
Abstract

ADAGE is a project to define and build a domain-spe-
cific software architecture (DSSA) environment for
avionics. A central concept of ADAGE is the use of
generators to implement scalable, component-based
models of avionics software. In this paper, we review
the ADAGE model (or reference architecture) of avion-
ics software and describe techniques for avionics soft-
ware synthesis.

Keywords: software reuse, software scalability, avi-
onics domain modeling, domain-specific software
architectures, GenVoca, LILEANNA.

1 Introduction

ARPA’s Domain-Specific Software Architectures
(DSSA) program was established in 1990 to create
innovative approaches for generating control systems
[SEI90]. The goal was to use formal descriptions of
software architectures and advances in non-linear con-
trol and hierarchical control theory, to generate avion-
ics, command and control, and vehicle management
applications with an order of magnitude improvement
in productivity and quality. A DSSA not only provides
a framework for reusable software components, but it
also organizes design rationale and structures adapt-
ability. ADAGE (Avionics Domain Application Gener-
ation Environment) is a DSSA project for avionics
[Cog92-93, Goo92a-b]. The premise of ADAGE is that

1. This research was sponsored, in part, by the U.S.
Department of Defense Advanced Research Projects
Agency in cooperation with the U.S. Air Force Wright
Laboratory Avionics Directorate under contract
F33615-91C-1788.

many of the problems in navigation, guidance, and
flight director software are well-understood. For any
new avionics system, several features will require new
and innovative software, but much of the new system
can be built by combining and adapting existing com-
ponents. Therefore, an analysis of existing avionics
software can identify components and constraints
inherent in the avionics domain. A product of domain
analysis, called a reference architecture, is a model or
blueprint for an avionics software system generator.

A central task in creating a DSSA is the definition of a
reference architecture. Domain analysis techniques are
still immature [Ara93]; there are no commonly
accepted modeling processes or meta-modeling con-
structs that are used to define reference architectures.
Of critical importance is that whatever constructs or
processes that are chosen to represent a reference archi-
tecture, they must be domain-independent; the applica-
bility of a DSSA methodology across multiple domains
is an essential requirement.

We developed the ADAGE reference architecture in
terms of the GenVoca model [Bat92]. This model is
suited for software system generation; a software
domain is expressed in terms of standardized sets of
parameterized, plug-compatible, and reusable layers
called components. A composition of components
defines a software system or subsystem of the domain.
A key advantage of GenVoca models is scalability: a
small number of GenVoca components can be com-
bined in different ways to describe vast families of dis-
tinct software systems.

In this paper, we review the ADAGE reference archi-
tecture and explain how software for data source object
and navigation subsystems can be synthesized from
prefabricated components. We also examine tools in the
ADAGE environment that support our approach to
component-based avionics software construction.

The ADAGE Avionics Reference Architecture1

Don Batory

Department of Computer Sciences

The University of Texas

 Austin, Texas 78712

batory@cs.utexas.edu

Lou Coglianese, Steve Shafer,

and Will Tracz

Loral Federal Systems

Owego, New York 13827

{ lou, reve, tracz }@lfs.loral.com

Copyright 1995 by the American Institute of Aero-
nautics and Astronautics, Inc. All rights reserved.

To appear in the AIAA Computing in Aerospace
10 Conference, San Antonio, 1995.

2 Context and Objectives

ADAGE embraces a reuse factory paradigm (see Fig-
ure 1). Instead of moving directly from requirements to
a one-of-a-kind avionics software system (a process
called design without reuse), we recognize that target
avionics systems belong to a family or domain of simi-
lar software products [Par76]. By analyzing the avion-
ics domain (a process called domain analysis), it is
possible to define libraries of primitive components and
a factory for assembling these components into target
systems. The blueprint for the libraries and factory is
called the reference architecture. Using design require-
ments and the factory to produce a target system is
called design with reuse.

We believe the key to improved avionics software pro-
ductivity is an integrated environment for exploring,
evaluating, and synthesizing different avionics software
architectures. As Figure 2 indicates, reference architec-
ture modeling is a rather small part of the scopes of
activities of ADAGE. Satisfying strict timing con-
straints, modeling performance based on various sched-
uling paradigms (e.g., rate monotonic, earliest deadline,
cyclic), estimating execution times accurately, deter-
mining aircraft-specific performance tuning constants,
presenting different views of an architecture (e.g., func-
tional, data flow, object-oriented), etc. all contribute to
the enormous difficulty of avionics software engineer-
ing. Nevertheless, reference architecture modeling is
critical because the software generator is the center-
piece for integrating performance requirements and
analysis tools, software documentation and design
rationale tools, etc. [Cog92-93].

