
Verifying Component-BasedCollaborationDesigns

Kathi Fisler1, ShriramKrishnamurthi2, andDon Batory3

1: Departmentof ComputerScience,WorcesterPolytechnicInstitute;kfisler@cs.wpi.edu
2: Departmentof ComputerScience,Brown University;sk@cs.brown.edu

3: Departmentof ComputerScience,Universityof Texasat Austin;dsb@cs.utexas.edu

1 Introduction

Collaboration-basedor layereddesignprovidesan architecturefor definingsoftwaresystems.In this architecture,
systemsaredefinedasacompositionof layers,whereeachlayer(collaboration)definesafeatureandtherolesthateach
actorin thesystemplaysin thefeature.Collaboration-baseddesignshavetheadvantagethatfeaturesareeasilyadded
to or deletedfrom the system;simply changingthe compositionof collaborationsthat definesthe systemchanges
the featuresthat the systemimplements. Collaboration-basedarchitecturesare receiving increasingrecognitionas
providing a flexible andscalableapproachto large-scalesystemdesign,particularlyfor product-linearchitectures.

Scalable,collaboration-baseddesignsarefundamentallycomponent-based[6, 9]. Collaborationssharethefeatures
of components[5, 7, 11], at leastin principle: they areblackboxesthatcanbecombinedthroughexternallinkage;their
compositioncanbe treatedhierarchically;andthey may be instantiatedmultiple timeswhenbuilding a system(the
lattersituationcouldariseif thesamefeatureis addedto differentpartsof thesystematdifferenttimes).Thissynergy
betweencomponentsandcollaborationsprovidesa practicalandimportantclassof problemsto drive andevaluate
researchinto components.We areinterestedin formal verificationtechniquesthat supportcompositionalreasoning
aboutcomponent-based,collaboration-baseddesigns.In this paper, we outlineavision of analysistechniquesfor this
designdomainandarguethatmostconventionalcompositionalverificationtechniques,suchasarefoundin themodel
checkingliterature,arepoorlysuitedfor this domain.

2 Collaboration-Based Design

Programsconsistof actors andtheroles thatthey play. Collaboration-baseddesignsstructuresoftwarearoundcollab-
orations (layers)thatdefinehow eachactorin thesystemcontributionsto a givenfeatureor task. Considera system
for managinglibrary circulation information. The systemcontainstwo classesof actors: booksandpatrons,both
organizedinto databases.Circulationoperations,suchascheckingin booksor placingthemon hold, involve interac-
tion betweena patronanda book. A conventional,non-collaborativedesignwould implementonemodulefor books
andanotherfor patrons.Eachmodulewould containthe codefor performingcirculationoperationsrelative to each
actor. A collaboration-basedsystem,in contrast,would groupthe informationrelatedto eachoperationinto a single
component.Composingthe componentsfor eachdesiredoperationbuilds the completesoftwaresystem.Figure1
shows anexampleof a library systemcomposedwith a collaborationfor handlinglost library books.Figure2 shows
a generalcollaboration-baseddesignin contrastto a conventionaldesign(whereeachstatemachinecorrespondsto
a singleactor). Collaboration-baseddesignshave beenusedto implementmany substantialsystems,including an
artillery managementsystem[1], a programmingenvironment[6], andextensiblereasoningtools[4, 10].

3 A Model of Collaboration-Based Design

To fostera discussionof verificationfor collaboration-baseddesigns,we provide a modelfor collaborative designs
anddiscussthe verificationchallengeswithin thatmodel. Concretely, we view a designasa setof classes,roughly
oneper actorin the system.A collaborationconsistsof a setof classextensions(mixins) for the actorclasses.The
mixins in a collaborationrelateto a commontask(feature)in theoverall system.This definitionallows actorclasses

1

dsb

dsb
4th ICSE Workshop on Component-Based Software Engineering: Component Certification and System Prediction. Toronto, Ontario, Canada, May 2001.

in outorder

res hold

clear

owes

block

lost action: fines:= fines+price(book)

lost-book

Collaboration

Original System

lost-bookorder-ready Lost-Book

Figure1: Exampleof a collaborativedesignfor a library circulationsystem.Thestatemachinescapturebooks(left)
andpatrons(right). Thedashedboxenclosesacollaborationwhichextendsthesystemwith functionalityfor handling
lost books.

XX

X X

X X

Figure2: Two views of a collaborative design:sequentialcompositionof layers(left) versusparallelcompositionof
extendedactors(right).

andmixins of arbitrarycomplexity. To make theproblemof verificationmoretractable,we assumeeachactorclass
canbedescribedasastatemachine,andeachmixin extendsanexistingstatemachineby addingnew nodesandedges.
Compositionof a layer with an existing systemsimultaneouslyrefinesthe statemachinesof several actors. More
specifically, eachstatemachinerefinementis definedby a setof entrancestates(with a similar match-upof statesat
exit from the layer). Eventuallywe would needa way to verify that thestatemachineis a soundmodelof thecode.
Researchersareworking on constructingsuchabstractionsautomatically, andsuchmodelsarealreadyavailablefor
many systems[2, 3].

