
Automatic Code Generation for Actuator Interfacing
from a Declarative Specification

Ed Jung and Chetan Kapoor1, Don Batory2

Robotics Research Group, Dept. of Mechanical Engineering1

Product Line Architecture Research Group, Dept. of Computer Science2

University of Texas at Austin
Austin, TX

ed.jung@mail.utexas.edu, chetan@mail.utexas.edu

 Abstract - Common software design practices use object-
oriented (OO) frameworks that structure software in terms of
objects, classes, and package; designers then create programs by
inheritance and composition of classes and objects. Operational
Software Components for Advanced Robotics (OSCAR) is one
such framework for robot control software with abstractions for
generalized kinematics, dynamics, performance criteria, decision
making, and hardware interfacing. Even with OSCAR, writing
new programs still requires a significant amount of manual
labor. Feature-Oriented Programming (FOP) is method for
software design that models and specifies programs in terms of
features, where a feature encapsulates the common design
decisions that occur in a domain. A set of features then forms a
domain model for a Product Line Architecture. Product variants
in this product line can then be generated from a declarative
specification. FOP and related technologies are emerging
software engineering techniques for automatically generating
prorams. Our research applies FOP to robot controller software.
As an example, the domain of hardware interfacing is analyzed
and 41 features identified. A GUI for specifying and generating
programs is presented as well. Analysis of features shows 200
possible different programs could be generated.

 Index Terms – Robotics. Product Line. Feature Oriented
Programming, Generative Programming.

I. INTRODUCTION

The Robotics Research Group (RRG) at UT-Austin has
developed the Operational Software Components for
Advanced Robotics (OSCAR) framework [16][20]. The
framework addresses the integration of generalized
kinematics, dynamics, performance criteria, decision making,
hardware interfacing, and manual controllers into robot
controller software. Experience with OSCAR has shown that
OO methods improve productivity, reusability, and
comprehensibility of robot software. Applications, however,
must still be manually written, with each new application
being a one-off effort, prone to errors.

Among the reasons for these continuing problems are the
low level of granularity at which components are designed,
and the lack of explicit guidance for assembling those
components. In other words, rapid software assembly
requires not just components, but a systematic method for
assembling those components.

Feature Oriented Programming (FOP) is one such
method for rapid assembly of software [5]. The success of
FOP relies upon the assumption that application software in a
domain is so well understood, that software construction can
be automated. RRG has written robot control software for
several different robot applications [22][19]. Many of these
tend to share some common set of base code, as well as design
decisions. These programs thus form different product
variants in a product line.

FOP differs from OOP in that features, rather than
classes, objects, or packages, form the fundamental units of
software. A feature is a domain-level abstraction, or some
capability for the software that is significant to the end user.
A feature encapsulates any code (including documentation,
test programs, etc.) necessary to implement that capability.
Programs may then be specified by their desired features, in a
declarative specification.

RRG is applying FOP methods to robot control software,
in collaboration with the Product Line Architecture Research
Group [21] in the Department of Computer Science. The
goals of this paper are to introduce some basic techniques for
implementing FOP, and their application to robot software. A
GUI for building specifications is presented.

The goal of this work is to introduce FOP, contrast FOP
methods to OOP methods, and demonstrate a sample
application of FOP to robot software. The novelty of this
work lies in its application of FOP to automatically generate
code from a declarative specification.

II. ROBOT SOFTWARE FRAMEWORKS

A. Object Oriented Methods and Frameworks
 Object oriented frameworks and design patterns are the
dominant methods for software design today. Among recent
efforts are frameworks such as QMotor and QRobot, oriented
towards servo control, and robot control respectively [16][8].
The Orocos projects, Open Robot Control Software and Open
Realtime Control Services, are open source efforts [6] which
rely upon design patterns [10] as well as OO methods. The
OSCAR framework has been under continuous use and
development at RRG for several years [16][20][16]. Users
have included NASA, and DOE [19].

