
Abstract1

Refactorings are behavior-preservingprogram transfor-
mations that automate design level changes in object-ori-
ented applications. Our previous research established that
many schema transformations, design patterns, and hot-
spot meta-patterns are automatable. This research evalu-
ates whether refactoring technology can be transferred to
the mainstream by restructuring non-trivial C++ applica-
tions. The applications that we examine were evolved man-
ually by software engineers. We show that an equivalent
evolution could be reproduced significantly faster and
cheaper by applying a handful of general-purpose refactor-
ings. In one application, over 14K lines of code were trans-
formed automatically that otherwise would have been
coded by hand. Our experiments identify benefits, limita-
tions, and topics of further research related to the transfer
of refactoring technology to a production environment.

1. Introduction

Before the invention ofgraphical user interface (GUI)
editors, the process of evolving a GUI was to design, code,
test, evaluate, and redesign again. With the introduction of
editors, GUI design has become an interactive process
allowing users to design, evaluate, and redesign an interface
on-screen and to output compilable source code that reflects
the latest design.

We believe that a similar advance needs to occur for edit-
ing object-oriented class diagrams. Editing a class diagram
can be as simple as adding a line between classes to repre-
sent an inheritance relationship or moving a variable from a
subclass to a superclass. However, such changes must now
be accompanied by painstakingly identifying lines of
affected source code, manually updating the source, testing
the changes, fixing bugs, and retesting the application until
the risk of new errors is sufficiently low.

Just as GUI editors revolutionized GUI design, we

believe that class diagram editors (where changes to an
application’s diagram automatically trigger corresponding
changes to its underlying source code) will revolutionize
the evolution of software design. The technology to power
such a tool isrefactorings— behavior-preserving program

transformations that automate many design level2 changes.
The termautomaterefers to a refactoring’s programmed
check for enabling conditions and its execution of all source
code changes. The choice of which design to implement
and which refactorings need to be applied is always made
by a human. Refactorings preserve behavior thereby reduc-
ing costly and tedious debugging and testing that would
otherwise have to be performed.

2. Refactorings

A refactoring is a parameterized behavior-preserving
program transformation that updates an application’s design
and underlying source code. A refactoring is typically a
simple transformation that has a straightforward (but not
necessarily trivial) impact on application source. An exam-
ple is inherit[Base, Derived], which establishes a super-
class-subclass relationship between two classes,Base and
Derived, that were previously unrelated. From the perspec-
tive of an object-oriented class diagram, theinherit refac-
toring merely adds an inheritance relationship between the
BaseandDerived classes, but also it alters the application’s
source code to reflect this change.

A summary of the class diagram notation used through-
out this paper is presented in Figure 2.1.

2.1. Enabling Conditions

Programs are restructured by applying a series of refac-
torings. Because individual refactorings preserve behavior,
a series of refactorings also preserves behavior. To preserve
behavior, we adopt the method proposed by Banerjee and
Kim for database schema evolutions [2] and employed by

1. We gratefully acknowledge the sponsorship of the Defense Advanced
Research Projects Agency (Cooperative Agreement F30602-96-2-0226)
and the University of Texas at Austin Applied Research Laboratories.

2. We use a limited definition of the termdesignreferring to the aspect of
design reflected in the extended class diagram notation from Gamma [1].

Evolving Object-Oriented Designs with Refactorings

Lance Tokuda and Don Batory
Department of Computer Science

University of Texas at Austin
{unicron, batory}@cs.utexas.edu

To appear in Automated Software Engineering 1999

Opdyke for refactorings [3]. Opdyke claimed to identify a
set of seven invariants which, if preserved, guaranteed that
two Smalltalk or C++ programs would run identically. For
example, his first invariant is that each class must have a
unique superclass and its superclass must not also be one of
its subclasses. When a refactoring runs the risk of violating
an invariant, enabling conditions are added to guarantee that
the invariant is preserved. Enabling conditions for the
inherit refactoring are listed in Figure 2.2.Inherit ’s first
enabling condition preserves Opdyke’s first invariant.

