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Abstract1

Architectural evolution is a costly yet unavoidable
consequence of a successful application. One method
for reducing cost is to automate aspects of the
evolutionary cycle when possible. Three kinds of
architectural evolution in object-oriented systems are:
schema transformations, the introduction of design
pattern microarchitectures, and the hot-spot-driven-
approach. This paper shows that all three can be viewed
as transformations applied to an evolving design.
Further, the transformations are automatable with
refactorings — behavior-preserving program
transformations. A comprehensive list of refactorings
used to evolve large applications is provided and an
analysis of supported schema transformations, design
patterns, and hot-spot meta patterns is presented.
Refactorings enable the evolution of architectures on an
if-needed basis reducing unnecessary complexity and
inefficiency.

1   Introduction
All successful software applications evolve [Par79].
During the 1970s, evolution and maintenance
accounted for 35 to 40 percent of the software budget
for an information systems organization. This number
jumped to 60 percent in the 1980s. It was predicted that
without a major change in approach, many companies
will spend close to 80 percent of their software budget
on maintenance [Pre92]. As applications evolve, so do
their architectures. Architectures evolve for multiple
reasons:

• Capability — to support new features or changes

to existing features.

• Reusability — to carve out software artifacts for
reuse in other applications.

• Extensibility — to provide for the addition of
future extensions.

• Maintainability — to reduce the cost of software
maintenance through restructuring.

We have observed that architectures also evolve
human reasons:

• Experience. Experienced employees can ofte
design a better architecture based on the
knowledge of the current architecture.

• New Perspective.New project members often have
new ideas about how an architecture could
should be structured. Many organizations use
code ownership model which empowers ne
employees with the ability to realize their new
designs.

While motivations vary, the methods used for evolvin
architectures appear to follow regular pattern
particularly for object-oriented applications. Thre
kinds of object-oriented architectural evolution are
schema transformations, the introduction of desig
pattern microarchitectures, and the hot-spot-drive
approach. Schema transformationsare drawn from
object-oriented database schema transformations t
perform edits on a class diagram [Ban87]. Examples a
renaming a class, adding new instance variables, a
moving a method up the class hierarchy.Design
patterns are recurring sets of relationships betwee
classes, objects, methods, etc. that define prefer
solutions to common object-oriented design problem
[Gam95]. Thehot-spot-driven-approachis based on the
identification of aspects of a software program whic
are likely to change from application to application (i.e
hot-spots) [Pre95]. Architectures using abstract classe
and template methods are prescribed to keep these

1. We gratefully acknowledge the sponsorship of
Microsoft Research, the Defense Advanced
Research Projects Agency (Cooperative Agreement
F30602-96-2-0226), and the University of Texas at
Austin Applied Research Laboratories.

dsb
Text Box
5th Conference on Object-Oriented Technologies (COOTS), May 1999



g
an
A
,
ily
le

es,

m,
en
g
de
to
ly
a

e,

it
n
m

ns
7]
r
ts
e
e

spots flexible.

Refactorings are behavior-preserving program
transformations which directly aid in the
implementation of new architectures. Primitive
refactorings perform simple edits such as adding new
classes, creating instance variables, and moving
instance variables up the class hierarchy. Compositions
of refactorings can create abstract classes, capture
aggregation and components [Opd92], extract template
and hook methods, and even install design pattern
microarchitectures [Tok95]. Although composing
refactorings to achieve a desired result may require
some planning, this effort is negligible compared to the
manual task of identifying all lines of source code
affected by a change, performing hand-edits, retesting
all fixes, and risking the introduction of new errors.

We are pursuing two approaches to promote refactoring
research. The first is to evaluate refactorings of large
applications. We believe that we are the first to provide
empirical evidence on the usefulness of refactorings
when applied to non-trivial applications [Tok99]. In one
example, a major architectural change — the splitting

of a class hierarchy — is automated2. In a second
example on a large application (~500K LOCS),
approximately fourteen thousand lines of code changes
between two code releases are automated with
refactorings. (See paper for details.)