3 The Reference Architecture

Avionics software has long been understood in terms of
layered subsystems (see Figure 3). The bottom-most
subsystems are data source objects (DSOs), i.e., sensor
subsystems. Examples include inertial navigation sen-
sors (INS), VHF omnirange sensors (VOR), and global
positioning sensors (GPS). DSO subsystems report
their raw sensor values to the navigation and radio nav-
igation subsystems, which estimate the aircraft’s posi-
tion relative to earth coordinates or a fixed-location
radio beacon. The guidance subsystem determines the
difference between mission objectives and the current
aircraft state (position). The flight director subsystem
converts guidance errors into pilot control cues or auto-
pilot commands.

The GenVoca model of software construction postu-
lates that complex subsystems, such as avionics sub-
systems, can be explained as compositions of primitive,
plug-compatible, and interchangeable components. For
this to be possible, it is necessary to define standardized
programming interfaces to fundamental domain
abstractions. Standardized interfaces to DSO, naviga-
tion, radio navigation, guidance, and flight director
software can indeed be devised.

An important consequence of interface standardization
is subsystem plug-compatibility and interchangeability.
Another consequence is that there is an enormous num-
ber of subsystems that share the same interface. Navi-
gation subsystems, for example, can vary greatly in
terms of the navigation modes offered, the means by
which aircraft position values are filtered, combined,
etc. The ability to describe vast families of different
subsystem implementations compactly is critical for a

Design without Reuse

Product
Requirements Design with Reuse

is
member
of

Software Domain

Design for Reuse
Domain Analysis

Factory, and
Libraries

Figure 1. A Software Factory Paradigm

technology transfer, technology maturity

tool integration, decision support

view
support

constraint analysis
real-time scheduling

factory and library construction

Figure 2. ADAGE Scopes of Activities

reference
architectureReference

Architecture,

practical model of avionics software generation. The
GenVoca approach decomposes subsystems into primi-
tive components that export and import standardized
interfaces. The combination of components that defines
a system or subsystem is called a type equation. By
combining (i.e., layering) components in different
ways, vast families of subsystems (type equations) can
be defined. We illustrate these ideas in the following
paragraphs.

GenVoca organizes components that export the same
interface into a realm (i.e., a library of plug-compatible
and interchangeable components). As an example, con-
sider the realm ins of inertial navigation sensors. The
components of this realm can be enumerated, as shown
below:

ins = { // equipment list
ins_asn_141, ins_asn_143,
ins_skn_2443,
...

// simulators and filters
ins_simulator,
ins_filter[x:ins],
...

// selectors and averagers
ins_select[x:{ins}],
ins_ave[x:{ins}],
...

}

There are components that encapsulate different inertial
navigation sensors (ins_asn_141, ins_asn_143,
ins_skn_2443), components that encapsulate iner-
tial navigation simulators and filters (ins_simula-

tor, ins_filter[x:ins]), and components that
encapsulate multiplexors (ins_select[x:{-
ins}]) and ways of combining outputs of different
INS sensors into a single estimate (ins_ave[x:{-
ins}]). All of these components implement the stan-
dard interface for inertial navigation systems (denoted
by the realm name “ins”). This means that all ins
components are plug-compatible and interchangeable.

Combinations of ins components define INS sub-
systems. An INS subsystem that has a pair of INS sen-
sors combined by a selector would be specified as an
equation of type ins:

multiple_ins =
ins_select[{ ins_skn_2443,

ins_skn_2443 }];

The way to understand this equation is that both INS
sensor components submit their readings to the INS
selector; the selector, in turn, outputs only one of these
readings. (The reading that is output is chosen dynami-
cally at run-time by the pilot). In general, a component
operates as a transducer: its output is generated from
the data that it receives from its inputs. In the case of
avionics software, subsystem executions tend to be bot-
tom-up, i.e., the lowest-level components in a sub-
system execute first; the top-most components execute
last.