OO frameworks typically provide a set of base classes,
which represent the infrastructure common to a number of
applications. These base classes may then be extended by

don
Text Box
International Conference on Robotics and Systems (IROW) 2005, Edmonton, Canada

inheritance and polymorphism, or combined through
aggregation or composition, to implement specific
applications. Design patterns recognize that some design
problems occur commonly, in a common context, and have a
common solution [12]. They may be used as a starting point
for the design of a new application. Three examples of OO
design will be considered---from OSCAR, QMotor/QRobot
and the Measurement Systems Framework case study [5].
Each covers a different scope of software (robotics
algorithms, actuator interfacing, and sensor interfacing,
respectively). The intent here is to demonstrate the
application of OO techniques to software for robotics and
automation.

B. OSCAR
Though OSCAR is specific to RRG, the fundamental ideas

are common to most OO frameworks. That is, the use of
inheritance, aggregation, and composition within a common
structure, to create specific applications. QMotor/QRobot
provide additional examples of OO methods. The
Measurement Systems Framework employs OO methods as
well as design patterns.

OSCAR consists of a set of class libraries, some of which
are described in Table 1. These classes may be combined or
extended in various ways for specific applications. For
example, IKJacobian and IKPuma classes extend the base
kinematics classes with specialized algorithms.

Though these classes are flexible and reusable, they must
still be manually combined to create a new application. In
practice, new applications are often created by copy/paste, or
based on the past experience and bias of a developer. Clear
application patterns, however, exist; these are further enforced
by the uniform interface to OSCAR classes and the data flow
inherent to robot control applications. Ideally, the
construction of these patterns and applications should be
automated to reduce the error and variability introduced by
manual construction.

C. QMotor/QRobot
The QMotor RTK (Robotic Toolkit) [17] is a software

package with similar goals to the OSCAR Device Domain.
QMotor is capable of interfacing with the Puma 560, Barrett

WAM (Whole Arm Manipulator), and IMI Direct Drive robot.
The approach for adapting robots into QMotor uses traditional
OO tehcnqiues. A base class contains common code;
different extensions implement robot specific code. An
example of extension through inheritance is presented in
Table 2 for a Puma.

Note that although the code for the PID algorithm might be
reusable with other robots, it is embedded within the
PumaPIDControl class, and cannot be reused.

This common PID code could be refactored into the base

class, ManipulatorControl. Any class deriving from
ManipulatorControl would then be able to access the PID
code. Such approaches tend to lead to “fat” interfaces, which
represent the union of possible features or capabilities
provided by all robots.

C. Measurement Systems Framework
 The case study conducted by [5] employs two common

design patterns in the design of a measurement systems
framework—the Strategy pattern and the Factory pattern [12].
The framework controls a relatively simple manufacturing
system. Sensors measure some property of an incoming
object (e.g., weight, size) on a conveyor; if the value is
acceptable, the object passes. If not, an actuator rejects the
object. Only the Strategy pattern will be considered here.

The Strategy pattern decouples a class from a specific
implementation by factoring the implementation into an
independent Strategy class. The original class may then
delegate calls to an instance of the Strategy.

In the measurement framework, sensors may use one of
several CalibrationStrategies, CalculationStrategies, and
UpdateStrategies. The UpdateStrategies, for example,
determined how and when a sensor was updated. These
included a Client update strategy, a Periodic update strategy,
and an OnChange update strategy, which updated the sensor
value upon a client invocation, at a periodic interval, or any
time the sensor value changed, respectively.

The authors of the case study [5]noted as a major benefit of
the Strategy pattern a “dramatic increase in flexibility.” New
implementations could be added simply by writing a new
Strategy class. One major liability was that it “dramatically
complicate[d]” object interactions, as Strategy objects and
parent objects had to be manually bound each other.

