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Query optimizers are fundamental components of database management systems (DBMSs).

An optimizer consists of three features: a search space, a cost model, and a search strategy.

The experience of many researchers has shown that hard-wiring these features results in an

optimizer that is very inflexible and difficult to modify.

Rule-based optimizers have been developed to alleviate some of the problems of

monolithic optimizers. Unfortunately, contemporary rule-based optimizers do not provide

enough support to enable database implementors (DBI) to fully realize the potential of open

systems. We have identified four requirements that a rule-based optimizer should satisfy to

address these needs. First, rules should be specified using high-level abstractions, insulating

the DBI from underlying implementation details. Second, rule sets should be easily extensi-

ble, with a minimum of reprogramming required. Third, rule sets should be easily reconfig-

urable, that is, changeable to meet a variety of user needs, interfaces, database schemas, etc.

Fourth, rule-based optimizers should be fast, that is, performance should not be sacrificed

for the sake of high-level specifications.

In this dissertation, we describe Prairie, an environment for specifying rules for rule-

based optimizers that satisfies all four of the above requirements. The Prairie specification

language is presented and we show how it allows a DBI to design an easily extensible rule set

v



for a rule-based optimizer. Experimental results are presented using the Texas Instruments

Open OODB optimizer rule set to validate the claim of good performance using Prairie. Fi-

nally, a building blocks approach of constructing rule sets is presented; this results in easily

reconfigurable rule sets whose features are changeable simply by assembling the blocks in

various ways.
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Chapter 1

Introduction

1.1 Overview

Database management systems (DBMSs) are basic tools for information storage and re-

trieval. A well-designed and implemented DBMS can not only act as a data repository, but

also facilitate efficient querying and gathering information about the stored data. A good

user interface is critical for this purpose.

Query processing is a fundamental part of DBMSs. It is the process of retrieving data

that match user-specified requirements. Figure 1.1 shows the three basic steps in evaluating

a query. A compiler parses and translates a query (expressed in a high-level language like

SQL) into a representation known as an operator tree. A query optimizer then transforms this

operator tree into an access plan. Finally, the execution module executes the access plan to

return the results of the SQL query.

As shown in Figure 1.1, query optimization [29, 34, 35, 51] is an important step in

query processing. It is the process of generating an efficient access plan for a database query.

Informally, an access plan is an execution strategy for a query; it is the sequence of low-level

database retrieval operations that, when executed, produce the database records that satisfy

the query. There are three basic aspects that define and influence query optimization: the

search space, the cost model, and the search strategy.
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SQL Query

Compiler

Operator Tree

Query Optimizer

Access Plan

Execution Module

Output Tuples

Find salaries of all dept chairmen.

select chairman, salary
from dept, emp
where dept.chairman = emp.name
order by salary

SORT

JOIN

RET RET

dept emp

Merge sort

Merge join

File scan File scan

dept emp

Thompson 40
Smith 45
Brown 52

Figure 1.1: Query processing in a database system and an example

The search space is the set of access plans that can evaluate a query. All plans of

a query’s search space return the same result; however, some plans are more efficient than

others. The cost model assigns a cost to each plan in the search space. The cost of a plan

is an estimate of the resources used when the plan is executed; the lower the cost, the better

the plan. The search strategy is a specification of which plans in the search space are to be

examined. If the search space is small, a typical search strategy is to enumerate and compare

the costs of all plans against one another. However, most search spaces, even for simple

queries, are enormous, and thus query optimizers often need heuristics to control the number

of plans to be examined.

Query optimizers have traditionally been built as monolithic subsystems of DBMSs.
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This simply reflects the fact that traditional database systems are themselves monolithic: the

algorithms that are used to store and retrieve data are hard-wired and are rather difficult to

change. The need to have extensible database systems, and in turn extensible optimizers, has

long been recognized in systems like EXODUS [17], Starburst [43], Genesis [4], and Post-

gres [49]. Rule-based query optimizers [25, 28, 30, 31, 33, 36] are among the major concep-

tual advances that have been proposed to deal with query optimizer extensibility. A primary

advantage of rule-based optimizers over traditional ones is the ability to introduce new func-

tionality in a query algebra without changing the optimization algorithm. We will review

some well-known query optimizers, both traditional and rule-based, later in this chapter.

DBMSs are increasingly being used to store and retrieve not only larger amounts

of information, but more novel types of data as well (object-oriented, multimedia, etc.). To

ensure that a DBMS scales well to these emerging needs, it is important to better design

and implement “open” DBMSs which have well-designed components with clearly defined

interfaces that are easily adaptable. Since optimizers are critical components of DBMSs, it

is necessary to ensure that they meet four specific goals:

� Abstractions. Optimizers should be constructed using clearly defined abstractions

that encapsulate fundamental concepts of optimizers. That is, the abstractions should

represent the distinct steps inherent in an optimization. Moreover, these abstractions

should be sufficiently high-level that a change in their implementation does not funda-

mentally change the design of the optimizer. This has the advantage that any changes

to an optimizer consists of changing the implementation of abstractions, not the ab-

stractions themselves.

� Extensibility. As mentioned earlier, optimizers in next-generation DBMSs will in-

creasingly be required to deal with a wider range of data operators and data types. It

is imperative, therefore, that optimizers should be designed and constructed in a man-

ner that is amenable to easy and quick changes. This property is known as extensi-

bility. Abstractions mentioned above help in the conceptual design of an optimizer.

The framework used to build (i.e., specify) optimizers should also ensure that the con-

3



structs used define interfaces which closely represent the abstractions defined above.

� Performance. Optimizers generate a “good” access plan for a user query. This metric

is defined by the cost model of the optimizer, and measures the estimated resources

used by the execution module (see Figure 1.1) to process the query. It is also impor-

tant that an optimal access plan be found efficiently, i.e., that the optimizer be fast.

This, in turn, requires that the abstractions embodied in the optimizer specification

have efficient implementations.

� Reconfigurability. To be able to optimize a wider and more diverse set of queries, and

to facilitate easy and seamless changes to an existing optimizer, optimizers should be

specified using building-blocks that can be arranged in various ways to construct an

optimizer. These building-blocks can be used to encapsulate abstractions. This means

that an optimizer can be changed quickly simply by changing the arrangement of the

building-blocks, or by changing the abstractions encapsulated in an existing building-

block.

In this dissertation, we propose a well-defined, algebraic framework, called Prairie,

for specifying rules in a query optimizer that meets all of the four goals listed above. The

algebra that we propose is similar to the rule specification languages in Starburst [36] and

Volcano [31], but provides a cleaner abstraction of the actions of an optimizer; as such, it is

much easier to write and read rules in our proposed model. The algebra allows a database

implementor (DBI) to specify transformations of a query using rewrite rules that may have

conditions. The rules determine the search space and cost model of the optimizer. We do

not propose a search strategy; we intend to implement a preprocessor that can translate rules

in our model to those in Volcano, since Volcano has an efficient search strategy and is freely

available.

Below, we briefly review some related work on optimizers.
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1.2 Related Work

1.2.1 Traditional Query Optimizers

The System R optimizer [46] was one of the earliest query optimizers proposed and imple-

mented. It was built for the System R database system [1]. System R is a centralized, rela-

tional DBMS where users specify their queries in SQL. The System R optimizer is still the de

facto industry standard; it was the first to show the practical viability of query optimization

in a commercial setting.

The basic philosophy of the System R optimizer was a bottom-up exhaustive search

strategy with dynamic programming. Some of the salient features it embodied are listed

below:

� It employed a bottom-up strategy. That is, children of nodes in an operator tree are

optimized before the node itself is optimized.

� It used two join algorithms, nested loops and merge join (first introduced in [16]), and

two relation retrieval algorithms, segment scan and variations of index scan.

� The concept of “interesting” orders was introduced to generate only those access plans

in the search space that were likely to be part of other access plans. It also limited the

search space by considering only left-deep operator trees (in which the inner relation

was always a stored file), and by delaying cross-products as far as possible.

� It introduced a fairly elaborate scheme using “selectivity factors” to estimate cardi-

nalities of streams generated by computations on other streams.

� Dynamic programming was used to control the expansion of the search space. Basi-

cally, the optimizer maintained an equivalence class of access plans, and as each plan

was generated, its cost was computed, and if its cost was greater than the minimum

cost of any plan in its equivalence class, it was discarded since it would not be a sub-

plan of another optimal access plan. This process ensured that the optimization time

5



was exponential (in the number of joining relations) as opposed to a factorial time

complexity (see Appendix A for a proof of the algorithm complexity).

� The System R optimizer also had a fairly elaborate cost model involving a weighted

sum of CPU and I/O costs.

R� is a distributed relative of System R. The stored relations are located at distributed

sites. R�’s query processor [20, 37, 45] works in essentially the same way as that of System

R, except for some subtle complications introduced by the distribution of relations. These

complications arise mostly in authentication and catalog sharing between remote sites. Con-

ceptually, however, the R� optimizer builds upon the System R optimizer.

Like System R, the search strategy in R�’s optimizer also employs an exhaustive

examination of its search space to find an optimal plan. Heuristics are used to limit the space.

The retrieval methods available are segment scan and index scan. Single site joins (i.e., joins

in which both streams are located at the same site) are optimized in the same way as in System

R using nested loops or merge join.

The case of joins in which the two input streams are located at different sites is what

distinguishes R� from System R. R� handles this case by transfering both streams to a com-

mon site before joining. Two transfer strategies are considered, tuple-at-a-time and whole.

The cost model used by R�’s optimizer is similar to System R, except for multi-site

joins in which case the cost of transfering relations is also added.

1.2.2 Rule-Based Optimizers — The Next Generation

Both System R and R� have existed for a long time. Lately, however, researchers have been

looking at extensible query optimizers. This is in keeping with the trend toward constructing

extensible DBMSs. Extensibility, in short, is the process of augmenting or removing features

easily from a system in order to customize it for an application. Extensibility of query opti-

mizers refers to the ease of constructing optimizers for extensible DBMSs. It also refers to

the easy customizability of an existing query optimizer to a new application.
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Rule-based query optimizers have been proposed as a means of constructing exten-

sible optimizers. The primary advantage of rule-based query optimizers is the ability to add

new operators and algorithms without a costly rewrite of the entire optimizer. Below, we

review a few of the more well-known rule-based optimizers.

The Starburst query optimizer [33, 36, 43] uses rules for all decisions that need to be

taken by the query optimizer. The rules are functional in nature and transform a given op-

erator tree into another. The rules are commonly those that reflect relational calculus trans-

formations. In Starburst, the query rewriting phase is different from the optimization phase.

The rewriting phase transforms the query itself into equivalent operator trees based on re-

lational calculus rules. The plan optimization phase selects algorithms for each operator in

the operator tree that is obtained after rewriting. As the designers of Starburst point out, the

disadvantage of separating the query rewrite and the optimization phases is that pruning of

the search space is not possible during query rewrite, since the rewrite phase is non-cost-

based. Also, the rewrite phase uses heuristics to prune the search space before the optimiza-

tion phase; this can lead to a sub-optimal plan.

Lohman describes rules for the optimization phase of Starburst [36]. These rules

represent alternative access paths, join algorithms, and site choices in a distributed DBMS.

However, even though these rules transform an operator tree into a valid access plan, the

cost computation is not done until all rules are applied. In other words, the rewrite rules

of Starburst are purely syntactic transformations of one query representation into another.

Thus, all operator trees are subjected to all applicable rules before costs are computed and

the search space can be pruned.

Freytag [25] describes a rule-based query optimizer similar to Starburst. The rules

are based on LISP-like representations of access plans. The rules themselves are recursively

defined on smaller expressions (operator trees). Although several expressions can contain a

common sub-expression, Freytag doesn’t consider the possibility of sharing. Expressions are

evaluated each time they are encountered. In addition, as in the rewrite phase of Starburst,

he doesn’t consider the cost transformations inherent in any query transformation; rules are
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syntactic transformation rules.

The EXODUS project [17] has similar goals as those of Starburst, to provide a frame-

work in which DBMSs can be easily implemented as extensions of existing DBMSs, or to

design completely new DBMSs. The query optimizer in EXODUS [28, 30] is, in fact, an

optimizer generator which accepts the specification of the data model and operators in a de-

scription file. The optimizer generator compiles these rules, together with pre-defined rules,

to generate an optimizer for the particular data model and set of operators. Unlike Freytag,

the optimizer generator for EXODUS allows for C code along with definitions of new rules.

This allows the DBI the freedom to associate any action with a particular rule.

Operator trees in EXODUS are constructed bottom-up from previously constructed

sub-trees. Common sub-expressions are shared as far as possible. Each access plan in the

search space has a cost factor associated with it; plans are examined based on their cost fac-

tors. It is not clear if these cost factors have any relation to the actual costs of the plans (as

estimated by the cost model), and if so, what the relation is. The EXODUS optimizer uses

the cost factor with an exhaustive search strategy to guide the exploration of access plans.

The Volcano optimizer generator project [31] evolved from the EXODUS project. It

is different from all the above optimizers in one significant way: it is a top-down optimizer

compared with the bottom-up strategy of the others. Operator trees are optimized starting

from the root while sub-trees are not yet optimized. This leads to a constraint-driven gen-

eration of the search space. While this method results in a tight control of the search space,

it is unconventional and requires careful attention on the part of the DBI to ensure that no

valid operator trees are accidently left out of the search space. We will discuss the Volcano

optimizer generator in greater detail in Chapter 2.

Fegaras, Maier, and Sheard [24] describe a declarative optimizer generator frame-

work for specifying query optimizers. The premise in their work is that much of the speci-

fication in current optimizers consists of procedurally defined actions; making these actions

declarative results in a cleaner specification language. To this end, Fegaras et al use a reflec-

tive functional programming language, called CRML, as the basis for their specification lan-
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guage. The term reflective describes an environment that not only can specify an optimizer,

but also enables a DBI to embed metadata (or parameters) to guide the optimizer generator

in generating an optimizer for a specific target. An optimizer is specified by using rewrite

rules that are based on pattern matching. In addition to this syntactic transformation, rules

also consist of semantic context-dependent conditions. However, the framework described

by Fegaras et al still contains some implementation-level details at the specification level.

