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Abstract. Security, scalability, and performance are critical
for large-scale component-based applications. Weaving
security solutions into the fabric of component-based archi-
tectures often worsens the scalability and performance of the
resulting system. In this paper we analyze the sources of
nonscalability and conduct an empirical study that shows
that close to 80% of interactions between components and
their clients in different commercial systems occur within
protected security boundaries. Based on these findings we
propose a novel scalable security mechanism for component-
based systems called Component Adaptive Scalable Secure
Infrastructure Architecture (CASSIA). CASSIA utilizes the
topology of the security boundaries and patterns of interac-
tions among components to achieve noticeable improve-
ments in scalability and performance for component-based
applications. We conduct a case study that confirms the scal-
ability of CASSIA, and propose a Secure COmponent Proto-
col (SCOP) that incorporates our mechanism into a
component infrastructure.

1 Introduction

Component-based applications are ubiquitous. Many soft-
ware vendors provide various components (many of them for
free) whose use reduces the cost and time required for devel-
opment of commercial products. For example, Microsoft
Windows comes with hundreds of generic components rang-
ing from different GUI elements and FTP clients to the
sophisticated Internet Explorer browser control. Providing
effective security of component-based systems is widely rec-
ognized as a crucial problem in Component-Based Software
Engineering (CBSE), and it has a major impact on the over-
all quality of component-based applications [1][2].

No less than security, performance and scalability are also
critical for large-scale component-based (LSCB) applica-
tions. Inadequate architecture, a bad choice of Commercial-
Off-The-Shelf (COTS) components or a combination of both
prevent applications from achieving their performance goals.
Performance and scalability are key challenges in building
LSCB applications [3] since their predictability is inherently
difficult. Weaving security solutions into the fabric of com-
ponent-based architectures often worsens the performance

and scalability of the resulting system. According to Clem-
ents, performance is a function of the frequency and nature
of inter-component communication, in addition to the perfor-
mance characteristics of the components themselves [4][5].
It is the nature of inter-component communications that we
address in this paper.

We propose a scalable security mechanism for LSCB sys-
tems called Component Adaptive Scalable Secure Infrastruc-
ture Architecture (CASSIA). CASSIA utilizes information
about the topology of the security boundaries and the topol-
ogy of interactions among components via their infrastruc-
ture. By incorporating information about security boundaries
into a component infrastructure we eliminate unnecessary
encryption and decryption of messages when communicat-
ing components are located within the same security bound-
ary. In addition, we eliminate the conflict between the need
to partition the environment for some applications and the
needs for global secure partitions. We show the results of an
empirical study that suggests interfaces of over 80% of the
components in real-world component-based systems are
used by clients within a protected security perimeter. We use
this result to show that the time and space complexities of
our solution are O(n) and therefore, it is scalable. We
implement our solution for MicoCCM, an open-source com-
ponent infrastructure and run performance experiments the
results of which prove that our solution enables a scalable
and secure mechanism for LSCB systems.

As part of our solution we present a Secure COmponent Pro-
tocol (SCOP). SCOP is based on the S-CODEP protocol [6]
which itself is based on the Kerberos protocol [7][8]. We
prove the soundness of SCOP in a separate technical report
[9] using BAN authentication logic [10]. The contribution of
this paper is 1) analyzing the sources of nonscalability when
using security solutions in LSCB systems, 2) conducting an
empirical study that reveals 80% of interactions between
components and their clients occur within the same pro-
tected security perimeter, 3) proposing and implementing the
scalable security mechanism CASSIA and evaluating its per-

formance, and 4) proposing a protocol SCOP that incorpo-

rates our scalable security mechanism into a component
infrastructure.



2 Problem Statement

Enterprises partition their computing environments based on
different criteria to secure the flow of information. For exam-
ple, many enterprises use Virtual Private Networks (VPNs) as a
global solution to securely partition their computing environ-
ments [11]. Partitioning of the enterprise environment is often
based on geographic locations of departments or the security
policy regulating the flow of information between different
departments. VPN uses a protocol called IPSec that encrypts
application messages on the IP level [40]. In general, security
mechanisms like VPN enable unencrypted communications
between applications within the same security partition.