2.2. Design Evolution and Refactorings

Three kinds of object-oriented design evolution are:
schema transformations, design pattern microarchitectures,
and hot-spots.Schema transformationsare drawn from
object-oriented database schema transformations that per-
form edits on a class diagram [2]. Examples are adding new
instance variables and moving methods up the class hierar-
chy. Design patternsare recurring sets of relationships
between classes, objects, methods, etc. that define preferred
solutions to common object-oriented design problems [1].

Hot-spotsare aspects of a program which are likely to
change from application to application [4]. Designs using
abstract classes and template methods are prescribed to
keep these hot-spots flexible.

In previous work, we identified a list of schema transfor-
mations, design pattern microarchitectures, and hot-spot
meta patterns that were automatable with refactorings [5].
Refactorings to enable these changes includes those pro-
posed by Banerjee and Kim for evolving object-oriented
database schemas [2] and by Opdyke for restructuring
object-oriented programs [3]. We found that transforming
actual C++ programs required additional refactorings. We
enlarged the set of schema evolutions to include, for exam-
ple, inherit (from the example above) andsubstitute. Sub-
stitute changes a class’s dependency on a classC1 to a
dependency on a superclass ofC1 [6]. Other refactorings
are language-specific; procedure_to_method and
structure_to_classconvert C artifacts to their C++ equiva-
lents. Yet another set of refactorings supports the addition
of design pattern microarchitectures in evolving programs
[5, 6]. Examples includeadd_factory_method, singleton,
andprocedure_to_command. Add_factory_method cre-
ates a method which returns a new object,singletonensures
that a class will have only one instance, and
procedure_to_commandconverts a C procedure to a sin-
gleton class with a method for executing the procedure. The
refactorings that we added to the lists of Banerjee, Kim, and
Opdyke are italicized in Table 1.

The first implementations of Opdyke’s refactorings were
by Tokuda for C++ [6] and Roberts for Smalltalk [7]. To
our knowledge, we were first to implement refactorings for
design patterns [6] and hot-spot meta patterns [5].

Given that schema transformations, design patterns, and

Figure 2.2: Inherit[Base, Derived] enabling conditions

1. Basemust not be a subclass ofDerived and Derived
must not have a superclass.

2. Member variables ofDerived must have distinct names
from member variables ofBase and its superclasses.

3. A member function ofDerived which overrides a func-
tion must have the same type signature as the function it
overrides.

4. Subclasses ofBase must implement any pure virtual
methods if objects of that class are created.

5. Initializer lists must not be used to initializeDerived
objects.

6. For all inherited instance variables whose type is a
class, the constructors for those classes cannot have any
side-effects outside of object initialization ifDerived is
instantiated.

7. Program behavior must not depend on the size or layout
of Derived.

ConcreteSubclass1 ConcreteSubclass2

InstanceVariable

AbstractClass

AbstractOperation()

Operation()

ConcreteClass1
owns

Implementation

ConcreteClass2

references

Figure 2.1: Notation

Table 1: Object-oriented refactorings

Schema Refactorings

add_variable
create_variable_accessor
create_method_accessor
rename_variable
remove_variable
push_down_variable
pull_up_variable
move_variable_across_

object_boundary
create_class
rename_class
remove_class
inherit
uninherit
substitute
rename_method
remove_method
push_down_method

pull_up_method
move_method_across_

object_boundary
extract_code_as_method
declare_abstract_method
structure_to_pointer

C++ Refactorings

procedure_to_method
structure_to_class

Pattern Refactorings

add_factory_method
create_iterator
composite
decorator
procedure_to_command
procedure_ptr_to_command
singleton

hot-spot meta patterns are used frequently in evolving
designs, many of which are automatable as (one or more)
refactorings, we expected to replicate some, but not all,
design changes in our experiments.

3. Evolving Applications

We selected SEMATECH’s CIM Works and CMU’s
Andrew User Interface System as examples of evolving
applications. They were chosen based on availability of
source code with a version history, size, and presence of
design changes. The following features make our study
unique:

Replication of design evolution. Designs were
extracted from two versions of the same application. The
older design became the initial state and the newer design
became the target state. Our objective was to determine if a
sequence of refactorings could be applied to transform the
initial state to the target state. By doing so, we would auto-
mate changes that were performed manually by the original
application designers. This correspondence makes compari-
son of automation versus hand-coding valid and provides us
with a key indicator: how often refactorings could be used.