The ins realm illustrates two basic characteristics of
GenVoca components. First, components are parame-
terized. The ins_filter[x:ins] component, for
example, has a single parameter x of type ins. What
this means is that ins_filter filters the state vector
output of a subsystem x of type ins. Second, compo-

controls and display

flight director

guidance

navigation radio-nav

tacan dns

...

ins

Figure 3. A Layered Architecture for Avionics Software

subsystem(s)

component

Legend

subsystem as
composition
of components

at given level

DSOs

nents are symmetric if they export the same interface
that they import. The ins_filter[x:ins] compo-
nent is symmetric: it exports the ins interface (because
it belongs to realm ins) and imports the ins interface
(because it has a parameter of type ins). Symmetric
components are unusual in that they can be composed
in arbitrary ways. Consider the following equations that
define two distinct INS subsystems. Both are similar in
that they have pairs of INS sensors that are combined
by a component that averages their outputs; they differ
only in the placement of a filtering component:

subsystem1 = ins_filter[
ins_ave[{ ins_skn_2443,

ins_skn_2443 }]];

subsystem2 = ins_ave[{
ins_filter[ins_skn_2443],
ins_filter[ins_skn_2443] }];

subsytem1 filters the average of the outputs of two
INS sensors, whereas subsystem2 filters the output
of INS sensors directly before averaging them.
Although both subsystems are composed from exactly
the same components, their outputs can be quite differ-
ent. This example illustrates the scalability of GenVoca
models: a small number of components can be com-
posed in many ways to describe large families of imple-
mentations.

Realms for other DSOs, such as global positioning sen-
sors (gps) and VHF omnirange sensors (vor), are
described similarly. There are over 20 distinct DSO
realms in the ADAGE reference architecture containing
over 100 distinct components.

Additional realms are needed to define navigation sub-
systems. The internal navigation (inav) realm con-
tains the most diverse set of components. It includes
components that encapsulate primitive navigation
modes (i.e., modes that examine the output of a single
DSO subsystem), combined navigation modes (i.e.,
modes that combine the outputs of multiple DSO sub-
systems), filters and mode-control.2 Equations of type
inav define navigation subsystems.

inav = { // primitive navigation modes
ins_nav_mode[x:ins],
gps_nav_mode[x:gps],

2. dns denotes the realm of doppler navigation system
components, gps denotes the realm of global position-
ing sensor components, and earth_geometry denotes
the realm of components that compute statistics about
the earth’s geometry.

...

// combined navigation modes
gps_ins_nav_mode[x:gps,y:ins],
ins_dns_nav_mode[x:ins,y:dns,

z:earth_geometry]
...

// filters
high_pass_filter[x:inav],
washout_filter_dns[x:inav,

y:dns, z:earth_geometry],
...

// mode control components
static_mode_ranking[x:{inav}],
dynamic_mode_ranking[x:{inav}],
 ...

}

Overall, the ADAGE reference architecture defines
over 40 different realms with a total of over 350 distinct
components. Type equations for even simple avionics
systems tend to be non-trivial. Equations often refer-
ence more than 50 distinct components that are stacked
15 layers deep. Further discussions and experiences
with the ADAGE domain model are discussed in
[Bat94a].

There are two other topics worth mentioning about
GenVoca reference architectures. First, our model of
component parameters is actually more complicated
than indicated above. Until now, the only parameters of
components that we have discussed have had realm
types. In reality, components can have many other non-
realm-type parameters. Called configuration parame-
ters, these parameters include aircraft-class-specific
and aircraft-specific tuning constants, performance con-
straints, functions, and data types. Equations where
both realm parameters and configuration parameters are
defined for every component are called GenVoca Well-
Formed Expressions (GWFEs). (The type equation of a
GWFE is formed by removing configuration parame-
ters from components of the GWFE.) The grammar for
a GWFE is given in Figure 4.

The second topic arises from the observation that not
all type-correct equations are semantically meaningful.
Some components work correctly only in the presence
(or absence) of other components. Domain-specific
constraints, called design rules, are needed to identify
(and thus preclude) illegal component combinations. A
GenVoca reference architecture is defined by both the
realms of components and the constraints (design rules)
of component compositions. Design rule checking of

type equations and GWFEs is discussed in [McA93,
Bat95].