A second approach to promoting refactoring research is
to demonstrate that common forms of architectural
evolution can be automated. This paper catalogs the
schema transformations, design pattern restructurings,
and hot-spot meta patterns which can be automated
with refactorings. By demonstrating broad coverage of
common modes of evolution, it is argued that
refactorings will be generally useful in the evolutionary
maintenance cycle.

A summary of the class diagram notation used
throughout the remainder of this paper is presented in
Figure 1. Within the main body of text, we use the
following conventions:

• Refactoring — a refactoring.

• AbstractClass — an abstract class name.

• ConcreteClass — a concrete class name.

• Method() — a method or procedure name.

• Instance_variable  — an instance variable.

2   Refactorings
A refactoring is a parameterized behavior-preservin
program transformation that automatically updates
application’s design and underlying source code.
refactoring is typically a very simple transformation
one that has a straightforward (but not necessar
trivial) impact on application source code. An examp
is inherit [Base, Derived], which establishes a
superclass-subclass relationship between two class
BaseandDerived, that were previously unrelated. From
the perspective of an object-oriented class diagra
inherit merely adds an inheritance relationship betwe
theBaseandDerived classes, but it also checks enablin
conditions to determine if the change can be ma
safely and it alters the application’s source code
reflect this change. A refactoring is more precise
defined by (a) a purpose, (b) arguments, (c)
description, (d) enabling conditions, (e) an initial stat
and (f) a target state. Such a definition forinherit [Base,
Derived] is given in Figure 2. Applying refactorings is
superior to hand-coding similar changes because
allow a designer to evolve the architecture of a
existing body of code at the level of a class diagra
leaving the code-level details to automation.

Banerjee and Kim proposed a set of schema evolutio
for evolving object-oriented database schemas [Ban8
and Opdyke proposed a list of primitive refactorings fo
object-oriented languages [Opd92]. Roberts implemen
many of these refactorings for the Smalltalk languag
[Rob97]. In addition to previous refactorings, we hav

2. The termautomatedin this paper refers to a refactoring’s
programmed check for enabling conditions and its execu-
tion of all source code changes. The choice of which
refactorings to apply is always made by a human.

ConcreteSubclass1 ConcreteSubclass2

InstanceVariable

AbstractClass

AbstractOperation()

Operation()

ConcreteClass1
owns

Implementation

ConcreteClass2

references

Figure 1: Notation
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found that transforming actual applications requires a
larger set. We enlarged the set of schema evolutions to
include, for example,substitute. Substitute changes a
class’ dependency on some classC to a dependency on
a superclass ofC [Tok95]. A second new set of
refactorings is language-specific.
Procedure_to_method and structure_to_class are
used to convert C artifacts to their C++ equivalents. A
third set supports the addition of design pattern
microarchitectures in evolving programs [Tok95]. An
example is add_factory_method which creates a
method returning a new object and replaces all C++
invocations of "new Object " with a call to the
method. This refactoring is used to add the Factory
Method design pattern [Gam95].

A list of refactorings used in our research is presented
in Table 1. Refactorings proposed in previous work are

noted. Refactorings first implemented by our resear
for object-oriented software evolution appear in italics

3   Automatable Modes of Evolution

3.1   Schema Transformations
The database schema for an object-oriented datab
management system (OODBMS) looks like a clas
diagram for an object-oriented application. Similarly
OODBMS schema transformations have parallels
object-oriented software evolution. An example schem
transformation is moving the domain of an instanc
variable up the inheritance hierarchy Figure 3.1. Th
transformation is supported by the refactorin
pull_up_variable which moves an instance variable to

Figure 2: Inherit[Base, Derived] transformation

Derived

Base

vm*()

(a) Initial State (b) Target state

Name:
Inherit[  Base, Derived]

Purpose:
To establish a public superclass-subclass relationship
between two existing classes.

Arguments:
Base - superclass name
Derived - subclass name

Description:
Inherit[] makesBasea superclass ofDerived. vm*()

represents the unimplemented virtual methods
inherited byBase subclasses.

