the correct results for two given
feature models that are only based on features, that are associated with code. But what
happens if we create or delete code-less features, whose selection or deselection does not
matter? The next section gives an example why we should not treat code-less features
as described in the previous section.

Example. Figure 4.3 shows a feature model f , where A and B are Or -connected. We
have produced another feature model g by creating a new abstract feature T . It is
obvious that L(f) = L(g).

(a) FM f (b) FM g

Figure 4.3: Example were the Dynamic Approach is Incorrect

The corresponding adapted propositional formula are as follows.

P ′(f) = (¬T ∧ S ∧ (S ⇔ (A ∨B)))

P ′(g) = (S ∧ (S ⇔ T ) ∧ (T ⇔ (A ∨B)))

In the same manner as above we show that P ′(g) ; P ′(f). The following formula is
false when we assign the value true to all variables.

P ′(g)⇒ ¬T

One could think that it is a better idea to add T instead of ¬T , but it does not work
either. The reason is simply that code-less features can also be optional. You can
also produce a counter example, if you only add extra rules for added and deleted
code-containing features in P (f) and P (g).

Code-less features do always have children. If they would not have children, they
would be useless for us and we could delete them. For this reason we can (usually)
compute the value of a code-less feature given the boolean values of its children. We
call a propositional formula that computes the value of a given code-less feature its
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definition. The idea discussed in the following is simple: We replace every occurrence
of a code-less feature by its definition.

We refer again to Figure 2.1 on Page 4. The definition for Alternative and Or is
identical. The parent is true, if and only if one or more of its children are selected, e.g.,
T ⇔ (D∨E∨F ) and U ⇔ (G∨H ∨ I). For And it is the conjunction of all mandatory
features, e.g., S ⇔ (A ∧ C), if it has at least one mandatory feature.

What happens if an And -feature S has no mandatory child at all? In this case we
cannot tell the boolean value of S, if all its children are deselected. And this means
we have no unambiguous definition. We present an algorithm to eliminate such groups
in Chapter A. However, this algorithm can only be applied if we have no cross-tree
constraints. Therefore we assume that these groups do not occur in our feature models.
Note that these groups are not necessary and can be replaced manually, while some
cross-tree constraints might have to be altered.

How big is the resulting propositional formula in the worst case? A definition contains
at most all code-containing features. The code-less feature can occur O(n) times in all
tree constraints. The cross-tree constraints can contain a code-less feature at most once
for each disjunction. If a disjunction contains a feature more than once it is ever true
and we can delete it (e.g., S ∨¬S ∨ . . .) or we can delete all duplicates before replacing
it with its definition (e.g., S ∨ S ∨ . . .). Let k denote the number of disjunctions, then
the propositional formula can get up to O(k · n2) new literals in all disjunctions. The
number of disjunctions remains the same.

Example. The worst case could be that we have a feature model with one code-less
feature T and we insert an code-less feature S that gets all children of T (see Figure
4.4).

Figure 4.4: A Worst Case Edit on a Worst Case Feature Model

Additionally we insert the new feature S in every cross-tree constraint. This might not
make sense, because S is already contained in almost all tree constraints, but it can
happen. This example can give the reader an idea how unusual and rare the worst cases
are.

Notice that we only have to replace code-less features by there definition if they are not
contained in both models or if the definition in one model is different from the second
one. That can also save calculation time.
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4.6 Summary

The present chapter analyzes existing and presents new techniques for reasoning about
feature model edits. Reasoning is the process were we assign one or more edits to a
feature model either to a refactoring, specialization, generalization or arbitrary edit.

The existing approach of operation sets for each type is not much useful for reasoning
as long as the operation sets are not complete. We have also shown that it is not
recommendable to allow only particular operations, because the user has to match the
edit he wants to make to a composition of the given operations, which can be difficult.

We discussed reasoning based on propositional formulas. It was presented how SAT
solvers can be used to reason on feature model edits. For this approach it is necessary
to convert the negation of a propositional formula according to a feature model into
CNF. This is practically not possible.

Reasoning using the fact that one feature model implies another one can be simplified.
We presented an algorithm called simplified reasoning that avoids the exponential con-
version of the negation of a feature model to CNF. Our algorithm runs in O(n2), given
n features.