Figure1 presentsasimpleexampleof ourcollaboration-designmodelonalibrary circulationsystem.Booksarein
oneof thestates

�
order� in � out � res � erve ��� hold � ; patronsarein oneof thestates

�
clear � owes � block � ed ��� (correspond-

ing to levelsof fineson a patron’saccount).Labelson thetransitionsareomittedhere,but supportoperationssuchas
checkingbooksout andputtingbookson hold. A laterextensionto thesystemaddsfacilitiesfor handinglost books.
Thisextensioninvolvesanew stateandpathin thebookmachine(to registerabookaslostandpossiblyorderit again)
anda new pathin thepatronmachine(to addfines). Thetwo machineextensionsform a collaboration.Composing
theLost-Bookcollaborationwith theoriginal systemthroughthedashededgesyieldsthenew library system.

Givena setof library collaborations,we might wish to provepropertiesaboutthebehavior of a composedlibrary
system. For example,we might wish to prove that oncea book is reportedas lost, the accountof the patronwho
lost the book is assessedfeesto replacethe book. We would like to reasonaboutsuchpropertiesat the level of the
collaborations,ratherthanat thelevel of theentiresystem.This is largelya tractabilityconcern:full, realisticdesigns
aregenerallytoo largeto verify näıvely. Verificationresearchlooksfor waysto reducetheportionof thedesignthat
musttheanalyzedto provea givenproperty. Collaborationsrestricttheseportionsnaturally: thelost-bookcollabora-
tion containsthecomputationrelatedto lost-bookproperties.Betterstill, thelost-bookcollaborationhasfewer states
thanthefull system,soverificationshouldbemoretractableon thecollaborationlevel. By abstractingthecontentsof
eachcollaborationasa collectionof statemachines,we caninvestigatetheapplicabilityof conventionalverification
techniques.Model checking,in particular, offersa varietyof techniquesfor specifyingsystemsandproperties,and
for verifying thatsystemssatisfyproperties;this techniquehasbeenespeciallypopularin verifying hardwaresystems.
We thereforeconsiderthedefiningquestionsin thecontext of thisabstraction.

3.1 What Properties Do We Want to Prove?

We areprimarily interestedin verifying behavioral properties,ratherthanperformanceproperties.Focusingon be-
havioral propertiesallowsusto leverageexistingspecificationlogics.Theselogicscancaptureavarietyof statements
aboutsystemsincludingsafety(invariants)andliveness(progress)properties.

For collaborativedesigns,aprogrammermightasktwo naturalquestionsof new collaborations:

1. Doesthenew collaborationbreak(global)propertiesof theexistingsystem?

2. Doestheexisting systeminvalidate(local)propertiesof thecollaboration?

In our library example,theLost-Bookcollaborationshouldpreservethepropertythatblockedpatronsmaynotcharge
books.Theoriginalsystemshouldpreservethepropertythatlosingabookincreasesthefinesthatapatronowes.The
Lost-Bookcollaborationwould, however, breakanexisting propertythatpatronsareassessedfinesonly if they have
overduebooks.Characterizationsof which propertiesarepreservedunderextensionshouldderive from similar work
in theverificationcommunity. Thesubstantialchallengelies in knowing what informationto includein theinterface
of a collaborationto supportsuchreasoning.Theremainingsectionsdiscussaspectsof this challenge.

3.2 What Compositional Reasoning Techniques are Available?

Compositionalverificationof modulardesignsisanareaof activeresearchin themodel-checkingcommunity. Conven-
tional approachesto this problemassumethata systemM is composedof modulesM1 andM2, executingin parallel.
To prove a propertyP of M, onedecomposesP into propertiesP1 and P2 suchthat P1 (P2) can be proven of M1

(M2), possiblyundersomeassumptionsregardingM1’s (M2’s)environment.CombiningP1, P2, andtheenvironmental
constraintsin aparticularway yieldsaproof thatM satisfiesP.

Thisapproachdoesnotnaturallyapplyto thecomponentsarisingfrom collaboration-baseddesign.Collaborations
extendexistingmachinesratherthanoperatein parallelwith them.Theverynatureof theextension,whichaddspaths
to anexisting design,impliesthatthecollaborationwill executesequentially, not in parallel,with theoriginaldesign.
Most compositionalverification theoriesembodyan assumptionof parallel compositionbecausethey requirethat
compositionwill never addbehaviors to a design.As addingbehaviors is theentiregoalbehindcollaboration-based
design,mostexistingcompositionalverificationtechniqueswill notapplyin this setting.