4 The ADAGE Environment

ADAGE is an integrated environment for avionics soft-
ware system specification and synthesis. The elements
of ADAGE that are relevant to our discussions are
depicted in Figure 5. ADAGE users define avionics
software systems using GLUE (Graphical Layout User
Environment) [Hig94]. GLUE graphically enables
users to select components from realms, to define type
equations by instantiating component parameters, to
specify component configuration parameters, to record
justifications for design choices, and to store, retrieve,
and edit previously defined equations. GLUE has two
additional responsibilities. First, GLUE performs
design rule checking to make sure that user-defined
systems do not violate preconditions of components or
global constraints imposed on the target system
[McA93]. Second, when software generation is to

occur, GLUE outputs a transcription of a specification
in the form of GWFEs.

LILEANNA (Library Interconnection Language
Extended by Annotated Ada) and MEGEN (Module
Expression GENerator) are tools used by ADAGE to
generate avionics software in Ada. LILEANNA is a
general-purpose language for composing, customizing,
and generating Ada software [Tra93a]. It has the capa-
bilities of editing and composing prewritten Ada pack-
ages automatically by following a script of high-level
source-code modification statements, called module
expressions. Module expressions are used by ADAGE
to customize exemplar software, such as a universal
device driver, to produce drivers for specific devices.

LILEANNA receives its module expression scripts
from MEGEN, a tool that understands avionics soft-
ware and GWFEs [Tra93b]. From the GWFEs output
from GLUE, MEGEN generates module expressions
that (1) instantiate the Ada package of every compo-
nent referenced in the GWFEs, and (2) customize each

GWFEs : GWFE ‘;’
| GWFEs GWFE ‘;’
 ;

GWFE : IDENTIFIER ‘=’ ModuleInstantiation
;

ModuleInstantiation : IDENTIFIER
 | IDENTIFIER ‘(’ ConfigParams ‘)’
| IDENTIFIER ‘[’ ModuleParams ‘]’
| IDENTIFIER ‘[’ ModuleParams ‘]’ ‘(’ ConfigParams ‘)’
;

Figure 4. Grammar for GenVoca Well-Formed Expressions

ModuleParams : ModuleInstantiation
| ‘{‘ ModuleParams ‘}’
| ModuleParams ‘,’ ModuleParams
;

ConfigParams : Parameter
| ConfigParams ‘,’ Parameter
;

Parameter : IDENTIFIER ‘=’ IDENTIFIER
| IDENTIFIER ‘=’ REAL_LITERAL
| IDENTIFIER ‘=’ STRING_LITERAL
;

GLUE MEGEN

LILEANNA

GWFEs

Requirements
Document

Module
Expressions

Compilation
Script

Customized
Ada

Packages

Ada Compiler

Avionics Software
System

Legend

ADAGE
Executable

Tool
output

ADAGE
Code Library

ADAGE
output

Figure 5. ADAGE Tools for Avionics Software System Synthesis

User
Inputs

ADAGE
Code Library

instantiated package according to the given configura-
tion parameters and the particular call structure that
encodes the component layering of the GWFEs. This
produces the source modules for the target avionics
system. MEGEN also generates a compilation script of
these source modules for the Ada compiler in order for
it to produce a target system executable. Another capa-
bility of MEGEN is to produce a high-level require-
ments document from the input GWFEs. This
document details the configuration choices made by the
user.3

In the following sections, we review the design of Ada
packages and explain further the capabilities of
LILEANNA and MEGEN to illustrate their use in avi-
onics software generation.

4.1 LILEANNA

LIL (Library Interconnect Language) is a general-pur-
pose module interconnection language for designing,
structuring, composing, and generating software sys-
tems in the Ada programming language [Gog83].
LILEANNA is an implementation of LIL that com-
bines the power of ANNA (Annotated Ada) [Luc85]
and is a language for formally specifying and generat-
ing Ada packages [Tra93a].

LILEANNA supports parameterized programming in
Ada by introducing two entities, theories and views,
and enhancing a third, package specifications. A
LILEANNA package, with semantics specified either
formally or informally, represents a template for gener-
ating a family of Ada packages. A theory is a higher-
level abstraction that describes the syntax and semantic
interface of a package and the properties of its parame-
ters. A view is a mapping between types, operations,
and exceptions. Views are used to instantiate parame-
terized (generic) packages. LILEANNA goes beyond
the Ada instantiation capability in that generic pack-
ages can be composed to create new parameterized
packages without themselves being instantiated. Partial
instantiations are also possible.