Non-trivial Applications. Transforming large applica-
tions tests refactoring scalability. Ideas that are effective on
small applications of fewer than one thousand lines of code
may ultimately fail for real world applications whose size
can exceed one hundred thousand lines.

Mainstream object-oriented language.C++ was cho-
sen as the target language for experimentation. It is by far
the most widespread object-oriented programming lan-
guage for practical reasons such as backward compatibility
with C, portability, availability of third party compilers and
tools, legacy system compatibility, and availability of
trained personnel. It was expected that C++’s complexity
might introduce problems which would not appear for less
popular object-oriented languages. A side benefit of this
choice is that most claims for C++ can also be made for the
increasingly popular Java programming language.

3.1. Evolving CIM Works

Computer Integrated Manufacturing (CIM)Framework
is an industry-wide initiative to define a standardized
object-oriented framework for writing semiconductor man-
ufacturing execution systems [8]. CIM Works is a Windows
application created to demonstrate and test the SEMAT-
ECH CIM Framework specification [9].

Major design changes in CIM Works occur between Ver-
sion 2 and Version 4. The Version 2 design shown in Figure
3.1 stores data and its graphical representation in the same
object. For example,CEquipmentManager contains meth-
ods for adding and removing pieces of equipment to be
managed as well as methods for building a GUI menu. The

Version 4 design shown in Figure 3.2 separates data and
graphics into two class hierarchies. This separation gave
Version 4 the freedom to create different views of the same
data as with the model-view-controller paradigm [10].

Version 2 is approximately 11K lines of code. The trans-
formation between designs is accomplished in nine steps,
each of which is realized by applying a sequence of primi-
tive refactorings:
1. Rename the classes of the original hierarchy to the split

hierarchy usingrename_class. (The original classes
retain the GUI aspects of objects, whereas their corre-
sponding “split” classes — created in Steps 2 or 7 —
encapsulates object data).

2. Create the concrete data classesFactory, Person, Equip-
Manager, etc. usingcreate_class.

3. Add m_objptr instance variables to the concrete GUI
classes usingadd_variable. m_objptr is of the corre-
sponding data class type (Figure 3.3a).

4. Create abstract data classesResource, CompManager,
MovementResource, etc. usingcreate_class.

5. Establish inheritance relationships between the abstract
data classes and the concrete data classes usinginherit
(Figure 3.3b).

6. Move non-GUI instance variables and methods from the
GUI classes to the data classes using
move_variable_across_object_boundaryand move-
_method_across_object_boundary. Data is accessed
through them_objptr instance variables (Figure 3.4).

7. Move common instance variables and method declara-
tions up the data class hierarchy using
pull_up_variable and declare_virtual_method (Fig-
ure 3.5).

8. Change the type ofm_objptr from a structure to a
pointer usingstructure_to_pointer.

9. Declare the reference between GUI objects and data
objects in the abstract classes. References to data

objects are made abstract (Figure 3.2).3

These steps were executed by 81 refactorings, resulting

3. In this step, the generalization is made that allCIcon objects point to a
Resourceobject through them_objptr instance variable. This requires
that casts to the appropriate data class are made whenever data object
instance variables are referenced through GUI objects. For example:

CIcPerson *p = new CIcPerson;
p->person_ptr->f_name = "John";

is transformed to:

CIcPerson p;
((Person *)p->m_objptr)->f_name =

"John";

It is unclear if this was the correct design decision since the GUI classes
are specific to a single data class. This step was not automated although it
would be possible to do so.

