
On the Structure of Crosscutting Concerns:
Using Aspects or Collaborations?

Sven Apel
Department of Computer Science

University of Magdeburg, Germany
apel@iti.cs.uni-magdeburg.de

Don Batory
Department of Computer Sciences

University of Texas at Austin
batory@cs.utexas.edu

Marko Rosenm̈uller
Department of Computer Science

University of Magdeburg, Germany
rosenmueller@iti.cs.uni-magdeburg.de

Abstract
While it is well known that crosscutting concerns occur in many
software projects, little is known about the inherent properties
of these concerns nor howaspects(should) deal with them. We
present a framework for classifying the structural properties of
crosscutting concerns into (1) those that benefit from AOP and (2)
those that should be implemented by OOP mechanisms. Further,
we propose a set of code metrics to perform this classification.
Applying them to a case study is a first to step toward revealing
the current practice of AOP.

1. Introduction
While many studies have examined the capabilities ofaspect-
oriented programming (AOP)to improve the modularity, cus-
tomization, and evolution of software [8, 9, 13, 14, 21, 38], little
is known onhowAOP has been used. We are interested in know-
ing which language mechanisms are used in current aspect-oriented
programs, to what extent, and for what kinds of problems. Knowing
this helps (1) build AOP tools that reflect the programmer’s needs;
(2) provide programming guidelines for exploiting AOP mecha-
nisms better, i.e., what kind of crosscutting concern is implemented
best using which programming mechanism; and (3) discover mis-
use of AOP mechanisms, which may lead to significant problems
and penalties [11,13,14,16,19,24,28].

To address these issues we propose a framework for classify-
ing crosscutting concerns (a.k.a.crosscuts). Our framework en-
ables us to assign individual crosscuts to two distinct categories:
(1) crosscuts that really demand AOP mechanisms and (2) cross-
cuts that can be implemented appropriately using well-known OOP
mechanisms. This distinction follows a long line of prior work on
collaboration-based designs[31,32,35],feature-oriented program-
ming [4], and design patterns[12]. All of them advocate object-
oriented mechanisms for a certain class of design and implemen-
tation problems, so calledcollaborations, which fall into one cate-
gory.

We propose four metrics to analyze aspect-oriented programs
to make the above distinctions, i.e., do the aspects of a program
implement crosscutting concerns that really demand AOP language
mechanisms? We are building a tool that will collect data from a
representative spectrum of software projects that employ AOP. We
discuss the data for oneAspectJ1 project exemplarily.

1 http://www.eclipse.org/aspectj/

2. Crosscut Classification Framework
2.1 Homogeneous and Heterogeneous Crosscuts

A homogeneous crosscutextends a program at multiple join points
by adding oneextension, which is a coherent piece of code [10]. For
example, an advice may advise a whole set of method executions
or an inter-type declaration may introduce a field to a set of target
classes (left column of Table 1).

A heterogeneous crosscutextends multiple join points by
adding multiple extensions, where each individual extension is im-
plemented by a distinct piece of code that affects exactly one join
point [10]. For example, an aspect might bundle a set of advice that
extends a set of methods, whereby each advice extends exactly one
method; or an aspect bundles a set of inter-type declarations – each
intended for a distinct class (right column of Table 1).

2.2 Static and Dynamic Crosscuts

A static crosscutextends the structure of a program statically [29],
i.e., it adds new classes and interfaces as well as injects new fields,
methods, interfaces, and super-classes etc.2 Inter-type declarations
are examples of static crosscuts (first row of Table 1).

A dynamic crosscutaffects the runtime control flow of a pro-
gram [29]. The semantics of a dynamic crosscut can be understood
and defined in terms of an event-based model [36]: it runs addi-
tional code when predefined events occur during program execu-
tion. Such events are also calleddynamic join points[27, 36]. A
piece of advice implements a dynamic crosscut (second row of Ta-
ble 1).

