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Abstrac:t1 to existing features.

Reusability — to carve out software artifacts for

Architectural evolution is a costly yet unavoidable * : A
reuse in other applications.

consequence of a successful application. One method
for reducing cost is to automate aspects of thes Extensibility — to provide for the addition of
evolutionary cycle when possible. Three kinds of  future extensions.

architectural evolution in object-oriented systems are;
schema transformations, the introduction of design
pattern microarchitectures, and the hot-spot-driven-
approach. This paper shows that all three can be vieweWe have observed that architectures also evolve for
as transformations applied to an evolving design.human reasons:

Further, the transformations are automatable with

refactorings —  behavior-preserving  program* Experience. Experienced employees can often

transformations. A comprehensive list of refactorings  design a better architecture based on their
used to evolve large applications is provided and an knowledge of the current architecture.

analysis of supported schema transformations, desigp
patterns, and hot-spot meta patterns is presented.
Refactorings enable the evolution of architectures on an
if-needed basis reducing unnecessary complexity and
inefficiency.

Maintainability — to reduce the cost of software
maintenance through restructuring.

New Perspective New project members often have

new ideas about how an architecture could or
should be structured. Many organizations use a
code ownership model which empowers new
employees with the ability to realize their new

designs.

1 Introduction . o ,
While motivations vary, the methods used for evolving
All successful software applications evolve [Par79]. grchitectures appear to follow regular patterns,
During the 1970s, evolution and maintenancepgarticularly for object-oriented applications. Three
accounted for 35 to 40 percent of the software budgekinds of object-oriented architectural evolution are:
for an information systems organization. This numberschema transformations, the introduction of design
jumped to 60 percent in the 1980s. It was predicted thapattern microarchitectures, and the hot-spot-driven-
without a major change in approach, many companiegpproach. Schema transformationgre drawn from
will spend close to 80 percent of their software budgetopject-oriented database schema transformations that
on maintenance [Pre92]. As applications evolve, so dgyerform edits on a class diagram [Ban87]. Examples are
their architectures. Architectures evolve for multiple renaming a class, adding new instance variables, and
reasons: moving a method up the class hierarchPesign
patterns are recurring sets of relationships between
* Capability — to support new features or changes cjasses, objects, methods, etc. that define preferred
solutions to common object-oriented design problems
[Gam95]. Thehot-spot-driven-approacts based on the
1. We gratefully acknowledge the sponsorship of identification of aspects of a software program which
Microsoft Research, the Defense Advanced are likely to change from application to application (i.e.
Research Projects Agency (Cooperative Agreement 1 <hex [Preg5]. Architectures using abstract classes

F30602-96-2-0226), and the University of Texas at .
Austin Applied Research Laboratories. and template methods are prescribed to keep these hot-
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spots flexible.

AbstractClass owns
. . . ConcreteClass1
Refactorings are  behavior-preserving  program

transformations  which  directly aid in the AbstactOperaton) | elerences

implementation of new architectures. Primitive A
refactorings perform simple edits such as adding new
classes, creating instance variables, and moving |

instance variables up the class hierarchy. Compositions | Concretesubclasst | ConcreteSubclass?
of refactorings can create abstract classes, capture InstanceVariable
aggregation and components [Opd92], extract template Operation()
and hook methods, and even install design pattern !
microarchitectures [Tok95]. Although composing 4—5
refactorings to achieve a desired result may require Implementation
some planning, this effort is negligible compared to the
manual task of identifying all lines of source code Figure 1: Notation
affected by a change, performing hand-edits, retesting
all fixes, and risking the introduction of new errors. * ConcreteClass— a concrete class name.
e Method() — a method or procedure name.

