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 Abstract - Common software design practices use object-
oriented (OO) frameworks that structure software in terms of 
objects, classes, and package; designers then create programs by 
inheritance and composition of classes and objects.    Operational 
Software Components for Advanced Robotics (OSCAR) is one 
such framework for robot control software with abstractions for 
generalized kinematics, dynamics, performance criteria, decision 
making, and hardware interfacing.  Even with OSCAR, writing 
new programs still requires a significant amount of manual 
labor. Feature-Oriented Programming (FOP) is method for 
software design that models and specifies programs in terms of 
features, where a feature encapsulates the common design 
decisions that occur in a domain.  A set of features then forms a 
domain model for a Product Line Architecture.  Product variants 
in this product line can then be generated from a declarative 
specification.  FOP and related technologies are emerging 
software engineering techniques for automatically generating 
prorams. Our research applies FOP to robot controller software.  
As an example, the domain of hardware interfacing is analyzed 
and 41 features identified. A GUI for specifying and generating 
programs is presented as well.  Analysis of features shows 200 
possible different programs could be generated.  

 Index Terms – Robotics.  Product Line.  Feature Oriented 
Programming, Generative Programming. 
 

I.  INTRODUCTION 

The Robotics Research Group (RRG) at UT-Austin has 
developed the Operational Software Components for 
Advanced Robotics (OSCAR) framework [16][20].  The 
framework addresses the integration of generalized 
kinematics, dynamics, performance criteria, decision making, 
hardware interfacing, and manual controllers into robot 
controller software.  Experience with OSCAR has shown that 
OO methods improve productivity, reusability, and 
comprehensibility of robot software.  Applications, however, 
must still be manually written, with each new application 
being a one-off effort, prone to errors. 

Among the reasons for these continuing problems are the 
low level of granularity at which components are designed, 
and the lack of explicit guidance for assembling those 
components.  In other words, rapid software assembly 
requires not just components, but a systematic method for 
assembling those components. 

Feature Oriented Programming (FOP) is one such 
method for rapid assembly of software [5].  The success of 
FOP relies upon the assumption that application software in a 
domain is so well understood, that software construction can 
be automated.  RRG has written robot control software for 
several different robot applications [22][19].  Many of these 
tend to share some common set of base code, as well as design 
decisions.  These programs thus form different product 
variants in a product line. 

FOP differs from OOP in that features, rather than 
classes, objects, or packages, form the fundamental units of 
software.  A feature is a domain-level abstraction, or some 
capability for the software that is significant to the end user.  
A feature encapsulates any code (including documentation, 
test programs, etc.) necessary to implement that capability.  
Programs may then be specified by their desired features, in a 
declarative specification. 

RRG is applying FOP methods to robot control software, 
in collaboration with the Product Line Architecture Research 
Group [21] in the Department of Computer Science.  The 
goals of this paper are to introduce some basic techniques for 
implementing FOP, and their application to robot software.  A 
GUI for building specifications is presented. 

The goal of this work is to introduce FOP, contrast FOP 
methods to OOP methods, and demonstrate a sample 
application of FOP to robot software.  The novelty of this 
work lies in its application of FOP to automatically generate 
code from a declarative specification. 

II.  ROBOT  SOFTWARE FRAMEWORKS 

A. Object Oriented Methods and Frameworks 
 Object oriented frameworks and design patterns are the 
dominant methods for software design today.  Among recent 
efforts are frameworks such as QMotor and QRobot, oriented 
towards servo control, and robot control respectively [16][8].  
The Orocos projects, Open Robot Control Software and Open 
Realtime Control Services, are open source efforts [6] which 
rely upon design patterns [10] as well as OO methods.  The 
OSCAR framework has been under continuous use and 
development at RRG for several years [16][20][16].  Users 
have included NASA, and DOE [19]. 

OO frameworks typically provide a set of base classes, 
which represent the infrastructure common to a number of 
applications.  These base classes may then be extended by 
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inheritance and polymorphism, or combined through 
aggregation or composition, to implement specific 
applications.  Design patterns recognize that some design 
problems occur commonly, in a common context, and have a 
common solution [12].  They may be used as a starting point 
for the design of a new application.  Three examples of OO 
design will be considered---from OSCAR, QMotor/QRobot 
and the Measurement Systems Framework case study [5].  
Each covers a different scope of software (robotics 
algorithms, actuator interfacing, and sensor interfacing, 
respectively).  The intent here is to demonstrate the 
application of OO techniques to software for robotics and 
automation. 