Basic and advanced dynamic crosscuts. Dynamic crosscuts are
especially interesting when they exceed the level of known events
such as method calls or executions. Work on AOP suggests that
expressing a program extension in terms of sophisticated events in-
creases the abstraction level and captures the programmer’s inten-
sion more directly. There are proposals for new language constructs
for defining and catching new kinds of events during the program
execution [26,30]. In order to distinguish these new kinds of events
and the novel language mechanisms that support them from known
events in OOP, we distinguish betweenbasic dynamic crosscutsand
advanced dynamic crosscuts, which are defined as follows:
1. A basic dynamic crosscut addresses only events that are related

to method calls and executions; advanced dynamic crosscuts
address all other events, e.g., throwing an exception or assign-
ing a value to a field.

2. Basic dynamic crosscuts affect a program control flow uncondi-
tionally; advanced dynamic crosscuts may specify a condition

2 Some AOP languages do not support adding classes by aspects, e.g.,
AspectJ. While it is correct that one can just add another class to an
environment, this is at the tool level, and is not at a model level [23].

homogeneous heterogeneous
static declare parents : (Line || Point)

implements Shape
void Point.setX(int x)
{ /* ... */ }

basic
dynamic

before() : execution(* set*(..))
{ /* ... */ }

before() : execution(void Point.setX(int))
{ /* ... */ }

advanced
dynamic

before() : execution(* set*(..)) &&
!cflow(execution(* rotate(..)))
{ /* ... */ }

before() : execution(void Point.setX(int)) &&
!cflow(execution(void Line.rotate(double)))
{ /* ... */ }

Table 1. A classification framework for crosscutting concerns (AspectJ examples).

that is evaluated at runtime, e.g., a method execution is only
advised if it occurs in the control flow of another method exe-
cution.

3. Basic dynamic crosscuts address events known from OOP; ad-
vanced dynamic crosscuts can specify composite events that
trigger the execution of an extension, e.g.,trace matchesare
executed when events fire in a specific pattern thereby involv-
ing the history of computation [1].

With AOP, an advanced dynamic crosscut is implemented by anad-
vanced adviceand a basic dynamic crosscut by abasic advice. The
distinction between basic and advanced advice is useful to identify
which pieces of advice make use of advanced AOP mechanisms
and which pieces of advice mimic well-known OOP method exten-
sions.

3. Two Categories of Crosscutting Concerns
We argue it is crucial to decide which crosscutting concerns should
be implemented as aspects, and how, and which using traditional
object-oriented techniques. For that purpose, we divide the space
of possible crosscuts that is defined by our classification framework
into two categories, (1) those crosscuts that abstract collaborations
and (2) those that address the dynamic program semantics and/or
that are homogeneous. The two categories map roughly to the two
programming paradigms, OOP and AOP.

3.1 Collaborations

A collaboration of classes is a set of classes that communicate
with one another to implement a semantically coherent piece of
functionality. Classes of a program play differentroles in different
collaborations[35]. A set of collaborating classes being added to
a program can be understood as afeatureof that program [4]. That
is, a collaboration extends a program by adding new classes and
by applying new roles to existing classes, whereby each role is
implemented as a refinement (e.g., usingvirtual classes[25] or
mixins [6]). From that perspective, a role adds new elements to a
class and extends existing elements, such as methods.

Figure 1 depicts a collaboration-based design of a graph imple-
mentation, where the classesGraph, Node, andEdgecollaborate
together.3 The featureWeightedGraphadds the classWeightand
extends the classesGraphandEdgesimultaneously. For example,
the classEdgeplays two roles, one in theBasicGraphand one in
theWeightedGraph.

A significant body of work has observed that collaborations of
classes are predominantly of a heterogeneous structure [4,5,20,29,
32–35]. That is, the roles and classes added to a programs differ in
their functionality, as in our graph example. Hence, a collaboration
is a heterogeneous crosscut and a heterogeneous crosscut can be
understood as collaboration applied to a program. Therefore, it
is straightforward to employ from techniques for encapsulating

3 The diagram follows the UML notation with some extensions: white boxes
represent classesor roles; gray boxes denote collaborations; filled arrows
mean refinement, i.e., to apply a role to a class.

refines class Edge

Graph

Basic
Graph

class Node

void print();

Weighted

Edge add(Node, Node);

void print();

Edge add(Node, Node, Weight);

void print();

Weight weight;

class Graph

refines class Graph

Node a, b;

void print();

class Weight

void print();

class Edge

Figure 1. Collaboration-based design of a graph implementation.

and composing object-oriented collaborations when implementing
heterogeneous crosscuts [6,25,29,32,35].