These drawbacks parallel those in Volcano (which is described in more detail in Chapter 2),

and mainly concern the representation and transformation, using rewrite rules, of the various

expressions and their abstractions.

1.3 Outline of Dissertation

All of the rule-based query optimizers discussed in Section 1.2.2 take an ad hoc approach to

the specification of rules. We introduce a well-defined and structured algebra called Prairie

to specify rules for a rule-based optimizer. Because of a rigorous algebra, it is easier for a

DBI to write rules, as well as for readers to read and understand the semantics of the rules.

However, rules by themselves do not constitute an optimizer; we need a search strategy also.

Since search strategies are well-understood, we do not propose to study them. Instead, we

will use the Volcano search engine to drive our optimizer, since Volcano has a very efficient

search strategy. However, this requires that we translate Prairie rules into Volcano rules.

The Volcano optimizer generator is described in Chapter 2. We describe Prairie in

Chapter 3 and show how it can be used to specify optimizers using high-level abstractions.

Chapter 4 describes the process of translating Prairie rules into Volcano rules. Chapter 5

presents some experimental results validating the efficiency of Prairie optimizers. Chapter 6

describes how layered optimizers can be built using Prairie, and how this leads to easier

reconfigurability. Finally, we end with some conclusions and future work in Chapter 7.
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Chapter 2

The Volcano Optimizer Generator

This chapter describes the Volcano optimizer generator. The features that are relevant to this

dissertation are presented, but more details can be found in [31, 38].

2.1 Overview

Volcano is a rule-based query optimizer generator that is designed to be flexible and

extensible to specific database architectures. (Henceforth, when we talk of Volcano, we are

referring to the “Volcano optimizer generator”.) It implements a top-down query optimizer

in the sense that parents of nodes in an operator tree are optimized before the node itself is

Operator Tree

Volcano Rules

Volcano Rule Engine

Access Plan

Figure 2.1: Schematic representation of the Volcano optimizer generator
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optimized. Roughly speaking, Volcano provides two major components of an optimizer: a

search engine and a rule specification language. The schematic design of the Volcano op-

timizer generator is depicted in Figure 2.1. A DBI writes rules in Volcano’s specification

language, which are then compiled with the rule engine to generate an optimizer.

The search engine is hard-coded and is not changeable by the DBI. The search strat-

egy is exhaustive, meaning that all operator trees that are generated by application of rules

are evaluated before an optimal plan is returned. Dynamic programming is used to prune

the search space as much as possible. Since this process of pruning is similar to the one in

System R [46], we will not describe it further.

The rule specification language is the part of Volcano that allows a DBI to spec-

ify how operator trees are transformed to generate access plans. The optimizer is speci-

fied as a set of operators, algorithms, and rules with associated actions. Viewed as a state-

transformation operation, the optimizer transforms an initial state (operator tree) into a final

one (access plan) while also translating associated state information in the process. The fol-

lowing sections describe the Volcano rule specification language in greater detail.

2.2 Definitions

Before we describe the Volcano rule specification language, we need a few definitions.

Stored Files and Streams. A relation or file is stored if its tuples reside on disk. A stream

is a sequence of tuples and is the result of a computation on one or more streams or stored

files; tuples of streams are returned one at a time, typically on demand. Streams are either

named, denoted by ?n, where n is an integer, or unnamed operator trees (defined below). In

Volcano, all operations accept zero or more streams as input, or one or more stored files as

input.

Database Operations. An operation is a computation on one or more streams or stored

files. There are three types of database operations in Volcano: abstract (or implementation-
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unspecified) operators, concrete algorithms, and enforcers. Each is detailed below.

Operators. Abstract operators specify computations on streams or stored files; they

are denoted in this dissertation by all capital letters (e.g., JOIN). Associated with

every operator is an operator argument which specifies additional information

needed to execute the operator. The type of an operator argument can be virtually

anything; Volcano allows it to be defined as an arbitrary C struct. As examples,

some operators are described below; for each, we describe what the operator ar-

gument might be.

� RET retrieves tuples of a stored file. The operator argument might specify

the name of the stored file to be retrieved.

� JOIN joins two streams. The operator argument of JOIN could specify the

join predicate. In our examples, we will assume that the operator argument

for JOIN specifies an equijoin predicate of the form a = b where a is an

attribute of the outer stream and b is an attribute of the inner stream.

Algorithms. Algorithms are concrete implementations of abstract operators; they are

represented in lower case with the first letter capitalized (e.g., Nested loops). A

single operator can be implemented by several algorithms, and a single algo-

rithm can implement many operators. Corresponding to the operator arguments

of operators, algorithms have algorithm arguments. In many cases, algorithm

arguments are the same as the operator arguments of the operators that they im-

plement; however, sometimes algorithms don’t implement any particular oper-

ator (see below), so, in general, algorithm arguments are different from operator

arguments.

Enforcers. Enforcers are special algorithms that are not implementations of any par-

ticular operator; rather, they are algorithms that can accept their input from other

algorithms and return an output that can be fed to other algorithms or enforcers.
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Operator Description
Operator/Algorithm

Algorithm
Argument

JOIN Join two streams join predicate
Nested loops
Merge join

RET Retrieve stored file relation name
File scan
Index scan

Sort stream tuple order Merge sort

Table 2.1: Operators and algorithms in a centralized Volcano query optimizer and their op-
erator/algorithm arguments. Note that Merge sort does not implement any operator and is
an enforcer.

Table 2.1 lists some operators and algorithms implementing them together with

their operator/algorithm arguments. Note that Merge sort does not implement

any particular operator because it is actually an enforcer. These operators, algo-

rithms, and enforcers will be used in subsequent examples in this chapter.

Operator Tree. An operator tree is a rooted tree whose non-leaf, or interior, nodes are

database operations (operators, algorithms, or enforcers) and whose leaf nodes are stored

files. Operator trees (also called expressions) are represented in LISP-like prefix notation

form.

EXAMPLE 1. The expression,

(JOIN ?op arg1 ((RET ?op arg2 ()) (RET ?op arg3 ()))

denotes a stream that first RETrieves two stored relations, and then JOINs them. ?op arg2

and ?op arg3 are the operator arguments of the two RETs respectively, and are the names of

the stored files to be retrieved. ?op arg1 is the operator argument of the JOIN operator and

denotes the join predicate. �

Access Plan. An access plan is an operator tree in which all interior nodes are algorithms

or enforcers.

13



Properties. Properties are information associated with each node in an operator tree. Each

node has a specific value for every property associated with it, and the complete property set

specifies a node uniquely. In Volcano, in addition to the operator/algorithm arguments that

we have seen above, there are four sets of properties:

� Logical Properties. Logical properties are those properties of a node that can be

uniquely determined prior to optimization. Logical properties of an abstract operator

are computed bottom-up, i.e., from the leaves of an operator tree. The logical proper-

ties of an algorithm are the same as the logical properties of the abstract operator that

it implements, and the logical properties of an enforcer are the same as those of its in-

put. For instance, the list of attributes of a stored file or a stream (without projections)

can be determined from database catalogs before optimization.

� System Properties. System properties are a special class of logical properties, con-

sisting of the two properties “cardinality” and “record width”. For all practical pur-

poses, these two properties are exactly like logical properties. The rationale for treat-

ing them differently is not clearly defined in the Volcano literature.

� Physical Properties. Physical properties are properties associated with the data pro-

duced by an algorithm or enforcer. Physical properties are propagated bottom-up, i.e.,

physical properties of a node are computed as a function of the properties (logical, sys-

tem, and physical) of its inputs.

� Cost. This property represents the cost of a node; it has a meaningful value only for

algorithm and enforcer nodes. Cost is not a logical or system property since its value

cannot be determined solely from abstract operators.1

The DBI has to specify the list of properties, and the type (logical, system, physical, or cost)

of each. Generally speaking, if the property value of each node in an operator tree can be

1In many real-world query optimizers (e.g., System R [46] and R� [45]), the cost of a node is a function of the
costs of its inputs. Thus, in Volcano’s terminology, cost should really be a physical property. However, Volcano
treats cost as a fourth category of property.
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Property Type Description
tuple order Physical tuple order of resulting stream, DONT CARE if none
cardinality System number of tuples of resulting stream
record width System size of individual tuple in stream
attributes Logical list of attributes
cost Cost estimated cost of algorithm

Table 2.2: Properties of nodes in an operator tree in Volcano

determined before any rules are applied to it, it is a logical property (or system property if

it is one of two special properties), and if a property value can be determined only when the

node is an algorithm or an enforcer, it is a physical property. If the property computes the

relative merit of an access plan, then the property is the cost. Furthermore, logical, system,

and physical properties are computed bottom-up; the difference is that logical and system

properties are determined prior to optimization, whereas physical properties are determined

after a tree (or subtree) has been optimized.

It is worth noting that some properties (such as attributes of a stream) can be either

physical or logical depending on the semantics of the operators in the database schema. Thus,

altering the semantics of an optimizer requires the DBI to re-examine the partition of prop-

erties. This, as it turns out, is problematic for Volcano optimizer designers.

Table 2.2 lists the different properties and their types that we will use in our examples.

The only logical property is the list of “attributes”, and the system properties are “cardinality”

and “record width”. The single physical property is the “tuple order” of the output stream.

The cost property will be called “cost”.

Constraints. Constraints are requirements on physical property values that are imposed on

an operator tree. An access plan for an operator tree is acceptable if and only if it satisfies the

constraints that are imposed upon it. There are two types of constraints in Volcano. The first

type is represented by a needed property vector. This specifies the list of physical property

values that an access plan must have to be an acceptable plan. The second type of constraint is

represented by an excluded property vector and it specifies a list of physical property values
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that a plan must not have to be acceptable. Each node in an operator tree may have different

constraints on it; however, it is the constraints on the root of an operator tree that must be

satisfied for an access plan to be acceptable.

EXAMPLE 2. Consider the expression,

(JOIN ?op arg1 ((RET ?op arg2 ()) (RET ?op arg3 ()))

to be optimized. If “need pv” denotes the needed property vector, and “excl pv” denotes the

excluded property vector, then we can specify the constraints by setting appropriate values

for the physical properties in need pv and excl pv. Thus, setting

need pv.tuple order = DONT CARE

excl pv.tuple order = b

specifies that any access plan that implements the JOIN expression above can return tuples in

any order (DONT CARE), as long as they are not in b order (b has to be an attribute of at least

one of the two relations RETrieved). An access plan that does not satisfy these constraints

would not be a valid implementation of the operator tree. �

Volcano uses both needed property vectors and excluded property vectors to select

a plan. In the above example, suppose there exists an access plan of the given tree with a

tuple order of b. If we only looked at the needed property vector, we would be inclined to

accept this plan, since the needed property vector specifies that the plan return a stream in

DONT CARE order (i.e., any order). However, the excluded property vector specifies that

this plan is not acceptable.

2.3 Volcano Optimization Paradigm

Volcano employs a top-down query optimization paradigm that rewrites operator trees start-

ing from the root. Parents are considered before children for optimization. Informally, ab-

stract operators are transformed into algorithms top-down until an access plan is obtained.
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Figure 2.2: General form of a Volcano rule. Single arrows denote one or more DBI-defined
support functions. The properties that are translated by the rule or by support functions are
listed on the right.

The search engine provided by Volcano uses dynamic programming to prune the search space

by discarding operator trees that are determined to lead to a sub-optimal access plan.

Before the start of optimization, certain properties of the original operator tree are

initialized. As described in Section 2.2, logical and system properties of nodes of an operator

tree can be determined prior to optimization. The initialization of these properties for each

subtree is done by DBI-defined functions; these are defined in Section 2.7.

2.4 Rules in Volcano

Rules in Volcano correspond to rewrites between pairs of expressions, or between an

expression and an access plan. Figure 2.2 shows the general format of a Volcano rule. This

general rule results in two types of transformations (or rewrite rules) in Volcano: transforma-

tion rules and implementation rules. Each rule transforms an expression into another based

on additional conditions; the transformation also triggers execution of other DBI-defined

functions that results in a mapping of properties between expressions. This is shown clearly

in Figure 2.2, where the single arrows represent functions executed as a result of application

of a Volcano rule. Transformation and implementation rules are defined precisely in Sec-
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(E ?op arg1 (?1 : : :?n)) ! (E0 ?op arg2 (?1 : : :?n)) (2.1)
%cond code
ff

test
gg

%appl code
ff

post-test statements
gg

Figure 2.3: General form of a transformation rule in Volcano

tions 2.5 and 2.6 and are illustrated with examples. The examples are chosen from rules that

would be used in a centralized relational query optimizer; the operators, algorithms, and en-

forcers are subsets of those in Table 2.1. DBI-defined functions are described in more detail

in Section 2.7.

2.5 Transformation Rules

Transformation rules, or trans rules, in Volcano define mappings from one operator

tree to another. Let E and E0 be expressions that involve only abstract operators. Equation

(2.1) (shown in Figure 2.3) shows the general form of a trans rule in Volcano. The expression

E on the left side is transformed into the expression E
0 on the right side. The actions of a

trans rule define equivalences between the operator arguments of the input expression E

with the operator arguments of the output expression E0. A test is needed to determine if the

transformation is indeed applicable.

The first part of the actions associated with a trans rule is the test, called condition

code in Volcano. This is any arbitrary section of C code2 that tests whether the transformation

rule can indeed be applied to the expression E. The test can reference the operator arguments

of the expressions on the left side and/or the logical or system properties of any of the input

streams. If the rule does not apply, then the expression E is left unchanged.