We are pursuing two approaches to promote refactoring . i _

Instance_variable — an instance variable.

research. The first is to evaluate refactorings of large’
applications. We believe that we are the first to provide .
empirical evidence on the usefulness of refactoring? Refactorings
when applied to non-trivial applications [Tok99]. In one A refactoring is a parameterized behavior-preserving
example, a major architectural change — the splittingprogram transformation that automatically updates an
of a class hierarchy — is automafedn a second application’s design and underlying source code. A
example on a large application (~500K LOCS), refactoring is typically a very simple transformation,
approximately fourteen thousand lines of code changesne that has a straightforward (but not necessarily
between two code releases are automated witlrivial) impact on application source code. An example
refactorings. (See paper for details.) is inherit[Base Derived], which establishes a
superclass-subclass relationship between two classes,
A second approach to promoting refactoring research i®aseandDerived, that were previously unrelated. From
to demonstrate that common forms of architecturalthe perspective of an object-oriented class diagram,
evolution can be automated. This paper catalogs thénherit merely adds an inheritance relationship between
schema transformations, design pattern restructuringghe BaseandDerived classes, but it also checks enabling
and hot-spot meta patterns which can be automatedonditions to determine if the change can be made
with refactorings. By demonstrating broad coverage ofsafely and it alters the application’s source code to
common modes of evolution, it is argued thatreflect this change. A refactoring is more precisely
refactorings will be generally useful in the evolutionary defined by (a) a purpose, (b) arguments, (c) a
maintenance cycle. description, (d) enabling conditions, (e) an initial state,
and (f) a target state. Such a definition foherit[Basg
A summary of the class diagram notation usedDerived] is given in Figure 2. Applying refactorings is
throughout the remainder of this paper is presented irsuperior to hand-coding similar changes because it
Figure 1. Within the main body of text, we use the allow a designer to evolve the architecture of an
following conventions: existing body of code at the level of a class diagram
leaving the code-level details to automation.
» Refactoring — a refactoring.
Banerjee and Kim proposed a set of schema evolutions
for evolving object-oriented database schemas [Ban87]
and Opdyke proposed a list of primitive refactorings for
object-oriented languages [Opd92]. Roberts implements
2. The termautomatedn this paper refers to a refactoring’s many of these refactorings for the Smalltalk language

programmed check for enabling conditions and its eXeCUTRobh97]. In addition to previous refactorings, we have
tion of all source code changes. The choice of which

refactorings to apply is always made by a human.

* AbstractClass— an abstract class name.




Name: Schema Reifctorings move_method_across_

Inherit[ Base, Derived| add_variable object_boundary
Purpose: create_variable_accessor €xtract_code_as_method

To establish a public superclass-subclass relationship| ~ create_method_accessor declare_abstract_methog

between two existing classes. rename_variable structure_to_pointer
Arguments: remove_variable

Base- superclass name push_down_variable ~ C*+*Refetorings

iv

Derived - subclass name pull_up_variable procedure_to_method
o move_variable_across_  structure_to_class
Description: _ object_boundary
Inherit[] makesB{;llsea Sl_JpelrcIass dT;erlv_ed. ‘l’m*() hod create_class Design Rittern Redictorings
represen nimplemen vir m
ir?i?efi?eed tSyi_;,[agesuubclgsese;a N el mefocs fename_class add_factory_method
' remove_class create_iterator
Enabling Conditions: mherlt _ composite
« Basemust not be a subclassérived andDerived uninherit decorator
must not have a superclass. substitute procedure_to_command
+ Subclasses dasemust support methodsn*() if rename_met:‘log singleton 1. [Bang7]
objects of that class are created. Otherwise, there will :)enswrc]) vgamrt]et n?eth od 2. [Opd92]
. ; u W ‘
be no implementations fem*(). oull Jp method 3. [Tok95]
« Initializer lists must not be used to initialiperived - 4. [Rob97]
objects. Initializer lists must initialize aggregates and ] ] ]
aggregates cannot have superclasses [EII90]. Table 1: Object-oriented refactorings
« Program behavior must not depend on the size of
Derived. Adding a superclass can affect its size.
i .
Base | Base Base ' Base
* | * '
vm () [ vm () : iv
| .
I» A
By |
| L >
| Derived Derived
|
1

(@) Initial State (b) Target state

Figure 2: Inherit[Base, Derived] transformation Figure 3.1: Using pull_up_variable to move

