Edsger W. Dijkstra
6602 Robbie Creek Cove
Austin, TX 78750 - 8138

to Professor Don Batory
Department of Computer Sciences, UT

Austin, Thursday 30 August 2001

Dear Don,

Thank you for your e-mail message of yesterday. Sorry that I did not answer your question immediately, but I wanted to give the "official" answer in the "official" terminology and notation. I found what I was looking for in "Unifying Theories of Programming" by C.A.R. Hoare & He Jifeng, Prentice Hall Europe, (1998).

Notational Preliminary. Let A, B, C be predicates - boolean expressions, if you prefer - in a number of free variables, then in

$$(0) \quad \left[B \Rightarrow A \right]$$

\Rightarrow denotes the logical implication and the square brackets denote universal quantification over all the free variables. (0) states that for every instantiation of the variables for which B is true, A is true as well. For example with $A \equiv x>0$ and $B \equiv x=1 \lor x=3$, (0) is true. Do we replace A by $x<0$, then (0) would become
false.

To stress that (0) expresses a reflexive binary relation between \(A \) and \(B \), which is by the way a lattice order, we use from now on \(\leq \) (pronounced "under" or "weaker than") and rewrite (0) as

(1) \[A \leq B \]

The next step is to identify programs with the boolean expressions that characterize their possible behaviours. If the program operates on \(N \) variables, the behaviour is expressed in terms of \(2N \) variables, the dashed versions standing for the final values of the program variables.

Let, for instance, \(\tilde{A} \) be the (non-deterministic) program

\(\tilde{A}: \quad x, y := x + \text{any positive number}, y \)

then its behaviour is fully characterized by

\(\tilde{A}: \quad x' > x \land y' = y \),

expressing that execution increases \(x \) by an unknown amount and leaves \(y \) unchanged. (The theory considers the 2 lines marked \(\tilde{A}: \) as alternative phrasings for the same predicate in the 4 variables \(x, x', y, y' \).

The one is just expressed in another language
than the other.

Consider now a stronger program B, i.e. a B satisfying

$$(1) \quad A \subseteq B$$

Then we call B "a refinement of $A". An example for B would be (in program form)

B: $x, y := x+1, y$

and in boolean expression form

B: $x' = x + 1 \land y' = y$

Consider now the program C

C: $x, y, z := x + 1, y, z + y + x$

or, in boolean expression form

C: $x' = x + 1 \land y' = y \land z' = z + y + x$

Program C might strike you as an "extension" of B because it does something more: it increases z by $x + y$. But formally we have

$$(2) \quad B \subseteq C$$
so C is a refinement of B. It would not have been so if we had not regarded program B as totally nondeterministic with respect to the unmentioned variable z.

Now this is unrealistic: the assignment statement is assumed to leave the value of all other variables unchanged and we would not accept a mechanism with uncontrolled side-effects on z as a proper implementation of B (I think). Hoare & He have changed the boolean expression corresponding to the assignment statement by adding the conjunct

"and for all other variables x: $x' = x$"

(They express this differently.)

The proper way out is probably to prepare for the extension by already introducing the nondeterminacy that, if so desired, can be reduced by a refinement. Instead of B one should use

$$D: \quad x, y, z := x+1, y, \text{anything}$$

to start with, thus a priori freeing z from the obligation to remain unchanged.
I hope that this conclusion doesn't bother you. It certainly does not bother me; I have always felt – since, say, EWD227, that is – that programs had better be conceived as members of a family of related programs, and that the implied clairvoyance of the competent software engineer would cope with that.

Thank you for asking your question: it forced me to study the literature (which I enjoyed) and to rethink the assignment (what I enjoyed as well).

Greetings and best wishes,

yours ever, Edsger