3.2 Homogeneous and Advanced Dynamic Crosscuts

Crosscuts that do not fall in the above category are either homoge-
neous crosscuts and/or advanced dynamic crosscuts.

Aspects perform well in extending a set of join points using one
coherent advice or one localized inter-type declaration, thus, mod-
ularizing a homogeneous crosscut. Thereby, programmers avoid
code replication. Figure 2 depicts an aspect that implements the
featureColor, which is homogeneous. It defines an interface for
colored entities (Line 2) and declares via inter-type declaration that
NodeandEdgeimplement that interface (Line 3). Furthermore, it
introduces via inter-type declarations a fieldcolor (Line 4) and two
accessor methods toNodeandEdge(Lines 5-7,8-10).4 Finally, it
advises the execution of the methodprint of all colored entities to
change the display the color (Lines 11-13).

1 a s p e c t Color {
2 interface Colored { Color getColor (); }
3 d e c l a r e p a r e n t s: (Node || Edge) imp lemen ts Colored;
4 Color (Node || Edge).color;
5 v o i d (Node || Edge). setColor(Color c) {
6 color = c;
7 }
8 p u b l i c Color (Node || Edge). getColor () {
9 r e t u r n color;

10 }
11 b e f o r e(Colored c) : t h i s (c) && e x e c u t i o n(* print ()){
12 Color.changeDisplayColor(c.getColor ());
13 }
14 }

Figure 2. The featureColor implemented as aspect.

Advice is well-suited for implementing advanced dynamic
crosscuts [29]. When advising the printing mechanism of our graph
implementation we can take advantage of the sophisticated mech-
anisms of AOP. Background is that theprint methods of the par-

4 Our notation of inter-type declarations differs from AspectJ. Declaration
int (A || B).i means that fieldi is introduced to both classes,A andB.

ticipants of the graph implementation call each other (especially,
composite nodes that callprint of their inner nodes). To make sure
that we do not advise all calls toprint, but only the top-level calls,
i.e., calls that do not occur in the dynamic control flow of other exe-
cutions ofprint, we can use thecflowbelowpointcut as conditional
(Fig. 3). This is an example of an advanced advice.

1 a s p e c t PrintHeader {
2 b e f o r e() : e x e c u t i o n(v o i d print ()) &&
3 cflowbelow(e x e c u t i o n(v o i d print ())) { header (); }
4 v o i d header() { System.out.print("header: "); }
5 }

Figure 3. Advisingprint advanced advice.

Though language abstractions such ascflow and cflowbelow
can be implemented (emulated) using traditional OOP, usually that
results in code replication, tangling, and scattering.

3.3 Discussion

Table 2 depicts the guidelines for using AOP and OOP mech-
anisms based on their individual strengths. First, aspects should
be used for modularizing homogeneous crosscuts to avoid code
replication. Second, aspects avoid code scattering and tangling in
case of using advanced advice for implementing advanced dynamic
crosscuts. For heterogeneous crosscuts which extend only methods
and classes, OOP techniques for collaboration-based designs suf-
fice. It has been observed that although both approaches are able
to implement the crosscuts of the other, they cannot do so ele-
gantly [2,3,29].

heterogeneous homogeneous
static set of roles that

add elements
inter-type declaration

basic
dynamic

set of roles that
override methods

basic advice

advanced
dynamic

set of advanced advice advanced advice

Table 2. What implementation technique for what kind of cross-
cutting concern?

4. Metrics
We propose a set of metrics to provide insight into the current prac-
tice of AOP. They enable to decide in which category a given as-
pect falls. The metrics are quantified by thenumber of occurrences
(NOO)of a certain software artifact and/or thelines of code (LOC)
associated with it.