If the trans rule does apply to E, then post-test actions, called application code in

2The condition code doesn’t return a boolean value. It succeeds if a REJECT statement is not processed, and
fails otherwise.
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(JOIN ?op arg5 ((JOIN ?op arg4 (?1 ?2)) ?3)) ! (JOIN ?op arg7 (?1 (JOIN ?op arg6 (?2 ?3)))) (2.2)
%cond code
ff

?op arg6 = predicate intersect (?2; ?op arg5) ;
if (empty (?op arg6)) REJECT ;

gg

%appl code
ff

?op arg7 = ?op arg4 ;

gg

Figure 2.4: Join associativity transformation rule

Volcano, are executed. This is an arbitrary piece of C code that sets the operator argument

of the expression E
0 on the right side. The application code is executed immediately if the

condition code is satisfied.

As mentioned in Section 2.3, a trans rule in Volcano triggers two DBI-defined func-

tions for determining the logical and system properties of any new expressions obtained by

application of the rule. Since a trans rule only transforms logical expressions, physical prop-

erties and cost (as shown in Figure 2.2) are not transformed in a trans rule.

EXAMPLE 3. The associativity of JOINs is expressed by trans rule (2.2) in Figure 2.4.

The condition code of trans rule (2.2) determines the operator argument (i.e., the join pred-

icate) of the inner join on the right side. If it is empty, implying a cross-product, the rule

is rejected, and the expression on the left side remains unchanged. If, however, the test is

successful, the application code assigns the operator argument (join predicate) of the outer

join on the right side. Logical and system properties of the new subexpressions on the right

side of Equation 2.2 are computed by DBI-defined functions, externally to the rule. �

2.6 Implementation Rules

Implementation rules, or impl rules, in Volcano specify implementations of abstract

operators. Let O be an operator and A be an algorithm that implements O. Equation (2.3)

(shown in Figure 2.5) shows the general form of an impl rule in Volcano. A test is needed
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(E ?op arg1 (?1 : : :?n)) ! (A ?al arg1 (?1 : : :?n)) (2.3)
%cond code
ff

test
gg

%appl code
ff

post-test statements
gg

Figure 2.5: General form of an implementation rule in Volcano

to determine if the implementation rule is indeed applicable.

The actions associated with an impl rule are specified in two parts, as in a trans rule.

The first part, the test, called condition code, is used to test if the rule applies to the expression

on the left side. It is an arbitrary piece of C code that references the operator arguments and/or

any logical or system properties of subexpressions on the left side. As in trans rules, the

REJECT keyword is used to reject the rule. However, unlike trans rules, impl rules have to

satisfy another test in addition to the one in the cond code section; this extra test is specified

by a DBI-written support function (called do any good) described in Section 2.7.

The second part of the actions, the post-test statements, called application code, is

executed immediately if the condition code is satisfied. The application code sets the algo-

rithm argument of the algorithm on the right side.

The cost of using algorithm A for the operator O in (2.3) is computed by a DBI-

defined function for algorithm A (this function is described in Section 2.7). The cost of an

algorithm node in Volcano is implicitly assumed to be the sum of costs of all its inputs plus

an additional term that is a function only of the logical and system properties of A and its

inputs.

EXAMPLE 4. Impl rule (2.4) in Figure 2.6 shows an implementation rule. It selects

Nested loops as an implementation for the JOIN operator. The condition code of this rule

is empty, implying that the rule is applied immediately. The application code sets the al-

gorithm argument (i.e., the join predicate) of the Nested loops node to be the same as the
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(JOIN ?op arg1 (?1 ?2)) ! (Nested loops ?al arg1 (?1 ?2)) (2.4)
%cond code
ff

gg

%appl code
ff

?al arg1 = ?op arg1 ;

gg

Figure 2.6: Nested loops implementation rule

operator argument (join predicate) of the JOIN node. �

2.7 Support Functions

As mentioned earlier, and as can be seen from Figure 2.2, most of the actions and prop-

erty computations in Volcano rules are done by support functions defined by the DBI. These

functions are defined for each operator, algorithm, or enforcer and are triggered upon appli-

cation of rules. Some are executed only when trans rules are applied, some when impl rules

are applied, and others when neither is applied (i.e., enforcers).

The required support functions that appear in a Volcano optimizer are summarized

in Table 2.3.

2.8 Drawbacks of Volcano

In the previous sections, we have seen how Volcano uses abstractions to allow a DBI to spec-

ify a rule-based query optimizer. However, these abstractions are not sufficiently high-level

to insulate the DBI from implementation-level details. Moreover, some of the constructs in

the rule specification language are motivated not by conceptual details of the optimizer, but

by implementation details with an eye toward constructing efficient optimizers. The result

is often an optimizer that is fast, but often quite brittle and inflexible. In this section, we

describe some of the concepts in Volcano that are bottlenecks to a clean specification.
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Function Frequency Description
derive log prop Operator Compute logical properties of node given logical properties of children
derive sys prop Operator Compute system properties of node given system properties of children

derive phy prop
Algorithm Compute physical properties of node given physical properties of

childrenEnforcer

get input pv
Algorithm Compute needed physical properties of node given needed physical

properties of parentEnforcer

do any good
Algorithm Test whether algorithm or enforcer applies given needed physical

propertiesEnforcer

cost
Algorithm

Compute cost of algorithm or enforcer
Enforcer

Table 2.3: Support functions in a Volcano optimizer. The frequency column denotes whether
a function is defined for each operator, algorithm, or enforcer.

RET

R1

Merge sort

File scan

R1

Figure 2.7: An implicit rule in Volcano. Merge sort is an enforcer.

2.8.1 Explicit vs. Implicit Rules

The general form of a Volcano rule is shown in Figure 2.2. This figure shows that

Volcano rules transform an abstract expression into either an abstract expression or an algo-

rithm. Such rules are called explicit rules. An example of an explicit rule is the impl rule 2.4

in Figure 2.6. An explicit rule involves abstract operators, and sometimes, algorithms. How-

ever, there is another class of transformations, implicit rules, that don’t have the form shown

in Figure 2.2. Such transformations typically involve enforcers since enforcers are not im-

plementations of any specific operators (e.g., Merge sort in Table 2.1).

Consider the transformation in Figure 2.7. File scan is an implementation for RET

and assume there is an impl rule for this transformation. However, since Merge sort is an

enforcer, there is no rule involving it. Nevertheless, the transformation shown in Figure 2.7

is a valid rewrite in Volcano. This is an example of an implicit rule.

22



Implicit rules are present in Volcano for efficiency and to aid in generating an opti-

mizer. However, since enforcers (i.e., algorithms in implicit rules) behave like algorithms for

all practical purposes, their separate classification introduces an additional detail that creates

an asymmetric framework of rewrite rules. In other words, transformations (both between

operator trees and their associated property sets) are different for explicit and implicit rules.

This, in turn, leads to two other problems:

� Are new operators, algorithms, or rules explicit or implicit? That is, when an existing

Volcano optimizer is modified by adding operators, algorithms, or rules, the DBI has

to re-examine the entire new schema (i.e., operators, algorithms, enforcers, properties,

rules) to determine which rules are explicit and which are implicit.

� Since implicit rules do not have the same form as explicit rules (i.e., the one shown in

Figure 2.2), property transformations in implicit rules are also different from those in

explicit rules. As before, this means that extensibility of an optimizer is accomplished

differently when explicit rules are added than when implicit rules are introduced.

The solutions to these problems is obvious: treat all operators and algorithms as first-

class objects. This implies that enforcers are treated just like regular algorithms, with explicit

rules implementing them, and with similar property transformation mechanisms.

2.8.2 Property Representation and Transformation

Properties are crucial for storing state (operator tree) information, and for guiding

the search. When an operator tree is transformed into another, so are the properties associ-

ated with the operator tree. The more separate property structures, the greater the number

of property transformations. As can be seen from Figure 2.2, most of the property transla-

tions in Volcano rules are done by DBI-defined functions (as described in Section 2.7). In

fact, this general form of a rule results in two distinctly different forms for trans rules and

impl rules in Volcano as shown in Figure 2.8. This results in a somewhat large number of

support functions which often carry a greater burden of property transformations than the
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Figure 2.8: General form of Volcano trans rules and impl rules (cf. Figure 2.2). Single ar-
rows denote one or more DBI-defined support functions. The properties that are translated
by the rule or by support functions are listed on the right.

rules themselves. This decidedly asymmetric manner of treating trans rules and impl rules

and the large number of property structures leads to a few problems:

� Deciding which set a particular property belongs to is implementation-dependent.

� Modifying any existing operator, algorithm, enforcer, rule, or property might entail

a repartitioning of the property sets. This can lead to a cascading effect of having to

modify the large number of support functions — hardly conducive to easy extensibil-

ity.

� Extensibility in Volcano is complicated by its extensive use of support functions for

transformations of its multiple property sets. For example, from Figure 2.3, we can

see that addition of a single algorithm requires the DBI to define four new support
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functions for property transformations. Even addition of an operator requires defining

two new support functions.

Property partitions are geared toward generating efficient optimizers. However, as

we have seen, they result in poor extensibility. The solution to this problem is also obvious:

treat all properties as equivalent, with property transformations being done at the rule level

(rather than a plethora of support functions). However, noting that property partitions do

result in fast optimizers, a preprocessor should be able to automatically partition property

sets based on need.

2.9 Summary

In this chapter, we have seen the rule specification framework for Volcano. Volcano is the

only public-domain rule-based query optimizer. (To our knowledge, there are two other rule-

based optimizers, the EXODUS optimizer generator which is an earlier version of Volcano,

and the Starburst rule-based optimizer. The Starburst optimizer is not publicly available.)

Volcano provides an efficient search strategy for optimizing queries. However, as

we have seen it also presents the DBI with an inflexible and hard-to-extend framework for

specifying optimizer rules and actions. This results in optimizers which consist of a mix of

high-level abstractions (operators, algorithms, rules) together with implementation-level de-

tails (enforcers, property partitions, support functions for property transformations, implicit

rules). Extensibility in such an environment is difficult to accomplish. The next chapter

describes Prairie, our solution to the problem of providing a rule specification environment

consisting of high-level abstractions, yet which can also be used to generate a fast optimizer.
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Chapter 3

Prairie: A Language for Rule

Specification

Prairie is an algebraic framework and language for specifying rewrite rules for rule-based

query optimizers. We present the framework and language in this chapter. We begin by

introducing basic concepts and notation and then present a means by which the mappings of

search spaces and cost models are expressed as rewrite rules. Thus, the goal of this chapter

is to lay a foundation for reasoning about query optimizers algebraically.

3.1 Overview

In the previous chapter, we described Volcano’s rule specification language and listed

some of its shortcomings. In particular, Volcano does not provide sufficiently high-level ab-

stractions that would insulate a DBI from low-level details and provide a comfortable envi-

ronment for extensibility. To remedy this, we propose a rule specification language called

Prairie [21–23]. The Prairie optimizer paradigm is depicted schematically in Figure 3.1. As

we will see in this chapter, rules in Prairie are specified at a conceptual rather than implemen-

tation level. This high-level specification is translated to generate a Volcano specification by

a Prairie-to-Volcano (or P2V) preprocessor (as shown in Figure 3.1). The P2V preproces-
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Operator Tree

Prairie Rules

P2V Preprocessor

Volcano Rules

Volcano Rule Engine

Access Plan

Figure 3.1: Schematic representation of the Prairie optimizer paradigm

sor is described in greater detail in Chapter 4. This chapter describes the rule specification

language of Prairie.

3.2 Notation and Assumptions

This section lists the terminology used in Prairie. Some of the concepts are similar to those

used in Volcano (see Section 2.2). However, there are some semantic differences.

Stored Files and Streams. A file is stored if its tuples reside on disk. In the case of re-

lational databases, stored files are sometimes called base relations; we will denote them by

R or Ri. In object-oriented schemas, stored files are classes; we will denote them by C or

Ci. Henceforth, whenever we refer to a stored file, we mean a relation or a class; when the

distinction is unimportant, we will use F or Fi. A stream is a sequence of tuples and is the

result of a computation on one or more streams or stored files; tuples of streams are returned

one at a time, typically on demand. Streams can be named, denoted by Si, or unnamed.
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Database Operations. An operation is a computation on one or more streams or stored

files. There are two types of database operations in Prairie: abstract (or implementation-

unspecified) operators and concrete algorithms. Each is detailed below.

Operators. Abstract (or conceptual) operators specify computations on streams or

stored files; they are denoted by all capital letters (e.g., JOIN). Operators have

two types of parameters: essential and additional. Essential parameters are the

stream or file inputs to an operator; these are the primary inputs of an operator.

Additional parameters are “fine-grain” qualifications of an operator; their pur-

pose is to describe an operator in more detail than essential parameters. As ex-

amples, some operators are given below; for each, we explicitly indicate their

essential parameters and parenthetically note their additional parameters.

� SORT(S1) sorts stream S1. The sorting attribute is an additional parameter

of SORT.

� RET(F ) retrieves tuples of stored file F . Additional parameters to RET in-

clude the selection predicate, the projected attributes list, and the output tu-

ple order.

� JOIN(S1, S2) joins streams S1 and S2. (S1 denotes the outer stream and S2

denotes the inner stream.) Additional parameters to JOIN include the join

predicate and output stream tuple order.

Other operators are defined as they are needed.

Algorithms. Algorithms are concrete implementations of conceptual operators; they

are represented in lower case with the first letter capitalized (e.g., Nested loops).

Algorithms have at least the same essential and additional parameters as the con-

ceptual operators that they implement.1 Furthermore, there can be, and usually

are, several algorithms for a particular operator. For example, File scan and In-

dex scan are valid algorithms that implement the RET operator, and Merge join

1Algorithms may have tuning parameters which are not parameters in the operators they implement.
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Operator Description Additional Parameters Algorithm

JOIN(S1, S2) Join streams S1, S2
tuple order Nested loops(S1, S2)
join predicate Merge join(S1, S2)

RET(F ) Retrieve file F
tuple order File scan(F )
selection predicate
projected attributes Index scan(F )

SORT(S1) Sort stream S1 tuple order
Merge sort(S1)
Null(S1)

Table 3.1: Operators and algorithms in a centralized Prairie query optimizer and their addi-
tional parameters

and Nested loops are algorithms that implement the JOIN operator. Different

algorithms offer different execution efficiencies.