We have also shown how to handle features that are not contained in both models.
For every code-containing feature that is not existing in one feature model we add a
constraint which forbids the selection of that particular feature. Code-less features that
are not contained in the second model are replaced by a propositional formula that
calculates their boolean value.

Because we have reduced the problem of reasoning on feature model edits on the sat-
isfiability problem, we still have an exponential run-time in the worst case. We have
shown an example of a worst case feature model and it does not look like a popular
feature model. In the next section we will analyze the run-time empirically and we will
see that the run-time for common and even for large feature models is satisfactory.
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5. Evaluation

In Chapter 3, a wide analysis on existing feature models is accomplished. Since work on
the automated analysis and reasoning should not only be based on a particular feature
model type, GUIDSL Feature Model and transformations from wide range of feature
models into this feature model type were presented.

Chapter 4 has introduced a technique for reasoning about feature model edits based on
propositional formulas. The latter were chosen that off-the-shelf tools like satisfiability
solvers can be used for efficient calculation.

We have shown that the problem, whether a feature model contains all products of a
second one, can be conveyed into a satisfiability problem. The latter is, given a set of
variables and a propositional formula in CNF, whether the given propositional formula
is satisfiable.

It was not possible to give a general upper bound for the transformation into a sat-
isfiability problem, since we allow arbitrary propositional formulas as constraints. To
convert these into CNF has an exponential complexity in the worst case.

Furthermore, we can give no polynomial upper bound for solving if a propositional for-
mula is satisfiable, because this problem is known as NP-complete. Hence an empirical
analysis is indispensable to evaluate the presented algorithm.

The technique presented in Chapter 4 is implemented using the SAT solver Sat4J. We
tested the implementation with several feature models from practical examples. After
editing the feature model in multiple steps the result, whether the edit made to the
feature model is a refactoring, specialization, generalization or an arbitrary edit, was
calculated within a second. However, to make sure that the tested feature models are
not only special cases, we decided to test our reasoning approach on generated feature
models.
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5.1 Generating Feature Models

We implemented an algorithm to generate arbitrary feature models that takes as input
the number of features and the number of children that a feature can have at most.
The algorithm for generation was implemented in such a manner that the following
conditions hold.

1. The features that get children are random chosen.

2. The count of children a feature has, is calculated randomly and is between zero
and the input for the maximum count of children.

3. That a feature has an And -, Or - or Alternative-group to its children has the same
probability.

4. For features that are in an And -group it is equiprobable that it is mandatory and
that it is optional.

An example generated model with 20 features and at most five children can be found
in Figure 5.1. But as a feature model consists of a feature diagram and constraints, we
describe in the following how constraints are created.

Figure 5.1: Random Generated Feature Model

A second method generates random constraints. There are two parameters for the cal-
culation. First, the desired number of constraints is a parameter. Second, the maximum
number of variables, on which a constraint is defined. We used the parameters three
and five in Figure 5.1. The method fulfills the following conditions.
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1. The constraints are constructed using ¬,∧,∨,⇒, and ⇔.

2. The output contains between 1 and the maximum desired count of literals, i.e.,
variables or negated variables.

3. A constraint is added if the feature model still contains at least one product,
otherwise a new constraint is generated instead.

Our algorithm presented in Chapter 4 takes two feature models f, g as input and cal-
culates if an edit on f resulting in the feature model g is a refactoring, specialization,
generalization, or an arbitrary edit.

5.2 Performance and the Number of Features
We can use both methods to generate feature models. The resulting random generated
feature models were taken as input to our algorithm to analyze the runtime in relation
to the number of features in a feature model. We compare the runtime for different
categories of edits in Figure 5.2. The exact values in milliseconds can be found in
Table B.1 on Page 51.

Figure 5.2: Calculation Time in Relation to the Number of Features

For instance, we compared two stand-alone feature models, i.e., two independent gen-
erated feature models. That means that the output can be each of the possible outputs
defined above. The second row that can be measured is that the input consists of two
identical feature models. In this case the output is always that the edit is a refactoring.