B. OSCAR 
Though OSCAR is specific to RRG, the fundamental ideas 

are common to most OO frameworks.  That is, the use of 
inheritance, aggregation, and composition within a common 
structure, to create specific applications.  QMotor/QRobot 
provide additional examples of OO methods.  The 
Measurement Systems Framework employs OO methods as 
well as design patterns.  

OSCAR consists of a set of class libraries, some of which 
are described in Table 1.  These classes may be combined or 
extended in various ways for specific applications. For 
example, IKJacobian and IKPuma classes extend the base 
kinematics classes with specialized algorithms. 

Though these classes are flexible and reusable, they must 
still be manually combined to create a new application.  In 
practice, new applications are often created by copy/paste, or 
based on the past experience and bias of a developer.  Clear 
application patterns, however, exist; these are further enforced 
by the uniform interface to OSCAR classes and the data flow 
inherent to robot control applications.  Ideally, the 
construction of these patterns and applications should be 
automated to reduce the error and variability introduced by 
manual construction. 

C. QMotor/QRobot 
The QMotor RTK (Robotic Toolkit) [17] is a software 

package with similar goals to the OSCAR Device Domain. 
QMotor is capable of interfacing with the Puma 560, Barrett 

WAM (Whole Arm Manipulator), and IMI Direct Drive robot.  
The approach for adapting robots into QMotor uses traditional 
OO tehcnqiues.  A base class contains common code; 
different extensions implement robot specific code.  An 
example of extension through inheritance is presented in 
Table 2 for a Puma. 

Note that although the code for the PID algorithm might be 
reusable with other robots, it is embedded within the 
PumaPIDControl class, and cannot be reused. 

This common PID code could be refactored into the base 

class, ManipulatorControl.  Any class deriving from 
ManipulatorControl would then be able to access the PID 
code.  Such approaches tend to lead to “fat” interfaces, which 
represent the union of possible features or capabilities 
provided by all robots. 

C. Measurement Systems Framework 
 The case study conducted by [5] employs two common 

design patterns in the design of a measurement systems 
framework—the Strategy pattern and the Factory pattern [12]. 
The framework controls a relatively simple manufacturing 
system.  Sensors measure some property of an incoming 
object (e.g., weight, size) on a conveyor; if the value is 
acceptable, the object passes.  If not, an actuator rejects the 
object.  Only the Strategy pattern will be considered here. 

The Strategy pattern decouples a class from a specific 
implementation by factoring the implementation into an 
independent Strategy class.  The original class may then 
delegate calls to an instance of the Strategy. 

In the measurement framework, sensors may use one of 
several CalibrationStrategies, CalculationStrategies, and 
UpdateStrategies. The UpdateStrategies, for example, 
determined how and when a sensor was updated.  These 
included a Client update strategy, a Periodic update strategy, 
and an OnChange update strategy, which updated the sensor  
value upon a client invocation, at a periodic interval, or any 
time the sensor value changed, respectively. 

The authors of the case study [5]noted as a major benefit of 
the Strategy pattern a “dramatic increase in flexibility.” New 
implementations could be added simply by writing a new 
Strategy class.  One major liability was that it “dramatically 
complicate[d]” object interactions, as Strategy objects and 
parent objects had to be manually bound each other. 

Table 1. OSCAR Domains 
Domains Description 
Decision Making Algorithms for criteria based decision 

making 
Device Standardized interfaces to robots, sensors, 

actuators 
Dynamics LaGrange and Newton-Euler dynamics 

algorithms 
Forward Kinematics 
(FK) 

Position, velocity and acceleration level  

Inverse Kinematics (IK) Numerical, closed form and redundancy 
resolution 

Motion Planning Joint space and end effector motion 
planning and curve criteria 

Obstacle Avoidance Criteria based obstacle avoidance 
algorithms 

Performance Criteria 30+ different criteria for manipulator 
control 

Table 2. QMotor Pseudo-code 
Class PumaControl : public ManipulatorControl  
{ 

// Puma specific implementation added here 
// inherits calculatePositionControl() 
// from ManipulatorControl 