Different component-based applications often require addi-
tional security partitionings that may different from existing
security divisions of the enterprise infrastructures. A situation
often arises when a company purchases and installs two or
more applications produced by competing companies within a
single security partition and on the same computer. As it often
happens these applications use the same generic components,
and it is possible for these applications to interfere with one
another by means of using these generic components. Compet-
ing companies often demand that their applications should run
in their own security partitions, so that other competing appli-
cations cannot eavesdrop on them to understand their inter-
workings. Since installation and configuration of a VPN is a
serious technical exercise, and once installed it is rarely recon-
figured [11], reconfiguring VPN every time a different applica-
tion is installed or run is impractical. When a component-based
application should be partitioned within a single computer,
VPNs and similar security systems cannot even be used.

As a result of this condition programmers add separate security
mechanisms (e.g., encryption) to existing applications, and it
leads to worsened performance and scalability of the resulting
system. Encrypting and decrypting communications even for
small-size computing systems results in a significant perfor-
mance drawback [12]. A fundamental problem of applying
standard security mechanisms based on encrypting algorithms
to LSCB systems is that the resulting secure systems are non-
scalable. Existing research is limited to offering protocols and
algorithms that address different security aspects of software
systems without paying much of attention to the integration
problems of security mechanisms with large-scale software.

We address a problem of adapting security partitions to busi-
ness requirements without affecting the scalability and while
preserving security properties of the resulting LSCB system.
The goal is to provide a security mechanism that enables users
to change partitions dictated by the business needs dynamically
and securely.

3 Background

3.1 Software Fortresses

The concept of software fortresses is an approach for modeling
large enterprise systems as sets of self-contained entities [13].
Each entity is called a fortress, and it makes its own decisions
about the underlying platform, data storage, and security mech-
anisms and policies. Fortresses communicate with one another
through carefully designed mechanisms. A software fortress
architecture is an enterprise architecture consisting of a series
of self-contained, mutually suspicious, marginally cooperating
software fortresses interacting through carefully crafted and
meticulously managed treaty relationships. Once a component
is allowed inside a fortress it gains access to all other compo-
nents within that fortress. The walls of the fortress allow only
those communication requests that come into the fortress
through approved channels called drawbridges. The walls of a
fortress are collectively called a security perimeter of the sys-
tem inside a fortress. Only approved communications are
accepted inside the fortress. Treaties are the formal agreements
between fortresses that define how fortresses work together.
The trust rule of a software fortress specifies that every entity
inside a fortress trusts every other entity inside the same for-
tress while trusting no entity outside the fortress. All communi-
cations that originated inside a fortress and are designated to
entities located inside the same fortress are approved by
default.

The scalability of software fortresses is based on three ideas:

» the cost to process a message at the security perimeter
of a fortress is much smaller than then total cost of the
processing of this message;

* processing rate is increased by scaling up (i.e. by
replacing the hardware on which the fortress is based
with more powerful hardware) and by scaling out (i.e.
by adding more hardware), and

* the cost of a unit of work remains constant as the
throughput increases.

In this paper we assume that component-based systems are
built as software fortresses.

3.2 Related Work

While the areas of performance of component-based systems
and software security are, each on its own, rife with notable
publications their intersection yields few results. It is widely
recognized that no single technique can produce completely
trusted components [14][16]. Yet it is not clear how to weave
security solutions into the fabric of component-based architec-
tures that will not lead to the decreased performance of the
resulting system.



The Trusted Components Initiative (TCI) is a cooperative effort
to provide the software industry with methods, techniques and
tools for building high-quality reusable components, thereby
elevating the general level of trust that software users, and
society at large, can have in these components [17]. TCI’s web
site contains a page with references to the growing number of
publications in this area, however, the lack of publications that
discuss the interaction between security and performance and
scalability solutions is glaring.

One of main research directions in security solutions for com-
ponent-based applications is in providing strong authentication
control of access to and from components [18][19]. A number
of techniques and algorithms are designed to prevent malicious
components to gain access to computers inside secured net-
works, or to prevent components to access domains for which
they do not have a proper authorization. However, these solu-
tions fall short to solve the problem that we pose in this paper
since they are concerned with solving security problems rather
than addressing the issues of performance and scalability as
functions of security solutions.