Table 1. OSCAR Domains
Domains Description
Decision Making Algorithms for criteria based decision

making
Device Standardized interfaces to robots, sensors,

actuators
Dynamics LaGrange and Newton-Euler dynamics

algorithms
Forward Kinematics
(FK)

Position, velocity and acceleration level

Inverse Kinematics (IK) Numerical, closed form and redundancy
resolution

Motion Planning Joint space and end effector motion
planning and curve criteria

Obstacle Avoidance Criteria based obstacle avoidance
algorithms

Performance Criteria 30+ different criteria for manipulator
control

Table 2. QMotor Pseudo-code
Class PumaControl : public ManipulatorControl
{

// Puma specific implementation added here
// inherits calculatePositionControl()
// from ManipulatorControl

};

class PumaPIDControl : public PumaControl {
public:

void calculatePositionControl() {
 //use PD calculation
 // from Manipulator Control

PumaControl()::calculatePositionControl();
//foreach joint
// calculate integral term, add to PD term
}

};

This liability is evidence of “object schizophrenia” [9],
meaning that when objects are broken into smaller fragments
to implement a pattern, they must be recomposed into a single
object. These fragments suffer from “schizophrenia” because
they have no reference to the identity of the whole. The
author of the case study in [5] estimates that up to two thirds
of application code involved the binding of objects to objects.

The problems stated above are a consequence of program
fragmentation, as design patterns tend to fragment an
application into many “little classes” and “little methods” [9] .
One negative consequence is that the level of granularity
becomes much lower, making more difficult both application
construction and maintenance.

D. Summary
The application of OO methods to robot software is

commonplace. Robotics frameworks also tend to identify the
same kinds of high level abstractions. In other words, any
robot software framework besides OSCAR would most likely
identify kinematics algorithms, motion planning algorithms,
dynamics algorithms, etc. as abstractions, and implement them
as classes. Similarly, any framework for sensor or actuator
interfacing, besides QMotor or the measurement framework
would likely identify different PID algorithms or hardware
(e.g., sensor, actuator, tool) as abstractions, and implement
them as classes.

 Hooking these abstractions together into a specific
application is the most difficult part of building robot
software. This is typically accomplished by (1) extending
existing classes, (2) creating new classes, and (3) using
aggregation/composition to connect objects. During these
steps, errors may be introduced into an application. What is
desired is a way to systematically automate the process such
that they are reliably repeatable.

The focus here is not on the capabilities of OSCAR, but the
application of FOP to automatically assemble OSCAR code.
The remaining sections introduce FOP, and apply it to the
sample domain of actuator interfacing software.

II. FEATURE ORIENTED PROGRAMMING (FOP)

FOP is a technique aimed at the design of product lines for
software. A product line is a set of applications which are
variants of a single or a few common applications. Thus the
members of a product line can be built from a common set of
components, using a systematic method of assembly. In
contrast, frameworks tend to employ an informal, ad-hoc
approach to assembling applications. FOP further makes
possible the automatic generation of applications.

One of the fundamental assumptions of FOP is that the
applications in a specific domain are understood so well, that
the steps to build them can be automated. This is exactly the
case for OSCAR applications at RRG.

Features are the fundamental unit of modularity in FOP,
rather than classes, objects, or packages. Features represent
high level, domain specific abstractions, relevant to a domain
expert. Features also encapsulate software fragments needed
to implement the feature. A specific application program may

then be specified in terms of its features. These features,
which represent fragments of code, are then composed
together to build a specific application. At the most advanced
level, a program can be specified from a GUI, using
checkboxes and lists, similar to how a computer may be
ordered from the Dell website.

One way to consider features is as a series of step-wise
extensions, where each features builds upon an existing
program by adding some functionality. A complete, existing
program may be augmented by a feature, giving it additional
capabilities.

The full theory and technique for implementing FOP are
beyond the scope of this paper, but the fundamental idea is
feature refinement. Detailed explanation of FOP and related
program composition technologies is available elsewhere
[21][9]; the immediate purpose here is to demonstrate some
basic techniques and advantages of using FOP. Mixins or
mixin layers are one straightforward implementation of
refinements [23].