Enabling Conditions:
• Base must not be a subclass ofDerived andDerived

must not have a superclass.

• Subclasses of Base must support methodsvm*()  if
objects of that class are created. Otherwise, there will
be no implementations forvm*().

• Initializer lists must not be used to initializeDerived
objects. Initializer lists must initialize aggregates and
aggregates cannot have superclasses [Ell90].

• Program behavior must not depend on the size of
Derived. Adding a superclass can affect its size.

Derived

Base

vm*()

Schema Refactorings

add_variable
create_variable_accessor
create_method_accessor
rename_variable
remove_variable
push_down_variable
pull_up_variable
move_variable_across_

object_boundary
create_class
rename_class
remove_class
inherit
uninherit
substitute
rename_method
remove_method
push_down_method
pull_up_method

move_method_across_
object_boundary

extract_code_as_method
declare_abstract_method
structure_to_pointer

C++ Refactorings

procedure_to_method
structure_to_class

Design Pattern Refactorings

add_factory_method
create_iterator
composite
decorator
procedure_to_command
singleton

Table 1: Object-oriented refactorings

1. [Ban87]
2. [Opd92]
3. [Tok95]
4. [Rob97]

Base

Derived

Base

iv

instance variables "iv" from

Derived

iv

Figure 3.1: Using pull_up_variable to move

Derived to Base
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Banerjee and Kim describe 19 object-oriented database
schema transformations of which we implement 12 as

automated refactorings3:

Three other useful schema transformations not listed in

[Ban87] are:

Schema transformations perform many of the simp
edits encountered when evolving class diagrams. Th
can be used alone or in combination to evolve objec
oriented architectures.

Description from
Banerjee and Kim

[Ban87]
Refactoring from Table 1

Adding a new
instance variable

add_variable

Drop an existing
instance variable

remove_variable

Change the name of
an instance variable

rename_variable

Change the domain
of an instance vari-
able

pull_up_variable and
push_down_variable

Drop the composite
link property of an

instance variablea

a. A classA with an instance variable of classB having
thecomposite link property specifies thatA ownsB.
B cannot be created independently ofA andB can-
not be accessed through a composite link of another
object.

structure_to_pointer

Drop an existing
method

remove_method

Change the name of
a method

rename_method

Make a classS a
superclass of classC

inherit

Remove classS as a
superclass of classC

uninherit

Add a new class create_class

Drop an existing
class

remove_class

Change the name of
a class

rename_class

3. The seven refactorings which are not supported are:
changing the value of a class variable, changing the
code of a method, changing the default value of an
instance variable, changing the inheritance parent of
an instance variable, changing the inheritance of a
method, adding a method, and changing the order of
superclasses. The first three refactorings are not
behavior-preserving. The next two are not supported
by mainstream object-oriented programming lan-
guages. The sixth (adding a method) cannot be auto-
mated. The seventh (changing the order of
superclasses) is not supported because this research
is currently limited to applications without multiple
inheritance.

Description Refactoring

Move a variable
through a composite
link

move_variable_across_o
bject_boundary (Figure
3.2)

Move a method
through a composite
link

move_method_across_o
bject_boundary

Change a class’
dependency on a
classC to a depen-
dency on a superclass
S of C

substitute (Figure 3.3)

Object

Point

x
y

Point

Object

x
y

Figure 3.2: Using move_variable_across_object_bo
move instance variables x and y
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3.2   Design Pattern Microarchitectures
Design patterns capture expert solutions to many
common object-oriented design problems: creation of
compatible components, adapting a class to a different
interface, subclassing versus subtyping, isolating third
party interfaces, etc. Patterns have been discovered in a
wide variety of applications and toolkits including
Smalltalk Collections [Gol84], ET++ [Wei88], MacApp
[App89], and InterViews [Lin92]. As with database
schema transformations, refactorings have been shown
to directly implement certain design patterns:

We directly support three additional patterns a
refactorings:

While design patterns are useful when included in a
initial software design, they are often applied in th
maintenance phase of the software lifecycle [Gam93
For example, the original designer may have be
unaware of a pattern or additional system requireme
may arise that require unanticipated flexibility
Alternatively, patterns may lead to extra levels o
indirection and complexity inappropriate for the firs
software release. A number of patterns can be view
as automatable program transformations applied to
evolving design. Examples for the following two
patterns have been documented:

Pattern Description Example

Command Command encapsulates a
request as an object,
thereby letting you
parameterize clients with
different requests, queue
or log requests, and sup-
port undoable opera-
tions. The
procedure_to_comman
d refactorings converts a
procedure to a command
class.

[Tok99]

Factory
Method

Factory Method defines
an interface for creating
an object, but lets sub-
classes decide which
class to instantiate. The
add_factory_method
refactoring adds a fac-
tory method to a class.

[Tok95]

Letter

Filer Document

Letter

Filer Document

Figure 3.3: Using substitute to changeFiler ’s
reference to a Letter to a reference to a
Document

Singleton Singleton ensures a class
will have only one
instance and provides a
global point of access to
it. Thesingletonrefactor-
ing converts an empty
class into a singleton.

[Tok99]

Pattern Description

Composite Composite composes objects into tree
structures to represent part-whole hier-
archies. Thecomposite refactoring
converts a class into a composite class

Decorator Decorator attaches additional respons
bilities to an object dynamically. The
decorator refactoring converts a class
into a decorator class.

Iterator Iterator provides a way to access the
elements of an aggregate object
sequentially without exposing its
underlying representation. The
create_iterator refactoring generates
an iterator class.

Pattern Description Example

Abstract
Factory

Abstract Factory provides an
interface for creating fami-
lies of related or dependent
objects without specifying
their concrete class.

[Tok95]

Pattern Description Example



At least five additional patterns from [Gam95] can be
viewed as a program transformations:

In all cases, we can apply refactorings to simple designs
to create the designs used as prototypical examples in
[Gam95]. The following sections show how the first
two patterns can be automated.

3.2.1   Adapter

Adapter lets classes work together that couldn’t
otherwise because of incompatible interfaces. In the
object adapter example from [Gam95] (Figure 3.4), the
TextShape class adaptsTextView’s GetExtent()

method to implementBoundingBox() . The adapter
can be constructed from the originalTextView class
(Figure 3.5) in five steps:

1. Create the classesTextShape andShape using
create_class.

2. MakeTextShapea subclass ofShapeusing inherit
(Figure 3.6).

3. Add thetext instance variable toTextShapeusing
add_variable (Figure 3.7).

4. Create theBoundingBox() method which calls
text->GetExtent() using
create_method_accessor.
Create_accessor_methodcreates a method which
replaces calls of the forminstance_variable-

>method() .

5. Declare BoundingBox() in Shape using
declare_virtual_method (Figure 3.4).

Visitor Visitor lets you define a new
operation without changing
the classes of the elements
on which it operates.

[Rob97]

Pattern Description

Adapter Adapter lets classes work together that
couldn’t otherwise because of incom-
patible interfaces.

Bridge Bridge decouples an abstraction from its
implementation so that the two can vary
independently.

Builder Builder separates the construction of a
complex object from its representation
so that the same construction process
can create different representations.

Strategy Strategy lets algorithms vary indepen-
dently from the clients that use them.

Template
Method

Template Method lets subclasses rede-
fine certain steps of an algorithm with-
out changing the algorithm structure.

Pattern Description Example

Shape

BoundingBox()

text TextView

text->GetExtent();

TextShape

BoundingBox() GetExtent()

Figure 3.4: TextShape adapts TextView’s
interface

TextView

GetExtent()

Figure 3.5: Unadapted TextView class

Shape

TextView
TextShape

GetExtent()

Figure 3.6: Adapter class created

Figure 3.7: Adaptee instance variable added
to adapter

Shape

text TextView
TextShape

GetExtent()
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3.2.2   Bridge

Bridge decouples an abstraction from its
implementation so that the two can vary independently.
In the example from [Gam95] (Figure 3.8), theWindow
abstraction andWindowImp implementation are placed
in separate hierarchies. All operations onWindow
subclasses are implemented in terms of abstract
operations from theWindowImp interface. Only the
WindowImp hierarchy needs to be extended to support
another windowing system. We refer to the relationship
betweenWindow andWindowImp as a bridge because it
bridges the abstraction and its implementation, allowing
them to vary independently.