Various component infrastructures use different security stan-
dards. CORBA and CCM implementations may use security
services defined by the Object Management Group’s standards
[21] while DCOM/.Net is based on a different standard [22].
Authorization Token Layer Acquisition Service (ATLAS)
describes the service needed to acquire authorization tokens to
access a target system using the CSIv2 protocol. The Common
Secure Interoperability Specification, Version 2 (CSIv2)
defines the Security Attribute Service that enables interopera-
ble authentication, delegation, and privileges. CORBA Secu-
rity Service provides a security architecture that can support a
variety of security policies to meet different needs. The secu-
rity functionality defined by this specification comprises a
variety of mechanisms such as identification and authentica-
tion of principals and authorization and infrastructure-based
access control [23]. However, the effect of these security stan-
dards on the scalability and performance of component-based
applications is not yet fully investigated.

When considering LSCB applications, global optimizations
may not always be desirable. Evaluating an overall application,
potentially consisting of hundreds of components, whenever an
individual component or a group of components does not
behave as expected, might induce unnecessary overhead and
not scale well. Techniques for monitoring the performance of
component-based applications and distributing the adaptation
mechanism based on the results of monitoring was proposed in
[24][25]. If a problem is detected at an individual component
level, then this problem is dealt with locally.

A design for adaptive self-optimizing containers for Enterprise
JavaBeans (EJB) is offered in [26]. An adaptive container per-

forms the discovery of inter-component communication pat-
terns at runtime, analyzes them, and adapts itself to the needs
of component-based applications by refactoring its structure.
The adaptation process is based on the acquisition of knowl-
edge about call patterns between components of these applica-
tions. While there are indications that component-based
applications benefit from this approach, it is targeted specifi-
cally for EJB platforms and does not address the impact of
security on scalability and performance.

A different research direction emphasizes an idea that scalabil-
ity and performance of distributed and component-based sys-
tems can be predicted using traditional performance analysis
methods [27][28][29][30][31]. In general, an architectural
design in a form of Unified Modeling Language (UML) is
translated to models for performance analysis based on layered
queuing networks or stochastic Petri nets. These models are
useful to specify architectural characteristics and capture dif-
ferent performance parameters. However, they often ignore
important details of the runtime environment, and as a result
the problem of predicting and improving performance and
scalability of LSCB applications is still not adequately solved.

In a similar vein, there are attempts to predict performance and
scalability of large-scale enterprise component-based applica-
tions before they are built [32][33]. This research is based on
the assumption that all components in an application are devel-
oped from scratch by the same organization that has a clear
vision about its evolution. This assumption is quite far from
reality. Issues of security, scalability, and performance conflict
with intentions of software engineers at design time to view
their systems as a set of reusable and composable components
that can be moved to different platforms easily without affect-
ing the quality of the design. It means that engineers try to
design a complete system first, and then retrofit security and
scalability into the design, that is notoriously difficult to do.

Finally, few papers present results on measuring performance
of component-based systems [34][35]. An interesting result
shown by [34] states that better performance can be obtained
by sacrificing modularity and reusability. While we utilize
some of the techniques presented in these papers for our case
study, our approach is based on preserving good characteristics
of component-based systems.

4 Empirical Study

In order to gain insight into possible means by which a scalable
security mechanism can be enabled, we analyze interactions
among components in large-scale commercial component-
based software and identify two important characteristics: clus-
tering and linearity.



Clustering. Our hypothesis is that in component-based sys-
tems a large percentage of components service requests of cli-
ents within the same security perimeter. This hypothesis is
based on multiple observations: GUI components are almost
always used within the same security perimeter, and for perfor-
mance reasons many software engineers prefer to put compo-
nents and their clients on the same computers within the same
security perimeter unless they absolutely have to separate
them.

The results of our study of seven companies are shown in
Table 1. We analyzed the source code for medium to large-
scale projects that were developed in seven different compa-
nies by different groups of software engineers. The projects
were not dependent on one another in any way. The nature of
systems ranged from a web-based online bidding system devel-
oped by Ambac-Connect Inc. to a sophisticated wireless work-
force management system developed by Arrowsmith
Technologies, Inc. In each project we identified distinct com-
ponents either developed as part of the project or COTS pur-
chased from a third party or available as part of other software
packages used in the project. For each distinct component we
identified its client components. From the available source
code and project documentation we partitioned the project by
security perimeters identifying each software fortress. The
interactions between components are represented by channels
or edges in Figure 1. Then we calculated the percentage of the
channels that do not cross any security perimeter. A location in
the source code where a distinct invocation of a component’s
method occurred was counted as one client-component interac-
tion (channel). As shown in Table 1 this percentage is high and
close to 80% on average and this experimental result effec-
tively confirms our hypothesis.