Table 3.1 lists some operators and algorithms implementing them together with their addi-

tional parameters.

Operator Tree. An operator tree is a rooted tree whose non-leaf, or interior nodes are

database operations (operators or algorithms) and whose leaf nodes are stored files. The

children of an interior node in an operator tree are the essential parameters (i.e., the stream

or file parameters) of the operation. Additional parameters are implicitly attached to each

node. Algebraically, operator trees are compositions of database operations; thus, we will

also call operator trees expressions; both terms will be used interchangeably.

EXAMPLE 5. A simple expression and its operator tree representation are shown in Fig-

ure 3.2(a). Relations R1 and R2 are first RETrieved, then JOINed, and finally SORTed re-

sulting in a stream sorted on a specific attribute. The figure shows only the essential param-

eters of the various operators, not the additional parameters. �

Access Plan. An access plan is an operator tree in which all interior nodes are algorithms.

EXAMPLE 6. An access plan for the operator tree in Figure 3.2(a) is shown in Fig-

ure 3.2(b). Relations R1 and R2 are each retrieved using the File scan algorithm, joined
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SORT (JOIN (RET (R1), RET (R2)))

SORT

JOIN

RET RET

R1 R2

(a) An expression and its corresponding oper-
ator tree

Merge sort

Nested loops

File scan File scan

R1 R2

(b) A possible access plan for operator tree in
(a)

Figure 3.2: Example of an operator tree and access plan

using Nested loops, and finally sorted using Merge sort. �

Descriptors. A property of a node is a (user-defined) variable that contains information

used by an optimizer. An annotation is a hproperty, valuei pair that is assigned to a node. A

descriptor is a list of annotations that describes a node of an operator tree; every node has its

own descriptor. As an example, Table 3.2 lists some typical properties that might be used in

a descriptor. In general, descriptors for streams may be different from descriptors for stored

files.2

The following notations will be useful in our subsequent discussions. IfXi is a stored

file or stream, thenDi is its descriptor. Annotations of Si are accessed by a structure member

relationship, e.g., Di:cardinality. Also, let E be an expression and let D be its descriptor.

This is written as E : D.

EXAMPLE 7. The expression,

SORT(JOIN(RET(R1) : D3;RET(R2) : D4) : D5) : D6

corresponds to the operator tree in Figure 3.2(a), and represents the join of two relations

R1 and R2. The two relations are first RETrieved, then JOINed and finally SORTed. D1
2As an example, a stream may have a property join predicate which is absent in a stored file’s descriptor.
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Property Description
join predicate join predicate for JOIN operator
tuple order tuple order of resulting stream, DONT CARE if none
cardinality number of tuples of resulting stream
record width size of individual tuple in stream
attributes list of attributes
cost estimated cost of algorithm

Table 3.2: Properties of nodes in an operator tree in Prairie

and D2 are the descriptors of the stored files R1 and R2, respectively, D3 and D4 are the

stream descriptors of the two RETs respectively, and D5 is the stream descriptor of the

JOIN, and D6 is the stream descriptor of the SORT. Assuming that the descriptor fields

for this expression are those given in Table 3.2, the selection predicate for the first RET

is D3:selection predicate, and that for the second RET is given by D4:selection predicate.

The join predicate of the JOIN node is given by D5:join predicate, and the attributes that

are output are given by D5:attributes. And so on. �

Currently, descriptor properties are defined entirely by the DBI; however, we envi-

sion providing a hierarchy of pre-defined descriptor types to aid this process.

3.3 Prairie Optimization Paradigm

As shown in Figure 3.1, an optimizer is generated from a Prairie rule specification by con-

verting them to a Volcano specification and then compiling it with the Volcano rule engine.

Since the Volcano rule engine implements a top-down optimization search strategy (Sec-

tion 2.1), this means that, currently, Prairie specifications can only generate top-down op-

timizers. Given an appropriate search engine, Prairie can potentially also be used with a

bottom-up optimization strategy; however, we will not explore this topic in this dissertation.

In query optimization, there are certain annotations (such as additional parameters)

that are known before any optimization is begun. These annotations can be computed at the

time that the operator tree is initialized, and will not change with application of rules. For
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E;E
0: Expression
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0: Descriptor

E D
=)

E
0

D
0

Figure 3.3: General form of a Prairie rule

this purpose, the DBI must define support functions (called init descriptor) for each operator;

these functions compute the descriptor properties for an operator given the descriptors of

its input. For instance, init descriptor JOIN computes the descriptor properties (cardinality,

record width, attributes) from the descriptors of its two inputs. Our following discussions

assume operator trees are initialized.

3.4 Rules in Prairie

Rules in Prairie correspond to rewrites between pairs of expressions, or between an

expression and an access plan. Figure 3.3 shows the general format of a Prairie rule. This

general rule results in two types of algebraic transformations (or rewrite rules) in Prairie:

T-rules (“transformation rules”) and I-rules (“implementation rules”). Each rule transforms

an expression into another based on additional conditions; the transformation also results in

a mapping of descriptors between expressions, as Figure 3.3 shows. Thus, rules in Prairie

represent units of encapsulation for operator tree and descriptor transformations.

T-rules and I-rules are defined precisely in Sections 3.5 and 3.6 and are illustrated

with examples. The examples are chosen from rules that would be used in a centralized

relational query optimizer; the operators, algorithms, and properties are subsets of those in

Tables 3.1 and 3.2.
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E(x1; : : : ; xn) : D1 =) E0(x1; : : : ; xn) : D2 (3.1)
ff

pre-test statements
gg

test
ff

post-test statements
gg

Figure 3.4: General form of a Prairie T-rule

3.5 Transformation Rules

Transformation rules, or T-rules for short, define equivalences among pairs of ex-

pressions; they define mappings from one operator tree to another. Let E and E0 be expres-

sions that involve only abstract operators. Equation (3.1) (shown in Figure 3.4) shows the

general form of a T-rule. The actions of a T-rule define the equivalences between the de-

scriptors of nodes of the original operator tree E with the nodes of the output tree E0; these

actions consist of a series of (C or C++) assignment3 statements.

The left-hand sides of these statements refer to descriptors of expressions on the

right-hand side of the T-rule (i.e., the descriptors whose values are to be computed); the

right-hand sides of the statements can refer to any descriptor in the T-rule. As in procedural

languages (like C), function calls can also appear on the right side of the assignment state-

ments. These functions are called helper functions. Unlike support functions that are man-

dated by the language (e.g., init descriptor), helper functions exist solely to simplify rule

actions. Thus, descriptors on the left-hand side of a T-rule are never changed in the rule’s

actions. A test is needed to determine if the transformations of the T-rule are in fact appli-

cable.

Purely as an optimization, it is usually the case that not all statements in a T-rule’s

actions need to be executed prior to a T-rule’s test. For this reason, the actions of a T-rule are

3The actions can be non-assignment statements (like helper function calls), but in this case, the P2V pre-
processor (described in Chapter 4) needs some hints about the properties that are changed by the statement in
order to correctly categorize each property. For simplicity, in this dissertation, we assume all actions consist of
assignment statements.
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split into two groups; those that need to be executed prior to the T-rule’s test, and those that

can be executed after a successful test. These groups of statements comprise, respectively,

the pre-test and post-test statements of the T-rule.4 It is important to remember that the pre-

test actions are carried out prior to the test; the post-test actions are performed only if a T-

rule’s test evaluates to TRUE, and all post-test actions are performed immediately, with no

intermediate optimization of any descendant nodes of the root of E.

We now define the actions and tests of a T-rule more precisely. LetOi be an abstract

operator of E0, and let Oi be its descriptor. Similarly, let Ii be an abstract operator of E

and let Ii be its descriptor. (Ii is an operator that is input to the rule and Oi is an operator

that is output by the rule.) Let Mj denote the jth descriptor property. Thus, Oi:Mj is the

value of the jth property of descriptor Oi. The left-hand side of an assignment refers to an

output descriptor (Oi) or a member of an output descriptor (Oi:Mj). The right-hand side

is an expression or a helper function call that only references input descriptors and/or their

members. Here are a few examples:

Oi = Ik ; == copy descriptor Ik to Oi

Oi:Mj = Ik:Mj + 4 ; == expression defining Oi:Mj

O3:M5 = foo (I1:M5; I2:M5) ; == helper function foo that computes O3:M5

== from inputs I1:M5 and I2:M5.

The test for a T-rule’s applicability is a boolean expression and normally involves

checks on the values of output descriptors (e.g.,O3:M5 > 6); occasionally, helper functions

may be needed.

EXAMPLE 8. The associativity of JOINs is expressed by T-rule (3.2) in Figure 3.5(a).

It rewrites a two-way join into an equivalent operator tree. The (single) pre-test statement

computes the list of attributes of the new JOIN node on the right side. The test of the T-

rule consists of a call to the helper function “is associative”, which returns TRUE or FALSE

depending on whether the T-rule is applicable. If it is not, then the rule is rejected (e.g.,

4It may be possible to use data-flow analysis to partition the assignment statements automatically, but for
now, we let the DBI do the partitioning.
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JOIN(JOIN(S1; S2) : D4; S3) : D5 =) JOIN(S1; JOIN(S2; S3) : D6) : D7 (3.2)
ff

D6:attributes = union (D2:attributes;D3:attributes) ;
gg

is associative (D5:join predicate;D2:attributes)
ff

D7 = D5 ;

D7:join predicate = D4:join predicate ;

D6:join predicate = D5:join predicate ;

D6:record width = D2:record width +D3:record width ;

D6:cardinality = compute cardinality (D2;D3) ;

gg

(a) Join associativity T-rule

JOINb2 = c1

JOINa1 = b1

RET RET

RET

R1 R2

R3

=)

JOIN a1 = b1

JOIN b2 = c1RET

RET RETR1

R2 R3

(b) Example of the associativity rule applied to
an operator tree

JOINa2 = c1

JOINa1 = b1

RET RET

RET

R1 R2

R3

=)=

JOIN

JOINRET

RET RETR1

R2 R3

(c) Example of an operator tree where the as-
sociativity rule does not apply because a cross-
product would result

Figure 3.5: Join associativity T-rule

because it generates a cross-product), otherwise the post-test statements are executed. The

post-test statements compute various other annotations of the new nodes that are generated

by applying the T-rule. Note the use of helper functions “compute cardinality” and “union”

to compute descriptor properties.

Consider three relations R1, R2 and R3, and let ai, bi and ci be their respective sets

of attributes. Figures 3.5(b) and 3.5(c) show, respectively, examples of the applicability and

non-applicability of the join associativity T-rule. �

3.6 Implementation Rules

Implementation rules, or I-rules for short, define equivalences between expressions and their

implementing algorithms. Let E be an expression and A be an algorithm that implements
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E(x1; : : : ; xn) : D1 =) A(x1; : : : ; xn) : D2 (3.3)
test
ff

pre-opt statements
gg

ff

post-opt statements
gg

Figure 3.6: General form of a Prairie I-rule

E. The general form of an I-rule is given by Equation (3.3) (shown in Figure 3.6).

The actions associated with an I-rule are defined in three parts. The first part, or test,

is a boolean expression whose value determines whether or not the rule can be applied.

The second part, or pre-opt statements, is a set of descriptor assignment statements

that are executed only if the test is true and before any descendant of the root of E is opti-

mized. Additional parameters of nodes are usually assigned in the pre-opt section. This is

necessary before any of the nodes on the right side can be optimized.

The third part, or post-opt statements, is a set of descriptor assignment statements

that are evaluated after all descendants xi of the root of E are optimized. Normally, the

post-opt statements compute properties that can only be determined once the inputs to the

algorithm are completely optimized and their properties known.

EXAMPLE 9. I-rule (3.4) (shown in Figure 3.7) selects the Nested loops algorithm to

implement the JOIN operator. The test for this rule is TRUE since Nested loops can be ap-

plied regardless of any property values. The pre-opt section consists of three assignment

statements. The first statement sets the descriptor of Nested loops to that of the JOIN. The

next two statements express the fact that the tuple order of Nested loops is the same as the

tuple order of its left (outer) input; all other properties remain the same. The third statement

in the pre-opt section ensures that this requirement is met by setting the tuple order of S1 on

the right side.5 The fourth statement computes the cost of using the Nested loops algorithm.