Refactorings can be used to install a bridge design
pattern given a simple design committed to a single
window system. Figure 3.9 depicts a system designed
for X-Windows. This system can be evolved with

refactorings to use the bridge design pattern in sev
steps:

1. Create classesXWindow  andWindowImp using
create_class.

2. Make WindowImp a superclass ofXWindow with
inherit  (Figure 3.10).

3. Add instance variableimp to the Window class
usingadd_variable (Figure 3.11).

4. Move methodsDrawLine() and DrawText() to
the XWindow class using the refactoring
move_method_across_object_boundary. These
methods are accessed through theimp instance
variable (Figure 3.12 ).

5. Declare methodDrawLine() andDrawText() in
WindowImp with declare_abstract_method.

impWindow

DrawRect()
DrawText()

imp->DrawLine();

imp->DrawLine();
imp->DrawLine();
imp->DrawLine();

XWindow

   DrawLine()

DrawText()

WindowImp

DrawLine()

DrawText()

XDrawLine();

bridge

Figure 3.8: Bridge design pattern example

Window

DrawRect()
DrawText()

DrawLine();

DrawLine();
DrawLine();
DrawLine();

XDrawLine();DrawLine()

Figure 3.9: Design for a single window system

Window

DrawRect()
DrawText()
DrawLine()

XWindow

WindowImp

DrawLine();

DrawLine();
DrawLine();
DrawLine();

XDrawLine();

Figure 3.10: Implementor classes created

Window

DrawRect()
DrawText()
DrawLine()

imp
XWindow

WindowImp

DrawLine();

DrawLine();
DrawLine();
DrawLine();

XDrawLine();

Figure 3.11: Implementor instance variable
added toWindow
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6. Change the type of instance variableimp from
XWindow to WindowImp using substitute (Figure
0.13).

7. Add aDrawText() method toWindow which calls
DrawText() in WindowImp using
create_method_accessor (Figure 3.8).

The Bridge architecture uses object composition to
provide needed flexibility. Object composition is also
present in the Builder and Strategy design patterns. The
trade-offs between use of inheritance and object
composition are discussed in [Gam95, pp. 18-20].
Refactorings allow a designer to safely migrate from
statically checkable designs using inheritance to
dynamically defined designs using object-composition.

3.2.3   Role of Refactorings for Design Pat-
terns

Gamma et. al. note that a common design pattern pitf
is overenthusiasm: "Patterns have costs (indirectio
complexity) therefore [one should] design to be a
flexible as needed, not as flexible as possible." Th
example from [Gam96] is displayed in Figure 3.14
Instead of creating a simpleCircle class, an
overenthusiastic designer adds aCircle factory with
strategies for each method, a bridge to aCircle
implementation, and aCircle decorator. The design is
likely to be more complex and inefficient that what i
actually required. The migration from a singleCircle
class to the complex microarchitecture in Figure 3.1
can be viewed as a transformation. This transformati

is in fact automatable with refactorings4. Thus, instead
of overdesigning, one can start with a simpleCircle
class and add the Factory Method, Strategy, Bridge, a
Decorator design patterns as needed.