) o _ instance variables "iv" from
found that transforming actual applications requires a Derived to Base

larger set. We enlarged the set of schema evolutions to

include, for examplesubstitute. Substitute changes a noted. Refactorings first implemented by our research
class’ dependency on some clas$o a dependency on for object-oriented software evolution appear in italics.
a superclass ofc [Tok95]. A second new set of

refactorings is language-specific. 3 Automatable Modes of Evolution
Procedure_to_method and structure_to_class are

used to convert C artifacts to their C++ equivalents. A3.1 Schema Transformations

third set supports the addition of design pattern.rhe database schema for an object-oriented database

microarchi_tectures in evolving programs [Tok95]. An management system (OODBMS) looks like a class
example is an_factory_me_thod which creates  a diagram for an object-oriented application. Similarly,
_method_ returning a new'object "’?”d replaces all C++OODBMS schema transformations have parallels in
|nv?rc]:aé|onTsh_of hfewt _Obje_Ct V(\;'trt] a dC(?”thto Fthet object-oriented software evolution. An example schema
method.d IS 1€ ?f orlng IS gusse 0 a & Facloyansformation is moving the domain of an instance

ethod design pattern [Gam95]. variable up the inheritance hierarchy Figure 3.1. This
(gansformation is supported by the refactoring

ull_up_variable which moves an instance variable to

A list of refactorings used in our research is presente
in Table 1. Refactorings proposed in previous work are



a superclass.

Banerjee and Kim describe 19 object-oriented database X
schema transformations of which we implement 12 as :

automated refactorings

Description from
Banerjee and Kim
[Ban87]

Refactoring from Table 1

Adding a new
instance variable

add_variable

Drop an existing
instance variable

remove_variable

Change the name of
an instance variable

rename_variable

Object Object

Point

Point

Figure 3.2: Using move_variable_across_object_b
move instance variables x and y

[Ban87] are:

Description Refactoring

Change the domain
of an instance vari-
able

pull_up_variable and
push_down_variable

Move a variable move_variable_across_o
through a composite| bject_boundary (Figure
link 3.2

Drop the composite
link property of an

instance variabfe

structure_to_pointer

Move a method move_method_across_o
through a composite| bject_boundary
link

Drop an existing
method

remove_method

Change the name of
a method

rename_method

Change a class’ substitute (Figure 3.3)
dependency on a
classc to a depen-
dency on asuperclas

sofc

[

Make a class a inherit
superclass of class
Remove class as a | uninherit

superclass of class

Add a new class

create_class

Drop an existing
class

remove_class

Change the name of
a class

rename_class

a. AclassA with an instance variable of claBshaving
thecomposite linkproperty specifies th#t ownsB.

B cannot be created independentlyAcindB can-

not be accessed through a composite link of another

object.

Three other useful schema transformations not listed in

Schema transformations perform many of the simple
edits encountered when evolving class diagrams. They
can be used alone or in combination to evolve object-
oriented architectures.

3. The seven refactorings which are not supported are:
changing the value of a class variable, changing the
code of a method, changing the default value of an
instance variable, changing the inheritance parent of
an instance variable, changing the inheritance of a
method, adding a method, and changing the order of
superclasses. The first three refactorings are not
behavior-preserving. The next two are not supported
by mainstream object-oriented programming lan-
guages. The sixth (adding a method) cannot be auto-
mated. The seventh (changing the order of
superclasses) is not supported because this research
is currently limited to applications without multiple
inheritance.



: Pattern Description Example
Filer Document ! i
| | I [ EC Singleton Singleton ensures a clasqdTok99]
' A will have only one
instance and provides a
global point of access to
, it. The singletonrefactor-
Figure 3.3: Using substitute to changeFiler’s ing converts an empty
reference to a Letter to a reference to a class into a singleton.
Document We directly support three additional patterns as

3.2 Design Pattern Microarchitectures

refactorings:

Design patterns capture expert solutions to many Pattern Description
common object-oriented design problems: creation o
interface, SUbCIaSSing versus Subtyping, isolating thirg structures to represent part-who'e hiar-
party interfaces, etc. Patterns have been discovered in|a archies. Theompositerefactoring
Smalltalk Collections [Gol84], ET++ [Wei88], MacApp
[App89], and InterViews [Lin92]. As with database | Decorator | Decorator attaches additional responsi-
schema transformations, refactorings have been shown bilities to an object dynamically. The
to directly implement certain design patterns: decorator refactoring converts a class
into a decorator class.
Pattern Description Example Iterator Iterator provides a way to access the
elements of an aggregate object
Command | Command encapsulates §Tok99] sequentially without exposing its
request as an object, underlying representation. The
thereby letting you create_iterator refactoring generates
parameterize clients with an iterator class.
different requests, queue
ggl?ﬂr:gg:gfgsésgri-sup While design patterns are useful when incll_Jded_ in an
tions. The |n|t|_al software design, they are ofte_n applied in the
procedure_to_comman maintenance phase qf _the softvyare lifecycle [Gam93].
d refactoriﬁgs_converts al For example, the original .d.eS|gner may ha\{e been
procedure to a command unaware of a pattern or .addltlonal ;ystem requmements
class. may arise that require unanticipated flexibility.
Alternatively, patterns may lead to extra levels of
Factory Factory Method defines | [Tok95] indirection and complexity inappropriate for the first
Method an interface for creating software release. A number of patterns can be viewed
an object, but lets sub- as automatable program transformations applied to an
classes decide which evolving design. Examples for the following two
class to instantiate. The patterns have been documented:
add_factory_method
refactoring adds a fac- .
tory method to a class. Pattern Description Example
Abstract | Abstract Factory provides an [Tok95]
Factory | interface for creating fami-

lies of related or dependent
objects without specifying
their concrete class.




Pattern Description Exampl

U

Visitor Visitor lets you define a new
operation without changing
the classes of the elements

on which it operates.

[Rob97]

At least five additional patterns from [Gam95] can be
viewed as a program transformations:

Pattern Description

Adapter Adapter lets classes work together that
couldn’t otherwise because of incom-
patible interfaces.

Bridge Bridge decouples an abstraction from |ts
implementation so that the two can vary
independently.

Builder Builder separates the construction of g
complex object from its representatior
so that the same construction procesg
can create different representations.

Strategy Strategy lets algorithms vary indepen-
dently from the clients that use them.

Template | Template Method lets subclasses redé-

Method fine certain steps of an algorithm with
out changing the algorithm structure.

In all cases, we can apply refactorings to simple designs
to create the designs used as prototypical examples in
[Gam95]. The following sections show how the first
two patterns can be automated.

3.2.1 Adapter

Adapter lets classes work together that couldn’t
otherwise because of incompatible interfaces. In the
object adapter example from [Gam95] (Figure 3.4), the
TextShape class adaptsTextView's GetExtent()
method to implemenBoundingBox() . The adapter
can be constructed from the origin@bxtView class
(Figure 3.5) in five steps:

1. Create the class&sxtShapeandShapeusing 4.
create_class

2. MakeTextShapea subclass oBhapeusinginherit
(Figure 3.6).

3. Add thetext instance variable t@extShapeusing
add_variable (Figure 3.7). 5.

Shape

BoundingBox(

]

TextShape

text TextView

GetExtent()

BoundingBox(j- -

--p text->GetExtent(;

Figure 3.4: TextShape adapts TextView's
interface

TextView

GetExtent()

Figure 3.5: Unadapted TextView class

TextView

I }

TextShape

GetExtent()

Figure 3.6: Adapter class created

text TextView

TextShape

! |

GetExtent()

Figure 3.7: Adaptee instance variable added

to adapter

method which calls
using

Create theBoundingBox()
text->GetExtent()
create_method_accessor
Create_accessor_methodreates a method which
replaces calls of the forrinstance_variable-
>method()

Declare BoundingBox() in Shape
declare_virtual_method (Figure 3.4).

using



bridge

WindowImp
Window imp Windowlmp
DrawRect() - - | - DrawLine()
oatod0 [ | Draweid Windon
: | DrawRect() . _ |- - .
ZF DrawText() '

DrawLine() _ | _:_ ; .
imp->DrawLine(); XWindow : > XDrawtine();
imp->DrawLine(); .
imp->DrawLine(); DrawLine()- - |- - - ;
imp->DrawLine(); DrawText() X

: DrawLine();

DrawLine();

) DrawLine();
XDrawLine(); DrawLine();

Figure 3.8: Bridge design pattern example Figure 3.10: Implementor classes created
Window WindowlImp
DrawRect() - - | -

