4th ICSE Workshop on Component-Based Software Engineering: Component
Certification and System Prediction. Toronto, Ontario, Canada, May 2001.

Verifying Component-Base@ollaborationDesigns

Kathi Fisler!, ShriramKrishnamurthf, andDon Batory?
1: Departmenbf ComputerScienceWorcestePolytechnidnstitute;kf i sl er @s. wpi . edu
2: Departmenbf ComputerScience Brown University;sk@s. br own. edu
3: Departmenbf ComputerScienceUniversityof Texasat Austin;dsb@s. ut exas. edu

1 Introduction

Collaboration-basedr layereddesignprovidesan architecturefor defining software systems. In this architecture,
systemaredefinedasacompositiorof layers whereeachayer(collaboration)definesafeatureandtherolesthateach
actorin the systermplaysin thefeature.Collaboration-basedesignshave theadvantagehatfeaturesareeasilyadded
to or deletedfrom the system;simply changingthe compositionof collaborationshat definesthe systemchanges
the featuresthat the systemimplements. Collaboration-basedrchitecturesare receving increasingrecognitionas
providing aflexible andscalableapproactto large-scalesystemdesign particularlyfor product-linearchitectures.

Scalablecollaboration-basedesignsarefundamentallicomponent-basg®, 9]. Collaborationsharehefeatures
of component§5, 7, 11], atleastin principle: they areblackboxesthatcanbecombinedhroughexternallinkage;their
compositioncanbe treatedhierarchically;andthey may be instantiatedmnultiple timeswhenbuilding a system(the
lattersituationcouldariseif the samefeatureis addedto differentpartsof the systemat differenttimes). This synegy
betweencomponentsand collaborationsprovidesa practicalandimportantclassof problemsto drive and evaluate
researchinto componentsWe areinterestedn formal verificationtechniqueghat supportcompositionakreasoning
aboutcomponent-basedpllaboration-basedesigns.n this paperwe outlineavision of analysigechniquedor this
designdomainandarguethatmostconventionalcompositionalerificationtechniquessuchasarefoundin themodel
checkingliterature,arepoorly suitedfor this domain.

2 Collaboration-Based Design

Programsconsistof actors andtheroles thatthey play. Collaboration-basedesignsstructuresoftwarearoundcollab-

orations (layers)thatdefinehow eachactorin the systemcontributionsto a givenfeatureor task. Considera system
for managinglibrary circulationinformation. The systemcontainstwo classesof actors: booksand patrons,both
organizednto database<Circulationoperationssuchascheckingin booksor placingthemon hold, involveinterac-
tion betweera patronandabook. A corventional,non-collaboratie designwould implementonemodulefor books
andanotherfor patrons.Eachmodulewould containthe codefor performingcirculationoperationgelative to each
actor A collaboration-basedystem,n contrastwould groupthe informationrelatedto eachoperationinto a single
component.Composingthe componentgor eachdesiredoperationbuilds the completesoftware system. Figure 1

shavs anexampleof alibrary systemcomposedvith a collaborationfor handlinglostlibrary books. Figure2 shavs
a generalcollaboration-basedesignin contrastto a corventionaldesign(whereeachstatemachinecorresponds$o

a single actor). Collaboration-basedesignshave beenusedto implementmary substantiakystemsjncluding an
artillery managemergysteny1], a programmingervironment[6], andextensiblereasoningools[4, 10].

3 A Modd of Collaboration-Based Design

To fostera discussiorof verificationfor collaboration-basedesignswe provide a modelfor collaboratve designs
anddiscussthe verification challengeswithin that model. Concretely we view a designasa setof classesroughly
oneperactorin the system.A collaborationconsistsof a setof classextensiongmixins) for the actorclasses.The
mixins in a collaborationrelateto a commontask(feature)in the overall system.This definition allows actorclasses

dsb

dsb
4th ICSE Workshop on Component-Based Software Engineering: Component Certification and System Prediction. Toronto, Ontario, Canada, May 2001.

Original System

" Lost-Book
action: f|nes-f|nes+pr|ce(book) I Collaboration

Figurel: Exampleof a collaborative designfor a library circulationsystem.The statemachinescapturebooks(left)
andpatrong(right). The dashedox encloses collaborationwhich extendsthe systemwith functionalityfor handling
lostbooks.

C%O

Figure2: Two views of a collaboratve design:sequentiatompositionof layers(left) versusparallelcompositionof
extendedactors(right).

andmixins of arbitrarycompleity. To make the problemof verificationmoretractable we assumesachactorclass
canbedescribedsa statemachine andeachmixin extendsanexisting statemachineby addingnenv nodesandedges.
Compositionof a layer with an existing systemsimultaneouslyefinesthe statemachinesof several actors. More

specifically eachstatemachinerefinements definedby a setof entrancestategwith a similar match-upof statesat

exit from thelayer). Eventuallywe would needa way to verify thatthe statemachineis a soundmodelof the code.
Researcherareworking on constructingsuchabstractionsutomatically and suchmodelsare alreadyavailable for

mary systemg2, 3].