Two different forms of parameterization are distin-
guished: horizontal and vertical. Vertical parameteriza-
tion corresponds to the notion of layering (component

3. The current version of MEGEN only generates a
LaTeX file, however future versions could be integrated
with a skeleton Systems/Software Requirements Speci-
fication (SRS) document.

composition) in GenVoca, and is supported in
LILEANNA by the needs statement, which expresses
import dependencies. Horizontal parameterization cor-
responds to the customization of software via instantia-
tion of configuration parameters in GenVoca.
LILEANNA supports horizontal parameterization by
the import, protect, and extend statements -
three forms of inheritance4 - and the include state-
ment, a subtyping construct [Tra93a].

The power of programming in LILEANNA centers on
its ability to generate new instances of LILEANNA
packages and to compose them. Existing packages can
be combined (by merging their operations and types);
types, operations, and/or exceptions can be added,
exchanged, or removed; operations and types can be
renamed; and so on. The following module expressions
(i.e., make statements) illustrate some of the capabili-
ties of LILEANNA:

• A new package can be a renamed copy of an exist-
ing package:

make <new package name> is
<old package name>

end;

• Add an import clause to an existing package:

make <new package name> is
<old package name>
*(add with <package name>)

end;

• Replace the import clause of an existing package:

make <new package name> is
<old package name>
needs (<old with name> =>

<new with name>)
end;

• Add another value to an enumerated type:

make <new package name> is
<old package name>
*(add literal to <type>

(<literal>))
end;

• Add a procedure invocation as the last statement of
a given subprogram:

4. Since there is no inheritance in versions of Ada prior
to Ada 9X, compositions that use inheritance need
either to import all modules in the inheritance hierarchy
(being careful to rename those that might result in
ambiguity) or to include all necessary functionality
directly in the implementation (i.e., the package body).

make <new package name> is
<old package name>
*(add call to <subprogram name>

(<procedure invocation>))
end;

In general, the result of evaluating a LILEANNA make
statement is an executable Ada package specification
and body. We will later show an example that illustrates
how the above statements are used by MEGEN.

4.2 Ada Package Design

Generated avionics code arises from three different
sources: realm code, glue code, and support code. Each
is described below.

Ada packages that define components of ADAGE
realms are called realm code. Generally, a package for
each individual ADAGE component is hand-written
and is entered into the ADAGE code library. However,
not all components are represented in this manner.

As an example, ADAGE presently contains a package
for only one sensor driver. When more than one sensor
is to be used in an avionics system, LILEANNA must
create the Ada packages for these other sensors. This is
done through the use of exemplars. Exemplars are
LILEANNA packages that are transformed into Ada
packages. Exemplars are used both as part of a system
under construction and as a foundation from which
other packages will be built. In the above example, the
lone sensor driver defines an exemplar “universal
device driver”. LILEANNA is instructed by MEGEN
to copy this package, and then to modify certain state-
ments to produce a package that is specific for a given
sensor.

Instantiating the packages for each component of a type
equation does not produce all the code that is needed
for a complete and compilable system. This is where
the other two categories of code come into play. Glue
code can be thought of as the code that binds compo-
nents together; it introduces the call bindings that real-
ize the specific component layering of a type equation.
The current method of introducing bindings is through
the LILEANNA make statements that add procedure
invocations to subprograms. MEGEN generates these
statements. As in the case of exemplar device driver
packages, MEGEN has deep knowledge about the
semantics of components and how their packages have
been coded. To keep such knowledge to a minimum,
realm code packages are structured to conform to pre-

cise coding and organization standards, so that adding
procedure invocations as the last statement of subpro-
grams (via a LILEANNA make), for example, will cor-
rectly bind packages together.5

Support code is code that virtually all avionics software
systems will share. This includes standard type defini-
tion packages, global data (abstract data type) pack-
ages, some reuse code, and so on. For the most part,
support code does not need to be modified by
LILEANNA, except perhaps to change a constant value
in a package specification.