DrawText() ' Window imp -
DrawLine() - - t 4 - ${ XDrawLine(); Ii| XWindow
' DrawRect()- - 1 - -
. DrawText() X
DrawLine() - -1 - ;- 3 XDrawLine(); Ii|
DrawLine(); !
DrawLine();
DrawLine(); N
DrawLine(); DrawLine();
DrawLine();
DrawLine();
DrawLine();

Figure 3.9: Design for a single window system

Figure 3.11: Implementor instance variable
3.2.2 Bridge added towindow
Bridge decouples an abstraction from its refactorings to use the bridge design pattern in seven
implementation so that the two can vary independently Steps:
In the example from [Gam95] (Figure 3.8), tidéndow . . )
abstraction andvindowlmp implementation are placed 1. Create classeéNindow andWindowimpusing

in separate hierarchies. All operations omindow create_class
subclasses are implemented in terms of abstract. Make Windowimp a superclass okWindow with
operations from thewindowimp interface. Only the inherit (Figure 3.10).

WindowImp hierarchy needs to be extended to support
another windowing system. We refer to the relationship™
betweenwindow and Windowlmp as a bridge because it
bridges the abstraction and its implementation, allowingd. Move method<DrawLine() and DrawText() to
them to vary independently. the Xwindow class using the refactoring
move_method_across_object_boundary These
Refactorings can be used to install a bridge design methods are accessed through fhe instance
pattern given a simple design committed to a single variable (Figure 3.12).
window system. Figure 3.9 depicts a system designe
for X-Windows. This system can be evolved with

Add instance variablémp to the Window class
usingadd_variable (Figure 3.11).

Declare methodrawLine() andDrawText() in
Wwindowlmp with declare_abstract_method



Windowlmp
Window imp XWindow
DrawRect() - - | - DrawLine() -{- - -
. DrawText() X

XDrawLine(); Ii|

Figure 3.12: Window system specific methods
moved toXWindow class

imp->DrawLine();
imp->DrawLine();
imp->DrawLine();
imp->DrawLine();

Window imp WindowImp
DrawRect() - -|- . DrawLine()

! DrawText()
imp->DrawLine(); XWindow
imp->DrawLine();
imp->DrawLine(); DrawLine()- -|- - -
imp->DrawLine(); DrawText() X

XDrawLine(); Ii|

Figure 3.13: Virtual methods declared so that
"iImp" can be generalized to
classwindowimp

6. Change the type of instance variabiep from
XWindow to Windowlmp using substitute (Figure
0.13).

Add aDrawText() method towindow which calls
DrawText() in Windowlmp using
create_method_accessqiFigure 3.8).

CircleFactory

createCircle()

: DrawStrategy
: ' draw()
Circle ! V
| -
draw() » Circle BoundsStrategy
bounds() draw() > bounds()
radius bounds()

CircleDecorator

Figure 3.14: Overenthusiastic use of design
patterns

3.2.3 Role of Refactorings for Design Pat-
terns

Gamma et. al. note that a common design pattern pitfall
is overenthusiasm: "Patterns have costs (indirection,
complexity) therefore [one should] design to be as
flexible as needed, not as flexible as possible." The
example from [Gam96] is displayed in Figure 3.14.
Instead of creating a simpleCircle class, an
overenthusiastic designer addsCacle factory with
strategies for each method, a bridge to Cicle
implementation, and &ircle decorator. The design is
likely to be more complex and inefficient that what is
actually required. The migration from a singl&rcle
class to the complex microarchitecture in Figure 3.14
can be viewed as a transformation. This transformation

is in fact automatable with refactorirftysThus, instead

of overdesigning, one can start with a simpicle
class and add the Factory Method, Strategy, Bridge, and
Decorator design patterns as needed.