Classes, interfaces, and aspects (CIA). The CIA metric deter-
mines the NOO of classes, interfaces, and aspects, as well as the
LOC associated with each. It tells us if aspects (as opposed to
classes and interfaces) are a small or a large fraction of the used
modularization mechanisms in a software project, and if these im-
plement a significant or only a small part of the code base of that
project.

Homogeneous crosscuts (HC). The HC metric measures the ex-
tent in which homogeneous and heterogeneous crosscuts are used.
We calculate the fraction of advice and inter-type declarations that
implement homogeneous crosscuts (NOO) and the fraction of the
code base that is associated with them (LOC). The HC metric tells
us if the aspects of a program exploit the pattern-matching mecha-
nisms of AOP or merely emulate OOP mechanisms.

Advanced dynamic crosscuts (ADC). This metric determines the
NOO of advanced advice and the overall LOC associated with
them.5 It tells us to what extent aspects make use of the advanced
capabilities of AOP for implementing dynamic crosscuts.

Code replication reduction (CRR). The CRR metric determines
the reduction in LOC when using homogeneous advice and inter-
type declarations, as opposed to the LOC resulting from using
traditional OOP mechanisms. The code reduction for one piece of
homogeneous advice / inter-type declaration is roughly the number
of affected join points, multiplied by the LOC associated with them.

5. Collecting Statistics of AspectJ Programs
CIA metric. Collecting data for the CIA metric we traverse all
source files of a given project and calculate the number and LOC
of aspects, classes, and interfaces – excluding blank lines and
comments.

HC metric. Homogeneous crosscuts are indicated by inter-type
declarations and advice that contain wildcards (* and+). If we dis-
cover logical operators in pointcuts that combine two pointcuts of
the same type (e.g.,execution(...)|| execution(...)) then the asso-
ciated advice are also counted as homogeneous. Inter-type decla-
rations that contain logical operators are considered homogeneous
as well as advice that do not qualify a target method or field com-
pletely, e.g., by omitting the type or the arguments.

ADC metric. We define all advice as advanced advice except
those associated tocall andexecutionand that are not combined
with any other pointcuts, except withtargetandargs(executioncan
also be combined withthis). This is an overestimation that might
consider some pieces of advice that are not advanced as advanced
advice, but not vice versa. The remaining advice are considered
basic advice.6

CRR metric. For determining the code reduction due to eliminat-
ing replicated code, we determine the number of join points per
homogeneous advice and inter-type declaration. We multiply the
number of join points minus one for each advice or inter-type dec-
laration, with the LOC associated. Finally, we sum up the saved
LOC of all advice and inter-type declarations to get the overall code
reduction.

6. A Case Study
As case study we analyzedFACET (6364 LOC), an AspectJ-based
CORBA event channel, implemented at the Washington Univer-
sity [18]. We used our toolAJStats7 for collecting the NOO and
LOC of all artifacts of FACET. We determined the properties of
advice / inter-type declarations and the caused code reduction by
hand.

Table 3 depicts our collected statistics. ColumnNOO lists the
number of artifacts we found of a specific type (e.g., homogeneous
advice) and its fraction with regard to the overall number of this
type (e.g., all pieces of advice). ColumnLOC depicts the LOC
associated with a certain kind of artifact and its fraction of the
overall code base. In the following paragraphs we examine the data
in depth.

5 Recall that advanced advice can be either heterogeneous or homogeneous
(cf. Fig. 1).
6 Although the semantics ofcall is to advise the client side invocations of a
method, it can be implemented as method extension – preconditioned that
all calls to the target method are advised; the above definition ensures that.
7 http://wwwiti.cs.uni-magdeburg.de/itidb/ajstats/

metric NOO (% of artifacts) LOC (% of code base)

CIA classes/int. 181 (62%) 5143 (81%)
aspects 113 (38%) 1221 (19%)

HC heterogen. 150 (93%) 572 (9%)
homogen. 12 (7%) 24 (0.4%)

ADC basic 38 (78%) 187 (3%)
advanced 11 (22%) 110 (2%)

CRR adv. + itds — 534 (8%)

Table 3. FACET statistics.