Linearity. We noticed that some components interact with few
clients while other components service a larger number of cli-
ents. This uneven distribution of load among components
prompted us to ask whether there is a correlation between the
components with a bigger number of channels and the percent-
age of these channels that do not cross any security perimeters.
Figure 1 shows the percentage of channels that do not cross
any security perimeters. From this graph we make an important
observation that the greater the number of channels, the more
likely that a smaller percentage of them will cross security
boundaries. Let variables X and Y stand for samples of the
number of channels and the percentage of these channels that
do not cross any security perimeters respectively. To estimate
the correlation between samples of the graph we compute the
Pearson product moment correlation coefficient [36] as
nZ(XY) - (ZX)(TY)

InzY? - (2Y) Xt - (2X)

r

Company Project Total Components | % of components
interacting within
the same security
perimeler

IBM Helphow! 1583 87

KLA-Tencor Archer Analyzer | 23 92

Boundless Viewpoint 56 ag

Adminlstrator

Ambac- Online bidding | 72 75

Connect system

Arrowsmith FleetCon 39 70

Technologies |

Globeset Secure Wallet 167 83

Schlumberger | Smartcard 21 95

Management
System

TABLE 1. Percentage of components used in commercial
projects that interact within the same security perimeter.

The value of r for the data shown in Figure 1 is 0.747 that
suggests a strong tendency for components to interact with
larger percentage of their clients within the same security
perimeters as the number of their clients grows.

5 A High Probability Bound

We use the analogy between an event of flipping a coin and a
random selection of an LSCB system. Even though each LSCB
system is highly structured internally, the multiplicity of fac-
tors which affect the outcome of the process of building these
systems makes it easier to reason about a pattern that emerges
from a large number of LSCB systems built in different envi-
ronments in probabilistic terms. The pattern is that the larger an
LSCB system is in terms of the number of components it con-
tains, the less likely it is that the majority of channels between
its components cross the security boundaries established within
that system.

There are many ways to partition the clique architecture into
fortresses (specifically, 2" for a clique of n components).
Some ways of partitioning result in the majority of channels
crossing security boundaries, while the other ways lead to the
opposite result. When considering real-world commercial
LSCB systems we observed a stable pattern that on the average
80% of channels in these systems do not cross any security
boundaries independently of the domain of the system or its
architectural style. This number was smaller for smaller sys-
tems and the largest system we considered had less than 200
components. Our intention is to extrapolate our empirical find-
ings to predict how likely it is for channels in LSCB systems to
cross security boundaries as the number of these channels
grows. We assume for our analysis that the number of channels
grows proportionally to the number of components that com-
municate through these channels.



Consider a population of randomly selected samples of real-
world component-based systems by approximating fortress
architectures to be random with respect to the underlying com-
ponent architectures. Our analysis uses indicator random vari-
able Xj; = {there is a channel between component i and
component j}. Let Xj; be associated with the event in which the
channel crosses one or more security partitions:
0, SP, = SP,
X, =

B {1, SP;# SPj
where SPy is a security partition (fortress) in which component
k resides. The expected value of random variable Xj; is
E[X;;] = 02-1+08-0 =02, where 0.2 and 0.8 are the prob-
abilities whether a channel crosses security boundaries or not.

n n
Let X= 3y ¥ X;i - Then by the theorem of linearity of
expectatiairs 1i = 1
>y X E[Xij]Z 02-(n-(n-1))/2=01-n-(n-1)

i=li=1

In our empirical study we work with seven commercial LSCB
system whose size is up to 200 components. While it is enough
to detect the pattern of distribution of channels with respect to
fortress boundaries, we do not have sufficient experimental
data to prove that this pattern holds for all systems with very
large numbers of components. However, we can derive the
probability that this pattern will not hold for all LSCB systems
that contain any number of components. To compute this prob-
ability we use the Chernoff bound [37] stating that
Pr(X > BE[X]) < exp((1—(Inp +1/B))BE[X]), where B>1.
By taking 8 = 1.5 (which adjusts for the expectation from 80/
20 to 70/30 probability distributions) we derive the probability
for 30% of n components to have channels that cross security
boundaries for an arbitrary component-based system to be less
than exp(—(0.011 - n - (n—1))). It means that while for a system
consisting of ten components the probability that more than
30% of these components communicating with one another are
located within different security partitions is close to 0. 4 (i.e.