Wehavedevelopedaninitial theoryof collaboration-basedverification.For trivial collaborationsinvolvingasingle
actor, our approachis similar to LasterandGrumberg’s [8] work on sequentialcomposition,which wasdeveloped
independentlyandhasbeenusedfor reasoningabouthierarchicaldesignssuchasthosearisingfrom StateCharts.Our
full context differs from theseworks in threekey ways. First, LasterandGrumberg attemptto decomposea design
into sequentialfragments;our fragmentsarisenaturallyfrom thecollaborative designarchitecture.Second,existing
work assumescomplete,closedsystems,ratherthansystemsthatwill bebuilt (possiblydynamically)from black-box
components.Both issuesarefundamentalin collaboration-baseddesign.Theseissuesalsoraisesubstantialquestions
aboutcomponentinterfacesfor compositionalverification;closed-world approachescanignorethisquestion.

Thethird distinctionpointsto theheartof thetechnicalchallengein this problem:collaborationsinvolvemultiple
sequentialcompositions(the mixins) operatingin parallel (the whole collaboration). Our goal is to reasonabout
collaborationcompositionsequentially, eventhoughtheoverall (extended)actorsrun in parallel. Figure2 illustrates
theproblemathand:while wemaythink of collaborationsasproducingtheparallelcompositionof extendedsystems
shown on the right, we wish to verify the collaborationsvia sequentialcompositionasshown on the left. Verifying
within thesequentialview is preferablebecausecollaborationsnaturallyisolatethepartsof systemsthatarerelevant
to particularproperties;this taskis extremelydifficult underparallelcomposition.Thus,while we areinterestedin
thesamegoalsof assume-guarantee reasoning asfoundin themodularverificationcommunity, this projectwill need
new theoriesof reasoningaboutextensionsandcompositionswithin collaborativedesign.

3.3 What Internal Details About Components are Needed?

Ideally, collaboration-andsystem-interfacesshouldprovidesufficient informationto verify largeclassesof properties
without accessto a component’s internaldetails.Section3.6discussestheinterfacesthatwe envision to supportsuch
reasoning.Thereareat leasttwo circumstances,however, in whichaccessto theentirestatemachinesfrom eachlayer
maybeneeded:

� Whenverifying a new propertyof thesystemfor which theinterfacepropertiesareinsufficient.

� Whenmoduleinterfacescontainno property-orientedspecifications.

Thefirst problemdoesnot apply to lightweightabstractionssuchastraditionaltypes.However, aswe askmoreso-
phisticatedquestionsof a collaboration,we mustinevitably exposemoreof the functionalityof the implementation.
Sincemodelcheckingpropertiesaskextremelydetailedquestionsaboutanimplementation,exposingtheimplemen-
tationsometimesbecomesunavoidable.Thesecondproblemcanbeaddressedby decoratinginterfaceswith property
provisionsandrequirements(seeSection3.6).

In our library system,for example,wemightdecoratetheLost-Bookcollaborationwith apropertythatprocessing
abookaslostdoesnotaffect thestatusof otherbookscheckedoutto thesamepatron.Thisinformationwouldsupport
a proof that the extendedsystemproperlymaintainsinvariantsbetweenthe book andpatrondatabaseswith regards
to checked-outmaterials.Similarly, we might annotatethe original systemwith a propertythatonly overduebooks
increasefines;this informationwouldsupportanew propertyaboutthecausesof finesin thenew systembeinglimited
to overdueandlostbooks.

Webelievethatexperienceverifying collaboration-baseddesignswill yield resultsaboutclassesof interfaceprop-
ertiesthat aremostuseful in practice(suchasthoseaboutwhich operationsleave which attributesintact). We see
identifying theseclassesof propertiesasoneof theshort-termchallengesfor researchinto compositionalverification
of collaboration-baseddesigns.

3.4 What Can We Prove Without the Component’s Context?

Thepropertiesthata collaboration’s implementationmustsatisfyarelargely independentof its deploymentcontext.
Theseusuallystateeitherconsistency or inevitability requirements,andreflectinvariantsthattheunderlyingprogram
dependson. Therefore,we canstateinterestingandrich propertiesof eachcomponentindependentof its use.

This situationis somewhatdifferentthanthat in mostcompositionalverificationwork, which requiressubstantial
environmentalassumptions.The natureof collaborationsshouldreducethe complexity of theseassumptions,since
collaborationsencapsulateindividual andlargely orthogonalfeatures.Operationally, collaborationsattachto specific
statesof the existing statemachines,anddo not interactmuchwith otherstatesin the existing machines;therefore,
the interactionbetweenthenew componentandtherestof thesystemis limited. This requiresmuchlesscontextual
information,which traditionally reflectscommunicationbetweencomponentsoperatingin parallel. This difference
is what makesus believe that compositionalverificationon collaborationsmay be far moreeffective thanprevious
similarefforts on parallelsystems.