}; 
 
class PumaPIDControl : public PumaControl  { 
public: 

void calculatePositionControl()  { 
 //use PD calculation  
 //  from Manipulator Control 
   

PumaControl()::calculatePositionControl(); 
//foreach joint 
//  calculate integral term, add to PD term 
} 

};



This liability is evidence of “object schizophrenia” [9], 
meaning that when objects are broken into smaller fragments 
to implement a pattern, they must be recomposed into a single 
object.  These fragments suffer from “schizophrenia” because 
they have no reference to the identity of the whole.  The 
author of the case study in [5] estimates that up to two thirds 
of application code involved the binding of objects to objects. 

The problems stated above are a consequence of program 
fragmentation, as design patterns tend to fragment an 
application into many “little classes” and “little methods” [9] .  
One negative consequence is that the level of granularity 
becomes much lower, making more difficult both application 
construction and maintenance. 

D. Summary 
The application of OO methods to robot software is 

commonplace.  Robotics frameworks also tend to identify the 
same kinds of high level abstractions.  In other words, any 
robot software framework besides OSCAR would most likely 
identify kinematics algorithms, motion planning algorithms, 
dynamics algorithms, etc. as abstractions, and implement them 
as classes.  Similarly, any framework for sensor or actuator 
interfacing, besides QMotor or the measurement framework 
would likely identify different PID algorithms or hardware 
(e.g., sensor, actuator, tool) as abstractions, and implement 
them as classes.   

 Hooking these abstractions together into a specific 
application is the most difficult part of building robot 
software.  This is typically accomplished by (1) extending 
existing classes, (2) creating new classes, and (3) using 
aggregation/composition to connect objects.  During these 
steps, errors may be introduced into an application.  What is 
desired is a way to systematically automate the process such 
that they are reliably repeatable.  

The focus here is not on the capabilities of OSCAR, but the 
application of FOP to automatically assemble OSCAR code.  
The remaining sections introduce FOP, and apply it to the 
sample domain of actuator interfacing software. 

II.  FEATURE ORIENTED PROGRAMMING (FOP) 

FOP is a technique aimed at the design of product lines for 
software.  A product line is a set of applications which are 
variants of a single or a few common applications.  Thus the 
members of a product line can be built from a common set of 
components, using a systematic method of assembly.  In 
contrast, frameworks tend to employ an informal, ad-hoc 
approach to assembling applications.  FOP further makes 
possible the automatic generation of applications. 

One of the fundamental assumptions of FOP is that the 
applications in a specific domain are understood so well, that 
the steps to build them can be automated.  This is exactly the 
case for OSCAR applications at RRG. 

Features are the fundamental unit of modularity in FOP, 
rather than classes, objects, or packages.  Features represent 
high level, domain specific abstractions, relevant to a domain 
expert.  Features also encapsulate software fragments needed 
to implement the feature.  A specific application program may 

then be specified in terms of its features.  These features, 
which represent fragments of code, are then composed 
together to build a specific application.  At the most advanced 
level, a program can be specified from a GUI, using 
checkboxes and lists, similar to how a computer may be 
ordered from the Dell website. 

One way to consider features is as a series of step-wise 
extensions, where each features builds upon an existing 
program by adding some functionality.  A complete, existing 
program may be augmented by a feature, giving it additional 
capabilities. 

The full theory and technique for implementing FOP are 
beyond the scope of this paper, but the fundamental idea is 
feature refinement. Detailed explanation of FOP and related 
program composition technologies is available elsewhere 
[21][9];  the immediate purpose here is to demonstrate some 
basic techniques and advantages of using FOP.  Mixins or 
mixin layers are one straightforward implementation of 
refinements [23]. 