Since we use random generated models we need a number of iterations to get average
values. We decided to repeat the calculation until the average has changed in the last
five steps (stability constant) less than 0.1 percent (precision constant). A summary of
all used parameters can be found in Table 5.1.
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Parameter Value
Number of Features 100, 200, ..., 1000
Maximum Number of Children 10
Number of Constraints 10
Maximum Number of Literals 5
Number of Edits 10
Stability Constant 5
Precision Constant 0.001

Table 5.1: Parameters used in Figure 5.2

5.3 Generating Edits on Feature Models

Both already presented value rows are not typical inputs for our algorithm. Usually
we take a feature model make some edits and want to know of which category the edit
is. Therefore it was necessary to implement methods that edit a given feature model
by a specified number of simple edits (number of edits), which will be discussed in the
following.

We decided to implement such methods for refactorings, generalizations and arbitrary
edits. Note that there is no need to write such a method for specialization, since if f is a
generalization of g, g is a specialization for f . Because our algorithm works symmetric
we have not measured specializations in our empirical analysis.

As refactorings and generalizations we have implemented the operations presented by
Alves et. al. [AGM+06]. For arbitrary edits we implemented the following operations.

1. Create or delete a primitive feature, i.e., a feature without children.

2. Change the type of a group, i.e., to a And -, Or, or Alternative-group that is
different from the type before.

3. Make a mandatory feature optional or vice versa.

4. Create a new constraint with the above defined parameters or delete a constraint.

In Figure 5.2, the runtime increases in all cases almost linear with the number of fea-
tures. It can be seen that stand-alone feature models take the most time for comparison
and identical feature models can be compared seven times faster. All categories are al-
most in the same range, so that it is not relevant which edit me make to a feature
model.

5.4 Performance and the Number of Edits

We are also interested how much more time is needed for more edits at the feature
model. To answer this question, we analyzed the runtime in relation to the number of
edits (see Figure 5.3).
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Figure 5.3: Calculation Time in Relation to the Number of Edits

Since we do not have a number of edits for stand-alone or identical feature models,
these rows are not measured. The values can be found in Table B.2 on Page 52 and the
used parameters are in Table 5.2.

Parameter Value
Number of Features 1000
Maximum Number of Children 10
Number of Constraints 10
Maximum Number of Literals 5
Number of Edits 10, 20, ..., 100
Stability Constant 5
Precision Constant 0.001

Table 5.2: Parameters used in Figure 5.3

The results are surprisingly. While we have ten-times more refactorings applied to a
feature model the runtime is only approximately twice as high. For generalizations and
arbitrary edits is the result is much better, because the number of edits seems not to
have an influence on the runtime and all results are calculated in about half a second.

The reason for the constant time is that the algorithm aborts for generalizations if one
product is found that is added and all changes in the feature model add products. The
time for arbitrary edits is a little bit higher since also a product must be found that
was deleted. The calculation for refactorings is more time-consuming, hence we have
to check all changed rules, which increases linear with the number of edits.
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5.5 Performance and the Number of Children

In the previous chapter we presented an example feature model that is hard to convert
to CNF. The feature model had only one compound feature that has all other features
as children. Therefore we decided also to analyze the performance in relation to the
maximum number of children. Parameters and values are given in Table 5.3 and in
Table B.3 on Page 52. Note that we used feature models with 100 instead of 1000
features.

Parameter Value
Number of Features 100
Maximum Number of Children 10, 20, ..., 100
Number of Constraints 10
Maximum Number of Literals 5
Number of Edits 10
Stability Constant 5
Precision Constant 0.001

Table 5.3: Parameters used in Figure 5.4

In Figure 5.4 it can be seen that we have non-linear increasing functions on the number
of children. We have shown in Chapter 4 that our algorithm has a quadratic complex-
ity to convert Alternative-groups into CNF. This the reason that the calculation for
identical feature models is faster than for generalizations and generalizations are faster
to compute than the other edits.

Figure 5.4: Calculation Time in Relation to the Maximum Number of Children

For identical feature models none of both input feature models has to be converted
into CNF. A generalization removes constraints from the feature model. To show that



5.6. On the Number of Children 41

the constraints are not any more contained in the new feature model, the latter has to
be converted into CNF. Refactorings are usually hard to compute, since both feature
models have to be converted into CNF. Notice that for arbitrary edits and stand-alone
feature models the algorithm might also have to compute the CNF for both models,
but not in all cases.

