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Abstract1

Step-wise refinement is a powerful paradigm for developing
a complex program from a simple program by adding fea-
tures incrementally. We present the AHEAD (Algebraic
Hierarchical Equations for Application Design) model that
shows how step-wise refinement scales to synthesize multi-
ple programs and multiple non-code representations.
AHEAD shows that software can have an elegant, hierarchi-
cal mathematical structure that is expressible as nested sets
of equations. We review a tool set that supports AHEAD. As
a demonstration of its viability, we have bootstrapped
AHEAD tools solely from equational specifications, gener-
ating Java and non-Java artifacts automatically, a task that
was accomplished only by ad hoc means previously.

1  Introduction

Step-wise refinement is a powerful paradigm for developing
a complex program from a simple program by incrementally
adding details [9]. The program increments that we consider
in this paper are feature refinements — modules that encap-
sulate individual features where a feature is a product char-
acteristic that is used in distinguishing programs within a
family of related programs (e.g., a product-line) [13].

There are many implementations of feature refinements,
each with different names, capabilities, and limitations: lay-
ers [2], feature modules [17], meta-classes [10], collabora-
tions [23][24], subjects [14], aspects [18], and concerns [27].
More general than traditional modules that encapsulate sets
of complete classes, a feature refinement usually encapsu-
lates fragments of multiple classes. Figure 1 depicts three
classes, c1—c3. Refinement r1 cross-cuts these classes, i.e.,
it encapsulates fragments of c1—c3. The same holds for
refinements r2 and r3. Composing refinements r1—r3

yields a set of fully-formed classes c1—c3. Because refine-
ments reify levels of abstraction, feature refinements are
often called layers — a name that is visually reinforced by

their vertical stratification of c1—c3 in Figure 1. As the con-
cepts of refinements, layers, and features are so closely
related, we use their terms interchangeably. In general, fea-
ture refinements are modular, albeit unconventional, build-
ing blocks of programs.

Tools that synthesize applications by composing feature
refinements are generators whose focus has been on the pro-
duction of source code for individual programs. This is too
limited. Today’s systems are not individual programs, but
rather groups of different programs collaborating in sophisti-
cated ways. Client-server architectures are examples, and so
are tool suites, such as MS-Office. Further, systems are not
solely described by source code. Architects routinely use dif-
ferent knowledge representations (e.g., process models,
UML models, makefiles, design documents) to capture an
application’s design [16]. Each representation encodes dif-
ferent design information and is expressed in its own lan-
guage or domain-specific language (DSL), such as UML,
OCL, XML, etc.

The contribution of this paper shows how step-wise refine-
ment scales to the simultaneous synthesis of multiple pro-
grams and multiple non-code representations written in
different DSLs. The challenge is not one of possibility, as ad
hoc ways are used now. Rather, the challenge is to create a
mathematical model of application synthesis that treats all
representations — code and non-code, individual programs
and multiple programs — in a uniform way. By expressing
the refinement of representations as equations, we not only
simplify tool development (as equations are ideal for pro-
gram manipulation) but also lay the groundwork for specify-
ing, generating, and optimizing application designs of
considerable complexity using algebraic techniques.1.   This work was supported in part by the U.S. Army Simulation and Train-

ing Command (STRICOM) contract N61339-99-D-10 and Deutsche Fors-
chungsgemeinschaft (DFG) project WI 841/6-1 “InOpSys”.
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We begin with a review of the GenVoca model, which
shows how the code representation of an individual pro-
gram is expressed by an equation. We then present the Alge-
braic Hierarchical Equations for Application Design
(AHEAD) model that generalizes equational specifications
to multiple programs and multiple representations. AHEAD
is related to other methodologies, such as Aspect-Oriented
Programming [18] and Multi-Dimensional Separation of
Concerns [22], and thus our results are not GenVoca-spe-
cific. We review a tool set that supports AHEAD. As a
demonstration of AHEAD’s viability, we have bootstrapped
AHEAD tools, generating over 100K LOC of Java (and
other non-code artifacts) solely from equational specifica-
tions automatically, a task that was accomplished only by
ad hoc means previously. We believe that this is the most
sophisticated system built by automated step-wise refine-
ment.

2  GenVoca

GenVoca is a design methodology for creating application
families and architecturally-extensible software, i.e., soft-
ware that is customizable via module additions and remov-
als [2]. It follows traditional step-wise refinement [9] with
one major difference: instead of composing thousands of
microscopic program refinements (e.g., x+1⇒inc(x)) to
yield admittedly small programs, GenVoca scales refine-
ments so that each adds a feature to a program, and com-
posing few refinements yields an entire program.