B. Implementing Refinements with Mixin Layers 
Mixins are a technique for implementing feature refinement 

that requires only a C++ compliant compiler with template 
support.  A mixin is a refinement of a single class, a mixin 
layer is simultaneous refinement of several classes. Table 5  is 

Table 5.  Puma Mixin Layers Pseudo-code 
01 class PumaServos  {virtual void setPosition() 
    {/*Puma specific set position*/}  }; 
02 
03 template <class parent> 
04 class RobotInterface : public parent  { 
05 public: 
06  class ControlAction         { 
07  public:      
08     void calculatePositionControl()=0; 
09     RobotInterface * pRobotInterface;   
10  }; 
11 
12  virtual void setPosition()  {  
13      m_pCaObject->calculatePositionControl(); 
14      parent::setPosition(); 
15  } 
16  ControlAction *m_pCaObject; 
17 }; 
18 
19  // PID control feature 
20 template <class parent> 
21 class PID : public parent  { 
22 public: 
23   class ControlAction  
24        : public parent::ControlAction  { 
25    void calculatePositionControl() 
26         {/*do pid law*/} 
27    float Kp, Ki, Kd; 
28  }; 
29 }; 
30 
31  // Fuzzy Logic Control feature 
32 template <class parent> 
33 class FuzzyLogic : public parent  { 
34 public: 
35  class ControlAction 
36        : public parent::ControlAction  { 
37    void calculatePositionControl() 
38       {/*do fuzzy law*/} 
39    float high, medium, low; 
40  }; 
41 } 
42 
43 typedef PID<PumaServos> PIDPuma; 
44 typedef FuzzyLogic<PumaInterface> FuzzyPuma; 



an example of mixin layers on the Puma code.  
Note that a feature refinement may extend classes (lines 4, 

21, 23, 33, 35), add classes (line 6), or (3) aggregate objects 
(lines 16, 27).  Feature refinement is thus a technique for 
automating framework extension.  

Mixin layers using templates can be difficult to debug for 
very large systems.  Therefore, special tools have been 
developed by [21] as part of the AHEAD (Algebraic 
Hierarchical Equations for Application Design) tool suite [4].  
Details of the AHEAD tools, and AHEAD theory, which 
underlie this paper, are available at [21].  

III. FEATURES IN ROBOT SOFTWARE 

 Domain modelling is the process of identifying features in 
software for a specific domain.  Thus it is necessary to 
identify the different features of robot applications.  
 Application software in OSCAR is typically divided 
among three layers—an upper layer for communicating with 
Human Machine Interface (HMI) devices, a middle 
Computational Components (CC) layer, and a lower Device 
Interface (DI) layer. 
 The upper HMI layer interfaces with joysticks, manual 
controllers, Spaceball, GUIs, or any other software used to 
interface with a human operator. 
 The middle CC layer consists of computational 
algorithms and decision making software for robot control, 
such as kinematics, dynamics, performance criteria, motion 
planning, etc., and supervisory control of the DI layer.   
 The lower DI layer is used to communicate with different 
sensors and robot hardware, as well as to isolate the CC layer 
from differences among hardware. 
 The division of software among these layers is based 
roughly on timing requirements, where the DI layer requires 
real time control, the timing of the CC and HMI layers is less 
stringent. The focus of this paper is on the DI layer.   

 A. Device Interface Features 
The first purpose of the DI layer is to provide a common 

interface to the different kinds of robots at RRG.  This 
interface should isolate an application program from the 
differences between robots; the DI layer may be considered as 
a kind of Hardware Abstraction Layer (HAL) for robots.  

Features related to this purpose are termed Actuator Hardware 
features.  

The second purpose of the DI layer it to provide real time 
capabilities.  Different types of robot actuators may have 
different timing requirements, i.e., each robot may require 
joint commands to be sent at a different rate.  The DI layer 
should provide commands to the robot’s embedded controller 
at a consistent rate, and serve as a buffer between the CC layer 
and the robot controller in case the CC layer cannot meet the 
required rate. 

B. Actuator Hardware Features 
The Actuator Hardware features represent the different 

capabilities of the robots used at RRG.  These robots are the 
KB2017 dual arm robot, the Powercube modular robot, and 
the Roboworks simulation environment, which is a virtual 
robot interface.  Table 6 summarizes these robots. 

Each robot directly supports various features in hardware, 
such as joint command modes (i.e. Position, Velocity, Current, 
Torque), joint range limits (i.e. joint position limits, joint 
velocity limits, etc.), joint excess limits (i.e., position excess 
limits, velocity excess limits, etc.), and different 
communications protocols. 