CIA metric. FACET uses relatively many aspects, compared to
other studies [2, 8, 9, 21, 38]. This observation is remarkable since
it demonstrates that aspects are used in different software projects
to a different extent. 38% of all modularization mechanisms were
aspects, which occupied 19% of the overall code base.

HC metric. In FACET we found 4 of 49 pieces of advice and
8 of 113 inter-type declarations were homogeneous.8 That is, 7%
of all implemented crosscuts were homogeneous, which occupied
0.4% of the overall code base. In contrast, 93% of all crosscuts were
heterogeneous, occupying 9% of the code base.

ADC metric. We found 11 of 49 advice were advanced advice.
They are associated tocflowpointcuts or use thereturningclause.
That is, 22% of all advice were advanced advice, which occupied
2% of the overall code base. The remaining 38 advice were basic
advice, which occupied 3% of the overall code base.

CRR metric. 4 pieces of advice and 8 inter-type declarations are
homogeneous. We calculated the effective code reduction of 534
LOC, which is a 8% reduction compared to a version that uses OOP
mechanisms for implementing homogeneous crosscuts.

7. Related Work
AOP case studies. Colyer and Clement refactored an application
server using aspects [9]. Specifically, they factored 3 homogeneous
and 1 heterogeneous crosscuts. While the number of aspects is
marginal, the size of the case study is impressively high (millions
of LOC). Although they draw positive conclusions, they admit (but
do not explore) a strong relationship to collaborations.

Coady and Kiczales undertook a retroactive study of aspect
evolution in the code of the FreeBSD operating system (200-400
KLOC) [8]. They factored 4 concerns and evolved them in three
steps; inherent properties of concerns were not explained in detail.

Lohmann et al. examined the applicability of AOP to embed-
ded infrastructure software [21]. For their study they factored 3
concerns of a commercial embedded operating system; 2 concerns
were homogeneous and 1 heterogeneous.

Lopez-Herrejon et al. explored the ability of AOP to imple-
ment product lines [22]. They demonstrated how collaborations are
translated automatically to aspects. They did note that less than 1%
of their code base was attributable to heterogenous advice. They
did not address in what situations which implementation technique
is most appropriate nor how the generated aspects affect program
comprehensibility.

Xin et al. evaluatedJiazziand AspectJ for feature-wise decom-
position [37]. They reimplemented FACET by replacing aspects
with Jiazzi units, which encapsulate collaborations. They do not
examine the structure of the resulting collaborations. Our analysis
of FACET revealed that some crosscuts should be implemented us-
ing aspects.

8 Note that the code associated to advice and inter-type declarations (596
LOC) is only a subset of the overall aspect code (1221 LOC), which
includes also fields, methods, etc.

Metrics for AOP. Zhang and Jacobson used a set of object-
oriented metrics to quantify the program complexity reduction
when using AOP for implementing middleware [38].

Garcia et al. applied seven metrics to Hannemann’s [17] imple-
mentation of design patterns [15]. They found that most aspect-
oriented solutions improve separation of pattern related concerns,
although only 4 aspect-oriented implementations have exhibited
significant reuse.

Zhao and Xu propose several metrics for aspect cohesion based
in aspect dependency graphs [39]. Ceccato and Tonella propose
metrics for measuring the coupling degree between program ele-
ments [7].

None of the above metrics and case studies take the different
structure of crosscutting concerns into account. We argue that the
structure of a concern decides over how it is implemented best.

8. Conclusions
Comparatively many aspects were used in FACET and they sum up
to a significant part of the code base (19%) – but only 3% of the
overall code base exploits the advanced capabilities of AOP to im-
plement homogeneous and dynamic crosscuts. 97% can be imple-
mented straightforward using traditional OOP and collaborations.
Nevertheless, the used AOP mechanisms reduce the code base by
8% compared to an OOP implementation. It follows that the plain
number of aspects, advice, etc. is not meaningful to judge the suc-
cessful application of AOP to a software project.