2.1   Model Concepts
Programs are constants and refinements are functions that
add features to programs. Consider the following constants
that represent programs with different features:

f // program with feature f
g // program with feature g

A refinement is a function that takes a program as input and
produces a refined or feature-augmented program as output:

i(x) // adds feature i to program x
j(x) // adds feature j to program x

A GenVoca model of a domain a set of constants and func-
tions. A multi-featured application is an equation that is a
named expression. Different equations define a family of
applications, such as:

app1 = i(f) // app1 has features i and f
app2 = j(g) // app2 has features j and g
app3 = i(j(f)) // app3 has features i, j, f

Thus, the features of an application can be determined by
casually inspecting its equation.

Note that a function represents both a feature and its imple-
mentation — there can be different functions with different
implementations of the same feature:

k1(x) // adds k with implementation1 to x
k2(x) // adds k with implementation2 to x

When an application requires the use of feature k, it is a
problem of expression optimization to determine which
implementation of k is best (e.g., provides the best perfor-
mance)2. It is possible to automatically design software
(i.e., produce an expression that optimizes some criteria)
given a set of declarative constraints for a target applica-
tion. An example of this kind of automated reasoning —
historically called automatic programming [1] — is [5]. 

Although GenVoca constants and functions seem untyped,
typing constraints do exist. Design rules capture syntactic
and semantic constraints that govern legal compositions. It
is common that the selection of a feature will disable or
enable the selection of other features. The details of design
rules are not germane to our paper and can be found in [3].

2.2   Model Implementation
A GenVoca constant is a set of classes. Figure 2 depicts a
constant i that encapsulates four classes (ai—di). A Gen-
Voca function is a set of classes and class refinements. A
class refinement adds new data members, methods, and
extends or overrides existing methods of a target class. It
could be implemented as a subclass of the target class, with
the provision that the subclass assumes the name of the tar-
get class. In this sense, class refinement is different from
typical subclassing in that true subclasses have names that
are distinct from their parent class. 

Figure 2 shows the result of applying function j to i: three
classes are refined and another class is added, where the
vertical lines in Figure 2 denote class refinement. That is, j
encapsulates a cross-cut that refines classes aj, cj, and dj,
and adds class ej. Figure 2 also shows the application of
function k to j(i), resulting in the refinement of two
classes. In general, a forest of inheritance hierarchies is cre-
ated as features are composed, and this forest grows pro-
gressively broader and deeper as the number of features
increase [6].

Linear inheritance chains, called refinement chains, are
common in this method of implementation. The rule is that

2.   Different expressions represent different programs and expression opti-
mization is over the space of semantically equivalent programs. This is
identical to relational query optimization: a query is represented by a rela-
tional algebra expression, and this expression is optimized. Each expres-
sion represents a different, but semantically equivalent, query-evaluation
program.
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only the bottom-most class of a chain is instantiated,
because this class implements all capabilities that were
assigned to it. These classes are shaded in Figure 2. For
example, the bottom-most class of the c refinement chain
implements the capabilities defined in ci, cj, and ck from
features i, j, and k respectively. Stated another way, ci is a
class (constant) and cj and ck are class refinements (func-
tions). The class c that is produced in Figure 2 can be
expressed equationally as c = ck(cj(ci)).

The simplest implementations of feature refinements are
templates [24][29]. More sophisticated ways include gener-
ators [5][20], program transformations [8], and objects
[26].

3  Scaling Refinements

Four ideas have led us to a major generalization of the Gen-
Voca model. First, a program has many different represen-
tations besides source code. A program can be defined by
UML documents, process diagrams, makefiles, perfor-
mance models, design rule files, etc. in addition to code,
each written in its own DSL.

Second, conventional notions of modularity must be broad-
ened: a module is a containment hierarchy of artifacts. For
example, an object-oriented class is a module; it encapsu-
lates a set of data members and methods. A package is
another kind of module; it encapsulates a set of Java and
.class files. A J2EE EAR file is also a module; it encapsu-
lates Java JAR files, deployment descriptors, and web
archive files (e.g., HTML files). A program is yet another
kind of module; its representation is expressible as a con-
tainment hierarchy of artifacts — code, makefiles, etc.