CFWObject

CIcon

CIcResource

CIcCompMg CIcMoveResCIcFactory CIcPerson

CIcPersnMg CIcMachineCIcEquipM

Factory Person

PersonMgr MachineEquipMgr

Figure 3.3a: Connect GUI and Data

m_objptr

m_objptr
m_objptr

m_objptr

m_objptr

Classes

CFWObject

CIcon

CIcResource

CIcCompMg CIcMoveResCIcFactory CIcPerson

CIcPersnMg CIcMachineCIcEquipM

Factory Person

PersonMgr MachineEquipMgr

Figure 3.3b: Create Abstract Data

m_objptr

m_objptr
m_objptr

m_objptr

m_objptr

NamedEnt

Resource

CompMgr MoveRes

Class Hierarchy

CFWObject

CNamedEnt

CResource

CCompMgr CMoveResCFactory CPerson

CPersnMgr CMachineCEquipmentManager

Figure 3.1: Version 2 Design

CFWObject

CIcon

CIcResource

CIcCompMg CIcMoveResCIcFactory CIcPerson

CIcPersnMg CIcMachineCIcEquipM

NamedEnt

Resource

CompMgr MoveResFactory Person

PersonMgr MachineEquipMgr

Figure 3.2: Version 4 Design

m_objptr

in a total of 486 lines of CIM Works source being modified.

3.2. Evolving the Andrew User Interface System

TheAndrew User Interface System (AUIS)from CMU is
an integrated set of tools that allow users to create, use, and
mail documents and applications containing typographi-
cally-formatted text and embedded objects [11]. The two
versions under study were Version 6.3 written in C and Ver-
sion 8.0 converted to C++. Version 6.3 stores actions as
function pointers while Version 8.0 supports and recom-
mends creation of a separate subclass for each action (simi-

lar to the Command design pattern4). Over ninety classes
using almost 800 actions are affected. The transformation is
accomplished in five steps.
1. Convert Version 6.3 C structures to C++ classes using

structure_to_class(Figure 3.6).

2. Create theATK and Command abstract classes using
create_class.

3. Establish the inheritance relationships betweenATK
and other classes usinginherit .

4. Derive command classes for each action using

procedure_to_command. Figure 3.8 displays the result
of transformingPlayKbdMacro() into a Command
subclass. The newly createdPlayKbdMacroCmd con-
tains anExecute() method which callsPlayKbd-
Macro() . It also contains anInstance() method
which returns a unique instance of the class. Using
Instance() instead ofnew to create objects guaran-
tees that a pointer to aPlayKbdMacroCmd object is
unique.

5. Convert procedure pointers to commands using
procedure_ptr_to_command. In this step, the data
types for structures using procedure pointers are con-
verted to useCommand pointers, procedure calls are
converted to useExecute() methods, and procedure
assignments are converted to useInstance() meth-
ods. Figure 3.9 displays the transformation of the
bind_Description structure. Theproc instance variable

4. The Command design pattern objectifies an action. The action is trig-
gered by calling anExecute() method implemented in each derived
class [1].

View

Observable

Traced

im

Path

Figure 3.6: Structures converted to classes

ATK

Execute(ATK *s, ...) {
PlayKbdMacro(s, ...); }

Command

Execute()

PlayKbdMacroCmd
Execute(...)

View

Observable

Traced

Im

Path Instance()

Instance() {
return unique_instance; }

Figure 3.8: Software Microarchitecture for
Im and Command classes

Figure 3.4: Instance variables and methods
moved to data classes

CIcPerson

Person

shift
dept
GetShift()
GetDept()Person

CIcPerson

shift
dept
GetShift()
GetDept()

m
_

o
b

jp
tr

m
_

o
b

jp
tr

ComponentMgr

EquipmentMgr

status
IsStopped()
IsStarting()

PersonMgr

status
IsStopped()
IsStarting()

ComponentMgr
status
IsStopped()
IsStarting()

EquipmentMgr

IsStopped()
IsStarting()

PersonMgr

IsStopped()
IsStarting()

Figure 3.5: Instance variables and method declarations
moved to abstract classes

is converted to aCommand pointer.

All steps were executed with approximately 800 refac-

torings resulting in 14K lines of code changes5.

4. Introspection and Lessons Learned

Our experiments provided a tremendous learning experi-
ence in evaluating refactoring technologies. In the follow-
ing sections, we present some of the more important lessons
that we learned on refactoring benefits, limitations, and
research problems that must be solved for refactoring tech-
nology to succeed. Further discussion is given in [12].

4.1. Refactoring Benefits

Automating Design Changes. The most important
result of our research is to establish that refactorings can
automate significant design changes involving thousands of
lines of code in real world applications. It is of interest to
compare the effort required to perform these changes manu-
ally versus the effort when aided by refactorings.We esti-
mate that the CIM Works changes would take us two days to
implement and debug by hand versus two hours when aided
by refactorings. We estimate that the AUIS changes would
require two weeks to implement and debug by hand versus
one day when aided by refactorings.