E[X] =

B 100.00% ¢
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Figure 1: The percentage of channels between
components that do not cross security perimeters.

the probability is relatively high), this probability for a system
consisting of 100 components is close to 5.1 - 10" (obvi-
ously, extremely small).

6 Our Solution

CASSIA exploits the nature of interactions among components
and their component infrastructure. Since clients invoke meth-
ods of interfaces of components via dispatch!, invocation
requests are forwarded to CASSIA that decides whether to use
encryption/decryption services. The decision is made adap-
tively based on the analysis of security descriptors of compo-
nents and software fortresses. We merge the component
infrastructure with the authentication server and offer SCOP, a
scalable secure protocol for component-based systems. We
have proved its correctness (where the proof is published in a
separate technical report [9]) using BAN authentication logic.

6.1 The Nature of Interactions

Even though it is generally thought that a client invokes a
method of an interface of some component directly, in fact this
request is executed by a component infrastructure that serves
as a request broker between components and their clients.
Often clients and components are located in different processes
and therefore invocation requests are resolved via the late bind-
ing or dispatch. The nature of interactions between components
is that they are accomplished to a large degree by a component
infrastructure. Component infrastructures expose dispatch
APIs that clients use to request services from components.
Hiding these dispatch APIs in programming languages enables
programmers to abstract away the complexity associated with
using component technologies, and view component-based
architectures as cliques where nodes are components and their
clients and edges are the communication channels between
them. However, to reflect the nature of interactions among

Figure 2: A star topology of interactions between
component and their infrastructure.

1. Dispatch is an mechanism used to resolve references to methods
that should be invoked in response to client requests



components correctly we use a different representation of com-
ponent interactions as shown in Figure 2.

In this representation we explicitly show that no two compo-
nents interact with each other directly. The central node
marked as CI/AS is the component infrastructure that we
merge with the authentication server. This infrastructure is
responsible for taking requests from clients, locating the
desired component, loading it in memory, instantiating its
interfaces, invoking its methods, and returning the results to
the clients. In the worst case, each component may be placed in
a separate fortress, and then all interactions between compo-
nents and their clients should be encrypted. However, by
imposing the fortress metaphor we effectively partition the sys-
tem by imposing security boundaries than encompass many
components. If we designate the number of components as n.
and the number of fortresses as n¢, then we have that n_>>n«.
Since encryption is required only when we cross the security
perimeter of fortresses, the overall complexity of a security
solution based on the number of fortresses may be reduced. By
merging an authentication server with a component infrastruc-
ture and utilizing the topology of communications among com-
ponents we reduce the number of shared keys from O (n2) to
O(n), one for each component (or strictly speaking one key
for each fortress).

6.2 CASSIA

A central idea of our solution is if two communicating compo-
nents are located within the same security perimeter, then no
encryption and decryption of communications are necessary. It
means that component infrastructures should be aware of the
configuration of fortresses and components located inside
them.

6.2.1 Configuration

An example fragment of a configuration XML-based file for
CASSIA is shown in Figure 3. Each fortress entry has a name
designator and comprises components located within the for-
tress security perimeter. A treaty entry specifies fortresses for
which it is active and a protocol used for encryption/decryption
of communications between the fortresses. This configuration
file is created by a component infrastructure that queries the
metadata about fortresses and components they comprise. The
information is used in the CASSIA adaptive algorithm
described in the next section.

6.2.2 Algorithm

Pseudocode for the CASSIA adaptive algorithm is shown in
Figure 4. We introduce functions Fortress:C, ,—F,,
Treaty:F, xF —» Ty, and Protocol:T ,—>P .

<fortress name="A">
<component ID="1"/>
<component ID="2"/>

</fortress>

<fortress name="B">
<component ID="3"/>

</fortress>

<treaty>
<fortress name="A"/>
<fortress name="B”/>
<protocol>OpenSSL<protocol/>

</treaty>

Figure 3: An example fragment of XML-based
configuration file for CASSIA.

Function Fortress maps elements of a component domain
to elements of the set of fortresses. Function Treaty maps
elements of the domain of fortresses to the elements of the set
of treaties between fortresses. Finally, Function Protocol
maps elements of the domain of treaties to the elements of the
set of cryptographic protocols.