Third, the impact of refinements need not be limited to
source code. When a program is refined, any or all of its
representations may be changed. This is required so that all
of its artifacts (code files, design rules, etc.) remain consis-
tent. Thus if a program is represented by a containment
hierarchy, a program refinement is a function that trans-
forms containment hierarchies. That is, a refinement may
alter a containment hierarchy by adding new nodes (e.g., a
refined program may have new Java or HTML files) and

refining existing nodes (e.g., existing Java and HTML files
are updated).

Fourth, refining non-code artifacts is intuitively evident:
you start with an original document and you produce an
updated document. But how is this to be achieved? What
general principle guides refinement? An example reveals a
basic strategy that we have found to be practical. A make-
file is a typical non-code artifact. Figure 3a shows a make-
file with three targets: main, common, and clean. common
must be built before main; clean has no dependencies. Sup-
pose these targets are part of a base feature. Figure 3b
shows the refinement of base by foo, which encapsulates a
cross-cut of targets that adds a file D to compile in main and
file E to compile in common. Figure 3b shows a further
refinement of foo(base) by bar, which adds another file Q
to compile to main and a new instruction (delete *.ser) to
clean.

Figure 3 imposes a class-like structure on a makefile. That
is, a makefile is analogous to a class and targets are analo-
gous to methods. Refinement of makefiles refines targets
and may add new targets, etc. This example illustrates the
Principle of Uniformity: treat all non-code artifacts as
classes, and refine them analogously.

Interestingly, most artifact types in use today (XML,
HTML, PPT, etc.) have or can have a class-like structure
and thus are object-based. However, these types are rarely
object-oriented — few allow inheritance or more general
refinement relationships to be defined among its files.
There is, for example, no support for inheritance relation-
ships to relate different XML schemas. For representations
like XML, adding inheritance or refinement relationships
seems reasonable as a plethora of tools for manipulating
XML documents are available and can be used to define
such relationships. However, other representations — MS
Word for example — are so complex that defining inherit-
ance relationships among Word documents seems daunting.
Never the less, the idea is clear: the task to be done when
introducing a new artifact type is to define what refinement

ai bi ci di
i

aj cj dj ej

ck dk

j

k

Figure 2. Simultaneous Refinement of Classes
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Figure 3. Makefiles and their Refinements
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means.3 Given the ability to refine non-code artifacts, we
are in the position to scale refinements in a significant way.

4  AHEAD

GenVoca expressed the code representation of an individual
program as an equation. The model that we present here,
called Algebraic Hierarchical Equations for Application
Design (AHEAD), expresses an arbitrary number of pro-
grams and representations as nested sets of equations, a
form that is ideal for generators to manipulate. In this sec-
tion, we show how AHEAD constants, functions, and their
compositions are represented, and illustrate the power of
the model. In Section 5, we review a tool set for AHEAD.

4.1   Constants and Functions
Base artifacts are constants and artifact refinements are
functions. An artifact that results from a refinement chain is
modeled equationally as a series of functions (refinements)
applied to a constant (base artifact).

Figure 4a depicts our graphical notation for a GenVoca con-
stant f that encapsulates base artifacts (henceforth called
units) af—cf. Instead of pictures, we express constant f
mathematically as a set of constants: f = { af, bf, cf }. Simi-
larly, Figure 4b depicts our graphical notation for a Gen-
Voca function h that encapsulates functions ah and bh and
constant dh. Function h can be expressed mathematically as
a set of functions and constants: h = { ah, bh, dh }.

We use the term collective as an alternative to “set of units”.
The root collective (that comprises all other collectives) is
also called a model.

4.2   Composition
Instead of writing h(f) to denote the composition of h with
f, we henceforth write h•f. The composition of collectives

is governed by the rules of inheritance. Namely, all units of
the parent (inner or right-hand-side) collective are inherited
by the child (outer or left-hand-side) collective. Further,
units with the same name (ignoring subscripts) are com-
posed pairwise with the parent unit as the innermost term:

h•f = { ah, bh, ch } • { af, bf, df }
= { ah•af, bh•bf, ch, df }

Equivalently, h•f is a set of equations where equation
names are unit names without subscripts:

h•f = { a, b, c, d }
where a = ah•af

b = bh•bf
c = ch
d = df

Each expression in a collective defines the refinement chain
of an artifact that is to be produced. Figure 5 shows this cor-
respondence between our graphical notation and its
AHEAD expression: ah•af is the refinement chain for arti-
fact a and bh•bf is the chain for b. Artifacts c and d are unre-
fined from their original definitions.