B. Implementing Refinements with Mixin Layers
Mixins are a technique for implementing feature refinement

that requires only a C++ compliant compiler with template
support. A mixin is a refinement of a single class, a mixin
layer is simultaneous refinement of several classes. Table 5 is

Table 5. Puma Mixin Layers Pseudo-code
01 class PumaServos {virtual void setPosition()
 {/*Puma specific set position*/} };
02
03 template <class parent>
04 class RobotInterface : public parent {
05 public:
06 class ControlAction {
07 public:
08 void calculatePositionControl()=0;
09 RobotInterface * pRobotInterface;
10 };
11
12 virtual void setPosition() {
13 m_pCaObject->calculatePositionControl();
14 parent::setPosition();
15 }
16 ControlAction *m_pCaObject;
17 };
18
19 // PID control feature
20 template <class parent>
21 class PID : public parent {
22 public:
23 class ControlAction
24 : public parent::ControlAction {
25 void calculatePositionControl()
26 {/*do pid law*/}
27 float Kp, Ki, Kd;
28 };
29 };
30
31 // Fuzzy Logic Control feature
32 template <class parent>
33 class FuzzyLogic : public parent {
34 public:
35 class ControlAction
36 : public parent::ControlAction {
37 void calculatePositionControl()
38 {/*do fuzzy law*/}
39 float high, medium, low;
40 };
41 }
42
43 typedef PID<PumaServos> PIDPuma;
44 typedef FuzzyLogic<PumaInterface> FuzzyPuma;

an example of mixin layers on the Puma code.
Note that a feature refinement may extend classes (lines 4,

21, 23, 33, 35), add classes (line 6), or (3) aggregate objects
(lines 16, 27). Feature refinement is thus a technique for
automating framework extension.

Mixin layers using templates can be difficult to debug for
very large systems. Therefore, special tools have been
developed by [21] as part of the AHEAD (Algebraic
Hierarchical Equations for Application Design) tool suite [4].
Details of the AHEAD tools, and AHEAD theory, which
underlie this paper, are available at [21].

III. FEATURES IN ROBOT SOFTWARE

 Domain modelling is the process of identifying features in
software for a specific domain. Thus it is necessary to
identify the different features of robot applications.
 Application software in OSCAR is typically divided
among three layers—an upper layer for communicating with
Human Machine Interface (HMI) devices, a middle
Computational Components (CC) layer, and a lower Device
Interface (DI) layer.
 The upper HMI layer interfaces with joysticks, manual
controllers, Spaceball, GUIs, or any other software used to
interface with a human operator.
 The middle CC layer consists of computational
algorithms and decision making software for robot control,
such as kinematics, dynamics, performance criteria, motion
planning, etc., and supervisory control of the DI layer.
 The lower DI layer is used to communicate with different
sensors and robot hardware, as well as to isolate the CC layer
from differences among hardware.
 The division of software among these layers is based
roughly on timing requirements, where the DI layer requires
real time control, the timing of the CC and HMI layers is less
stringent. The focus of this paper is on the DI layer.

 A. Device Interface Features
The first purpose of the DI layer is to provide a common

interface to the different kinds of robots at RRG. This
interface should isolate an application program from the
differences between robots; the DI layer may be considered as
a kind of Hardware Abstraction Layer (HAL) for robots.

Features related to this purpose are termed Actuator Hardware
features.

The second purpose of the DI layer it to provide real time
capabilities. Different types of robot actuators may have
different timing requirements, i.e., each robot may require
joint commands to be sent at a different rate. The DI layer
should provide commands to the robot’s embedded controller
at a consistent rate, and serve as a buffer between the CC layer
and the robot controller in case the CC layer cannot meet the
required rate.

B. Actuator Hardware Features
The Actuator Hardware features represent the different

capabilities of the robots used at RRG. These robots are the
KB2017 dual arm robot, the Powercube modular robot, and
the Roboworks simulation environment, which is a virtual
robot interface. Table 6 summarizes these robots.

Each robot directly supports various features in hardware,
such as joint command modes (i.e. Position, Velocity, Current,
Torque), joint range limits (i.e. joint position limits, joint
velocity limits, etc.), joint excess limits (i.e., position excess
limits, velocity excess limits, etc.), and different
communications protocols.

The range limits and the excess limits differ in that the
range limits features trap joint commands outside an
acceptable range, while the excess limits features trap changes
in joint commands that exceed an acceptable value.

Emulation of features is also desirable, if they are not
directly supported by hardware. The most obvious example is
different types of joint limits, which can be easily emulated in
software. Redundant joint limits (both hardware and
emulated) are also possible.