The algorithm works as follows. Communicating components
C; and C; are the first two parameters of the algorithm, and the
third parameter is boolean flag variable encrypt describing
whether communication data between components are
encrypted or decrypted. For both components C; and C; we
obtain the corresponding fortresses F; and F; to which they
belong by applying function Fortress. If fortresses F; and F;
are the same then we do not apply cryptography for communi-
cations between these components. Otherwise, we obtained the
descriptor of treaty Tj; by applying function Treaty to for-
tress descriptors F; and F;. From the descriptor of treaty Tj; we
obtain the protocol P;; that is used to encrypt/decrypt commu-
nication by applying function Protocol.

6.2.3 Implementation

We implemented the CASSIA adaptive algorithm for Mico
CORBA Component Model (CCM) [38][39]. The acronym
MICO recursively expands to MICO Is CORBA. Mico is a
freely available OpenSource project and fully compliant imple-
mentation of the CORBA standard. MICO has been branded as
CORBA compliant by the OpenGroup, and it is considered to
be an industrial strength software since it is used and supported
by different Fortune 1000 and smaller companies around the
world. The sources of MICO are placed under the GNU-copy-
right notice.

OpenSSL is used as a low-level cryptographic protocol to
encrypt/decrypt communications between components and
their clients. We maintain a configuration table within Mico
CCM in an XML format that is a representation of configura-
tion data shown in Figure 3. Rather than implementing security
perimeters based on physical entities (e.g. firewalls) we intro-



duce a logical partition by grouping components in the config-
uration file based on given fortresses. Keys are located in a
protected storage and maintained using the SCOP protocol that
is the subject of the next section.

6.3 SCOP

The Secure COmponent Protocol (SCOP) enables the secure
deployment of components in CASSIA. Since we introduce
new security mechanism for deployment of components, we
need a protocol that guarantees reliable and correct communi-
cations among all elements of the system. After formalizing
SCOP, we proved its soundness using the BAN authentication
logic. SCOP enables us to allocate a single key (fortress) for
each component thereby reducing the demand for the size of
the storage for keys from O (ncz) to O(ng).

6.3.1 Rationale

With the abundance of various security protocols, why do we
need SCOP? Component-based systems have multiple points
of attack. Recently we discovered a variation of the imperson-
ation attack and solution based on Kerberos was offered for
component-based systems [6]. We need a protocol that is spe-
cific for component-based systems, offers comprehensive pro-
tection, and works seamlessly with CASSIA. SCOP is used
only when CASSIA makes a decision to encrypt messages
between components, and it ensures that client components
interact with real servers and not their surrogates.

SCOP protocol is built using ideas from Kerberos and IPSec
protocols. A cryptographic review of the IPsec protocol
showed that the protocol was a disappointment [40]. The study
showed that IPSec was too complex, and this led to large num-
bers of ambiguities, contradictions and weaknesses, IPSec was
not 100% secure, and it was either required to decrease the
complexity of IPSec and improve its modularization or another
alternative should be found. SCOP addresses these issues
while targeting specifically component-based systems.

CASSIA( Cy, C
Begin
F; = Fortress( C; );

i boolean encrypt )

Fj = Fortress( Cj ) ;

if( Fy != Fj ) then
Tiy = Treaty( Fy, Fy )7
P;5 = Protocol( Tjy )7

i3
if ( encrypt == true ) then
encrypt ( Cy, Cj, Pij ) ;
else
decrypt ( Cy, Cys Piy )
endif
endif

End

Figure 4: Adaptive algorithm for application of
cryptography for CASSIA.

6.3.2 Description

Our assumptions do not go beyond the Dolev-Yao threat model
[41]. We assume that the overall integrity of the operating sys-
tem cannot be violated (i.e., no external threats can exploit
general security breaches that may compromise the overall
integrity of the system). We also assume that when installing
any program the operating system creates a virtual shell effec-
tively protecting the installation from being penetrated by an
adversary. SCOP assumes that the installation of components
is secure so that it can obtain shared keys from component
infrastructure CI that is merged with the authentication server
AS. During the installation, each principal (i.e. component) C
sends a message to server CI/AS (we mean a security service
within an operating system) that contains its identity and a pri-
vate key that C uses to communicate with CI/AS: . This opera-
tion includes the installation and registration of components
with the system-wide database. When CI/AS receives this ini-
tial message it stores it in a secure storage to which only CI/AS
has access, and by our first assumption CI/AS cannot be com-
promised.