5Actually, it is not enough to simply set the desired tuple order of S1; it is also necessary to ensure that after
optimization, S1 does indeed have the required property. One way to satisfy this is to insert a SORT node in
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JOIN(S1; S2) : D3 =) Nested loops(S1 : D4; S2) : D5 (3.4)
TRUE
ff

D5 = D3 ;

D4 = D1 ;

D4:tuple order = D3:tuple order ;
D5:cost = D4:cardinality �D2:cardinality ;

gg

ff

D5:tuple order = D4:tuple order ;
gg

Figure 3.7: Nested loops I-rule

SORT(S1) : D2 =) Merge sort(S1) : D3 (3.5)
(D2:tuple order != DONT CARE)
ff

D3 = D2 ;

D3:cost = D3:cardinality � log(D3:cardinality) ;
gg

ff

gg

Figure 3.8: Merge sort I-rule

The post-opt section is executed after S1 and S2 are optimized; it consists of a single

statement that assigns the tuple order of the Nested loops node. The Nested loops algorithm

returns its stream in the same order as its left input. �

EXAMPLE 10. Figure 3.8 shows the I-rule that implements the SORT operator using

Merge sort. I-rule (3.5) rewrites a stream such that it is sorted using the Merge sort al-

gorithm. The test for this I-rule is that the tuple order of the sorted stream must not be a

front of S1 that can meet the sortedness requirement of S1. Thus, in this case, we would need a T-rule (which
introduces a new operator JOPR),

JOIN(S1; S2) : D3 =) JOPR(SORT(S1) : D4; SORT(S2) : D5) : D6;

and an I-rule,

JOPR(S1; S2) : D3 =) Nested loops(S1 : D4; S2) : D5:

In our discussions, this additional level of detail will be ignored for the sake of simplicity.
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O(S1) : D2 =) Null(S1 : D3) : D4 (3.6)
TRUE
ff

D4 = D2 ;

D3 = D1 ;

D3:property = D2:property ;

gg

ff

D4:cost = D3:cost ;
gg

(a) General form of a “Null” I-rule

SORT(S1) : D2 =) Null(S1 : D3) : D4 (3.7)

TRUE
ff

D4 = D2 ;

D3 = D1 ;

D3:tuple order = D2:tuple order ;
gg

ff

D4:cost = D3:cost ;
gg

(b) Null sort I-rule

Figure 3.9: The “Null” algorithm concept

DONT CARE order. The pre-opt section consists of two statements. The first copies the

descriptor from the left side to the expression on the right, and the second computes the cost

of using Merge sort. The post-opt section is empty. �

3.6.1 The Null Algorithm

Recall that, in Section 1, we mentioned that Prairie allows users to treat all operators

and algorithms as first-class objects, i.e., all operators and algorithms are explicit, in contrast

to enforcers in Volcano or glue in Starburst. This requires that Prairie provide a mechanism

where users can also “delete” one or more of the explicit operators from expressions. This

is done by having a special class of I-rules that have the form given by Equation (3.6) in

Figure 3.9(a). The left side of the rule is a single abstract operator O with one stream input

S1. The right side of the rule is an algorithm called “Null” with the same stream input but

with a different descriptor. As the name suggests, the Null algorithm is supposed to pass its

input unchanged to algorithms above it in an operator tree. This is accomplished in the I-rule

as follows.

The test for this I-rule is TRUE, i.e., any node in an operator tree with O as its oper-

ator can be implemented by the Null algorithm. The actions associated with this rule have a

specific pattern. The pre-opt section consists of three statements. The first statement copies
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the descriptor of the operator O to the algorithm Null. The second statement sets the de-

scriptor of the stream S1 on the right side to the descriptor of the stream S1 on the left side.

Why is it necessary to do this? The key lies in the third statement. This statement copies

the property “property” of the operator O node on the left side to the “property” of the input

stream S1 on the right side. Since left-hand side descriptors cannot be changed in an I-rule,

a new descriptor D3 is necessary for S1 to convey the property propagation information.

The post-opt section in the I-rule has only a cost-assignment statement; this simply

sets the cost of the Null node to the cost of its optimized input stream. The Null algorithm,

therefore, serves to effectively transform a single operator to a no-op.

EXAMPLE 11. Equation (3.7) (in Figure 3.9(b)) shows the I-rule that rewrites the SORT

operator to use a Null algorithm. The third pre-opt statement sets the tuple order of S1 on the

right side to be the tuple order of the SORT node, thus ensuring that when S1 is optimized

on the right side, it will have the same tuple order as the SORT node. �

3.7 Advantages of Prairie

In the previous chapter, we described Volcano’s rule specification language and some of its

problems. Prairie addresses these problems:

� Prairie does not contain any implicit operators, algorithms, or rules (as in Volcano; see

Section 2.8.1). This implies that extending a Prairie specification is simple, and prop-

erty transformations are also simplified since an abstraction (e.g., algorithm) directly

corresponds to a concept, instead of an implementation-level detail (e.g., enforcer in

Volcano).

� Since properties are represented using single descriptors, it is trivial to add new prop-

erties, or change existing ones.

� Property transformations are vastly simplified, since, instead of a multitude of support

functions (as required by Volcano, Table 2.3), property transformations in Prairie are
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accomplished on a per-rule basis. This is seen clearly from the forms of the general

rules for Volcano (Figure 2.8) and Prairie (Figure 3.3). The only support function that

Prairie requires is init descriptor for each operator. Adding algorithms in Prairie don’t

require the DBI to define additional support functions as in Volcano.

3.8 Summary

In this chapter, we presented the rule specification language of Prairie. Prairie strives for

high-level abstractions that insulate a DBI from implementation-level details of the opti-

mizer. (Not all details of the underlying implementation can be hidden from a DBI. For

example, the top-down strategy is evident in the general form of a Prairie I-rule (see Fig-

ure 3.6). However, other details such as enforcers are hidden.) The resulting environment

is streamlined, robust, and easily extensible (as described in Section 3.7).

High-level abstractions like those that Prairie provides can lead to inefficient imple-

mentations of optimizers if one is not careful in compiling Prairie rules. In the next chapter,

we describe the P2V preprocessor that automatically generates a Volcano specification from

a Prairie specification. In this way, the advantages of Prairie are preserved while making

use of Volcano’s ability to generate efficient optimizers. Since Prairie provides only a rule

specification environment, this also means that we can utilize Volcano’s rule engine for the

search strategy of a Prairie optimizer.
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Chapter 4

The Prairie-to-Volcano Preprocessor

In the previous chapter, we described the rule specification language of Prairie and showed

how it overcame some of Volcano’s drawbacks concerning high-level abstractions and ex-

tensibility. We also mentioned that a Prairie specification could be translated into a Volcano

specification to make use of Volcano’s advantages, and to make it compatible with Volcano’s

rule engine. This chapter describes the Prairie-to-Volcano (or P2V) preprocessor that accom-

plishes this translation.

4.1 Overview

There are four main responsibilities of the P2V preprocessor:

� Establishing the correspondence between the various concepts of Prairie to similar

ones in Volcano. Specifically, this means that the P2V preprocessor must translate

stored files, streams, operators, algorithms, operator trees, access plans, and descrip-

tors into Volcano format.

� Translating T-rules into Volcano transformation rules. This includes translating the

actions (tests and property transformations). Note that because descriptors are trans-

lated into corresponding Volcano structures, Prairie rule actions that reference descrip-
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tor properties must also be translated into Volcano rule actions that reference the ap-

propriate Volcano structures.

� Translating I-rules into Volcano implementation rules. As above, this includes trans-

lating an I-rule’s actions into Volcano format. As we will see in this chapter, translat-

ing an I-rule’s actions is complicated by the fact that Volcano accomplishes most of

its implementation rule actions via DBI-defined support functions.

� Generating a compact Volcano rule set from a Prairie specification. This means that

the P2V preprocessor attempts to remove unused rules, and to consolidate rules that

generate a transitive closure of operator tree transformations. This step is not neces-

sary for the correct generation of Volcano specifications; it is, however, a means of

generating smaller rule sets, and consequently, faster optimizers.

The following sections describe each of these steps in greater detail. The P2V pre-

processor is about 6000 lines of flex and bison code, and took about 3 man-months to

implement.

4.2 Correspondence of Elements in Prairie and Volcano

4.2.1 Operators, Algorithms, and Enforcers

Operators and algorithms in Prairie correspond directly to operators and algorithms, respec-

tively, in Volcano. That is, an operator in Prairie represents the same operator in Volcano.

Similarly for algorithms. The difficulty arises when some algorithms in Prairie are identi-

fied by the P2V preprocessor as implicit (as defined in Section 2.8.1). These algorithms then

correspond to enforcers in Volcano. This process is described in greater detail below.

In Chapter 2, we mentioned that enforcers in Volcano are really algorithms, except

that they do not implement any particular operator. This means that enforcers can be inserted

anywhere in an expression, depending on needed physical properties.

Now consider operators in Prairie. Some operators have the “Null” algorithm as one
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O(S1) : D2 =) A1(S1) : D3

� � �

O(S1) : D2 =) An(S1) : D3

O(S1) : D2 =) Null(S1 : D3) : D4

Figure 4.1: Identifying implicit operators, algorithms, and rules

of their implementations (see Section 3.6.1). Whenever Null is used as an implementation, it

has the same effect as if the algorithm were not present in the operator tree at all. On the other

hand, when a non-Null algorithm is used as an implementation, an “actual” algorithm is in-

troduced in the operator tree. Also, whenever a Null algorithm is used in Prairie, it serves to

push its needed properties down to its inputs. In other words, it tries to enforce certain prop-

erties on its inputs. Thus, Null algorithms in Prairie are indications of enforcers in Volcano.

Stated differently, a choice of the Null algorithm in Prairie implies that no enforcer is intro-

duced (in an operator tree) in Volcano, whereas a choice of a non-Null algorithm introduces

an enforcer.

More formally, consider the sequence of Prairie I-rules shown in Figure 4.1. Each

I-rule specifies an implementation of the abstract operator O, in terms of algorithms A1

through An, and the Null algorithm. The Null algorithm acts as a conduit to push all prop-

erties of the operator O down to its input S1. The P2V preprocessor marks operator O as an

implicit operator, algorithms A1 through An as implicit algorithms, and all the rules in Fig-

ure 4.1 as implicit rules. For brevity, in this chapter, we will call the operator O in Prairie an

enforcer-operator, and algorithms A1 through An, enforcer-algorithms. Enforcer-operators

are discarded when translating to Volcano, enforcer-algorithms in Prairie correspond to en-

forcers in Volcano, and all implicit rules are discarded when translating to Volcano. (We

will discuss later how to translate the actions associated with implicit I-rules.) The Null al-

gorithm does not appear in a Volcano specification at all. Expressions in Prairie which con-

tain enforcer-operators must be modified so that they are legal expressions in Volcano; we
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will show how this is done later.

EXAMPLE 12. Consider I-rules 3.5 and 3.7 from Figures 3.8 and 3.9(b) (repeated below,

without the associated tests or actions):

SORT(S1) : D2 =) Merge sort(S1) : D3

SORT(S1) : D2 =) Null(S1 : D3) : D4

These two I-rules together describe Merge sort to be an enforcer-algorithm in Prairie (an

enforcer in Volcano), and SORT as an enforcer-operator. �

4.2.2 Operator Trees and Access Plans

Operator trees in Prairie are expressed in a functional notation, and those in Volcano are

expressed in a LISP prefix notation. Apart from this syntactic difference, operator trees and

access plans in the two specifications bear a one-to-one correspondence.

EXAMPLE 13. The expression,

JOIN(RET(R1) : D3;RET(R2) : D4) : D5

in Prairie, which denotes the RETrieval of relations R1 and R2, and their subsequent JOIN,

is represented in Volcano as

(JOIN ?op arg5 ((RET ?op arg3 ()) (RET ?op arg4 ()))

The descriptors D3, D4, and D5 map to the operator arguments ?op arg3, ?op arg4, and

?op arg5, respectively. In addition, since Volcano expressions represent only stream inputs

explicitly, the relation names R1 and R2 are also incorporated in the operator arguments

?op arg3 and ?op arg4, respectively. A more precise correspondence between Prairie de-

scriptors and Volcano properties is described in the next section. �

Access plans in Prairie correspond to physical expressions in Volcano; they have the

same correspondence as do operator trees in Prairie and Volcano; plans are transformed from

a functional notation to a LISP prefix notation with descriptors transformed into algorithm

arguments.
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E: Expression

D: Descriptor

P1: Operator Argument

P2: Logical Property

P3: System Property

P4: Physical Property

P5: Cost

E P1

P2

P3

P4

P5

(a) General form of a Volcano
expression

E D

(b) General form of a Prairie
expression

P2

P4

P5

P1

P3

E

(c) General form of a P2V-generated expression. Single arrows represent pointers to shared struc-
tures. Note that the system property is “grounded” (unused).

Figure 4.2: General expressions in Volcano, Prairie, and P2V-generated specifications

4.2.3 Descriptors and Properties

In Prairie, there is one structure that represents all the properties of a node in an op-

erator tree, the descriptor. Volcano, on the other hand, represents properties of expressions

in five different structures. Figures 4.2(a) and 4.2(b) show the general form of expressions

in Volcano and Prairie (i.e., the forms visible to the DBI).

The advantage of having separate property structures in Volcano is that they corre-

spond to the way the properties are used and stored internally by the Volcano rule engine.

In other words, the partition of properties has semantic meaning for the internal representa-

tion. For example, logical properties in Volcano are computed before optimization begins.
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Furthermore, the logical properties of operator trees in the same equivalence class (that is,

logically equivalent expressions) are the same; thus, it makes sense to share a common log-

ical property structure between all such equivalent operator trees, and indeed, this is what

the Volcano rule engine does. This is easily done if logical properties are defined as a set of

properties distinct from all other properties.

On the other hand, partition of properties has its drawbacks in the area of high-level

abstractions. As listed in Section 2.8.2, these drawbacks complicate the task of specifying

an optimizer by forcing the DBI to think of low-level (or internal) details of property rep-

resentation. Also, as mentioned earlier, these property partitions can be brittle, and change

when operators, algorithms, or properties are changed. As mentioned in Chapter 3, Prairie

overcomes these drawbacks by representing properties in a single structure, a descriptor.

What is needed, then, is a translation from the high-level abstraction of Prairie de-

scriptors to the lower-level representation of Volcano’s property structures, where the advan-

tage of property sharing is preserved. The P2V preprocessor accomplishes this by retaining

a single property structure with every expression, but partitioning the descriptor internally

into separate structures that correspond to Volcano’s property structures. This is shown pic-

torially in Figure 4.2(c). Note how logical and physical properties are translated to pointers

to property structures; this allows sharing between expressions by setting pointers to com-

mon structures. The cost property structure is not shared, but it is converted to a pointer since

it makes sense only for an algorithm (and thus can be set to null for an operator). Also, as we

mentioned in Section 2.2, the system property set behaves identically to the logical property

set, so the P2V preprocessor “grounds” the system property set (and doesn’t use it).

The problem now is deciding what property set (operator argument, logical property,

cost, or physical property) each property in a descriptor belongs to. This is determined as

follows.