Containment Hierarchies. Compound artifacts are
expressed by recursion: units may themselves be collec-
tives. Composition of compound artifacts is achieved by
recursively composing collectives. Suppose ah and af in
Figure 5 are the collectives ah = { xh, zh } and af = { xf, yf }.
The expression ah•af expands to the collective { xh•xf, yf,
zh}. The depth to which collectives are nested is the rank of
the collective. {} is an empty collective of rank 0; {{}} is a
collective of rank 1, and so on.

A compound artifact is a containment hierarchy. A Java
program p, for example, is a compound artifact and thus is a
non-leaf node; its leaves might be the set of Java files
{x.java, y.java, …} that implement it, the set of HTML
files {x.html, y.html, …} that JavaDoc produces from
these Java files, the set of .class files {x.class, y.class,
…} produced by javac, and so on. 

A feature — whether it represents an AHEAD constant or a
function — is defined by a tree of artifacts. When features
are composed, all of their corresponding artifacts are com-

3.   Because it is possible to derive artifacts (e.g., .class files are derived
from Java files via javac), composition operators are needed only for
the most basic artifact types. Maintaining the consistency among “basic”
types (e.g., English explanations of source code) is something that is
accomplished manually.

Figure 4. Constants and Functions as Sets (Collectives)
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posed. Thus, feature composition has a simple interpreta-
tion.

Polymorphism. The composition operator • is polymor-
phic. Artifacts are composed by operators that are specific
to that artifact type. Java files, design rule files, XML files,
etc. will each have their own unique implementation of the
•  operator. Thus, if there are n different artifact types, there
will be n different type-specific composition operators. (As
we will see in Section 5, there may be several composition
operators for a given artifact type).

Further, the operator for composing collectives of rank n is
no different than the operator for composing collectives of
rank n+1, for n≥0. We call this the Principle of Abstraction
Uniformity, which is a special case of the Principle of Uni-
formity. Imposing uniformity on all levels of abstraction
produces a very compact and powerful algebra for defining
and composing systems.

Scalability. OO programming languages that support
parameterized inheritance can define and refine code arti-
facts, but are unsuitable for non-code representations. In
contrast, equations elegantly express refinement relation-
ships for all representations. Furthermore, equations enable
step-wise refinement and its generators to scale. Instead of
building one huge generator that deals with all possible pro-
gram representations (which itself is impractical), it is much
easier to build an elementary tool — here called a composer
— that expands a high-level equation into its constituent
artifact equations. The composer can then submit its gener-
ated equations to type-specific composition tools to gener-
ate the artifacts of the target system. Thus, a simple
composer tool does the work of orchestrating other rela-
tively simple tools to produce the complex set of artifacts
that comprise a synthesized system.

4.3   Metamodels
One way in which to gauge the power of a model is its abil-
ity to express itself. A metamodel is a model whose
instances are models. The UML metamodel is a classical
example: it is a UML model whose instances are other
UML models. AHEAD metamodels are collectives of mod-
els. Consider model M that contains three units a—c:

M = { a, b, c }

Metamodel MM contains three units AAA—CCC, each of which
is a collective with a single unit:

MM = { AAA, BBB, CCC }
 = { {a}, {b}, {c} }

Model M is defined by an equation using metamodel MM:

M = AAA • BBB • CCC

where composition creates M by disjoint union, since none
of the units share names. The following are interesting uses
of metamodels.

Service Packs. A service pack is an update of model. A
service pack metamodel SP contains an initial model M0 and
a series of service pack updates S1, S2, S3, each of which
incrementally updates a model:

SP = { M0, S1, S2, S3, … }

A special composition operator ♦ , called replace, is used to
apply the changes of a service pack to an existing model. If
Uk and Uj are primitive (i.e., non-compound) units, the law
of the replace operator is:

Uk ♦ Uj = Uk // Uk replaces Uj

Otherwise ♦ is identical to the composition •  operator for
collectives. (♦  is actually a special case of • ). Thus, a
model M that is up-to-date w.r.t. service pack S3 is defined
by the equation:

M = S3 ♦  S2 ♦  S1 ♦  M0

That is, the effects of S1 are applied to M0 by replacing old
base artifacts with new ones, and adding new artifacts. The
same for S2 and S3. Special primitive units might be used to
indicate the physical deletion (rather than replacement) of
designated files.