A SCOP messaging model that establishes communication
channel between components C; and C; is shown in Figure 5.
As the first step, we establish a secure communication channel
between C; and CI/AS so that CI/AS can request various ser-
vices from component C; securely. To do that, C; sends mes-
sage M| to CI/AS in which it asks CI/AS to instantiate C; and
to provide a reference to it. CI/AS receives message M; and
sends message M, to C; that contains the identity of component
C,, timestamp nonce (a unique number that guarantees fresh-
ness of a message) T that is used as a session key, and key
K; a5 for secure communication between CI/AS and C;. Mes-
sage M, is encrypted with shared key K.

"--—-F'I
MG T 2R K | 1 MG TH R,

Figure 5: A SCOP messaging model.

C; receives this message from CI/AS, decrypts it, and responds
with message Mj that consists of the incremented timestamp
nonce T, and reference R; to the component C;, en-crypted with
the shared key K; ;5. With reception of the last message from C;
a secure communication channel is established between CI/AS
and G;. CI/AS extracts the reference R; to the component G
and forms new message M, comprising the incremented times-
tamp nonce T, unique identifiers of components C; and C;, and
the reference R;, shared key K, and encrypts this message
with the shared key K. Then it sends this message to C;. After
decrypting it C; holds the reference R; to the component C;.



When C; needs to invoke a method of some interface of C;, it
sends a message to CI/AS that is encrypted with the shared key
K| a5 that contains the incremented timestamp nonce T, the ref-
erence R; to the component C;, the list of parameter values in
the order in which they are specified in the declaration of the
method of this interface, and the description of the requested
operation (e.g., to invoke an interface of the component). CI/
AS decrypts this message and invokes the requested method on
behalf of C;, and receives the return values. Then it forms a
message encrypted with the shared key K 55 that contains the
incremented timestamp nonce T, the reference R; to the com-
ponent C;, the list of return values, and the description of the
requested operation. This concludes the description of SCOP.

6.3.3 Soundness

Given SCOP we need to be sure that every time client C;
invokes methods of a component, i.e. C; - C; it actually com-
municates with the real component C; and not some intercept-
ing surrogate C Proving this property is in fact equal to
establishing that the model of the protocol is sound, that is, it
does not lead to wrong behavior when some intercepting surro-
gate Cj’ impersonates the real component C;.

Theorem. When two components communicate, i.e. C; — Cj,
C; believes that C; is true.

The proof of this theorem is based on BAN authentication
logic and is given in [9].

7 Case Study

For the case study we implemented the Pet Store application
for MicoCCM based on the Java Pet Store demo that is a sam-
ple application developed by the Java BluePrints program at
Java Software, Sun Microsystems [42]. This sample applica-
tion is typical in using the capabilities of the underlying com-
ponent infrastructures that enable robust, scalable, portable,
and maintainable e-business commercial applications. It comes
with full source code and documentation, so we used it to
experiment with CASSIA and demonstrate that we can build
scalable security mechanisms into enterprise solutions.

Our first implementation of the Pet Store application is based
on the Java Pet Store demo and consisted of twelve compo-
nents. For each next implementation we used the previous one
as a base by taking component C that exports interfaces I, ...,
I, and dividing it in two components C; and C,. Component
C, exports interfaces I, ..., I; and component C, exports inter-
faces Iy 11, ..., I;, where k = r

We produced five implementations of the Pet Store application.
Its first implementation consisted of twelve components. These
components exported a total of 132 interfaces that exposed a

total of 183 methods. The second implementation had twenty
five components, the third had fifty components, the next
implementation consisted on seventy five components, and
finally, the last contained one hundred components.