Refactorings can restructure existing implementations
to make them more flexible, dynamic, and reusable,
however, their ability to affect algorithms is limited.
Patterns such as Chain of Responsibility and Memento
require that algorithms be designed with knowledge
about the patterns employed. These patterns are thus
considered fundamental to a software architecture

The Bridge architecture uses object composition tobecause there is no refactoring enabled evolutionary

provide needed flexibility. Object composition is also
present in the Builder and Strategy design patterns. Th

path which leads to their use. Refactorings allow a
designer to focus on fundamental patterns when

trade-offs between use of inheritance and object

composition are discussed in [Gam95, pp. 18-20].
Refactorings allow a designer to safely migrate from
statically checkable designs using
dynamically defined designs using object-composition.

inheritance to

4. A Circle factory is created [Tok95]. Strategies are
added (Section 3.2). The Bridge pattern is applied
(Section 3.2.2). Finally, a decorator is added (Sec-

tion 3.2).



Mailer K>——( TextDocument

Folder

1

Mailbox

Figure 3.15: Initial state of mailing system

creating a new software architecture. Patterns supported
through refactorings can be added on an if-needed basis
to the current or future architecture at minimal cost.

3.3 Hot-Spot Analysis

The hot-spot-driven-approacfPre94] identifies which
aspects of a framework are likely to differ from
application to application. These aspects are cdilztd
spots When a data hot-spot is identified, abstract
classes are introduced. When a functional hot-spot is
identified, extra methods and classes are introduced.

3.3.1 Data Hot-Spots

When the instance variables between applications are
likely to differ, Pree prescribed the creation of abstract

classes. Refactorings have repeatedly demonstrated the

ability to create abstract classes [Opd93, Tok95,
Rob97]. As an example, Pree and Sikora provide a
Mailing System case study [Pre95]. Figure 3.15
displays the initial state of its software architecture. In
this system, Folder cannot be nested, and only

TextDocument can be mailed. Their suggested

architecture is displayed in Figure 3.16. Under the
improved architecturefolders can be nested and any

subclass obesktopltemcan be mailed. Refactorings can

automate these changes in five steps:

1. Create desktopltemclass usingreate class
(Figure 3.17).

2. Make Desktopltem a superclass offextDocument
usinginherit (Figure 3.18).

3. Generalize the link betweenMailer and
TextDocument to a link between Mailer and
Desktopltem using substitute (Figure 3.19).
Subclasses dbesktopltemcan now be mailed.

4. Generalize

Mailer k> Desktopltem
Folder TextDocument
Mailbox

Figure 3.16: Final state of mailing system

Desktopltem

Mailer kK>— TextDocument
Folder
Mailbox

Figure 3.17: Empty TextDocumentclass
created

Desktopltem

T

K>— TextDocument

Mailer
Folder
Mailbox

Figure 3.18:TextDocumentinherits from
Desktopltem

the link betweenFolder

and



Mailer kK >——————C Desktopltem
Folder TextDocument
Mailbox

Figure 3.19:Mailer dependency changed from
TextDocumentto Desktopltem

Mailer «>—— Desktopltem
Folder TextDocument
Mailbox

Figure 3.20:Folder can contain anyDesktopltem

TextDocument to a link between Folder and
Desktopltemusing substitute (Figure 3.20).Folder
can now contain anesktopltem

Make Folder a subclass ofDesktopltem using
inherit (Figure 3.16). AFolder which can contain a
Desktopltemcan now contain anothéblder.

With the improved architecture, Rolder can be nested
within another Folder and Desktopltem provides a

while (...)
M1() "~ M2();

M2 - - - do

- ® do special behavior

Figure 3.21: Template and hook methods in

same class
T
while (...)
VAN L0
M2() do ...
H
M2 “c -1 B do special behavior

Figure 3.22: Hook method M2() overridden
in classH

methodm2() which leads to differing functionality in
template methodvi(). (Figure 3.22). Pree identifies
seven meta patterns for template and hook methods:
unification, 1:1 connection, 1:N connection, 1:1
recursive connection, 1:N recursive connection, 1:1
recursive unification, and 1:N recursive unification
[Pre94]. Refactorings automate the introduction of meta
patterns into evolving architectures. The transitions
between patterns enabled by refactorings are displayed

in Figure 3.23. As examples, we demonstrate support
for the first two transitions.