Figurel presentsasimpleexampleof our collaboration-desigmodelonalibrary circulationsystem.Booksarein
oneof thestates{order, in, out,res(erve), hold}; patronsarein oneof the states{ cl ear, owes, bl ock(ed) } (correspond-
ing to levelsof fineson a patronsaccount).Labelson thetransitionsareomittedhere,but supportoperationsuchas
checkingbooksout andputtingbookson hold. A laterextensionto the systemaddsfacilities for handinglost books.
This extensioninvolvesanew stateandpathin thebookmaching(to registerabookaslostandpossiblyorderit again)
anda new pathin the patronmachine(to addfines). The two machineextensionsorm a collaboration.Composing
the Lost-Bookcollaborationwith the original systenmthroughthe dashededgesyieldsthe new library system.

Givena setof library collaborationsyve might wish to prove propertiesaboutthe behaior of acomposedibrary
system. For example,we might wish to prove that oncea book is reportedaslost, the accountof the patronwho
lost the bookis assesseteesto replacethe book. We would like to reasonaboutsuchpropertiesat the level of the
collaborationsratherthanat thelevel of the entiresystem.This is largely a tractability concern:full, realisticdesigns
aregenerallytoo largeto verify ndively. Verificationresearchooks for waysto reducethe portion of the designthat
mustthe analyzedo prove a givenproperty Collaborationgestricttheseportionsnaturally: the lost-bookcollabora-
tion containsthe computatiorrelatedto lost-bookproperties Betterstill, thelost-bookcollaborationhasfewer states
thanthefull systemsoverificationshouldbe moretractableon the collaborationlevel. By abstractinghe contentof
eachcollaborationasa collectionof statemachineswe caninvestigatehe applicability of conventionalverification
techniques.Model checking,in particular offersa variety of techniquedor specifyingsystemsand propertiesand
for verifying thatsystemssatisfypropertiesthis techniquehasbeenespeciallypopularin verifying hardwaresystems.
We thereforeconsiderthe definingquestionsn the context of this abstraction.

3.1 What Properties Do We Want to Prove?

We are primarily interestedn verifying behaioral propertiesratherthan performanceproperties. Focusingon be-
havioral propertiesallows usto leverageexisting specificatiorlogics. Thesdogics cancapturea variety of statements
aboutsystemsncluding safety(invariants)andlivenesgprogressproperties.

For collaboratve designsa programmemight asktwo naturalquestionof new collaborations:

1. Doesthenew collaborationbreak(global) propertiesof the existing system?
2. Doestheexisting systeminvalidate(local) propertiesof the collaboration?

In our library example the Lost-Bookcollaborationshouldpresere the propertythatblocked patronsmay not chage
books.Theoriginal systemshouldpresere the propertythatlosingabookincreaseshefinesthata patronowes. The
Lost-Bookcollaborationwould, however, breakan existing propertythat patronsareassessefinesonly if they have
overduebooks.Characterizationsf which propertiesarepreseredunderextensionshouldderive from similar work
in the verificationcommunity The substantiathallengdies in knowing whatinformationto includein theinterface
of acollaboratiorto supportsuchreasoningThe remainingsectiongdiscussaspect®f this challenge.

3.2 What Compositional Reasoning Techniques are Available?

Compositionalerificationof modulardesignss anareaof activeresearclin themodel-checkingommunity Corven-
tional approacheto this problemassumehata systemM is composedf modulesM; andMa, executingin parallel.
To prove a property P of M, onedecompose® into propertiesP; and P, suchthat P, (P,) canbe proven of My
(M), possiblyundersomeassumptionsegardingM;’s (M2's) ervironment.CombiningPy, P,, andtheervironmental
constraintsn a particularway yieldsa proofthatM satisfiesP.

Thisapproachdoesnot naturallyapplyto thecomponentarisingfrom collaboration-basedesign.Collaborations
extendexisting machinesatherthanoperatean parallelwith them. Thevery natureof the extensionwhich addspaths
to anexisting design,impliesthatthe collaborationwill executesequentiallynotin parallel,with the original design.
Most compositionalverification theoriesembodyan assumptiorof parallel compositionbecausahey requirethat
compositionwill never addbehaiorsto a design.As addingbehaiors is the entiregoal behindcollaboration-based
design,mostexisting compositionakerificationtechniquesvill notapplyin this setting.