Reduced Testing. A good refactoring implementation
can reduce the effort required to test new designs. When
refactorings preserve behavior, only hand coded changes
need to be tested.

Simpler Designs. Refactorings reduce the need for
overly complex designs. Gamma et. al. note that a common
design pattern pitfall is over-enthusiasm: “Patterns have
costs (indirection, complexity) therefore [one should]
design to be as flexible as needed, not as flexible as possi-
ble”. Designs which attempt to anticipate too many future
extensions may also be more error prone with less static

type checking6. Refactorings are capable of extending

designs in multiple ways. They encourage designers to cre-
ate lean designs for the task at hand and to extend those
designs with refactorings as new capabilities are needed.

Validation Assistance. Enabling condition checks can
detect conflicts between a code level implementation and a
desired design change. For example, a programmer may
decide to move an instance variable from a base class to a
derived class without realizing that objects of the base class
access the instance variable being moved. Enabling condi-
tion checks will detect this error. Refactorings are capable
of detecting errors resulting from a long series of changes
which would be costly to perform and undo manually.

Ease of Exploration. Refactorings allow designers to
experiment with new designs. While schema evolutions and
design patterns are manually coded into applications today,
it is clear that automating their introduction will allow
designers to more easily explore a design space without
major commitments in coding and debugging time.

4.2. Refactoring Limitations

Experiments with large applications revealed limitations
which were not issues in previous work on small proof-of-
concept programs. We discuss our most important observa-
tions to alert future researchers to the problems that they
will face.

Preprocessor Directives. Our C++ program transforma-
tion tool cannot deal with preprocessor directives because
preprocessor directives are not part of the C++ language.
The programs in our experiments were preprocessed before
being transformed and at that point, preprocessor informa-
tion could no longer be recovered. While we believe that
workarounds are possible for the majority of the cases, it is
generally not possible to handle all problems that arise in
large software applications.

Conservative Enabling Conditions. Refactorings have
been found to be useful even when predicated on conserva-
tive enabling conditions. For example, theinherit transfor-
mation is conservatively limited to single inheritance
systems by Opdyke’s first invariant. While support for mul-
tiple inheritance systems is possible, it was not necessary
for transforming the applications described in this paper or
for adding numerous design patterns and hot-spot meta pat-
terns [5].

Automated Verification of Enabling Conditions. Most
but not all enabling conditions can be verified automati-
cally. For theinherit refactoring, the first five conditions
can be checked automatically (Figure 2.2).

Opdyke identifies a condition which cannot be verified
automatically: program behavior must not be dependent on

5. This number is large because AUIS used 800 actions implemented as
procedures and the conversion of a procedure to a command required a
transformation. More refactorings did not imply more complexity. We
found it was easier to choose the refactorings for AUIS than for CIM
Works because conceptually, the evolution of AUIS’s design required only
five steps.

bind_Description

procName
doc
void (*proc)();

bind_Description

procName
doc
Command *proc;

Figure 3.9: Convert procedure pointer to
Command pointer

6. Many design patterns use runtime composition versus inheritance as an
extension mechanism [1]. The dynamic nature of composition precludes
static typechecking.

the size or layout of objects [3]. Size and layout were not
issues with the two programs transformed in this paper or
other programs transformed in [6, 7], however, users of
refactorings must be aware of this limitation.

Behavior Preservation.Our experiments revealed that
preservation of Opdyke’s invariants was not sufficient to
guarantee preservation of behavior. Three additional invari-
ants required for C++ are:
1. Implementation of pure-virtual functions . If a class is

instantiated, then it cannot have any pure-virtual func-
tions.

2. Maintaining aggregate objects. If a program depends
on the aggregate property of an object, then that prop-

erty must be preserved7.

3. No instantiation side-effects. If a refactoring can
change the frequency or order in which classes are
instantiated, then the constructor cannot have any side-
effects beyond initializing the object created.

In light of this discovery, we recognize that refactorings
are behavior-preserving due to good engineering and not
because of any mathematical guarantee. It is the responsi-
bility of the refactoring designer to identify all enabling
conditions necessary to ensure that behavior is preserved.