 Some control types may also be emulated, such as position
or velocity control. For example, the Roboworks environment
only accepts position commands. It may be used to simulate
the KB2017, which supports velocity commands. In such a
case, a velocity control mode might be emulated in
Roboworks, by calculating a derivative. There are further real
time features necessary to emulate velocity, which are
discussed in the next section.

Some amount of manual coding will always be necessary
to create an interface to a robot. For the examples above, the

* Torque and c but would
require full inverse dynamic models, which would negatively affect the timing
of the DI layer.

urrent control execution are theoretically possible,

Table 6. Features Supported by Robot Hardware

Robot Dof Features
KB2017

17 -Position, Velocity, Torque Control
-Position Range Limits
-Position Excess Limits

Powercube

1-7 -Position, Velocity, Current Control
-Position, Velocity, Current Range
Limits
-Position Excess Limits

Roboworks

n -Position Control

Table 7. DI Feature Summary
PCoInt
VCoInt
CCoInt
TCoInt

PRaInt
VRaInt
CRaInt
TRaInt

PExInt
VExInt
CExInt
TExInt

PCoEm*

VCoEm

PRaEm
VRaEm
CRaEm
TRaEm

PExEm
VExEm
CExEm
TExEm

PCoHw
VCoHw
CCoHw
TCoHw

PRaHw
VRaHw
CRaHw
TRaHw

PExHw
VExHw
CExHw
TExHw

P = Position, V = Velocity, C = Current, T = Torque
Co = Control, Ra = Range Limits, Ex = Excess limits

Int = Interface, Hw = Hardware, Em = Emulated

KB2017, Powercube, and Roboworks all use different
communications protocols and different Applications
Programming Interfaces (APIs). The goal for the DI layer is
to minimize this amount by reusing common features.

Considering the above three robots, the set of common
features for Actuator Hardware is summarized in Table 7,
where the control types are abbreviated.

 Also, each of the above features may be supported by
hardware or emulated in software. Both the emulated and the
hardware version of a feature may be desirable, as with
position range limits. In other words, there is a single
common interface to the above features, with different
implementations. Thus there are three different versions of
each feature in Table 7. For example, there is a Position
Control Interface feature, a Position Control Hardware
feature, and a Position Control Emulation feature.

 C. Real Time Features
 The real time features were mentioned earlier in relation to

emulated velocity control. To emulate velocity control, the DI
layer must run at fixed rate to accurately calculate the
derivative of position. Several RealTime features are needed
to accomplish this task, which adds code for multi-threading
and synchronization. These features are summarized in Table
8. More detailed explanation is available in [13][18].

 Briefly, the Locking | Nonlocking features allow a user
to choose between thread-safe and non thread-safe versions of
the DI layer, the Active | Passive features allow the user to
choose between a standardized multi-threading mode, which
allows DI to execute asynchronously, or a single-threaded
mode, in which case DI executes synchronously with the CC
layer. The Tuning | Nontuning features provide different policies
for changing the execution rate of a multi-threaded DI
program, and the MotionTime feature simply adds a data
member for storing the time step between actuator commands.

To emulate a velocity control mode in Roboworks, the set
of Real Time features {Locking, Active, MotionTime,

FixedTuning} is required. Alternatively, a user might specify
the feature set {Locking, Active, MotionTime,

AvgTuning}. If the standard multi-threading mode provided
by Active is not appropriate for a given application, a custom
version of the Active feature can be implemented.
Alternatively, users could simply specify the Real Time
feature set {Locking}, which would make DI thread-safe, and
implement their own concurrency code on top of the DI
program.

IV. DECLARATIVE SPECIFICATION

Given many features in a domain, there are potentially
thousands of different combinations, each of which specifies a
different program. This explosion in the number of possible
combinations is known as feature combinatorics. If there are
n optional features, there are 2n possible different
combinations of those features.

Some of these combinations will be invalid or undesirable.
Furthermore, some features may impose constraints or
requirements on other features (e.g., Position Range Limits
Interface (PRaInt) requires the Position Command Interface
(PCoInt)). It is necessary to automate the application of such
rules in an easy to use interface. In AHEAD, this is
accomplished with a grammar and design rules.