We havedevelopedaninitial theoryof collaboration-basederification. For trivial collaborationsnvolving asingle
actor, our approachis similar to Lasterand Grumbeqg'’s [8] work on sequentiacomposition,which was developed
independenthandhasbeenusedfor reasoningabouthierarchicaldesignsuchasthosearisingfrom StateChartsOur
full context differsfrom theseworksin threekey ways. First, Lasterand Grumbeg attemptto decompose design
into sequentiafragments;our fragmentsarisenaturallyfrom the collaboratve designarchitecture.Secondgxisting
work assumesomplete closedsystemsratherthansystemshatwill be built (possiblydynamically)from black-box
componentsBoth issuesarefundamentaln collaboration-basedesign.Theseissuesalsoraisesubstantiatjuestions
aboutcomponentinterfacesfor compositionalerification;closed-vorld approachesanignorethis question.

Thethird distinctionpointsto the heartof thetechnicalchallengdn this problem:collaborationsnvolve multiple
sequentialcompositions(the mixins) operatingin parallel (the whole collaboration). Our goal is to reasonabout
collaborationcompositionsequentiallyeventhoughthe overall (extended)actorsrunin parallel. Figure2 illustrates
theproblemat hand:while we maythink of collaborationsasproducingthe parallelcompositionof extendedsystems
shawvn on the right, we wish to verify the collaborationsvia sequentiatompositionas shovn on the left. Verifying
within the sequentialiew is preferablebecauseollaborationmaturallyisolatethe partsof systemshatarerelevant
to particularpropertiesihis taskis extremelydifficult underparallelcomposition. Thus, while we areinterestedn
the samegoalsof assume-guarantee reasoning asfoundin the modularverificationcommunity this projectwill need
new theoriesof reasoningaboutextensionsandcompositionswithin collaboratve design.

3.3 What Internal Details About Components are Needed?

Ideally, collaboration-andsystem-interdicesshouldprovide sufficientinformationto verify large classe®f properties
withoutaccesdo acomponensinternaldetails.Section3.6 discusseghe interfaceshatwe ervision to supportsuch
reasoningThereareatleasttwo circumstancedjowever, in which accesso the entirestatemachinedrom eachlayer
maybeneeded:

¢ Whenverifying a new propertyof the systenmfor which theinterfacepropertiesareinsuficient.
¢ Whenmoduleinterfacescontainno property-orientedgpecifications.

Thefirst problemdoesnot apply to lightweight abstractionsuchastraditionaltypes. However, aswe askmore so-
phisticatedquestionsf a collaboration,we mustinevitably exposemore of the functionality of theimplementation.
Sincemodelcheckingpropertiesaskextremely detailedquestionsaboutanimplementationgxposingthe implemen-
tationsometimedecomesinasoidable.The secondoroblemcanbe addressetty decoratingnterfaceswith property
provisionsandrequirementgseeSection3.6).

In ourlibrary systemfor example,we mightdecoratehe Lost-Bookcollaborationwith a propertythatprocessing
abookaslostdoesnotaffectthestatusof otherbookschecledoutto thesamepatron.Thisinformationwould support
a proof that the extendedsystemproperly maintainsinvariantsbetweenthe book and patrondatabasesvith regards
to checled-outmaterials. Similarly, we might annotatethe original systemwith a propertythat only overduebooks
increasdines;thisinformationwould supportanew propertyaboutthe cause®f finesin thenew systenbeinglimited
to overdueandlost books.

We believe thatexperienceverifying collaboration-basedesignawill yield resultsaboutclasse®f interfaceprop-
ertiesthat aremostusefulin practice(suchasthoseaboutwhich operationdeave which attributesintact). We see
identifying theseclasse®f propertiesasoneof the short-termchallengedor researchinto compositionalerification
of collaboration-basedesigns.

3.4 What Can We Prove Without the Component’s Context?

The propertieghata collaborations implementatiormustsatisfyarelargely independenof its deploymentcontext.
Theseusuallystateeitherconsisteng or inevitability requirementsandreflectinvariantsthatthe underlyingprogram
depend®n. Therefore we canstateinterestingandrich propertiesof eachcomponentndependenof its use.

This situationis somavhatdifferentthanthatin mostcompositionalerificationwork, which requiressubstantial
ervironmentalassumptionsThe natureof collaborationsshouldreducethe compleity of theseassumptionssince
collaborationsencapsulatendividual andlargely orthogonalfeatures.Operationally collaborationsattachto specific
statesof the existing statemachinesanddo not interactmuchwith otherstatesin the existing machinestherefore,
theinteractionbetweerthe new componentandthe restof the systemis limited. This requiresmuchlesscontetual
information, which traditionally reflectscommunicatiorbetweencomponent®peratingin parallel. This difference
is what makes us believe that compositionalverification on collaborationamay be far more effective than previous
similar efforts on parallelsystems.