In the unification composition, both the template and
hook methods are located in the same class (Figure

superclass for adding other types of media to be mailed3.21). The behavior of the template is changed by
These changes which would normally be implementeddverriding the hook method in a subclass (Figure 3.22).
and tested by hand can be automated with refactoringsAn architecture with no template or hook methods can

3.3.2 Functional Hot-Spots

For the case of differing functionality, solutions based
ontemplateandhook methodare prescribed to provide

the needed behavior. A template method provides the
skeleton for a behavior. A hook method is called by the

template method and can be tailored to provide
different behaviors. Figure 3.21 is an example of a
template method and hook method defined in the same
class. Different subclasses af can override hook

be transformed to use the unification meta pattern
(transition 1 from Figure 3.23). Consider the class

We consider the 1:N connection composition to be
fundamental to an architecture. For this pattern, a

template object is linked to a collection of hook
objects. This implies that the template method has
knowledge about how to use multiple hook methods
and thus cannot be derived from the 1:1 connection
composition in which the template method is coded
for a single hook method.



1:N recursive unificati@

(1;1 recursive unificatioD
¢ 2 ¢4 6
(1:1 connectiorD (1:1 recursive connect@ ClzN recursive connect@

Figure 3.23: Hot-spot meta pattern transitions
enabled by refactorings

while (...)
M) -1 do special behavior
do ...

Figure 3.24: Method M1() calls a special behavior
which differs for each application

T
while (...)

Mig cctpttto R M2

M2() ---14--- do...

H - ¥ do special behavior

Figure 3.25: Hook class created

diagram in Figure 3.24 with clagshaving methodv1()

ML) ... |- M20) .o -,
while (...)
do ref->M2() do special behavior

Figure 3.26: 1:1 connection

ML) .. |-
M2() oo

. do special behavior
while (...)
ref->M2()

do

Figure 3.27: Connection to H object
created

2. Make T a superclass ofi using inherit (Figure
3.25).

3. Makem2() overridable by the subclasses®flising
declare_abstract_method

4. Move the implementation of12() into H using
push_down_method(Figure 3.22).

As a second example, we support the transition from
unification to 1:1 connection (transition 2 from Figure
3.23). Consider the 1:1 connection meta pattern which

which calls some special behavior. A hook method carstores the hook method in an object owned by the

be added with refactorings in one step:

1. Create a hook methaot() which executes the
special behavior usingxtract_code_as_method
(Figure 3.21)Extract_code_as_methodeplaces a

block of code with a call to a newly created method

which executes the block.

template class (Figure 3.26). Behavior can be changed
at run-time by assigning a hook object with a different
behavior to the template class. 1:1 connection can be
automated in three steps using the unification pattern
(Figure 3.21) as a starting point.

1. Create clasH usingcreate_class

In the new microarchitecture, general behavior is2. Add an instance variableref to T with

contained in template methot1() while special
behavior is captured by hook methat?() . To extend
the architecture, subclasses of override M2() to

provide alternative behaviors fan1() . The extended

structure can be added in four steps:

1. Create clasH usingcreate_class

add_variable (Figure 3.27).

Move M2() to class H using
move_method_across_object_boundary (Figure
3.26).

The behavior of template methad1() can now be
altered dynamically by pointing to different hook class



objects with different implementations &f2() . Other Banerjee and Kim identified a set of schema

transitions in Figure 3.23 are similarly supported. transformations which accounted for many changes to

evolving object-oriented database schema [Ban87].
3.3.3 Role of Refactorings for Hot-Spot Opdyke defined a parallel set of behavior-preserving
Analysis transformations for object-oriented applications based

) . _ on the work by Banerjee and Kim, the design principles
The hot-spot-driven-approach provide a comprehensivgt johnson and Foote [Joh88], and the design history of

method for evolving designs to manage change in bothhe UIUC Choices software system [May89]. These
data and functionality. Pree notes that "the sevenransformations were termedefactorings Roberts
composition meta patterns repeatedly occur ingeveloped the Smalltalk Refactory Browser which
frameworks." Thus, we expect an ongoing need to ad‘i'mplements many of these refactorings [Rob97].

meta patterns to evolving architectures. The addition of

meta patterns is currently a manual process. Conditiongokyda and Batory proposed additional refactorings to
are checked to ensure that a pattern can be added Safels){‘pport design patterns as targets states for software
lines of affected source code are identified, changes argsstructuring efforts [Tok95]. Refactorings are shown to
coded, the system is tested to check for errors, an¥upport the addition of design patterns to object-
errors are fixed and the system is retested. Retestingriented applications [Tok95, Rob97, Sch98]. Winsen
continues until the expected likelihood of an error is sed refactorings to make design patterns more explicit
sufficiently low. [Win96]. Tokuda and Batory demonstrated that

refactorings can automate significant (greater than 10K

This section demonstrates that most meta patterns cahes of code) changes when applied to real applications
be viewed as transformations from a simpler design{tokgg.