The role of a grammar is to specify sequences of features
to be composed, and design rules guarantee that the features in
a sequence are compatible. From such a grammar a
declarative domain-specific language can be created, with a
domain-specific editor that allows robot controller programs
to be specified declaratively.

The guidsl tool in the AHEAD tool suite can automatically
generate GUIs from a grammar; the GUI of Figure 1 was
generated from the DI grammar. The guidsl tool simply takes
a text file containing the grammar as an input. This text file

additionally contains simple design rules and annotations to
provide user help. As an output, it produces a GUI with a
sequence of tabs and checkboxes. The text box at the bottom
of Figure 1 provides help and information about a specific
option when a user hovers the mouse pointer over a feature.

 The guidsl tool uses Propositional Satisfiability (SAT)
algorithms to generate the logic behind the GUI. Such
algorithms are used for design automation and constraint
satisfaction problems in other domains. Work on the guidsl
tool and its use is currently in progress, and interested readers
should refer to the AHEAD documentation and website [20].

Because the DI domain is relatively simple, it is possible to
exhaustively enumerate the total number of valid
configurations. There are 6 possible configurations of the Real
Time features, due to the constraints between features. Two
of these configurations are for single threaded versions, and 4
are for multi-threaded versions. The number of possible
Actuator Hardware configurations varies with the specific
robot. Table 9 summarizes the 200 possible valid
configurations.

Figure 1. Declarative GUI for Device Integration

Table 8. Real Time Features
Feature Description
Locking |
Nonlocking

Thread-safe or not thread safe code

Active |
Passive

Multi or single-threaded code

Different policies for adjusting execution
rate

AvgTuning |
DefaultTuning

MotionTime

Time step for actuator commands

“A | B” means choose one of A or B

IV. RELATED WORK

 FOP shares several concepts in common with other work
in software engineering and generative programming. FOP is
a method for designing product line architectures; PLA
methods focus on designing software components for building
sets of product variants which cover a domain.
 FODA (Feature Oriented Domain Analysis) was among
the earliest methods for designing software in terms of
features in a domain.
 Aspect Oriented Programming (AOP) is a design method
which is currently gaining momentum [10]. AOP augments
traditional OO methods with aspects, where an aspect is a
code fragment which can be non-invasively inserted, or
“weaved,” into an existing code base.
 Agile methods are another recent movement gaining
popularity, and have the notion of feature driven development
[11]. This commonality with FOP is coincidental, however,
and it could be argued that agile methods and PLA methods
(including FOP) are completely opposed. PLAs assume that
software in a domain is so predictable and well understood,
that a systematic set of rules for design and assembly of
components can be defined. Agile methods assume that
software design is so unpredictable that no such systematic
design is possible.

V. CONCLUSION

Feature Oriented Programming (FOP) is a technique for
designing software product lines. In contrast to object
oriented techniques, FOP models programs in terms of
features, which operate at a much higher level of abstraction.
Programs may be specified from a set of features, and then
automatically generated.

Initial results using FOP for the automatic generation of
robot hardware interfacing software were presented. A
feature model, consisting of 41 Actuator Hardware features
and Real Time features, was used to model this software.
Examples for specifying two different program variants were
also presented. Exhaustive enumeration of configurations
results in a total of 200 possible programs for interfacing with
robot hardware.

REFERENCES
[1] Batory, D.; Geraci, B.J., “Composition validation and subjectivity in

GenVoca generators,” IEEE Transactions on Software Engineering, Vol.
23, No. 2, Feb 1997, pp 67-82.

[2] Batory, D., Cardone, R., and Smaragdakis, R. “Object-oriented
frameworks and product-lines,” 1st Software Product-Line Conference,
Aug. 1999, Denver, Colorado.

[3] Batory, D., Sarvela, J.N., and Rauschmayer, A., “Scaling step-wise
refinement,” International Conference on Software Engineering, May
2003, Portland, Oregon.

[4] Batory, D. “A tutorial on feature oriented programming and product-
lines.” Proceedings of the 25 International Conference on Software
Engineering, 2003, pp 753—754.

th

[5] Bosch, J., “Design of an object-oriented framework for measurement
systems,” in M. Fayad, D.Schmidt, and R. Johnsson, Eds., Object-
oriented application frameworks, Ap 1998.