We designed the performance test to measure the reliability
and sustainability of the transaction processing throughput of
our implementation of the PetStore. The test script simulated
users logging in, and then proceeding to individually order 100
items similar to the performance tests [35]. For each item
ordered, the checkout process was completed, with the last step
in this process being the actual placement of the order that acti-
vates a transaction, followed by a logout at the end of the
script. Each virtual user therefore completes 100 individual
transactions during a user session. The test was run at a user
load providing peak throughput for duration of 24 hours to
show if this throughput was sustainable. We repeated this test
for our five implementations of Pet Store. We tested each
implementation four times. The first test was run with all com-
ponents marked in the configuration file as located within the
same security perimeter so that no encryption/decryption was
necessary. In the second test 20% of interacting components
were marked as located in separate security perimeters. The
third test was run with 50% of interacting components marked
as located in separate security perimeters, and the last test was
run with 100% of interacting components marked as located in
separate security perimeters. The result of this test is shown in
Figure 6 with the legend reflecting the percentage of compo-
nents communicating through security perimeters. Four bars
corresponding to the percentage of interacting components
located in separate security perimeters are shown for each of
the four implementations of Pet Store application. The leftmost
bar in each experiment with a different number of components
corresponds to the case when all components located within
the same security perimeter, and it indicates the highest
throughput since no cryptographic protocols are used when
running this implementation. At the other extreme, the right-
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Figure 6: The throughput for 24 hour execution of the
Petstore application depending on the number of
components and percentage of those components
communicating through the security perimeter.
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most bar in each experiment with a different number of compo-
nents corresponds to the case when all components are located
within security perimeters, and it indicates the lowest through-
put since all communications between components are
encrypted and subsequently decrypted. Moreover, while the
application throughput drops linearly in cases with 0-20% of
components, the drop rate of the throughput is polynomial to
exponential (based on the approximation of graphs shown in
Figure 6 and Figure 7) in cases with 50-100% components
located in separate security perimeters. This observation is
confirmed by the graph shown in Figure 7 that depicts the
dependency of the average time per transaction in seconds
from the number of components in the Pet Store application.
This graph shows that the increase rate of the throughput is in
the range of polynomial to exponential in cases with 50-100%
components located in separate security perimeters.

Table 2 shows the speedup provided by our solution with
respect to a solution that use cryptographic algorithms for all
communications. We measure an average time taken to execute
a transaction in our five Pet Store application implementations
with different numbers of communicating components for a
standard implementation with a mandatory encryption/decryp-
tion, and an average time taken to execute a transaction with
our CASSIA solution. The last column in Table 2 shows speed-
ups for fifth implementation with different numbers of compo-
nents. We consider this result to be indicative of at least of
order of magnitude speedup due to the deployment of CAS-
SIA.

Finally, we answer the question: how large is the overhead of
CASSIA itself. In order to measure it we placed all compo-
nents in the same fortress and ran the PetStore application with
the CASSIA algorithm turned on. Since no encryption is
required, the measurements of the average time required to
complete a transaction with and without CASSIA will reflect

Number of Average time with | Average time | Ratio of
Components |encryption,sec | CASSIA, sec [speedup
12 4.84 3.33 1.45
25 9.58 4 24
50 16.58 4.56 3.64
75 30.1 5.05 5.96
100 92.7 5.1 16.2

TABLE 2. Speedups of our adaptive CASSIA solution when
20% of communicating components interact through
security boundaries.

the CASSIA’s overhead. The results of this experiment are
shown in Table 3. CASSIA’s overhead ranges from 1.9% to
3.7% and on the average is 2.9%, which is quite small.

8 Conclusions

We analyzed the sources of nonscalability when using security
solutions in LSCB systems and conducted an empirical study
where we found that 80% of interactions between components
and their clients occur within the same protected security
boundaries. We evaluated a high probability bound showing
the negligible probability that in LSCB applications over 30%
of communicating components may be located in different for-
tresses. We successfully implemented CASSIA, a novel scal-
able security mechanism for LSCB systems that is based on
our empirical findings and it utilizes the topology of the secu-
rity perimeters and a pattern of interactions among components
via their component infrastructure. We conducted CASSIA’s
performance evaluation case study that confirms its scalability
and showed its very small overhead, proposed and imple-
mented a Secure COmponent Protocol (SCOP) that incorpo-
rates our scalable security mechanism into a component
infrastructure, and we have proved that our solution was sound
in a separate technical report [9].

Number of Average time without | Average ime with | %, CASSIA

Components encryption, sec CASSIA, sec  |overhead
12 3.16 3.22 1.9
25 3.55 3.63 2.25
50 3.9 4.04 3.7
75 453 4.66 28
100 4.61 4.77 3.6

TABLE 3. Overhead of our adaptive CASSIA solution.
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