3.5 How to Measure these Properties and with What Precision?

We are interestedin behavioral properties,suchas are commonlymeasuredthroughsomecombinationof model
checking,theoremproving, or staticanalysis.Our analyseswill besoundwith respectto thestatemachinerepresen-
tationsof thedesign;thestatemachinesmaybeslightly inaccuratewith respectto thelow-level code,asdiscussedin
Section3.

3.6 How Do Components Make Necessary Information Available?

The library examplein Figure1 motivatesour intendedcomponentinterface.Theextensionlayercontainstwo state
machinefragments.Eachfragmentconnectsto a correspondingstatemachinein theoriginal systemby addingedges
betweenits startandfinishstatesandstatesin theoriginalsystem.Thebookmachineextension,for example,connects
to thepairof states

�
out � order � . Theinterfaceof theoriginalsystemmustspecifywhichpairsof statesarevalidsource

and target statesfor extensionsto eachstatemachine. This model capturesextensionsin the actualcollaborative
designsthatwe havestudied.

For eachstateappearingin an interfacepair, the interfacemustalsopublisha setof formulasthat is trueat that
state;in mostcases,theseformulaswill beautomaticallyderivedfrom theuser-specifiedpropertiesthathave already
beenproven(andshouldbepreserved)of theoriginal system(we have analgorithmfor this task). Publishingthese
formulasis essentialto our approachto compositionalverification. The interfaceof a layerstatesthepropertiesthat
aretrueof that layerandthatshouldcontinueto hold after the layer is addedto a system.TheLost-Booklayer, for

example,might includethepropertythata book,oncelost, is not checkedout to any patron.Oneresearchproblemis
to determinehow largetheseinterfacesmustbe.

4 Conclusion

Collaboration-baseddesignsrepresenta classof component-basedsystemsthatinspirea particularvision of modular
verification. Eachcomponentin sucha designrepresentsa singledesignfeatureor operation. The boundariesof
thesecomponentsalign naturallywith thesortsof propertieswhich areverifiedusingmodelchecking.As developing
propertiesthat align with componentboundariesis usuallyoneof the main challengesin usingcompositionmodel
checking,we believecollaboration-baseddesignprovidesa naturalframework for exploring component-basedverifi-
cationstrategies.This paperhasoutlinedour vision of component-basedverificationfor collaboration-baseddesigns
andsomeof theavenueswe intendto exploreto achievethis vision.

References

[1] Batory, D., C. Johnson,B. MacDonaldandD. von Heeder. FSATS: An extensibleC4I simulatorfor armyfire
support. In Workshop on Product Lines for Command-and-Control Ground Systems at the First International
Software Product Line Conference (SPLC1), August2000.

[2] Corbett,J.C.,M. B. Dwyer, J.Hatcliff, S.Laubach,C. S.Pasareanu,RobbyandH. Zheng.Bandera: Extracting
finite-statemodelsfrom javasourcecode.In International Conference on Software Engineering, 2000.

[3] Dwyer, M. B. andL. A. Clarke. Flow analysisfor verifying specificationsof concurrentanddistributedsoftware.
TechnicalReportUM-CS-1999-052,Universityof Massachusetts,ComputerScienceDepartment,August1999.

[4] Fisler, K., S.KrishnamurthiandK. E. Gray. Implementingextensibletheoremprovers.In International Confer-
ence on Theorem Proving in Higher-Order Logic: Emerging Trends, ResearchReport,INRIA SophiaAntipolis,
September1999.

[5] Flatt,M. Programming Languages for Reusable Software Components. PhDthesis,RiceUniversity, 1999.

[6] Flatt, M., R. B. Findler, S. Krishnamurthiand M. Felleisen. Programminglanguagesas operatingsystems
(or, Revengeof the Son of the Lisp Machine). In ACM SIGPLAN International Conference on Functional
Programming, pages138–147,September1999.

[7] Heineman,G. T. andW. T. Councill. Component-Based Software Engineering: Putting the Pieces Together.
Addison-Wesley, 2001.

[8] Laster, K. andO. Grumberg. Modularmodelcheckingof software. In Conference on Tools and Algorithms for
the Construction and Analysis of Systems, 1998.

[9] Smaragdakis,Y. andD. Batory. Implementinglayereddesignswith mixin layers. In European Conference on
Object-Oriented Programming, pages550–570,1998.

[10] Stirewalt, K. andL. Dillon. A component-basedapproachto building formal-analysistools. In International
Conference on Software Engineering, 2001.

[11] Szyperski,C. Component Software: Beyond Object-Oriented Programming. Addison-Wesley, 1998.