Origami. A much more sophisticated use for AHEAD
metamodels is generating equations for AHEAD tools from
a single AHEAD metamodel equation. See [7].

5  AHEAD Tool Support

A simple way to implement a collective is as a file system
directory. A directory’s contents are either files (primitive
units) or subdirectories (collectives). Figure 7a shows a col-
lective that defines layer A; it consists of a unit, R.drc (a
design rule file), and two collectives, Code = {x.jak,
y.jak} (Jak files are extended-Java files) and Htm =
{W.htm}. Figure 7b depicts its representation as a directory. 

Figure 6. Organization of AHEAD Generators
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Feature composition is directory composition. A composite
directory is produced whose organization is isomorphic to
the directories from which it was composed. Figure 7c
shows a composition of features A and B, the result is fea-
ture C. Corresponding units in each directory are composed
to produce a compound unit. For example, X.jak of C
equals X.jak of B composed with X.jak of A.

Given this organization, we have built many tools to sup-
port AHEAD using the Jakarta Tool Suite (JTS) [4]. JTS is
a set of compiler-compiler tools that use GenVoca models
to build product-lines (i.e., families) of preprocessors for
extended Java languages. Almost all AHEAD tools were
built using JTS, and were written in a JTS-produced dialect
of Java that includes refinement declarations, meta-pro-
gramming constructs (e.g., Lisp “quote” and “unquote”),
and hygienic macros. In Section 6 we describe how we
recently bootstrapped our implementation where JTS is no
longer used and AHEAD tools are now creating AHEAD
tools. AHEAD tools are, themselves, Java language exten-
sible — they can be created for different dialects of Java
through language feature compositions.

The main tool of AHEAD is the composer, which takes an
equation as a command-line input, and recursively expands
the equation into its nested collective equivalent. It then
creates a composite feature directory (whose name is that of
the input equation), and invokes artifact-specific composi-
tion tools to synthesize artifact files from generated nested
equations. composer itself is fairly simple, written in 4K
lines of Java. 

Other tools implement the composition operator • for spe-
cific artifact types. The first tools that we built composed
code artifacts, as verifying the code synthesis capabilities of
AHEAD was our first priority. Subsequently, composition
tools for HTML files, makefiles, equation files (files whose
contents define a single AHEAD equation), design rule
files, and BNF-grammar files (for synthesizing extensible
preprocessors) were constructed. We anticipate the number
of artifact-composition tools to increase over time.

Because of space limitations, we review how AHEAD tools
compose code and equation representations. Other tools

and representations — such as makefiles and design rules
— are described in [28].

5.1   Code Artifacts and Tools
Code files that are composed by AHEAD tools are not pure
Java, but rather a superset of Java called Jak (pronounced
“jack”, short for Jakarta): this is Java extended with embed-
ded DSLs for refinements, state machines, and meta-pro-
gramming. (Remember: AHEAD tools are Java language
extensible, so AHEAD can support many Java dialects).

Jak-specific tools are invoked to compose Jak files. One of
two different implementations of the •  operator can be
used: jampack or mixin. Both take an equation as input,
which defines the refinement chain of a Jak artifact, and
produce a single, composite Jak file as output. A third tool,
jak2java, translates a Jak file to its Java counterpart. Thus
our two-step paradigm uses jampack or mixin to compose
Jak files, and jak2java to derive the corresponding Java
file from its composite Jak file (Figure 8).

Source Code. A Jak file defines a code constant or func-
tion. A code constant is a single interface, class, or state
machine. A Jak interface and class declaration are indistin-
guishable from their Java counterparts, except for a layer
declaration which specifies the name of the layer to which
the file belongs (see Figure 9a). More interesting is a state
machine declaration, which consists of state and edge (tran-
sition) declarations. The state machine fsm of Figure 9b
declares three states (s1—s3) and two edges (e1—e2). See
[6] for more details.

Figure 7. Collectives as Directories
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A code function refines an interface, class, or state
machine. The refines modifier distinguishes constant dec-
larations from functions. A refinement of class k in
Figure 9a is shown in Figure 9c. It adds a new data member
(counter2) and a new method (method2). Methods can be
refined/extended in the usual way by overriding their super-
class method and invoking that method in the extension
body. A refinement of the fsm state machine is shown in
Figure 9d. It adds another state s4 and edge e3 declaration.