4.3 MEGEN

As is evident from the previous sections, MEGEN
(Module Expression GENerator) serves a key role in
generating avionics software [Tra93b]. Unlike
LILEANNA, MEGEN alone contains knowledge of the
avionics domain (e.g., realms of components) and
code-level details of Ada packages that implement
ADAGE components. Given the GWFEs of a target
system, MEGEN generates command scripts (module
expressions) that LILEANNA uses to produce actual
Ada source.

MEGEN supports three composition and integration
constructs: (1) direct selection of required Ada pack-
ages (with no customization or configuration), (2) cre-
ation of new Ada packages from exemplar packages
with specific parametric configurations, and (3) integra-
tion of selected, configured and/or created packages
with other packages through importation of scope.

In general, producing a script of module expressions
from a GWFE can be quite involved. As a flavor of the
scripts output by MEGEN, consider the simple problem
where a GWFE of an avionics system references a GPS
sensor. There is no package for a GPS sensor in the
ADAGE code library. MEGEN instructs LILEANNA
to perform transformations on realm code in order to
produce a package for this sensor and to integrate this

5. In future versions of ADAGE, glue code will also
determine the execution model of the target avionics
system. That is, the target system might follow a tasking
model, or an executive model, etc. depending on the
glue code used. The appropriate set of glue code
directives to include in the system is determined by the
coding style annotation in the GWFE that is output from
GLUE.

package into the target source code. (Additions of other
sensors would be analogous to this example.)

Specifically, three transformations are needed: (1) cre-
ate the new sensor package, (2) add the new sensor to
the enumerated type in support code package Con-
figuredSensors, and (3) add with statements and
call statements to the new sensor in support code pack-
age SampleSensors, which is responsible for peri-
odically polling the sensors of the target system.

The first step is to create the new sensor package. This
involves copying an exemplar sensor package (INS1)
and modifying its import clause to import the GPS_-
Sensor package. MEGEN generates the following
LILEANNA make statement to accomplish this:

make GPS1_Sensor is INS1_Sensor
needs (INS_Sensor => GPS_Sensor)

end;

The second step is to modify an enumerated type. The
ADAGE support code package ConfiguredSen-
sors maintains an enumerated type (called List)
that defines the identifiers of sensors that are supported
in a target system. By convention, MEGEN generates
the name for this value by concatenating the name of
the device (“GPS”) with an internally generated device
number (“1”). (In this way, replicated devices are
given distinct names - “GPS1”, “GPS2”, etc.) MEGEN
generates the following make statement to perform the
second step:

make ConfiguredSensors is
ConfiguredSensors

*(add literal to List (GPS1))
end;

The third step is to integrate the package created in
Step 1 into the target system source code. The support
code package SampleSensors periodically polls the
sensors of a target system. This package must be modi-
fied so that it includes a call to the package created in
Step 1. MEGEN generates the following make state-
ment to accomplish this:

make SampleSensors is SampleSensors
*(add with GPS1_Sensor)
*(add call to SampleSensors

(GPS1_Sensor.SampleState)
end;

This simple example points out valuable lessons that
we have learned in building ADAGE. Readers may
have noted that the above make statements perform
elementary transformations on existing source code.

These same transformations could have been done by
hand using an editor. LILEANNA offers significant
advantages over hand-editing: the transformations are
done automatically, quickly, and correctly. Such trans-
formations are tedious, slow, and error-prone if done by
hand. LILEANNA performs transformations directly
on the syntax trees of Ada source. Thus, it has access to
additional contextual information to verify the correct-
ness of transformations automatically.

Another lesson that we have learned is that a small sub-
set of program transformations (make statements) is
adequate to compose and configure complex systems
correctly and efficiently. This was possible because of
the (considerable) investment we made in the design of
ADAGE components. Not only is it important for
ADAGE components to implement the standardized
abstractions of their realms, but it is also important that
the code of packages that implement components must
be “regular” so that tools like MEGEN can transform
them easily. We believe these are the keys for achieving
reuse and generation of avionics software.

5 Conclusions

ADAGE is an experiment in software architectures and
software system generation. It is indeed possible for
domains of well-understood software systems to be
standardized in order to create libraries (realms) of
reusable software components. Generators exploit the
regularities of standardized decompositions/descrip-
tions of systems by assembling these systems from pre-
written components. The GenVoca model has been
successfully applied to the domains of database sys-
tems, communication protocols, data structures, and
distributed file systems [Bat94b]. We found that Gen-
Voca was also well suited for defining reference archi-
tectures and generators of avionics software, thereby
reinforcing the belief that its concepts are truly domain
independent. We did find that extensions to GenVoca
were needed (e.g., to capture configuration parameters)
in order to address adequately the complexities of avi-
onics system synthesis.