This result is very bad since we already need up to five seconds in average to compute
the relation of two given feature models on 100 features. Note that a maximum number
of 100 children in a feature models with 100 features is no restriction. But now we can
show the great advantage of GUIDSL Feature Models which allow code-less features.

5.6 On the Number of Children

Every GUIDSL Feature Model can be converted into a GUIDSL Feature Model with
at most k children for each feature by adding new code-less features. For instance, we
have converted the GUIDSL Feature Model in Figure 4.4 on Page 32 to the GUIDSL
Feature Model in Figure 5.5, which contains at most 3 children for each feature.

Figure 5.5: Equivalent Feature Model to Figure 4.4

Therefore the already used upper bound of ten children for the calculations in Figure 5.2
and Figure 5.3 is no restriction. An editor, for instance, could allow a maximum number
of ten children without loss of expressiveness.

5.7 Summary

Chapter 3 presented GUIDSL Feature Models and how other feature model types can
be converted into feature models of the former type. This work enables us to implement
automated analysis and reasoning for a variety of feature model types by implementing
it on a GUIDSL Feature Model to which other can easily be converted.

In Chapter 4, an algorithm for reasoning about feature model edits is proposed based
on GUIDSL Feature Models. The algorithm has a exponential complexity in the worst
case, since (i) we use SAT solvers and (ii) we allow arbitrary constraints that might be
hard to convert into CNF.

Therefore, this chapter has analyzed the runtime for generated feature models and
generated edits on those feature models. The empirical analysis is done separately for
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the different categories of edits, such as refactorings, generalization and arbitrary edits.
Specializations do not have to be analyzed, since the result would be the same as for
generalizations.

We experienced a linear growth in relation to the number of features. Whereas the
results for all categories of edits are very close to each other. Comparing stand-alone,
i.e., independently generated feature models, is the most costly.

The number of edits made to a feature models, seems to have no influence on the
runtime in case of generalizations and arbitrary edits. A slow-growing linear function
describes the calculation time for refatorings.

The maximum number of children that a feature can have in the feature model has a
strong influence on the calculation time. For all categories of edits we get a growths
faster than linear, whereat refactorings need the most calculation time followed by
arbitrary edits and generalizations. But we have shown that limiting the number of
features in a GUIDSL Feature Model is not a restriction in terms of expressiveness.

Unfortunately, we cannot use all feature models as input so far, since we only allow
feature models where every And -group has at least one mandatory feature. This condi-
tion already holds for all feature model types that we found in the literature, since the
do not have code-less features and the transformation creates one mandatory feature in
each And -group. At least a procedure to refactor a GUIDSL Feature Model so that it
no longer contains is given in Chapter A. This algorithm can only be applied manually
since some constraints may have to be altered.
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Generic Semantic

Schobbens et al. presented a generic semantic for feature models [SHTB07]. They
propose that feature models should be interpreted as a quadruple that specifies (i)
whether the feature model is a tree or a DAG, (ii) the supported group types as well
as (iii) the allowed graphical and (iv) textual constraints.

We think that the differentiation between the latter two is not very useful, since it is
just a difference in notation and the generic meta model should be more abstracted.
Furthermore, they cannot be applied for the most feature models surveyed in this thesis,
since they do not allow the following constructs in their meta model.

(i) Groups defined on cardinalities.

(ii) Restriction in which groups optional features are allowed.

(iii) Several groups are not supported, since they decided to consider groups as sym-
metrical functions.

(iv) Attributes and constraints on attributes.

(v) Cloning of features, i.e., feature cardinalities.

Note that we observed all these properties of feature model types in Section 3. A very
useful methodology is that they allow to specify a subset of the set of features to indicate
code-less features for all feature model types.
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Sound Operations for Feature Model Edits

Czarnecki et al. has introduced specializations of cardinality-based feature mod-
els [CHE05a, CHE05b, KC05]. Among to their notation specialization is a feature
model that contain less products in relation to a second feature model. Operations
were presented to create a specialization of a feature model, e.g., selecting an optional
feature.