The range limits and the excess limits differ in that the 
range limits features trap joint commands outside an 
acceptable range, while the excess limits features trap changes 
in joint commands that exceed an acceptable value. 

Emulation of features is also desirable, if they are not 
directly supported by hardware.  The most obvious example is 
different types of joint limits, which can be easily emulated in 
software.  Redundant joint limits (both hardware and 
emulated) are also possible. 

 Some control types may also be emulated, such as position 
or velocity control.  For example, the Roboworks environment 
only accepts position commands.  It may be used to simulate 
the KB2017, which supports velocity commands.  In such a 
case, a velocity control mode might be emulated in 
Roboworks, by calculating a derivative.  There are further real 
time features necessary to emulate velocity, which are 
discussed in the next section. 

Some amount of manual coding will always be necessary 
to create an interface to a robot.  For the examples above, the 

                                                           
* Torque and c  but would 
require full inverse dynamic models, which would negatively affect the timing 
of the DI layer. 

urrent control execution are theoretically possible,

Table 6.  Features Supported by Robot Hardware 

Robot Dof Features 
KB2017  

 

17 -Position, Velocity, Torque Control 
-Position Range Limits 
-Position Excess Limits 

Powercube 

 

1-7  -Position, Velocity, Current Control 
-Position, Velocity, Current Range 
Limits 
-Position Excess Limits 
 

Roboworks  

 

n -Position Control 

Table 7. DI Feature Summary 
PCoInt  
VCoInt 
CCoInt 
TCoInt 

PRaInt 
VRaInt 
CRaInt 
TRaInt 

PExInt 
VExInt 
CExInt 
TExInt 

PCoEm*

VCoEm 
 

PRaEm 
VRaEm 
CRaEm 
TRaEm 

PExEm 
VExEm 
CExEm 
TExEm 

PCoHw 
VCoHw 
CCoHw 
TCoHw 

PRaHw 
VRaHw 
CRaHw 
TRaHw 

PExHw 
VExHw 
CExHw 
TExHw 

P = Position, V = Velocity, C = Current, T = Torque 
Co = Control, Ra = Range Limits, Ex = Excess limits 

Int = Interface, Hw = Hardware, Em = Emulated 



KB2017, Powercube, and Roboworks all use different 
communications protocols and different Applications 
Programming Interfaces (APIs).  The goal for the DI layer is 
to minimize this amount by reusing common features. 

Considering the above three robots, the set of common 
features for Actuator Hardware is summarized in Table 7, 
where the control types are abbreviated. 

 Also, each of the above features may be supported by 
hardware or emulated in software.  Both the emulated and the 
hardware version of a feature may be desirable, as with 
position range limits.  In other words, there is a single 
common interface to the above features, with different 
implementations.  Thus there are three different versions of 
each feature in Table 7.  For example, there is a Position 
Control Interface feature, a Position Control Hardware 
feature, and a Position Control Emulation feature. 

 C. Real Time Features 
 The real time features were mentioned earlier in relation to 

emulated velocity control.  To emulate velocity control, the DI 
layer must run at fixed rate to accurately calculate the 
derivative of position.  Several RealTime features are needed 
to accomplish this task, which adds code for multi-threading 
and synchronization.  These features are summarized in Table 
8.  More detailed explanation is available in [13][18]. 

 Briefly, the Locking | Nonlocking features allow a user 
to choose between thread-safe and non thread-safe versions of 
the DI layer, the Active | Passive features allow the user to 
choose between a standardized multi-threading mode, which 
allows DI to execute asynchronously, or a single-threaded 
mode, in which case DI executes synchronously  with the CC 
layer.  The Tuning | Nontuning features provide different policies 
for changing the execution rate of a multi-threaded DI 
program, and the MotionTime feature simply adds a data 
member for storing the time step between actuator commands. 

To emulate a velocity control mode in Roboworks, the set 
of Real Time features {Locking, Active, MotionTime, 

FixedTuning} is required.  Alternatively, a user might specify 
the feature set {Locking, Active, MotionTime, 

AvgTuning}.  If the standard multi-threading mode provided 
by Active is not appropriate for a given application, a custom 
version of the Active feature can be implemented.  
Alternatively, users could simply specify the Real Time 
feature set {Locking}, which would make DI thread-safe, and 
implement their own concurrency code on top of the DI 
program. 