Initially, all properties in a descriptor are logical properties, by default. Consider a T-

rule that rewrites an expression E to E0. If property P of the root of E0 is changed1 in either

1The problem of detecting whether a property is changed is a difficult one since properties can be changed via
assignment statements, helper function calls, etc. in C. To avoid implementing a full-blown C (or C++) parser,
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JOIN(JOIN(S1; S2) : D4; S3) : D5 =) JOIN(S1; JOIN(S2; S3) : D6) : D7 (4.1)
ff

D6:attributes = union (D2:attributes;D3:attributes) ;
gg

is associative (D5:join predicate;D2:attributes)
ff

D7 = D5 ;

D7:join predicate = D4:join predicate ;

D6:join predicate = D5:join predicate ;

D6:record width = D2:record width +D3:record width ;

D6:cardinality = compute cardinality (D2;D3) ;

gg

Figure 4.3: Identifying operator arguments

the pre-test or post-test sections of the T-rule, then P is identified as an operator argument.

The reason is that T-rules only access operator arguments or logical properties, and, since the

logical properties of E0 are the same as those of E (and thus cannot be changed in a T-rule),

P must be an operator argument.

To illustrate this, consider the join associativity T-rule from Chapter 3, repeated in

Figure 4.3. Note the boxed statement: it changes the join predicate of D7, the descriptor of

the root JOIN on the right side of the T-rule. Thus, join predicate is an operator argument.

Cost properties are easy to detect: like Volcano, Prairie requires a cost property to

have the type COST. Thus, all properties in the descriptor with the type COST are cost prop-

erties (although, typically, there is only one cost property).

Physical properties are also easy to identify. The P2V preprocessor looks at all “Null

I-rules” (i.e., I-rules where Null implements an operator). If any property of the input stream

of the Null algorithm is changed in the pre-opt section of the I-rule, then that property is a

physical property. The rationale for this is simple: properties that are copied from an opera-

tor to its input must be “needed” properties (in Volcano’s terminology), and thus, are phys-

ical properties. As an example, consider the Null sort I-rule from Chapter 3, repeated in

P2V imposes a requirement on Prairie rules that all changes to descriptor properties be identified by an annota-
tion to the statement. Assignments to descriptor properties are accomplished by a function called dcopy. Thus,
the boxed statement in Figure 4.3 is actually written as dcopy(D7:join predicate;D4:join predicate). It is im-
portant to note that this requirement does not sacrifice the full power of C.
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SORT(S1) : D2 =) Null(S1 : D3) : D4 (4.2)
TRUE
ff

D4 = D2 ;

D3 = D1 ;

D3:tuple order = D2:tuple order ;

gg

ff

D4:cost = D3:cost ;
gg

Figure 4.4: Identifying physical properties

Figure 4.4. The boxed statement changes the tuple order property of S1, the input of Null.

Thus, the preprocessor marks tuple order as a physical property.

4.3 Translating T-rules

A T-rule in Prairie corresponds to a transformation rule in Volcano. The translation from a

T-rule to a transformation rule is straightforward. Figure 4.5 shows the correspondence be-

tween a Prairie T-rule and a Volcano trans rule. Consider the general form of a Prairie T-rule

shown in Figure 4.5(a). X and Y are sets of C (or C++) statements, perhaps computing prop-

erties of the various expressions in the rule. T is a boolean expression, possibly containing

property references. A Volcano transformation rule is derived from this T-rule as shown in

Figure 4.5(b). X0, Y 0 and T 0 are derived from X , Y , and T , respectively, by appropriately

translating the property references in each. This is necessary, since, as described in Sec-

tion 4.2.3, a Prairie descriptor is transformed into a structure containing multiple property

sets. This is best illustrated with an example.

Consider the join associativity T-rule from Chapter 3, shown in Figure 4.6(a). The

Volcano transformation rule generated by the P2V preprocessor is shown in Figure 4.6(b).

The statements are numbered, and correspond to the same numbered statements in Fig-

ure 4.6(a). As shown in Figure 4.2, operator arguments are a separate structure in the trans-

lated descriptor. Hence the reference (in statement 4 in the application code of the trans rule)
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E(x1; : : : ; xn) : D1 =) E0(x1; : : : ; xn) : D2 (4.3)
ff

X

gg

T

ff

Y

gg

(a) General Prairie T-rule

(E ?op arg1 (?1 : : :?n)) ! (E0 ?op arg2 (?1 : : :?n)) (4.4)

%cond code
ff

X0

if (!(T 0)) REJECT;
gg

%appl code
ff

Y 0

gg

(b) Volcano trans rule corresponding to the T-rule in (a). ?i corresponds to xi, and X0, T 0, and Y 0

correspond to X , T , and Y , respectively, with property references suitably modified.

Figure 4.5: Translating T-rules

to op arg as a C struct. On the other hand, since logical properties are pointers to shared

structures, the reference in statement 2 to log prop is as a pointer.

There are two interesting points to note in this translation. Note that a single de-

scriptor copy (D7 = D5) statement in Figure 4.6(a) results in two assignment statements in

Figure 4.6(b), one for copying the operator argument (join predicate), and another for copy-

ing a pointer to a shared logical property structure. Since physical properties and cost are

not relevant in a T-rule, they are not copied.2

Second, note that statements 1, 6, and 7 in Figure 4.6(a), which compute logical prop-

erties ofD6, are reduced to NO OP statements.3 Again, this is because logical properties are

computed before optimization begins (by DBI-defined support functions, init descriptor), so,

these statements are redundant.
2They are, however, initialized by DBI-defined init descriptor functions.
3The P2V preprocessor macro-defines NO OP as an empty statement.
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JOIN(JOIN(S1; S2) : D4; S3) : D5 =) JOIN(S1; JOIN(S2; S3) : D6) : D7 (4.5)
ff

1. D6:attributes = union (D2:attributes;D3:attributes) ;
gg

2. is associative (D5:join predicate;D2:attributes)
ff

3. D7 = D5 ;

4. D7:join predicate = D4:join predicate ;

5. D6:join predicate = D5:join predicate ;

6. D6:record width = D2:record width +D3:record width ;

7. D6:cardinality = compute cardinality (D2;D3) ;

gg

(a) Join associativity T-rule

(JOIN ?op arg5 ((JOIN ?op arg4 (?1 ?2)) ?3)) ! (JOIN ?op arg7 (?1 (JOIN ?op arg6 (?2 ?3)))) (4.6)

%cond code
ff

1. NO OP ;
2. if (!(is associative (?op arg5 ! op arg:join predicate; ?2 ! expr:argument:log prop ! attributes)))

REJECT ;

gg

%appl code
ff

3. ?op arg7 ! op arg:join predicate = ?op arg5 ! op arg:join predicate ;

3. ?op arg7 ! log prop = ?op arg5 ! log prop ;

4. ?op arg7 ! op arg:join predicate = ?op arg4 ! op arg:join predicate ;

5. ?op arg6 ! op arg:join predicate = ?op arg5 ! op arg:join predicate ;

6. NO OP ;
7. NO OP ;

gg

(b) P2V-generated trans rule corresponding to the T-rule in (a). Statement numbers correspond to the
same numbered statements in (a).

Figure 4.6: Translating the join associativity T-rule

A final issue in translating T-rules is that of enforcer-operators. Recall that enforcer-

operators are discarded by the preprocessor when translating Prairie rules into Volcano. This

means that if an expression in a T-rule contains an enforcer-operator, the P2V preproces-

sor deletes the enforcer-operator when translating the expression to Volcano. What happens

to the T-rule’s actions when a statement references the descriptor of the (now-discarded)

enforcer-operator? The answer becomes obvious when we consider that enforcer-operators

have the same logical properties and operator arguments as their input. Thus, when an

enforcer-operator like SORT(S1) : D2 is deleted, references to properties of D2 are con-
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JOIN(S1; S2) : D3 =) JOPR(SORT(S1) : D4;SORT(S2) : D5) : D6 (4.7)
ff

1. D4 = D1 ;

2. D5 = D2 ;

gg

3. (D4:cardinality < 10000)

ff

� � �

gg

(a) T-rule with enforcer-operator SORT

(JOIN ?op arg3 (?1 ?2)) ! (JOPR ?op arg6 (?1 ?2)) (4.8)

%cond code
ff

1. NO OP ;
2. NO OP ;
3. if (!((?1 ! expr:argument:log prop ! cardinality < 10000))) REJECT ;

gg

%appl code
ff

� � �

gg

(b) P2V-generated trans rule corresponding to the T-rule in (a). Statement numbers correspond to the
same numbered statements in (a).

Figure 4.7: Translating T-rules with enforcer-operators

verted to references to properties of D1 (the descriptor of S1). This is shown in Figure 4.7

where the reference to the cardinality of a SORT (in the test of the T-rule) is translated to a

reference to the cardinality of the input of the SORT in the Volcano trans rule.

4.4 Translating I-rules

I-rules in Prairie correspond to Volcano’s implementation rules. However, the translation of

I-rules is more complicated than the translation of T-rules. This is primarily because the ac-

tions associated with a Prairie I-rule are all expressed concomitantly (pre-opt and post-opt)

with the rule. In Volcano, on the other hand, there are four distinct support functions (as listed

in Table 2.3) that are responsible for most of the property transformations associated with a

implementation rule. This means that when translating a Prairie I-rule to Volcano’s imple-
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E(x1; : : : ; xn) : D1 =) A(x1; : : : ; xn) : D2 (4.9)
T

ff

X

gg

ff

Y

gg

(a) General Prairie I-rule

(E ?op arg1 (?1 : : :?n)) ! (A ?al arg2 (?1 : : :?n)) (4.10)

%cond code
ff

if (!(T 0)) REJECT;
gg

%appl code
ff

== book-keeping statements
gg

Support function do any good A

f

X0

g

Support function derive A phy prop
f

Y 0

g

(b) Volcano impl rule corresponding to the I-rule in (a). ?i corresponds to xi, and X0, T 0, and Y 0 cor-
respond toX , T , and Y , respectively, with property references suitably modified. Note that the general
I-rule is translated to an implementation rule and two support functions corresponding to the algorithm
A. The remaining support functions (get input pv and cost) are “grounded” (i.e., contain only book-
keeping statements).

Figure 4.8: Translating I-rules

mentation rule, the actions of the I-rule have to be partitioned into the appropriate support

functions. How this is accomplished is the most challenging problem.

Broadly speaking, the P2V preprocessor partitions the actions of an I-rule as fol-

lows. The test of an I-rule is translated to the condition code of a Volcano implementation

rule. The pre-opt section of an I-rule is transformed into the do any good function for the

appropriate algorithm, and the post-opt section is translated to the derive phy prop function.

The two other support functions, get input pv and cost, are translated to dummy functions.

That is, the statements in these two functions are meant for book-keeping purposes, and are
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JOIN(S1; S2) : D3 =) Nested loops(S1 : D4; S2) : D5 (4.11)
1. TRUE
ff

2. D5 = D3 ;

3. D4 = D1 ;

4. D4:tuple order = D3:tuple order ;
5. D5:cost = D4:cardinality �D2:cardinality ;

gg

ff

6. D5:tuple order = D4:tuple order ;
gg

(a) Nested loops I-rule

(JOIN ?op arg1 (?1 ?2)) ! (Nested loops ?al arg2 (?1 ?2)) (4.12)

%cond code
ff

1. if (!(TRUE)) REJECT ;

gg

%appl code
ff

== book-keeping statements
gg

Support function do any good Nested loops
f

== book-keeping statements
2. ret value ! algorithm argument:log prop = operator argument ! log prop ;

3. NO OP ;
4. ret value ! algorithm argument:al arg ! required[0] ! tuple order = needed phy prop ! tuple order ;
5. ret value ! algorithm argument:al arg ! cost =

ret value ! algorithm argument:al arg ! desc[0] ! log prop ! cardinality
� ret value ! algorithm argument:al arg ! desc[1] ! log prop ! cardinality ;

g

Support function derive Nested loops phy prop
f

== book-keeping statements
6. algorithm argument ! phy prop ! tuple order = input phy prop[0] ! tuple order ;

g

(b) P2V-generated impl rule and support functions corresponding to the I-rule in (a). Statement numbers
correspond to the same numbered statements in (a).

Figure 4.9: Translating the nested loops I-rule

not taken from the actions of any I-rule. These book-keeping statements are primarily re-

sponsible for pointer manipulations and copying of shared property structures. This process

is shown in Figure 4.8 which shows a general Prairie I-rule (Figure 4.8(a)) and the Volcano

implementation rule and support functions that it is translated to (Figure 4.8(b)).

Most of the difficulty in an I-rule translation involves translating property references
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in Prairie to those in Volcano. Since the property translation process involves pointers (as

shown in Figure 4.2), the generated code for the Volcano support functions contains a lot of

pointer manipulation operations. It is illuminating to consider an example that illustrates the

translation process.

Consider the nested loops I-rule from Chapter 3, shown in Figure 4.9(a). The

Volcano implementation rule and support functions (do any good Nested loops and de-

rive Nested loops phy prop) generated by the P2V preprocessor are shown in Figure 4.9(b).

The statements are numbered, and correspond to the same numbered statements in Fig-

ure 4.9(a).

The interesting points to note are the translation of the pre-opt and the post-opt

sections of the I-rule. As shown in Figure 4.8, these are translated to support functions

do any good Nested loops and derive Nested loops phy prop, respectively. Notice how

the third statement in the I-rule is translated to a NO OP statement. This is because the only

properties of D4 that can be changed in the pre-opt section are the physical properties (this

corresponds to Volcano’s concept of “needed physical properties”; see Section 2.2), which is

accomplished by the fourth statement. The physical properties of the inputs of Nested loops

are represented as pointers to physical property structures, as evidenced by the translation

of the fourth statement.

In general, the translation of I-rule actions involves a lot of book-keeping statements

and, as Figure 4.9(b) shows, a lot of pointer traversals. This is necessary because of the

way the P2V preprocessor transforms Prairie descriptors into Volcano properties, and also

because of the rigid structure of Volcano support functions (not all of them have access to

all property structures because the parameter list of support functions is pre-defined).