Alves et al. published operations that correspond to refactorings as well as generaliza-
tions [AGM+06]. As we have shown in our work, the set of operations is not complete.
Although, we could validate all these operations as proper using our tool.

Reasoning about Feature Model Edits

Sun et al. presented a formal semantics for feature models using first-order logic and
stated that the theorem prover Z/EVES can be used for analysis [SZLW05]. Further-
more, they stated how equivalent feature models can be identified with the condition
that both feature models are defined on the same set of features. Note that we can
have equivalent feature models that have not all features in common, e.g., if we have
code-less features or if one feature is dead in one feature model.

We give another comment on this proposal. The constraint F3∧F4⇒ F2 is not equal
to (F3⇒ F2) ∧ (F4⇒ F2). Since the brackets can be applied it two different ways it
is either (F3∧ F4)⇒ F2 ≡ ¬F3∨¬F4∨ F2 or F3∧ (F4⇒ F2) ≡ F3∧ (¬F4∨ F2),
but both are different from (F3⇒ F2) ∧ (F4⇒ F2) ≡ (¬F3 ∨ F2) ∧ (¬F4 ∨ F2).

Janota and Kiniry proposed reasoning on feature models using higher-order logic [JK07].
A meta model was presented to describe feature models with higher-order logic. They
give a formal definition of a specialization that is more liberal, because it also captures
refactorings.

The main disadvantage of their approach is that both feature models have to be defined
on the same set of features. Therefore, if we add an optional feature to a feature
model, we cannot ask their theorem if the edit is a specialization. This is a very strong
restriction. They also do not deal with code-less features.
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Feature models are used to specify the members of a software product line. While the
automated analysis aims on analyzing feature models statically, reasoning on feature
model edits is about changes on feature models. The previous results on reasoning are
not sufficient.

In this thesis the first algorithm was presented to compare any feature models and
therefore to classify edits made from one feature model to another. Previous presented
approaches deal with sound operations sets to maintain the set of products or add
products [AGM+06] and to remove products [CHE05a, CHE05b, KC05].

Other approaches that use first- or higher-order logic have only presented how to identify
if two feature models do allow the same set of products [SZLW05] or if one has less
products [JK07], with the restriction that both feature models are defined on the same
set of features.

We propose that feature models are not static and we need tool support, e.g., if new
products are going to be added or if it is necessary that all current products will remain
unchanged. That this work is also relevant for the configuration process can be seen by
several publications on specializations [CHE05a, CHE05b, KC05, JK07].

Our presented algorithm can be adopted to almost all feature models as shown in
Chapter 3. The only exception are feature models with attributes that get their value
within the configuration process and on which the feature model contains constraints.
Further work should issue on combining such attributes and automated analysis and
reasoning. The main contributions of our proposal are the following.

1. The algorithm is implemented on a feature model type, where almost all feature
models can be transformed into.

2. We use a simplification on propositional formulas that we do not have to compute
the CNF of a negation of a feature model.
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3. Our algorithm is not restricted to feature models defined on the same set of
features.

4. We allow code-less features in our feature model type, that can help to reduce the
runtime costs.

5. An empirical analysis has shown that the algorithm scales for feature models with
more than 1000 features and for more than 100 edits.

The proposed algorithm was implemented and validated with already classified opera-
tions known in the literature. The calculation time for feature model with up to 1000 is
usually lower than one second. Hence the implemenation can be used to classify edits
on-the-fly, while the user edits the feature model. By this, a domain analyst get support
for refactorings, generalizations and specializations.



A. Eliminate And-Groups without
Mandatory Children

We mentioned in Section 4.5 that And -groups, where all child-features are optional
have no unambiguous definition. We present how a feature model without cross-tree
constraints can be refactored, that all code-less features have a definition.

All And -groups without mandatory children were replaced by Or -groups. In the fol-
lowing S denotes the parent feature and A, B, C are representative all children of S.
We have to ensure that the S can be empty, i.e., that even if S is selected in the original
feature model none of the children has to be selected. We make S kind of optional, to
ensure the semantics. Therefore we have to consider all possible cases.