Refactorings automate the transition between designs

granting designers the freedom to create simplea numper of tools instantiate a design pattern and insert
frameworks and add patterns as needed when hot-spgjsinto existing source code [Bud96, Kim96, Flo97].

are identified. Instantiations are not necessarily refactorings, so testing
of any changes may be required. Florijn and Meijers

4 Related Work check invariants governing a pattern and repairs

Griswold developed behavior-preserving Violations when possible. Refactorings do not have this

transformations for structured programs written in Pattern-level knowledge.
Scheme [Gri91]. The goal of this system was to assist
in the restructuring of functionally decomposed S Summary
software. Software architectures developed using th@\rchitectural evolution is a costly yet unavoidable
classic  structured software design methodologyconsequence of a successful application. One method
[You79] are difficult to restructure because nodes of thefo; reducing cost is to automate aspects of the
structure chart which define the program pass both datgyojutionary cycle when possible. For object-oriented
and control information. The presence of control gppjications in particular, there are regular patterns by
information makes it difficult to relocate subtrees of the ynich  architectures evolve. Three modes of
structure chart. As a result, most transformations arrchitectural evolution are: schema transformations, the
limited to the level of a function or a block of code.  jntroduction of design pattern microarchitectures, and
the hot-spot-driven-approach. Many evolutionary
Object-oriented software architectures offer greatetzhanges can be viewed as program transformations
possibilities for restructuring. Bergstein defined a smallyhich  are  automatable with  object-oriented
set of object-preserving class transformations which cafefactorings. Refactorings are superior to hand-coding
be applied to class diagrams [Ber9l]. Lieberherrpecayse they check enabling conditions to ensure that a
implemented these transformations in the Demeteghange can be made safely, identify all lines of source
object-oriented software environment [Lie91]. Examplecode affected by a change, and perform all edits.
transformations are deleting useless subclasses angkfactorings allow architectural evolution to occur at

moving instance variables between a superclass and e |evel of a class diagram and leave the code-level
subclass. Bergstein's transformations are objecChetails to automation.

preserving so they cannot add, delete, or move methods
or instance variables exported by a class. Architectures should evolve on an if-needed basis:



* "Complex systems that work evolved from simple Massachusetts, 1984.
systems that worked." — Booch
[Gri91] W. Griswold.Program Restructuring as an Aid

to Software MaintenancePh.D. thesis. University of
Refactorings directly address the need to evolve frompyashington. August 1991.

simple to complex designs by automating many

common design transitions. We believe that the[joh88] R. Johnson and B. Foote. Designing Reusable

majority of all object-oriented applications undergoescClasses. InJournal of Object-Oriented Programming
some form of automatable evolution. The broad scopgages 22-35, June/July 1988.

of supported changes indicates that refactorings can

have a significant impact when applied to evolving [Kim96] J. Kim and K. Benner. An Experience Using
designs. This claim is validated with real applications in Design Patterns: Lessons Learned and Tool Support,

[Tok99] where many hand-coded changes between twaheory and Practice of Object Systeri®lume 2, No.
major releases of two software systems are automatedj, pages 61-74, 1996.

e "Start stupid and evolve." — Beck

The limiting factor barring the widespread acceptanceLje91] K. Lieberherr, W. Hursch, and C. Xia@bject-
of refactoring technology appears to be the availabilityExtending Class Transformationslechnical report,
of production quality refactorings for the two most College of Computer Science, Northeastern University,

popular object-oriented languages: C++ and Java. Oug60 Huntington Ave., Boston, Massachusetts, 1991.
current research identifies implementation issues for

C++ [Tok99]. [Flo97] G. Florijn, M. Meijers, and P. van Winsen.
Tool Support for Object-Oriented Patterns. In
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