Refactorings can restructure existing implementatio
to make them more flexible, dynamic, and reusabl
however, their ability to affect algorithms is limited.
Patterns such as Chain of Responsibility and Memen
require that algorithms be designed with knowledg
about the patterns employed. These patterns are t
considered fundamental to a software architectu
because there is no refactoring enabled evolutiona
path which leads to their use. Refactorings allow
designer to focus on fundamental patterns wh

Figure 3.12: Window system specific methods
moved toXWindow class

impWindow

DrawRect()

imp->DrawLine();

imp->DrawLine();
imp->DrawLine();
imp->DrawLine();

XWindow

DrawLine()

WindowImp

DrawText()

XDrawLine();

impWindow

DrawRect()

imp->DrawLine();

imp->DrawLine();
imp->DrawLine();
imp->DrawLine();

XWindow

   DrawLine()

DrawText()

WindowImp

DrawLine()

DrawText()

XDrawLine();

Figure 3.13: Virtual methods declared so that
"imp" can be generalized to
classWindowImp

4. A Circle factory is created [Tok95]. Strategies are
added (Section 3.2). The Bridge pattern is applied
(Section 3.2.2). Finally, a decorator is added (Sec-
tion 3.2).

Figure 3.14: Overenthusiastic use of design
patterns

Circle

draw()

radius

createCircle()

CircleFactory

bounds()

Circle

draw()
bounds()

CircleDecorator

CircleImp

bounds()

BoundsStrategy

draw()

DrawStrategy



creating a new software architecture. Patterns supported
through refactorings can be added on an if-needed basis
to the current or future architecture at minimal cost.

3.3   Hot-Spot Analysis
The hot-spot-driven-approach[Pre94] identifies which
aspects of a framework are likely to differ from
application to application. These aspects are calledhot-
spots. When a data hot-spot is identified, abstract
classes are introduced. When a functional hot-spot is
identified, extra methods and classes are introduced.

3.3.1   Data Hot-Spots

When the instance variables between applications are
likely to differ, Pree prescribed the creation of abstract
classes. Refactorings have repeatedly demonstrated the
ability to create abstract classes [Opd93, Tok95,
Rob97]. As an example, Pree and Sikora provide a
Mailing System case study [Pre95]. Figure 3.15
displays the initial state of its software architecture. In
this system, Folder cannot be nested, and only
TextDocument can be mailed. Their suggested
architecture is displayed in Figure 3.16. Under the
improved architecture,Folders can be nested and any
subclass ofDesktopItemcan be mailed. Refactorings can
automate these changes in five steps:

1. Create aDesktopItem class usingcreate_class
(Figure 3.17).

2. Make DesktopItem a superclass ofTextDocument
usinginherit  (Figure 3.18).

3. Generalize the link betweenMailer and
TextDocument to a link between Mailer and
DesktopItem using substitute (Figure 3.19).
Subclasses ofDesktopItem can now be mailed.

4. Generalize the link between Folder and

Mailer

Folder

Mailbox

TextDocument

Figure 3.15: Initial state of mailing system

Mailer

Folder

Mailbox

DesktopItem

TextDocument

Figure 3.16: Final state of mailing system

Mailer

Folder

Mailbox

TextDocument

DesktopItem

Figure 3.17: EmptyTextDocument class
created

Mailer

Folder

Mailbox

DesktopItem

TextDocument

Figure 3.18:TextDocument inherits from
DesktopItem
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TextDocument to a link between Folder and
DesktopItemusing substitute (Figure 3.20).Folder
can now contain anyDesktopItem.

5. Make Folder a subclass ofDesktopItem using
inherit (Figure 3.16). AFolder which can contain a
DesktopItem can now contain anotherFolder.

With the improved architecture, aFolder can be nested
within another Folder and DesktopItem provides a
superclass for adding other types of media to be mailed.
These changes which would normally be implemented
and tested by hand can be automated with refactorings.

3.3.2   Functional Hot-Spots

For the case of differing functionality, solutions based
on templateandhook methodsare prescribed to provide
the needed behavior. A template method provides the
skeleton for a behavior. A hook method is called by the
template method and can be tailored to provide
different behaviors. Figure 3.21 is an example of a
template method and hook method defined in the same
class. Different subclasses ofT can override hook

methodM2() which leads to differing functionality in
template methodM1(). (Figure 3.22). Pree identifies
seven meta patterns for template and hook metho
unification, 1:1 connection, 1:N connection, 1:1
recursive connection, 1:N recursive connection, 1
recursive unification, and 1:N recursive unification
[Pre94]. Refactorings automate the introduction of me
patterns into evolving architectures. The transition
between patterns enabled by refactorings are display

in Figure 3.235. As examples, we demonstrate suppo
for the first two transitions.