4.4.1 Translating Enforcers

Figure 4.1 shows how the P2V preprocessor identifies enforcers (implicit algorithms) in

Prairie. As described in Section 4.2.1, rules containing enforcers are discarded by the pre-

processor. What becomes of the actions in such rules?
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SORT(S1) : D2 =) Merge sort(S1) : D3 (4.13)
1. (D2:tuple order != DONT CARE)
ff

2. D3 = D2 ;

3. D3:cost = D3:cardinality � log(D3:cardinality) ;
gg

ff

gg

(a) Merge sort I-rule

Support function do any good Merge sort
f

== book-keeping statements
1. if (needed phy prop ! tuple order != DONT CARE) f
2. ret value ! algorithm argument:log prop = operator argument ! log prop ;

3. ret value ! algorithm argument:al arg ! cost =
ret value ! algorithm argument:log prop ! cardinality
� log(ret value ! algorithm argument:log prop ! cardinality) ;

g

g

Support function derive Merge sort phy prop
f

== book-keeping statements
g

(b) P2V-generated support functions corresponding to the I-rule in (a). Statement numbers correspond
to the same numbered statements in (a).

Figure 4.10: Translating I-rules with enforcer-algorithms

The answer is obvious when one considers that implicit rules are basically I-rules.

Thus, enforcers have support functions (just like explicit algorithms). This means that ac-

tions of an implicit rule can be translated as statements in the appropriate support functions.

The general mechanism for translating I-rules (Figure 4.8) holds for enforcers with one dif-

ference: the test T of an implicit rule is translated to T0, and is used as a condition to bracket

the set of actions Y 0 (as depicted in Figure 4.8(b)) in the do any good support function. The

rest of the translation works exactly as for other I-rules.

Figure 4.10 illustrates the translation of the merge sort I-rule into two support func-

tions (and no impl rules).
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O1; O2; O3: Operator

X1;X2: Operator or Algorithm

E1; E2; E3: Expression

O1 =) O2;O2 =) X1 O1 =) X1

(a)

O1 =) O2;O2
=)

X1

=)
X2

O1
=)

X1

=)
X2

(b)

O1=)

O2
=)

O3;O3 =) X1

O1=)

O2
=)

X1

(c)

E1 =) E2;E3 =) X1

O1 =) O2;O2 =) X1 O1 =) X1

(d)

Figure 4.11: Rule compaction

4.5 Rule Compaction

Rule compaction is a technique by which the P2V preprocessor generates a smaller

set of rules from a typically large rule set. This has a direct bearing on the efficiency of

the generated optimizer, since a smaller rule set results in a more efficient optimizer (see

Appendix B for a more formal argument for rule compaction).
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The basic idea in rule compaction by the P2V preprocessor is that transitive rewrite

rules can be replaced with a single rule. In other words, if a rule transforms one expression

into another which is, in turn, transformed into a third expression by a second rule, then the

two rules can be replaced with a single rule that directly transforms the original expression

into the final one. This general principle of rule compaction results in four specific cases, as

shown in Figure 4.11. The compaction algorithm is not as simple as it seems at first glance,

since rules have actions which have to meet certain criteria to be compacted.

Rule compaction works by progressively reducing pairs of rules to single rules. In

general, the first rule in the pair consists of a T-rule transforming an operator into another.

The second rule in the pair can either be a T-rule or an I-rule. The actions of a compacted

rule set are derived from the actions of the last of the sequence of the rules being compacted.

Consider Figure 4.11(b) as an example. The Prairie rule set being compacted can be

viewed as consisting of two pairs of rules,

O1 =) O2;O2 =) X1

O1 =) O2;O2 =) X2;

where the second rule in each pair is either a T-rule or an I-rule (depending on whetherX1 and

X2 are operators or algorithms). It is clear from the above that each pair of rules represents

a transitive mapping: the first, from O1 to X1, and the second, from O1 to X2. The P2V

preprocessor, thus, reduces the three Prairie rules shown above, to two Volcano rules, as

Figure 4.11(b) shows. Figures 4.11(a) and 4.11(c)4 depict similar compactions.

An interesting case of rule compaction is shown in Figure 4.11(d). The Prairie rule

set being compacted consists of a T-rule transforming E1 to E2, and another rule that trans-

forms E3 to X1. Expressions E1, E2, E3 may consist of enforcer-operators. Now, as de-

scribed in Section 4.2.1, enforcer-operators are discarded when expressions and rules are

translated from Prairie to Volcano by the P2V preprocessor. It is, thus, possible, that when

enforcer-operators are deleted from E1, E2, and E3, that expression E1 is transformed to an

4This compaction is currently not implemented in the P2V preprocessor because, in our experience, it usually
does not occur. However, there is no technical difficulty in implementing it.
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LEFT OUTER JOIN(S1; S2) =) JOIN(S1; S2)

JOIN(S1; S2) =) Nested loops(S1; S2)
(LEFT OUTER JOIN (?1 ?2))! (Nested loops (?1 ?2))

(a)

LEFT OUTER JOIN(S1; S2) =) JOIN(S1; S2)

JOIN(S1; S2) =) Nested loops(S1; S2)

JOIN(S1; S2) =) Merge join(S1; S2)

(LEFT OUTER JOIN (?1 ?2))! (Nested loops (?1 ?2))

(LEFT OUTER JOIN (?1 ?2))! (Merge join (?1 ?2))

(b)

LEFT OUTER JOIN(S1; S2) =) JOIN(S1; S2)

RIGHT OUTER JOIN(S1; S2) =) JOIN(S1; S2)

JOIN(S1; S2) =) Nested loops(S1; S2)

(LEFT OUTER JOIN (?1 ?2))! (Nested loops (?1 ?2))

(RIGHT OUTER JOIN (?1 ?2))! (Nested loops (?1 ?2))

(c)

JOIN(S1; S2) =) JOPR(SORT(S1); SORT(S2))

JOPR(S1; S2) =) Nested loops(S1; S2)

JOIN(S1; S2) =) JOPR(S1; S2)

JOPR(S1; S2) =) Nested loops(S1; S2)
(JOIN (?1 ?2))! (Nested loops (?1 ?2))

(d)

Figure 4.12: Examples of rule compaction (cf. Figure 4.11). The left sides show Prairie rule
sets, the right sides are Volcano rule sets. For clarity, descriptors in the Prairie rules, and
operator and algorithm arguments in the Volcano rules, are omitted, as are all rule actions.

operator O1, and expressions E2 and E3 are transformed into operator O2. This means that

E2 and E3 unify5 to the operator O2. As shown in Figure 4.11(d), this compaction reduces

to the one in Figure 4.11(a).

As mentioned earlier, there are certain restrictions on the form and actions of the first

T-rule in each pair that is compacted. First, the arity (i.e., the number of inputs) of the opera-

5This process is called unification because it is similar to the technique used in automatic theorem proving
by resolution in first-order logic (see, e.g., [18]).
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tors on each side of the rule must be the same. Second, the test for the T-rule must be TRUE

(i.e., the rule must be unconditionally applicable). Third, the actions (pre-test and post-test)

in the T-rule must consist either of (1) descriptor assignment statements that copy the descrip-

tors of the corresponding expressions on either side of the rule, or (2) assignment statements

that are translated to NO OP by the preprocessor (an example is the statement numbered 6

in Figure 4.6(a)). The reason for these restrictions is simple. Since rule compaction gen-

erates a smaller rule set in the most general case, it must always be the case that applying

the uncompacted rule set to any expression must have the same effect as applying the com-

pacted rule set to the same expression (i.e., the two rule sets must be equivalent). Since the

P2V preprocessor does not know the semantics of rule actions, it checks for syntactic hints

(a TRUE test, descriptor assignment statements, NO OP statements) that indicates that com-

paction yields an equivalent rule set. It may be possible to incorporate semantic knowledge

of rules in the P2V preprocessor to produce even greater rule compaction; however, this is

beyond the scope of this dissertation.

Figure 4.12 shows an example of rule compaction corresponding to each of the four

general cases in Figure 4.11. Apart from the familiar relational operators and algorithms

we have already encountered, Figure 4.12 introduces some new operators. An outer join

[41] is a generalization of the traditional join operator (or natural join). It produces a stream

that contains tuples whose join attributes are unmatched according to the join predicate.

The outer join operation has two special cases depending on whether the outer or inner

streams contribute unmatched tuples. These two operators are called LEFT OUTER JOIN

and RIGHT OUTER JOIN, respectively. As shown on the left side of Figure 4.12(c), these

two outer join operators can be transformed into the JOIN operator, if it is known that no

unmatched tuples result.

The operator JOPR is exactly like JOIN, except that it expects its inputs to be sorted.

The JOPR operator is needed in Prairie in order to introduce the explicit operator SORT.

However, the P2V preprocessor identifies SORT as an enforcer-operator (as described in

Section 4.2.1), and deletes it, resulting in the rule compaction shown in Figure 4.12(d).
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4.6 Summary

In this chapter, we described the Prairie-to-Volcano preprocessor that generates a Volcano

rule specification from a Prairie specification. The obvious advantage of using the prepro-

cessor is that a DBI can specify rules in a high-level abstract framework (Prairie), while the

preprocessor can generate a lower-level specification (Volcano) that takes into account im-

plementation details. This generator-based approach means that the DBI is insulated from

the actual implementation and internal representation of the features of the optimizer. In fact,

it is possible to imagine a scenario where the preprocessor translates a Prairie specification

suitable for another (non-Volcano) rule engine, if it turns out that the Volcano rule engine

is not appropriate for the DBI. Another advantage of the P2V preprocessor, as described in

Section 4.5, is that it is possible to “optimize” the rule set itself, i.e., to add “intelligence”

in the preprocessor to generate small rule sets. This approach carries great potential, and, in

particular, as we will see in Chapter 6, can be used to generate compact rule sets from the

building-blocks used in reconfigurable optimizers.

High-level abstractions, like Prairie, can result in inefficient optimizers unless the

P2V preprocessor translates Prairie rules into the appropriate implementation-level details

of Volcano. In this chapter, we described the translation process. In the next chapter, we

evaluate the efficiency of the resulting Volcano optimizer by optimizing some benchmark

queries.
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Chapter 5

Performance Results

In the last chapter, we described the P2V preprocessor that translates a Prairie rule set speci-

fication into a Volcano specification. One important aspect of this translation is performance.

Namely, how does an optimizer generated from a Prairie specification compare with an opti-

mizer generated from a hand-written Volcano specification? In this chapter, we present some

experimental evidence that performance is not sacrificed by specifying rules in Prairie.

5.1 Overview

Performance of rule-based optimizers is one of the four goals that we identified in Chap-

ter 1. This becomes clear when we consider that Prairie’s programming environment has

limited impact if it sacrifices performance in its quest for abstractions and extensibility. Con-

sequently, some evidence is required that efficient optimizers can be generated from Prairie

specifications.

In this chapter, we present experimental results using two different optimizers that

are each specified using Prairie and Volcano. To avoid claims of “doctored up” Volcano

specifications (to give Prairie an unfair advantage), we use two Volcano rule sets written

by other researchers as points of comparison. The first rule specification is that of a simple

centralized optimizer that contains a subset of the relational database operators, and has a
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fairly simple cost model. The second rule set specifies an optimizer for a large-scale object-

oriented database. Both of these rule sets were re-engineered (i.e., rewritten) into Prairie

specifications, from which Volcano specifications were obtained by using the P2V prepro-

cessor described in the last chapter.1 The two optimizers (P2V-generated and hand-written)

were then compared for efficiency by optimizing a random set of operator trees.

The problem of developing a set of representative benchmark queries to test a query

processing system is a well-researched topic [13, 14, 32, 42]. However, standard benchmark

queries were not very useful in our case for various reasons. For example, the Wisconsin

benchmark [13] consists of no queries with more than 3 joins; moreover, this benchmark

was designed to test the performance of query processors on queries consisting of the entire

set of relational operators (select, project, retrieve, join, update, insert, delete, aggregation)

and with a variety of algorithms implementing the various operators. Since we are using

pre-written Volcano rule sets that only contain a subset of these operators, we had to design

our own benchmark queries.

In the following sections, we describe our experiments using the two rule specifica-

tions, the generation of random queries, and the productivity gains in using Prairie.

5.2 A Centralized Relational Query Optimizer

A simple centralized relational optimizer is bundled (as an example of a rule specification)

with the Volcano optimizer generator; it was written by Graefe and his co-workers. It con-

sists of 2 operators (RET and JOIN), 2 algorithms (File scan and Merge join), and 1 enforcer

(Merge sort). The semantics of these operators and algorithms are as defined in Chapter 2.

There are 2 transformation rules, and 2 implementation rules. All support functions (as listed

in Table 2.3) required for the operators, algorithms, and enforcers, and data structures rep-

resenting the properties are defined in separate files (the host language is C). The entire rule

specification package consists of approximately 1; 400 lines.

1Because of the way the P2V preprocessor represented properties, the P2V-generated Volcano specification
was quite different from the hand-written Volcano specification.
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Re-engineering the Volcano rule specification into Prairie involved several steps.

First, we had to fix a few bugs in the original Volcano rule specification that precluded the

optimizer from optimizing certain legal queries and that also produced non-optimal plans

for some queries. Second, we transformed the multiple property sets into a single descriptor

structure for the Prairie specification. This, in turn, required modifying property references

in rule actions. Third, actions in support functions had to be specified as rule actions (since

a Prairie rule contains all its actions). In the whole process of reconstituting the centralized

optimizer specification, the behavior of the optimizer had to be kept unchanged (i.e., the

Prairie optimizer had to generate the same optimal access plan as the Volcano optimizer, for

the same operator tree).

5.2.1 Programmer Productivity

Programmer productivity can be measured in different ways. An admittedly simplistic metric

is the number of lines of code that must be written. But there are also less tangible measures,

such as the amount of conceptual effort needed to understand a particular programming task.