We learned similar lessons about LILEANNA.
LILEANNA was designed to be a general-purpose
module composition language that offered a basic set of
program transformations (module expressions/make
statements) as its means for reusing and customizing
software. It was gratifying that using LILEANNA to
generate avionics software required adding only a few
make statements to the original set. This is an indica-

tion of LILEANNA’s utility for generating software in
other domains.

The development and experimentation of ADAGE is
ongoing. As more production code is generated, the sys-
tem’s user interface and generation capabilities are
being refined and extended. In addition, we plan to dem-
onstrate the GenVoca model on new domains and inves-
tigate LILEANNA transformations on other
programming languages (i.e., FORTRAN and C++).

Acknowledgments. We thank Dinesh Das for his
clarifying insights on drafts of this paper.

6 References

[Ara93] Guillermo Arango. Domain analysis
methods. In Software Reusability, W.
Schafer and R.Prieto-Diaz, editors, Ellis
Horwood Publishers, 1993.

[Bat92] D. Batory and S. O’Malley, “The Design
and Implementation of Hierarchical
Software Systems with Reusable
Components”, ACM Trans. Software
Engineering and Methodology, October
1992.

[Bat94a] D. Batory, L. Coglianese, M. Goodwin,
and S. Shafer, “Creating Reference
Architectures: An Example From
Avionics”, submitted for publication,
1994.

[Bat94b] D. Batory, V. Singhal, J. Thomas, S.
Dasari, B. Geraci, and M. Sirkin, “The
GenVoca Model of Software-System
Generators”, IEEE Software, September
1994.

[Bat95] D. Batory and B. Geraci, “Validating
Component Compositions in Software
System Generators”, in preparation, 1995.

[Cog92] Lou Coglianese, et al., “An Avionics
Domain-Specific Software Architecture,”
ARPA PI Conference, 1992. Also in
CrossTalk, October 1992, and Loral
Federal Systems Owego TR. ADAGE-
IBM-92-07, April 1992.

[Cog93] L. Coglianese and R. Szymanski, “DSSA-
ADAGE: An Environment for
Architecture-based Avionics
Development”, Proceedings of AGARD

1993. Also, Loral Federal Systems Owego
TR. ADAGE-IBM-93-04, May 1993.

[Gog83] J. Goguen and K. Levitt, editors, Report
on Program Libraries Workshop, SRI
International, Menlo Park, California,
1983.

[Goo92a] M. Goodwin and L. Coglianese,
“Dictionary for the Avionics Domain
Architecture Generation Environment of
the Domain-Specific Software
Architecture Project”, ADAGE-IBM-92-
04.

[Goo92b] M. Goodwin and M. Kushner, “Domain
Analysis for the Avionics Domain
Architecture Generation Environment of
Domain Specific Software Architecture”,
ADAGE-IBM-92-11, November 1992.

[Hig94] J. Higgins, “ADAGE Layout Editor (LE)
User’s Manual”, Loral Federal Systems
Owego, TR. ADAGE-LOR-94-04, May
1994.

[Luc85] D.C. Luckham and F.W. Von Henke, “An
Overview of ANNA: A Specification
Langauge for Ada”, IEEE Software,
March 1995.

[McA93] D. McAllester, “DSSA-ADAGE Avionics/
Architecture Knowledge Representation
Language”, Loral Federal Systems Owego
TR. ADAGE-MIT-91-01.

[Par76] D.L. Parnas, “On the Design and
Development of Program Families”, IEEE
Trans. Software Engineering, March 1976.

[Tra93a] W. Tracz, “LILEANNA: A Parameterized
Programming Language”, Proc. 2nd
International Workshop on Software
Reuse, March 1993.

[Tra93b] W. Tracz and L. Coglianese, “An
Adapatable Software Architecture for
Integrated Avionics”, in Proceedings of
NAECON, 1993.

[SEI90] Software Engineering Institute, Proc.
Workshop on Domain-Specific Software
Architectures, Hidden-Valley,
Pennsylvania, 1990.