IV. DECLARATIVE SPECIFICATION 

Given many features in a domain, there are potentially 
thousands of different combinations, each of which specifies a 
different program.  This explosion in the number of possible 
combinations is known as feature combinatorics.  If there are 
n optional features, there are 2n possible different 
combinations of those features. 

Some of these combinations will be invalid or undesirable.  
Furthermore, some features may impose constraints or 
requirements on other features (e.g., Position Range Limits 
Interface (PRaInt) requires the Position Command Interface 
(PCoInt)).  It is necessary to automate the application of such 
rules in an easy to use interface.  In AHEAD, this is 
accomplished with a grammar and design rules. 

The role of a grammar is to specify sequences of features 
to be composed, and design rules guarantee that the features in 
a sequence are compatible.  From such a grammar a 
declarative domain-specific language can be created, with a 
domain-specific editor that allows robot controller programs 
to be specified declaratively. 

The guidsl tool in the AHEAD tool suite can automatically 
generate GUIs from a grammar; the GUI of Figure 1 was 
generated from the DI grammar.  The guidsl tool simply takes 
a text file containing the grammar as an input.  This text file 

additionally contains simple design rules and annotations to 
provide user help.  As an output, it produces a GUI with a 
sequence of tabs and checkboxes.  The text box at the bottom 
of Figure 1 provides help and information about a specific 
option when a user hovers the mouse pointer over a feature. 

 The guidsl tool uses Propositional Satisfiability (SAT) 
algorithms to generate the logic behind the GUI.  Such 
algorithms are used for design automation and constraint 
satisfaction problems in other domains.  Work on the guidsl 
tool and its use is currently in progress, and interested readers 
should refer to the AHEAD documentation and website [20]. 

Because the DI domain is relatively simple, it is possible to 
exhaustively enumerate the total number of valid 
configurations. There are 6 possible configurations of the Real 
Time features, due to the constraints between features.  Two 
of these configurations are for single threaded versions, and 4 
are for multi-threaded versions.  The number of possible 
Actuator Hardware configurations varies with the specific 
robot.  Table 9 summarizes the 200 possible valid 
configurations. 

 
Figure 1. Declarative GUI for Device Integration

Table 8. Real Time Features 
Feature Description 
Locking | 
Nonlocking 

Thread-safe or not thread safe code 

Active | 
Passive 

Multi or single-threaded code 

Different policies for adjusting execution 
rate 

AvgTuning | 
DefaultTuning 

MotionTime 
 

Time step for actuator commands 

“A | B” means choose one of A or B 



IV.  RELATED WORK 

 FOP shares several concepts in common with other work 
in software engineering and generative programming.  FOP is 
a method for designing product line architectures;  PLA 
methods focus on designing software components for building 
sets of product variants which cover a domain.  
 FODA (Feature Oriented Domain Analysis) was among 
the earliest methods for designing software in terms of 
features in a domain. 
 Aspect Oriented Programming (AOP) is a design method 
which is currently gaining momentum [10].  AOP augments 
traditional OO methods with aspects, where an aspect is a 
code fragment which can be non-invasively inserted, or 
“weaved,” into an existing code base. 
 Agile methods are another recent movement gaining 
popularity, and have the notion of feature driven development 
[11].  This commonality with FOP is coincidental, however, 
and it could be argued that agile methods and PLA methods 
(including FOP) are completely opposed.  PLAs assume that 
software in a domain is so predictable and well understood, 
that a systematic set of rules for design and assembly of 
components can be defined.  Agile methods assume that 
software design is so unpredictable that no such systematic 
design is possible. 

V.  CONCLUSION 

Feature Oriented Programming (FOP) is a technique for 
designing software product lines.  In contrast to object 
oriented techniques, FOP models programs in terms of 
features, which operate at a much higher level of abstraction.  
Programs may be specified from a set of features, and then 
automatically generated. 

Initial results using FOP for the automatic generation of 
robot hardware interfacing software were presented.  A 
feature model, consisting of 41 Actuator Hardware features 
and Real Time features, was used to model this software.  
Examples for specifying two different program variants were 
also presented.  Exhaustive enumeration of configurations 
results in a total of 200 possible programs for interfacing with 
robot hardware. 
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