In the unification composition, both the template an
hook methods are located in the same class (Figu
3.21). The behavior of the template is changed b
overriding the hook method in a subclass (Figure 3.22
An architecture with no template or hook methods ca
be transformed to use the unification meta patte
(transition 1 from Figure 3.23). Consider the clas

Mailer

Folder

Mailbox

DesktopItem

TextDocument

Figure 3.19:Mailer  dependency changed from
TextDocument to DesktopItem

Mailer

Folder

Mailbox

DesktopItem

TextDocument

Figure 3.20:Folder can contain anyDesktopItem

5. We consider the 1:N connection composition to be
fundamental to an architecture. For this pattern, a
template object is linked to a collection of hook
objects. This implies that the template method has
knowledge about how to use multiple hook methods
and thus cannot be derived from the 1:1 connection
composition in which the template method is coded
for a single hook method.

T

M1()
M2()

while (...)
M2();

do ...

do special behavior

Figure 3.21: Template and hook methods in
same class

T

M1()
M2()

while (...)

do special behavior

M2()
do ...

H

M2()

Figure 3.22: Hook method M2() overridden
in classH
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diagram in Figure 3.24 with classT having methodM1()

which calls some special behavior. A hook method can
be added with refactorings in one step:

1. Create a hook methodM2() which executes the
special behavior usingextract_code_as_method
(Figure 3.21).Extract_code_as_methodreplaces a
block of code with a call to a newly created method
which executes the block.

In the new microarchitecture, general behavior is
contained in template methodM1() while special
behavior is captured by hook methodM2() . To extend
the architecture, subclasses ofT override M2() to
provide alternative behaviors forM1() . The extended
structure can be added in four steps:

1. Create classH usingcreate_class.

2. Make T a superclass ofH using inherit (Figure
3.25).

3. MakeM2() overridable by the subclasses ofT using
declare_abstract_method.

4. Move the implementation ofM2() into H using
push_down_method (Figure 3.22).

As a second example, we support the transition fro
unification to 1:1 connection (transition 2 from Figure
3.23). Consider the 1:1 connection meta pattern whi
stores the hook method in an object owned by th
template class (Figure 3.26). Behavior can be chang
at run-time by assigning a hook object with a differen
behavior to the template class. 1:1 connection can
automated in three steps using the unification patte
(Figure 3.21) as a starting point.

1. Create classH usingcreate_class.

2. Add an instance variableref to T with
add_variable (Figure 3.27).

3. Move M2() to class H using
move_method_across_object_boundary (Figure
3.26).

The behavior of template methodM1() can now be
altered dynamically by pointing to different hook clas

Figure 3.23: Hot-spot meta pattern transitions
enabled by refactorings

No meta pattern

1:1 connection

Unification 1:1 recursive unification

1:1 recursive connection

1:N recursive unification

1:N recursive connection

1

2

3

4

5

6

T

M1()
while (...)

do special behavior
do ...

Figure 3.24: Method M1() calls a special behavior
which differs for each application
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do special behavior

M2()
do ...
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Figure 3.25: Hook class created
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Figure 3.26: 1:1 connection
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Figure 3.27: Connection to H object
created
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objects with different implementations ofM2() . Other
transitions in Figure 3.23 are similarly supported.

3.3.3   Role of Refactorings for Hot-Spot
Analysis

The hot-spot-driven-approach provide a comprehensive
method for evolving designs to manage change in both
data and functionality. Pree notes that "the seven
composition meta patterns repeatedly occur in
frameworks." Thus, we expect an ongoing need to add
meta patterns to evolving architectures. The addition of
meta patterns is currently a manual process. Conditions
are checked to ensure that a pattern can be added safely,
lines of affected source code are identified, changes are
coded, the system is tested to check for errors, any
errors are fixed and the system is retested. Retesting
continues until the expected likelihood of an error is
sufficiently low.