3.5 Howto Measurethese Propertiesand with What Precision?

We are interestedin behaioral properties,suchas are commonly measuredhrough somecombinationof model
checking theoremproving, or staticanalysis.Our analyseswvill be soundwith respecto the statemachinerepresen-
tationsof the design;the statemachinesnaybe slightly inaccuratawvith respecto thelow-level code,asdiscussedn
Section3.

3.6 How Do Components M ake Necessary | nformation Available?

Thelibrary examplein Figure 1 motivatesour intendedcomponeninterface. The extensionlayer containstwo state
machinefragments Eachfragmentconnectdo a correspondingtatemachinen the original systemby addingedges
betweerits startandfinish statesandstatedn theoriginal system.Thebookmachineextension for example,connects
to thepairof states{out, order }. Theinterfaceof theoriginal systenmustspecifywhich pairsof statesarevalid source
and target statesfor extensionsto eachstatemachine. This model capturesextensionsin the actualcollaboratve

designghatwe have studied.

For eachstateappearingn aninterfacepair, the interfacemustalsopublisha setof formulasthatis true at that
state;in mostcasestheseformulaswill beautomaticallyderivedfrom the userspecifiedpropertieghat have already
beenproven (andshouldbe presered) of the original system(we have an algorithmfor this task). Publishingthese
formulasis essentiato our approacho compositionalerification. Theinterfaceof a layer stateshe propertieghat
aretrue of thatlayerandthat shouldcontinueto hold afterthe layeris addedto a system.The Lost-Booklayer, for

example,mightincludethe propertythata book,oncelost, is notchecledoutto ary patron.Oneresearctproblemis
to determinenow largetheseinterfacesmustbe.

4 Conclusion

Collaboration-basedesignsepresens classof component-basesystemshatinspirea particularvision of modular
verification. Eachcomponenin sucha designrepresents single designfeatureor operation. The boundariesof
thesecomponentslign naturallywith the sortsof propertieswvhich areverifiedusingmodelchecking.As developing
propertiesthat align with componentoundariess usually one of the main challengesn usingcompositionmodel
checking,we believe collaboration-basedesignprovidesa naturalframework for exploring component-baseckrifi-
cationstrateies. This paperhasoutlinedour vision of component-baseckrificationfor collaboration-basedesigns
andsomeof theavenueswve intendto exploreto achiese this vision.

References

[1] Batory, D., C. JohnsonB. MacDonaldandD. von Heeder FSATS: An extensibleC4l simulatorfor armyfire
support. In Workshop on Product Lines for Command-and-Control Ground Systems at the First International
Software Product Line Conference (SPLC1), August2000.

[2] CorbettJ.C.,M. B. Dwyer, J.Hatcliff, S.LaubachC. S. PasareanuRobbyandH. Zheng.Bandera Extracting
finite-statemodelsfrom java sourcecode. In International Conference on Software Engineering, 2000.

[3] Dwyer, M. B. andL. A. Clarke. Flow analysigfor verifying specification®f concurrentnddistributedsoftware.
TechnicalReportUM-CS-1999-052Universityof Massachusett§omputerScienceDepartmentAugust1999.

[4] Fisler, K., S.KrishnamurthiandK. E. Gray. Implementingextensibletheoremprovers.In International Confer-
ence on Theorem Proving in Higher-Order Logic: Emerging Trends, ResearctiReport,INRIA SophiaAntipolis,
Septembef 999.

[5] Flatt,M. Programming Languagesfor Reusable Software Components. PhDthesis,Rice University, 1999.

[6] Flatt, M., R. B. Findler, S. Krishnamurthiand M. Felleisen. Programminglanguagesas operatingsystems
(or, Revengeof the Son of the Lisp Machine). In ACM SIGPLAN International Conference on Functional
Programming, pagesl38-147 Septembel999.

[7] HeinemanG. T. andW. T. Councill. Component-Based Software Engineering: Putting the Pieces Together.
Addison-Weslgy, 2001.

[8] Laster K. andO. Grumbeg. Modularmodelcheckingof software. In Conference on Tools and Algorithms for
the Construction and Analysis of Systems, 1998.

[9] SmaragdakisY. andD. Batory. Implementinglayereddesignswith mixin layers. In European Conference on
Object-Oriented Programming, pages50-570,1998.

[10] Stirewalt, K. andL. Dillon. A component-basedpproachto building formal-analysigools. In International
Conference on Software Engineering, 2001.

[11] SzyperskiC. Component Software: Beyond Object-Oriented Programming. Addison-Wesley, 1998.