4.3. Future Research

Our work focused on the practicality of applying primi-
tive refactorings to evolving object-oriented applications.
Beyond implementation of required functionality, we iden-
tify three issues which require further research.

Granularity of Transformations . The refactorings
developed for this research were intended to be primitive
and composable to perform more complex refactorings. We
did not attempt to minimize the number of refactorings
required. In the CIM Works example, the number of refac-
torings was large (81) although the conceptual number of
transformation steps was small (8). One way to reduce the
number of refactorings would be to provide larger grain
refactorings. In the CIM Works example, the number of
refactorings would be significantly reduced if refactorings
to move multiple variables and methods were available.
Similarly for the Andrew example, most of the 800 trans-
formations take place in Step 4 — converting action proce-
dures to Command subclasses. A larger grain
transformation which converted a list of procedures toCom-
mand’s could execute Step 4 in a single transformation.
This would reduce the total number of transformations to
fewer than twenty. It is important to note that the near term
goal of our research has been to develop a basis set of prim-
itive refactorings. Larger grain refactorings up to the size of

design patterns may be more convenient in practice.
Program Families. Transformation systems must recog-

nize that many files may be included by multiple programs.
When transforming a file used by more than one program, it
is desirable for the transformation system to check enabling
conditions for all programs in which use that file. Other-
wise, a file might be transformed safely for one program
while causing another program which uses the same file to
break. The situation is further complicated for C++ by con-
ditional compilation flags which imply that different pre-
processed versions of a single file should be considered
when checking if a transformation can be performed safely.

Integration with Other Tools . Refactorings packaged
as individual executables are not dependent on the presence
of other tools. In this form, they can be integrated into most
mainstream development environments because most envi-
ronments support command-line access to source code.

Higher levels of integration are still possible. We envi-
sion integration with an object-oriented modeling tool such
as Rational RoseTM which would allow many refactorings to
be invoked as operations on a UML diagram. Integration
with a source code control system could allow appropriate
files to be checked out, transformed, and checked back in
with comments describing the refactorings. Attempts to
transform protected files would block the refactoring and
notify the user. Integration with an IDE such as Microsoft
Visual C++TM would allow transformed code to be dis-
played immediately in open windows.

4.4. Implications for Java

Java inherits all of C++’s refactoring benefits while
avoiding many of its limitations. First, it has no preproces-
sor which removes a major barrier to a successful C++
implementation. Second, it does not use makefiles which
simplifies the process of piecing together the source files to
be transformed. Third, code placement is simplified since
methods are stored in a file belonging to the class. Java has
no free-floating procedures as with hybrid object-oriented
languages such as C++. For these reasons coupled with its
growing popularity as an internet language, we believe that
Java is the best vehicle for transferring refactoring technol-

ogy to the mainstream.8 Tools are now being developed to
aid in this process [13, 14].

5. Related Work

Bergstein defined a small set of object-preserving class
transformations which can be applied to class diagrams
[15]. Lieberherr implemented these transformations in the

7. Inherit destroys this property since aggregates cannot have super-
classes.

8. When we began our work, tool support and availability of large Java
files were nonexistent. This is no longer true today.

Demeter object-oriented software environment [16]. Exam-
ple transformations are deleting useless subclasses and
moving instance variables between a superclass and a sub-
class.

Opdyke coined the termrefactoringto describe a behav-
ior-preserving program transformation for restructuring
object-oriented software systems. Refactorings were
inspired by the schema evolutions of Banerjee and Kim [2],
the design principles of Johnson and Foote [17] and the
design history of the UIUC Choices operating system [18].
An example application of refactorings is the creation of an
abstract superclass [3]. Refactorings are implemented for
C++ [5, 6, 19] and for Smalltalk [7]. Roberts offers Small-
talk-specific design criteria for a program transformation
tool [7]. One criteria which also applies to C++ software is
that users should be allowed to name new entities intro-
duced through transformations.

Refactorings are shown to automate the addition of
design patterns to object-oriented software systems [5, 6, 7,
19]. Refactorings also support the addition of Pree’s [4] hot-
spot meta patterns [5].