This section demonstrates that most meta patterns can
be viewed as transformations from a simpler design.
Refactorings automate the transition between designs
granting designers the freedom to create simple
frameworks and add patterns as needed when hot-spots
are identified.

4   Related Work
Griswold developed behavior-preserving
transformations for structured programs written in
Scheme [Gri91]. The goal of this system was to assist
in the restructuring of functionally decomposed
software. Software architectures developed using the
classic structured software design methodology
[You79] are difficult to restructure because nodes of the
structure chart which define the program pass both data
and control information. The presence of control
information makes it difficult to relocate subtrees of the
structure chart. As a result, most transformations are
limited to the level of a function or a block of code.

Object-oriented software architectures offer greater
possibilities for restructuring. Bergstein defined a small
set of object-preserving class transformations which can
be applied to class diagrams [Ber91]. Lieberherr
implemented these transformations in the Demeter
object-oriented software environment [Lie91]. Example
transformations are deleting useless subclasses and
moving instance variables between a superclass and a
subclass. Bergstein’s transformations are object
preserving so they cannot add, delete, or move methods
or instance variables exported by a class.

Banerjee and Kim identified a set of schem
transformations which accounted for many changes
evolving object-oriented database schema [Ban8
Opdyke defined a parallel set of behavior-preservin
transformations for object-oriented applications bas
on the work by Banerjee and Kim, the design principle
of Johnson and Foote [Joh88], and the design history
the UIUC Choices software system [May89]. Thes
transformations were termedrefactorings. Roberts
developed the Smalltalk Refactory Browser whic
implements many of these refactorings [Rob97].

Tokuda and Batory proposed additional refactorings
support design patterns as targets states for softw
restructuring efforts [Tok95]. Refactorings are shown
support the addition of design patterns to objec
oriented applications [Tok95, Rob97, Sch98]. Winse
used refactorings to make design patterns more expl
[Win96]. Tokuda and Batory demonstrated tha
refactorings can automate significant (greater than 10
lines of code) changes when applied to real applicatio
[Tok99].

A number of tools instantiate a design pattern and ins
it into existing source code [Bud96, Kim96, Flo97]
Instantiations are not necessarily refactorings, so test
of any changes may be required. Florijn and Meije
check invariants governing a pattern and repa
violations when possible. Refactorings do not have th
pattern-level knowledge.

5   Summary
Architectural evolution is a costly yet unavoidabl
consequence of a successful application. One meth
for reducing cost is to automate aspects of th
evolutionary cycle when possible. For object-oriente
applications in particular, there are regular patterns
which architectures evolve. Three modes o
architectural evolution are: schema transformations, t
introduction of design pattern microarchitectures, an
the hot-spot-driven-approach. Many evolutionar
changes can be viewed as program transformatio
which are automatable with object-oriente
refactorings. Refactorings are superior to hand-codi
because they check enabling conditions to ensure tha
change can be made safely, identify all lines of sour
code affected by a change, and perform all edi
Refactorings allow architectural evolution to occur a
the level of a class diagram and leave the code-lev
details to automation.

Architectures should evolve on an if-needed basis:
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• "Complex systems that work evolved from simple
systems that worked." — Booch

• "Start stupid and evolve." — Beck

Refactorings directly address the need to evolve from
simple to complex designs by automating many
common design transitions. We believe that the
majority of all object-oriented applications undergoes
some form of automatable evolution. The broad scope
of supported changes indicates that refactorings can
have a significant impact when applied to evolving
designs. This claim is validated with real applications in
[Tok99] where many hand-coded changes between two
major releases of two software systems are automated.

The limiting factor barring the widespread acceptance
of refactoring technology appears to be the availability
of production quality refactorings for the two most
popular object-oriented languages: C++ and Java. Our
current research identifies implementation issues for
C++ [Tok99].
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