Composition. jampack and mixin are sophisticated tools,
both over 30K Java LOC in size. Their basic functionality,
however, is fairly simple. jampack compresses refinement
chains into a single interface, class, or state machine speci-
fication. The jampack result of composing the k function
with the k constant of Figure 9 is shown in Figure 10a; the
resulting class exposes the union of package imports, data
members, and methods that are visible to the bottom-most
class of its refinement chain. The jampack result of com-
posing the fsm function with the fsm constant of Figure 9 is
shown in Figure 10b. The resulting state machine exposes
the union of package imports, states and edges, that are vis-
ible to the bottom-most state machine of its refinement
chain. 

jampack was our first tool to compose code. We soon dis-
covered that jampack might not be the preferred tool. To see

why, a typical debugging cycle is to (a) compose Jak files,
(b) translate the composite Jak file to its Java counterpart,
(c) compile and debug the Java file, and (d) update the com-
posite Jak file with bug fixes. This translate-compile-update
cycle continues until no further changes are needed. Here
lies the problem: jampack does not preserve layer bound-
aries, thus changes made to the composite Jak file must be
manually propagated back to the original Jak layer files.
This can be tedious and error prone.

mixin was created as an alternative implementation of the
Jak composition operator. It preserves layer boundaries by
creating within a single Jak file an inheritance hierarchy —
refinement chain — of class/interface/state machine decla-
rations, where the bottom-most declaration is concrete and
all others are abstract. Every declaration is prefaced by a
SoUrCe statement that identifies both the layer name and
path to the file from which that instantiated declaration
originated. (The case alteration in “SoUrCe” minimizes the
likelihood of conflicting with typical program identifiers).
Figure 11a-b shows the mixin output for the corresponding
jampack compositions of Figure 10a-b. With the availabil-
ity of SoUrCe statements, we have created a fourth tool,
called unmixin, which takes a mixin-produced Jak file as
input, and automatically propagates updates (comments as
well as source statements) to the original layer files. Early
experiences with unmixin suggest it can save a consider-
able amount of time during a development cycle.

There is yet another strategy: it is possible to edit the origi-
nal layer files and recompose. Our experience suggests that
debugging layers is similar to debugging templates: one
instantiates a template to debug and develop it, and changes
are eventually back-propagated to the original definition.
We do not yet know which tools and processes engineers
will prefer when developing software with AHEAD; this is
a subject of future work.

layer A;

import java.util.*;

class k {
int counter;

int getCounter() 
{...}

}

layer A;

import java.util;

State_machine fsm {
States s1, s2, s3;

Edge e1: s1 -> s2 ...;
Edge e2: s2 -> s3 ...;

}

layer B;

import foo.bar;

refines class k {
int counter2;

void method2()
{...}

}

layer B;

import foo.bar;

refines State_machine fsm {
States s4;

Edge e3: s3 -> s4 ...;
}

(a) class constant (b) state machine constant (c) class function (d) state machine function

Figure 9. AHEAD Code Constants and Functions

layer C;

import java.util.*;
import foo.bar

class k {
int counter;
int counter2;

int getCounter() 
{...}
int method2()
{...}

}

layer C;

import java.util.*;
import foo.bar;

State_machine fsm {
States s1, s2, s3;
States s4;

Edge e1: s1 -> s2 ...;
Edge e2: s2 -> s3 ...;
Edge e3: s3 -> s4 ...;

}

Figure 10. jampack Compositions of Jak Files
(a) (b)
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5.2   Equation Artifacts
An equation file encodes an AHEAD equation. The file for
X = F•E•D is depicted in Figure 12a; the name of the file is
X.equation and the file itself is a text file that lists one
layer per line, inner-most layer first. A refinement of an
equation follows the principle of uniformity: we treat an
equation as an artifact and a refinement is an equation that
may reference a special layer called super, which refers to
the parent equation. A refinement of an equation is depicted
in Figure 12b, and the result of composing the equation
files of Figure 12a-b is Figure 12c. If a refinement does not
reference super, it is a constant and overrides the parent
definition. Depending on the replacement of super in an
equation file, a refinement might add new layers before,
after, or around the original equation file (like before, after,
and around methods). 

Equation files are useful as command-line input to com-
poser and for implementing metamodels [7].