6. Conclusion

Design evolution is an inevitable manual process often
requiring great effort and expense. Refactorings are behav-
ior-preserving program transformations that provide a pow-
erful technology by which significant parts of an
application’s design evolution can be automated.

The ultimate goal of our research is to provide a main-
stream tool that makes editing class diagrams as easy as
editing user interfaces with a GUI editor. This paper has
taken three important steps towards this goal:
• First, we implemented a set of refactorings that can

automate a suite of schema transformations, design pat-
terns, and hot-spot meta patterns. They can reduce or
eliminate the need to identify lines of affected source, to
execute changes manually, and to test those changes.

• Second, we showed that refactorings can scale and be
useful on large, real-world applications. We were able to
automate thousands of lines of changes with a general-
purpose set of refactorings.

• Third, while our experiments clearly showed the bene-
fits that could result from a refactoring tool, they also
revealed the limitations and research problems that
remain to be addressed before refactoring technology
can be transitioned beyond academic prototypes.

Given the success of our experiments and the difficulty
in managing C++ preprocessor information, Java should be
the next target language, as we believe that it holds the
greatest promise for transferring refactoring technology to
the mainstream.

References
[1] E. Gamma et.al.Design Patterns Elements of Reusable
Object-Oriented Software. Addison-Wesley, Reading,
Massachusetts, 1995.
[2] J. Banerjee and W. Kim. Semantics and Implementation of
Schema Evolution in Object-Oriented Databases. InACM
SIGMOD, 1987.
[3] W. F. Opdyke. Refactoring Object-Oriented Frameworks.
Ph.D. thesis, University of Illinois, 1992.
[4] W. Pree. Meta Patterns — A Means for Capturing the
Essentials of Reusable Object-Oriented Design. InProceedings,
ECOOP ’94, Springer-Verlag, 1994.
[5] L. Tokuda and D. Batory. Automating Three Modes of
Object-Oriented Software Evolution. InProceedings, COOTS
’99, 1999.
[6] L. Tokuda and D. Batory. Automated Software Evolution via
Design Pattern Transformations. InProc. 3rd International
Symposium on Applied Corporate Computing, Monterrey,
Mexico, October 1995.
[7] D. Roberts, J. Brant, R. Johnson. A Refactoring Tool for
Smalltalk. In Theory and Practice of Object Systems, Vol. 3
Number 4, 1997.
[8] S. Stewart. Roadmap for the Computer-Integrated
Manufacturing Application Framework. NISTIR 5697, June,
1995.
[9] P. McGuire. Lessons learned in the C++ reference
development of the SEMATECH computer-integrated
manufacturing (CIM) applications framework. InSPIE
Proceedings, Volume 2913, pages 326-344, 1997.
[10] G. E. Krasner and S. T. Pope. A cookbook for using the
model-view-controller user interface paradigm in Smalltalk-80. In
Journal of Object-Oriented Programming, pages 26-49, August
1988.
[11] J. H. Morris et.al. Andrew: A Distributed Personal
Computing Environment.Communications of the ACM, 1986.
[12] L. Tokuda.Design Evolution with Refactorings. Ph.D. thesis,
University of Texas, 1999.
[13] I. Baxter. and C. Pidgeon. Software Change Through Design
Maintenance. InProceedings of the International Conference on
Software Maintenance ‘97, IEEE Press, 1997.
[14] D. Batory et. al. JTS: Tools for Implementing Domain-
Specific Languages. In5th International Conference on Software
Reuse, Victoria, Canada, June 1998.
[15] P. Berstein. Object-preserving class transformations. In
Proceedings of OOPSLA ’91, 1991.
[16] K. Lieberherr, W. Hursch, and C. Xiao.Object-extending
class transformations.Technical report, College of Computer
Science, Northeastern University, 360 Huntington Ave., Boston,
Massachusetts, 1991.
[17] R. Johnson and B. Foote. Designing Reusable Classes. In
Journal of Object-Oriented Programming, June/July 1988.
[18] P. Maydany et.al. A Class Hierarchy for Building Stream-
Oriented File Systems. InProceedings of ECOOP ’89,
Nottingham, UK, July 1989.
[19] W. Scherlis. Systematic Change of Data Representation:
Program Manipulations and Case Study. InProceedings of ESOP
’98, 1998.