Our classification framework, categories, and metrics form a
quantitative basis for analyzing aspect-oriented programs in this
respect, and it can assist in exploiting the benefits of AOP. In further
work we intend to analyze and compare further AOP projects to
collect more data.

Acknowledgments
Sven Apel is sponsored by the German Research Foundation
(DFG), project number SA 465/31-1 and SA 465/32-1. Marko
Rosenm̈uller is sponsored by the German Research Foundation
(DFG), project number SA 465/32-1. The presented study was
conducted when Sven Apel was visiting the group of Don Batory
at the University of Texas at Austin. Batory’s research is sponsored
by NSF’s Science of Design Project #CCF-0438786.

References
[1] C. Allan et al. Adding Trace Matching with Free Variablesto AspectJ.

In Proceedings of International Conference on Object-Oriented
Programming, Systems, Languages, and Applications, 2005.

[2] S. Apel and D. Batory. When to Use Features and Aspects? A Case
Study. InProceedings of International Conference on Generative
Programming and Component Engineering, 2006.

[3] S. Apel, T. Leich, and G. Saake. Aspectual Mixin Layers: Aspects
and Features in Concert. InProceedings of International Conference
on Software Engineering, 2006.

[4] D. Batory, J. N. Sarvela, and A. Rauschmayer. Scaling Step-Wise
Refinement. IEEE Transactions on Software Engineering, 30(6),
2004.

[5] J. Bosch. Superimposition: A Component Adaptation Technique.
Information and Software Technology, 41(5), 1999.

[6] G. Bracha and W. Cook. Mixin-Based Inheritance. InProceedings of
International Conference on Object-Oriented Programming, Systems,
Languages, and Applications (OOPSLA) and European Conference
on Object-Oriented Programming, 1990.

[7] M. Ceccato and P. Tonella. Measuring the Effects of Software
Aspectization. InWorkshop on Aspect Reverse Engineering, 2004.

[8] Y. Coady and G. Kiczales. Back to the Future: A Retroactive Study
of Aspect Evolution in Operating System Code. InProceedings of
International Conference on Aspect-Oriented Software Development,
2003.

[9] A. Colyer and A. Clement. Large-Scale AOSD for Middleware.
In Proceedings of International Conference on Aspect-Oriented
Software Development, 2004.

[10] A. Colyer, A. Rashid, and G. Blair. On the Separation of Concerns
in Program Families. Technical report, Computing Department,
Lancaster University, 2004.

[11] R. Douence, P. Fradet, and M. Südholt. Composition, Reuse
and Interaction Analysis of Stateful Aspects. InProceedings of
International Conference on Aspect-Oriented Software Development,
2004.

[12] E. Gamma et al.Design Patterns: Elements of Reusable Object-
Oriented Software. Addison-Wesley, 1995.

[13] A. Garcia et al. Separation of Concerns in Multi-agent Systems: An
Empirical Study. InSoftware Engineering for Multi-Agent Systems
II, Research Issues and Practical Applications, 2003.

[14] A. Garcia et al. Modularizing Design Patterns with Aspects: a
Quantitative Study. InProceedings of International Conference on
Aspect-Oriented Software Development, 2005.

[15] A. Garcia et al. Modularizing Design Patterns with Aspects: A
Quantitative Study. InProceedings of International Conference on
Aspect-Oriented Software Development, 2005.

[16] K. Gybels and J. Brichau. Arranging Language Features for More
Robust Pattern-based Crosscuts. InProceedings of International
Conference on Aspect-Oriented Software Development, 2003.

[17] J. Hannemann and G. Kiczales. Design Pattern Implementation in
Java and AspectJ. InProceedings of International Conference on
Object-Oriented Programming, Systems, Languages, and Applica-
tions, 2002.

[18] F. Hunleth and R. Cytron. Footprint and Feature Management Using
Aspect-Oriented Programming Techniques. InProceedings of Joint
Conference on Languages, Compilers, and Tools for Embedded
Systems & Software and Compilers for Embedded Systems, 2002.