6  Applications

AHEAD is being used to build next-generation distributed
fire support simulators (FSATS) for the U.S. Army Simula-
tion, Training, and Instrumentation Command (STRICOM).
Several years ago, we built a layered prototype of FSATS
[6]. As the first non-trivial test of AHEAD, we converted
the prototype’s source code, which included classes, inter-

faces, and state machines, into AHEAD layers. We also
added design rule files and makefiles, so when AHEAD
layers are composed, three very different representations of
FSATS (code, design rules, makefiles) were synthesized.
The prototype was defined by a single AHEAD equation
composing 21 layers, yielding 90 files and 4500 Java LOC. 

The next significant test was bootstrapping AHEAD itself.
As mentioned earlier, AHEAD tools were initially built
using JTS. To bootstrap AHEAD, we converted JTS source
into AHEAD layers. In addition to code representations,
AHEAD directories included grammar (BNF) files, which
defined the syntax of optional extensions to the Java lan-
guage. We used Origami, an AHEAD metamodel, to gener-
ate equations for AHEAD tools, including jampack, mixin,
unmixin, and jak2java, and then used AHEAD tools to
synthesize their executables [7]. 

To convey the complexity of this bootstrapping step, there
are 69 distinct AHEAD layers constituting a code base of
33K Jak LOC. An Origami-generated equation references
approximately 23 layers, where about 10 layers are shared
among AHEAD tools. Each tool is generated by composing
the Jak and grammar representations of each layer, and
translating their representations to Java. Each AHEAD tool
is sizable, having over 30K Java LOC. Thus using only
equational specifications, we are generating the AHEAD
tool suite whose complexity exceeds 100K Java LOC [7]
automatically, a task that was accomplished only by ad hoc
means previously. We believe this is the most sophisticated
system ever produced by automated step-wise refinement.

7  Future Work

AHEAD raises many interesting questions including:

• The ability to analyze designs using tools such as model
checkers will be critical to future design technologies.
How do such tools fit with refinements and AHEAD
designs? Preliminary results are encouraging [19].

• There are many operators on collectives and units, besides
the • and ♦  operators. javac, for example, is an operator
that compiles the Java files in a collective. javadoc is an
operator that generates HTML documentation for the
Java files in a collective. By equating standard tools with
operators on collectives, we have an algebra for software
development. Once software is specified algebraically, it
is amenable to automated optimization and reasoning.

• How do the operators of refactorings and program optimi-
zations fit into an AHEAD algebra?

• Many refinements that impact — cross-cut — different
parts of programs require more sophisticated implemen-
tations of refinements than used in AHEAD. For exam-

layer C;

import java.util.*;
import foo.bar;

SoUrCe A “A/k.jak”;
abstract class k001 {

int counter;
int getCounter() 
{...}

}

SoUrCe B “B/k.jak”;
public class k 

extends k001 {
int counter2;
void method2()
{...}

}

layer C;

import java.util.*;
import foo.bar;

SoUrCe A “A/fsm.jak”;
abstract State_machine

fsm001 {
States s1, s2, s3;
Edge e1: s1 -> s2 ...;
Edge e2: s2 -> s3 ...;

}

SoUrCe B “B/fsm.jak”;
public State_machine fsm 

extends fsm001 {
States s4;
Edge e3: s3 -> s4 ...;

}

Figure 11. Mixin Compositions of Jak Files
(a) (b)

D
E
F

C
super
G

C
D
E
F
G

(a) constant (b) function (c) composition

Figure 12. Equation Files
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ple, information from multiple artifacts may be used to
decide how to refine other artifacts en mass. How can
such functions be modeled and implemented?

• AHEAD constants and functions are typed. The layer
directories that we have composed with AHEAD have
the same structure (or type), but our tools are not yet
sophisticated enough to validate this assumption. A the-
ory is needed to type refinements and artifact hierarchies.

• AHEAD has been developed with functions that have at
most one parameter. There are GenVoca models with
multi-parameter functions [2]. How can such functions
be implemented in AHEAD? Why are functions with one
parameter so common? We suspect that the answer is not
how domains are represented, but rather our (implicit)
use of currying which expresses a function of multiple
parameters as a composition of functions with single
parameters.

• Most, but not all, GenVoca models have focussed on the
synthesis of programs using statically composable refine-
ments. However, neither GenVoca or AHEAD preclude
dynamic composability. How does AHEAD generalize?

8  Related Work

Among the most advanced work on generators is that of
Model Integrated Computing (MIC) at Vanderbilt [25].
MIC embraces the concept that architects use multiple rep-
resentations to specify application designs, and MIC gener-
ators have been developed to synthesize graphical domain-
specific languages (GDSLs) that architects can use to spec-
ify their designs. Information that is collected from GDSL
specifications are integrated and stored in a database. Spe-
cific artifacts of a design, ranging from source code to rep-
resentations for analysis tools (e.g., model checkers), can be
extracted and deduced from this database.