The first case is that S is the root feature, i.e., S has no parent. In this case we
additionally remove the constraint S ∧ . . . from the propositional formula (see Figure
A.1).

Figure A.1: S is the root feature (Case 1)

The second case happens if the parent connection of S is an And and S is an optional
feature (see Figure A.2). We do not have to do anything, because S can already be
empty.

The third case is common to the second case except that S is mandatory. We make
S optional (see Figure A.3). But this can result in a new And without mandatory
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Figure A.2: S is optional (Case 2)

children, that we have eliminate this also. Be aware that we at least came on step
closer to the root and we cannot come into an infinite loop.

Figure A.3: S is mandatory (Case 3)

The fourth case is where S is contained in an Or or an Alternative. For both connections
we have to recurse for the parent T of S to ensure, that the T can be empty. Figure
A.4 shows the calculated refactoring before it is called recursive for T . Note that T can
lead us to every case even if there is no connection shown in the figure.

Figure A.4: S is contained in Or (or Alternative) (Case 4)

The reason for applying those refactorings is to get a definition for each code-less feature.
Be aware of that a previously calculated definition might contain a code-less feature
that we want to eliminate. This could result in a propositional formula where code-less
features are not eliminated properly.

Therefore we apply the definition replacing algorithm first to the definitions itself, until
all definitions are free of code-less features. This algorithm terminates because defini-
tions are based on the feature diagram (tree) and we cannot have circles. Given the so
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calculated definitions we can eliminate all code-less features. The resulting formula can
be used for reasoning as described in the previous chapters.

What is the complexity of the refactorings? To refactor a feature model as presented
we need at most O(n) recursions, if n is the number of features, because we can have at
most O(n) connections. The CNF of the resulting feature model has O(r) disjunctions,
where r is the number of disjunctions before refactoring. The reason is that And and Or
both produce CNF clauses linear in the number of features in each connection (shown
in Section 4.2).
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B. Tables on Calculation Time

Number of Features
100 200 300 400 500 600 700 800 900 1000

Refactoring
Time 31 49 98 127 173 222 268 328 406 438

Iterations 308 209 241 181 281 290 222 285 338 245
Generalization

Time 25 42 70 121 176 237 293 398 416 484
Iterations 237 100 134 193 281 308 301 379 326 351

Arbitrary Edits
Time 28 50 83 126 184 236 286 391 452 500

Iterations 204 115 205 204 285 290 231 338 368 356
Stand-alone FMs

Time 39 74 118 189 277 340 416 520 611 703
Iterations 201 178 155 295 330 325 348 293 236 173

Identical FMs
Time 2 7 13 30 40 58 70 85 103 108

Iterations 255 137 144 211 173 282 198 182 199 70

Table B.1: Calculation Time in Relation to the Number of Features
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Number of Edits
10 20 30 40 50 60 70 80 90 100

Refactoring
Time 451 512 567 633 674 712 754 820 848 877

Iterations 286 292 242 222 282 231 248 236 169 176
Generalization

Time 488 499 495 477 493 518 499 506 509 515
Iterations 350 330 308 220 295 277 305 337 315 269

Arbitrary Edits
Time 517 511 525 525 532 552 540 545 567 560

Iterations 281 326 299 307 279 292 272 288 212 256

Table B.2: Calculation Time in Relation to the Number of Edits

Maximum Number of Children
10 20 30 40 50 60 70 80 90 100

Refactoring
Time 27 76 185 359 663 1000 1611 2077 2820 4416

Iterations 186 391 466 639 725 996 638 995 1000 1000
Generalization

Time 21 45 84 149 234 332 440 588 821 968
Iterations 178 321 639 634 661 949 958 817 975 988

Arbitrary Edits
Time 27 57 125 238 442 730 987 1265 1822 2580

Iterations 148 286 464 597 646 353 635 656 640 640
Stand-alone FMs

Time 83 110 177 378 567 801 1160 1497 2222 3052
Iterations 672 439 393 327 594 750 829 741 865 858

Identical FMs
Time 2 2 2 2 2 2 2 2 3 3

Iterations 325 290 220 364 269 358 418 256 466 457

Table B.3: Calculation Time in Relation to the Maximum Number of Children
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