[19] K. Lieberherr. Controlling the Complexity of Software Designs. In
Proceedings of International Conference on Software Engineering,
2004.

[20] K. Lieberherr, D. H. Lorenz, and J. Ovlinger. AspectualCollabo-
rations: Combining Modules and Aspects.The Computer Journal,
46(5), 2003.

[21] D. Lohmann et al. A Quantitative Analysis of Aspects in the
eCos Kernel. InProceedings of the ACM SIGOPS EuroSys 2006
Conference, 2006.

[22] R. Lopez-Herrejon and D. Batory. From Crosscutting Concerns to
Product Lines: A Function Composition Approach. Technical Report
TR-06-24, University of Texas at Austin, 2006.

[23] R. Lopez-Herrejon, D. Batory, and W. Cook. Evaluating Support for
Features in Advanced Modularization Technologies. InProceedings
of European Conference on Object-Oriented Programming, 2005.

[24] R. Lopez-Herrejon, D. Batory, and C. Lengauer. A Disciplined
Approach to Aspect Composition. InProceedings of International
Symposium on Partial Evaluation and Semantics-Based Program
Manipulation, 2006.

[25] O. L. Madsen and B. Moller-Pedersen. Virtual Classes: APowerful
Mechanism in Object-Oriented Programming. InProceedings of
International Conference on Object-Oriented ProgrammingSystems,
Languages and Applications, 1989.

[26] H. Masuhara and K. Kawauchi. Dataflow Pointcut in Aspect-
Oriented Programming. InProceedings of the Asian Symposium
on Programming Languages and Systems, 2003.

[27] H. Masuhara and G. Kiczales. Modeling Crosscutting in Aspect-
Oriented Mechanisms. InProceedings of European Conference on

Object-Oriented Programming, 2003.

[28] N. McEachen and R. T. Alexander. Distributing Classes with
Woven Concerns: An Exploration of Potential Fault Scenarios.
In Proceedings of International Conference on Aspect-Oriented
Software Development, 2005.

[29] M. Mezini and K. Ostermann. Variability Management with Feature-
Oriented Programming and Aspects. InProceedings of ACM
SIGSOFT International Symposium on Foundations of Software
Engineering, 2004.

[30] K. Ostermann, M. Mezini, and C. Bockisch. Expressive Pointcuts for
Increased Modularity. InProceedings of European Conference on
Object-Oriented Programming, 2005.

[31] T. Reenskaug et al. OORASS: Seamless Support for the Creation
and Maintenance of Object-Oriented Systems.Journal of Object-
Oriented Programming, 5(6), 1992.

[32] Y. Smaragdakis and D. Batory. Mixin Layers: An Object-Oriented
Implementation Technique for Refinements and Collaboration-
Based Designs.ACM Transactions on Software Engineering and
Methodology, 11(2), 2002.

[33] F. Steimann. On the Representation of Roles in Object-Oriented
and Conceptual Modeling.Data and Knowledge Engineering, 35(1),
2000.

[34] F. Steimann. Domain Models are Aspect Free. InProceedings of
International Conference on Model Driven Engineering Languages
and Systems, 2005.

[35] M. VanHilst and D. Notkin. Using Role Components in Implement
Collaboration-based Designs. InProceedings of International
Conference on Object-Oriented Programming, Systems, Languages,
and Applications, 1996.

[36] M. Wand, G. Kiczales, and C. Dutchyn. A Semantics for Advice
and Dynamic Join Points in Aspect-Oriented Programming.ACM
Transactions on Programming Languages and Systems, 26(5), 2004.

[37] B. Xin et al. A Comparison of Jiazzi and AspectJ for Feature-Wise
Decomposition. Technical Report UUCS-04-001, University of Utah,
2004.

[38] C. Zhang and H.-A. Jacobsen. Resolving Feature Convolution in
Middleware Systems. InProceedings of International Conference
on Object-Oriented Programming, Systems, Languages, and Applica-
tions, 2004.

[39] J. Zhao and B. Xu. Measuring Aspect Cohesion. InProceeding of
International Conference on Fundamental Approaches to Software
Engineering, 2004.