MIC has had great success in synthesizing software and
hardware in engineering and manufacturing domains where
the building blocks of systems and their composition-by-
construction paradigms are well-understood. Where MIC
has had less success is in areas of classical software appli-
cations where the building blocks and construction-by-
composition paradigms are not well understood. We believe
this is where AHEAD contributes: AHEAD shows how
domains can be modularized as features and how applica-
tions of the domain are composed from them.

Domain-specific languages are recognized as a more effi-
cient way in which to (a) specify applications and (b) inte-
grate domain-specific analyses to validate DSL programs
[30]. DSL usage is increasing and has been particularly suc-
cessful in the specification of product-lines [31]. AHEAD
not only embraces the use of DSLs as the primary means

for specifying artifacts, but also advocates that DSL pro-
grams can be refined. (Our refinement of state machines
and equation files in AHEAD are prime examples; state
machines are expressed in a DSL embedded in Java; equa-
tion files are written in a stand-alone DSL). It is this scaling
of refinements to code and non-code artifacts that is a dis-
tinguishing feature of AHEAD.

Aspect Oriented Programming (AOP) is a program refine-
ment technology [18]. AHEAD essentially uses templates
to express refinements. A more sophisticated way is to use
special compilers to implement AHEAD functions that per-
form computations on a collective to determine how that
collective is to be modified (or “advised”). Aspects are
specifications of refinements, and aspect weavers execute
these specifications on input programs. Thus, aspects pro-
vide another important kind of AHEAD function that is cur-
rently lacking in the AHEAD tool set.

Gray has shown how aspects apply to non-code artifacts
[12]. AHEAD shows how both code and non-code artifacts
can be refined simultaneously in collection hierarchies.

Multi-Dimensional Separation of Concerns (MDSC) is
another program refinement technology [22]. We have built
GenVoca generators using Hyper/J. Layers correspond to
hyperslices, and GenVoca equations correspond to compo-
sitions of hyperslices. Further, MDSC advocates that the
techniques for assembling customized code from hyperslice
compositions should also work for non-code artifacts as
well. This conjecture inspired work on AHEAD. The con-
tribution of AHEAD is a simple algebraic model that sup-
ports the MDSC thesis.

9  Conclusions

The future of software engineering lies in automation. Inte-
gral to this vision is the transformation of application
design from an art into a science — a systematized body of
knowledge that is organized around principles, ideally
expressible as mathematics. As long as application design
remains an art, our abilities to automate key tasks of appli-
cation design will be limited.

Generators are critical to this vision. As application com-
plexity increases, the burdens placed on generators and
their ability to synthesize multiple programs and multiple
representations increases. The challenge in scaling refine-
ment-based generators is not one of possibility, as there are
any number of ad hoc ways in which this can be done.
Rather, the challenge is to show how scaling can be accom-
plished in a principled manner, so that generators are not
just ad hoc collections of tools and an incomprehensible
patchwork of techniques. The significance of this point is
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clear: generators are a technological statement that the
development of software in a domain is understood well
enough to be automated. However, we must make the same
claim for generators themselves: the complexity of genera-
tors must also be controlled and must remain low as appli-
cation complexity scales, otherwise generator technology
will unlikely have wide-spread adoption.

We have presented the AHEAD model, which offers a prac-
tical solution to the above problem. The key ideas are (1) to
represent the plethora of representations that define a pro-
gram — both code and non-code — as a containment hier-
archy, and to treat containment hierarchies as constants.
And (2) express feature refinements as functions that trans-
form containment hierarchies; such refinements encapsu-
late all the changes that are to be made to the
representations of a program when a feature is added.

Doing this, we discovered that application designs have an
elegant hierarchical structure that is expressed by nested
sets of equations. By imposing uniformity, we (1) eliminate
ad hoc complexity as containment hierarchies scale; (2)
enable a small number of operators to be used to manipulate
AHEAD concepts; and (3) most importantly keep genera-
tors based on step-wise refinement simple as the systems
they synthesize scale in complexity.

We reviewed an implementation of AHEAD and described
our first non-trivial systems constructed by its principles
(FSATS and AHEAD tools). We believe AHEAD takes us
an important step closer to realizing a broader vision of
automation in software development.
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