[6] Bruyninckx, H., “Open robot control software: the OROCOS project,”
Proc. IEEE International Conference on Robotics and Automation, May
2001, Seoul, Korea.

[7] Clements, P., and Northrop, L., “Software Product Lines: Practices and
Patterns,” Addison-Wesley Co, Aug. 2001.

[8] Costescu, N.; Loffler, M.; Zergeroblu, E.; Dawson, D., “QRobot—a
multitasking PC based robot control system,” Proceedings of the 1998
IEEE International Conference on Control Applications. Vol. 2, No. 1-
4, Sept. 1998, pp.892—896.

[9] Czarnecki, U. , and Eisenecker, D., “Generative Programming,”
Addison-Wesley Co. , June 2000.

[10] Elrad, T., Filman, R., and Bader, A., “Aspect-Oriented Programming:
Introduction,” Communications of the ACM. Vol. 44, No. 10, Oct.
2001, pp. 28-32.

[11] Fowler, M., The New Methodology, Available:
http://martinfowler.com/articles/newMethodology.html, April 2003.

[12] Gamma, E., Helm, R., Johnson, R., and Vlissides, J., “Design Patterns,”
Addison-Wesley Co. , Jan. 1995.

[13] Jung, E., M.S. Thesis, 2005, Dept. of Mechanical Engineering, The
University of Texas at Austin.

[14] Kang, K., Cohen, S., Hess, J., Nowak, W., and Peterson, S., “Feature
Oriented Domain Analysis (FODA) Feasibility Study,” Technical
Report, CMU/SEI-90-TR-21, Software Engineering Institute, Carnegie
Mellon University, Pittsburg, PA, Nov. 1990.

[15] Kapoor, C., and Tesar, D., “Kinematic Abstractions for General
Manipulator Control,” Proceedings of the 1999 ASME Design
Engineering Technical Conferences and Computers in Engineering
Conference, Sept. 12-16, 1999, Las Vegas, Nevada.

[16] Kapoor, C. Tesar, D. “A Reusable Operational Software Architecture for
Advanced Robotics” Proceedings of the Twelfth CSIM-IFToMM
Symposium on theory and Practice of Robots and Manipulators, Paris,
France, July 1998.

[17] Loffler, M.S.; Costescu, N.P.; Dawson, D.M., “QMotor 3.0 and the
QMotor robotic toolkit: a PC-based control platform," IEEE Control
Systems Magazine, Vol. 22, June 2002, pp12-26.

[18] Machine Controller Software Home Page, Robotics Research Group.
Available: http://www.robotics.utexas.edu/rrg/research/mcs/.

[19] March, P.; Taylor R.; Kappor, C.; Tesar D., “Decision making for
remote robotic operations,” Proceedings IEEE Conference on Robotics
and Automation 2004, Vol. 3, Apr. 26—May 1, 2004. pp. 2764—2769.

[20] OSCAR Home Page, Robotics Research Group. Available:
http://www.robotics.utexas.edu/rrg/research/oscarv.2/

[21] Product Line Architecture Research Group Home Page, University of
Texas At Austin. Available: http://www.cs.utexas.edu/users/schwartz/

Table 9. Features Supported by Robot Hardware

Robot Actuator
Hardware

Real Time Total = Actuator
Hardware * Real Time

Roboworks 4 4 16
Roboworks RT 20 2 40
KB2017 12 6 72
Powercube 12 6 72

 Total 200

[22] Pryor, M.; Taylor R.; Kapoor, C.; Tesar, C., “Generalized software
components for reconfiguring hyper-redundant manipulators,”
IEEE/ASME Transactions on Mechatronics. Vol. 7, No. 4, Dec 2002,
pp.475—478.

[23] Smaragdakis, Y. and Batory, D., “Mixin layers: an object-oriented
implementation technique for refinements and collaboration-based
designs,” ACM Transactions on Software Engineering and
Methodology, Vol. 11, No. 2, 2002, pp. 215-255.