Our experience suggests that Prairie excels on the latter, while offering modest reductions in

the volume of code that needs to be written. The re-engineered Prairie specification of the

simple centralized optimizer consisted of approximately 1; 000 lines, a savings of about 30%

over the Volcano specification.2 As mentioned above, however, savings in lines of code do

not fully reflect increases in programmer productivity. We found the encapsulated specifica-

tions of Prairie — namely, the use of a single descriptor and fewer explicit support functions

— made rule programming much easier.

5.2.2 Generating Benchmark Queries

Our experiments using the centralized optimizer consisted of optimizing randomly

generated queries using the two optimizers generated, respectively, using the Prairie and the

hand-written Volcano specifications. (In the remainder of this chapter, we will use “Prairie”

2As reported in [21], the savings are even greater if the Volcano rule engine is modified slightly to remove
calls to support functions that are grounded by the P2V preprocessor.
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Figure 5.1: Benchmarking a simple centralized optimizer

and “Volcano” to denote these two approaches.) The queries represented left-deep N -way

join operator trees, for varying values of N , as shown in Figure 5.1(a). Each operator tree

also required its output to be returned sorted, but since Volcano considered SORT to be an

implicit operator, it is not shown in Figure 5.1(a).

Random queries were generated for optimization using a uniform random number

generator as follows. The set of stored files (relations) was fixed, as were the number of

attributes in each file, their cardinalities, and record widths. Each query contained all oper-

ators in the Volcano specification. The queries generated varied in the order of the relations

in the (left-deep) operator tree. Each join in the tree had an equijoin predicate. The two join
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attributes were chosen, at random, from the set of attributes in the outer and inner streams,

respectively. The (single) tuple order for the (implicit) sort operator at the root was chosen

as an attribute of one of the relations in the operator tree.

5.2.3 Performance Results Using the Centralized Optimizer

For each value N of the number of joins, we generated 10 different queries (as described

above), and submitted it to both the Prairie and Volcano optimizers for optimization. Both

optimizers produced the same optimal plan for each query. The run times of each optimizer

were measured3 using the GNU time command, and averaged over the 10 queries to gen-

erate the per-query optimization time. Thus, each point in our graphs represents the average

CPU time for optimizing 10 different queries. All experiments were performed on a lightly

loaded DECstation 5000/200 running Ultrix 4.2.

The optimization time for both approaches (Prairie and Volcano) are shown in Fig-

ure 5.1(b). The number N of joins was varied from 0 through 8. The results, as seen from

the graph, are virtually identical for both Prairie and Volcano. That is, there is no loss of

performance of the optimizer if it is specified using Prairie instead of Volcano.

It is interesting to note the number of equivalent expressions that are generated from

the originalN -way join query in Figure 5.1(a). This is shown in Figure 5.1(c). Both optimiz-

ers (Prairie and Volcano) result in the same number of equivalent expressions, which grows

exponentially with N , the number of joins in the query. This corresponds to the exponential

rise in optimization time as seen in Figure 5.1(b).

From these experiments with the simple centralized optimizer, it was evident to us

that Prairie offers a modest reduction in code size, better programmability and clarity, with

no performance degradation. It is important to show, however, that Prairie can also be used

to specify rule sets for large-scale optimizers. This is described in the next section.

3To reduce measurement errors, the same query was optimized 10 times (in a loop) and the total time was
divided by 10 to obtain the optimization time for any query.
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5.3 The Texas Instruments Open OODB Query Optimizer

The Texas Instruments Open Object-Oriented Database Management System [50] is an open,

extensible, object-oriented database system which provides users an architectural framework

that is configurable in an incremental manner. It consists of three sets of modules: a core set

providing low-level primitives for creating new environments, a set of functional modules

that facilitates extensibility using functional requirements, and a meta-architecture module

housing the extensibility concepts of Open OODB. Examples of the core set are commu-

nication and address space management, while examples of functional modules are persis-

tence, distribution, and query processing. The meta-architecture module consists of events,

sentries, and policy manager interfaces.

The query processing module provides users with a query language (OQL[C++])

based on SQL and C++. A query expressed in this high-level format is parsed and trans-

formed into an operator tree suitable for optimization. From this operator tree, the query

optimizer generates an optimal access plan, which is then transformed into a C++ program

ready for execution.

The query optimizer in Open OODB [15] is generated using Volcano. It consists of 6

operators (SELECT, PROJECT, JOIN, RET, UNNEST (for set-valued attributes), and MAT

(MATerialize; it is used for representing path expressions in a query)), 8 algorithms (Filter,

Project, Hash join, Ptr hash join, File scan, Index scan, Unnest, and Alg assembly), and 1

enforcer (Enf assembly). Currently, the Open OODB rule set consists of 17 transformation

rules and 9 implementation rules together with about 13; 000 lines of code for support func-

tions; this, of course, can be changed by an Open OODB DBI for specific needs. There are

also catalogs which contain information about base classes that are used by the optimizer.

The complete rule set for the Open OODB optimizer is shown in Appendix C.

5.3.1 Programmer Productivity

As in the case of the centralized optimizer, we re-engineered the Open OODB rule set into

Prairie, and then generated a Volcano specification by using the P2V preprocessor. Using
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lines of code as a crude metric of programmer productivity, there was about 10% savings

realized in Prairie over Volcano.4 However, an even more important increase in programmer

productivity resulted in using the abstractions and encapsulations in Prairie; it took almost 4

man-months to reconstitute the Prairie specifications for the Open OODB optimizer because

of the widespread use of implementation-level details in the Volcano specification of the

optimizer, a specification that ought to be programmed at the conceptual level.

As a sidenote, the Prairie specification of the Open OODB optimizer consisted of

22 T-rules and 11 I-rules (the increased number of rules is because, as mentioned in Chap-

ter 3, Prairie does not allow implicit rules). The P2V-generated Volcano rule set contained

17 transformation rules and 9 implementation rules, the same as the original hand-written

Volcano specification.

5.3.2 Generating Benchmark Queries

Our experiments using the Open OODB consisted of optimizing 8 different queries

using the Prairie and Volcano optimizers. There were 4 distinct expressions that were used to

generate the queries used in the experiments; these are shown in Figure 5.2. Each expression

represents an N -way join query, for varying values of N .

The first expression, E1, is a simple retrieval and join of stored files; these files rep-

resent base classes. The second, E2, is also a join of base classes; however, after each class

retrieval, an attribute has to be materialized (i.e., brought into scope) before the join. (This

is an abstract representation of path expressions in object-oriented queries.) The third and

fourth expressions (E3 and E4) are the same as the first and second (E1 and E2), respec-

tively, except that there is a selection of attributes (the SELECT operator is the root of the

expressions).5

4The original Volcano specification had 13; 400 lines, the Prairie specification had 12; 100 lines, and the
P2V-generated Volcano specification had 15; 800 lines.

5The most complex expression, E4, consists of all operators in the algebra, except PROJECT and UNNEST.
PROJECT was not considered because it appeared in only one implementation rule and no transformation rules,
and thus, would not affect the size of the search space of abstract expressions. UNNEST was not considered
because it appeared in exactly one transformation rule and one implementation rule; including it in our queries
would have increased the number of parameters that could affect our run times. We preferred to concentrate on
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Figure 5.2: Expressions used in generating benchmark queries for Open OODB

Query Indices? Expression
Rules matched

transformation rules implementation rules
E11 No

E1 3 3E12 Yes
E21 No

E2 8 4E22 Yes
E31 No

E3 9 5E32 Yes
E41 No

E4 16 7E42 Yes

Table 5.1: Queries used in benchmarking the Open OODB optimizer

As in the case of the centralized optimizer, there are many parameters that can be var-

ied when benchmarking a query optimizer. Since our objective was to verify that the Prairie

simple join expressions.
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approach did not sacrifice efficiency, our criteria for the queries was that they test a majority

of the rules, with varying properties of the base classes. To this end, we tested the Prairie

(and Volcano) optimizer with 8 different queries (shown in Table 5.1). The eight queries, E11

through E42, are derived from the 4 expressions in Figure 5.2. Each expression, E1 through

E4, is used to obtain two queries for a fixed number N of joins in the expression. The only

difference between the two queries obtained from an expression was in the properties of the

base classes: the first query did not contain any indices on any classes, whereas the second

one contained a single index on each base class occurring in the expression.

In expressions where a SELECT is present (E3 and E4), the selection predicate was

a conjunction of equality predicates bci == consti, where bci was an attribute of class Ci,

and consti was a constant (we arbitrarily set this to i, because its value doesn’t affect the

correctness or performance of the optimizer). In addition, for queries with a SELECT, and

whose base classes have indices (E32 and E42, in Table 5.1), the (single) indexed attribute

of each base class was chosen to be the attribute referenced in the selection predicate. For

example, class Ci was chosen to have an index on attribute bci.

The join predicates for each JOIN were chosen at random, and were always equijoin

predicates. The choice of join predicates was such that the queries corresponded to linear

query graphs; furthermore, each join predicate corresponded to an implementation using a

one-way pointer between the join attributes of the base classes. For example, if e is an ob-

ject of the Employee class, and p an object of the Person class, and the spouse method (i.e.,

attribute) of Employee returns an instance of Person, then the join predicate e:spouse == p

was implemented as a pointer from the spouse method of Employee to the Person class.

Table 5.1 also shows the number of Volcano transformation and implementation rules

that are matched by each query. These are the rules whose left hand sides match a sub-

expression. However, not all the rules were necessarily applicable. For instance, an im-

plementation rule with an index scan would not apply to E21, although it might apply to

E22.

Random queries were generated for optimization using a random number generator
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Figure 5.3: Benchmarking the Open OODB optimizer — queries E11 and E12

as follows. The set of stored files (classes) was fixed. Each query contained a random order

of classes in the (left-deep) operator trees. For each query, the catalog information (cardi-

nality of classes, record widths, etc.) was varied. The join and selection predicates (where

applicable) were generated subject to the constraints described above.

5.3.3 Performance Results Using the Open OODB Optimizer

Queries E11 through E42 were optimized for increasing number N of joins. For

each query and a fixed value ofN , we varied the cardinalities, record widths, etc. of the base

classes 5 times, each time generating a query with different class properties, and averaged the

run-times over the 5 query instances to generate the per-query optimization time. Thus, each

point in our graphs represents the average of 5 queries. The run-times were measured6 using

the GNU time command. All experiments were performed on a lightly loaded DECstation

5000/200 running Ultrix 4.2.

6Since the run-times were too small to be measured accurately with time, each query instance was opti-
mized 3000 times (in a loop) and the total time was divided by 3000 to obtain optimization time for a given
query.
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Figure 5.4: Benchmarking the Open OODB optimizer — queries E21 and E22

The optimization times for each query for both approaches (Prairie and Volcano) are

shown in Figures 5.3 through 5.6. The number of joins N in each set of graphs was varied

to a maximum of 8, or until virtual memory was exhausted.

The first set of graphs (Figures 5.3(a) and 5.3(b)) shows the performance of a simple

relational-type query. The optimization times are almost identical between Prairie and Vol-

cano, and the notable point is that the presence of an index does not change the optimizer’s

behavior, i.e., the two graphs are identical. This arises because the rule set had only two join

algorithms (Ptr hash join and Hash join), neither of which makes use of any indices.

The second set of graphs (Figures 5.4(a) and 5.4(b)) shows the results of optimiz-

ing E21 and E22. Here, as in Figures 5.3(a) and 5.3(b), the presence (or absence) of indices

makes no difference. Both the Prairie and Volcano approaches have comparable run-times.

The sharp jump in the graphs from 7-way to 8-way joins is due to the fact that since all op-

timization is done in main memory, dynamic memory allocation (caused by malloc calls)

for storing the search space results in a lot of thrashing at this point. We speculate that in

systems with more virtual memory, the graphs will be smoother.
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Figure 5.5: Benchmarking the Open OODB optimizer — queries E31 and E32

The third and fourth sets of graphs in Figures 5.5 and 5.6 are optimizations of queries

with a selection predicate. In these cases, the presence of an index makes a difference if

the index is referenced in the selection predicate (as in our synthetically generated queries).

Also, in these two figures, the performance of both Prairie and Volcano was almost identi-

cal, except that Prairie does slightly worse due to the larger number of malloc calls that

the P2V preprocessor introduces (because of shared property structures using pointers; see

Figure 4.2). Also, note that we could only go up to 3-way joins before virtual memory was

exhausted. As the available memory decreases, there is increased thrashing (as shown by

the sharp changes in slope in the plots) resulting in a much slower optimization process.

It is instructive to compare the memory requirements in the optimization of the var-

ious queries. As mentioned earlier, the Volcano rule engine implements its optimization in

main memory, i.e., it stores the search space of a query in main memory. This means that

memory can become a bottleneck in the size of queries that can be optimized. Figure 5.7

compares the number of equivalent expressions generated for each of the expressions E1

through E4. It is important to note that not all equivalent expressions lead to valid access

72



0 1 2 3
Number of joins

0.0

2.0

4.0

6.0

8.0

10.0

C
PU

 ti
m

e 
(m

ill
is

ec
on

ds
)

N-way Join Queries
Average CPU Time for Query E41

Prairie
Volcano

(a) Query E41

0 1 2 3
Number of joins

0.0

2.0

4.0

6.0

8.0

10.0

C
PU

 ti
m

e 
(m

ill
is

ec
on

ds
)

N-way Join Queries
Average CPU Time for Query E42

Prairie
Volcano

(b) Query E42

Figure 5.6: Benchmarking the Open OODB optimizer — queries E41 and E42

plans, but an exhaustive search strategy (like Volcano) requires the expressions to be stored

because they might be reused in other expressions.

We can see from Figure 5.7 that the search space size increases by large magnitudes

from E1 through E4. For instance, the number of equivalent expressions for E4 is about a

million, for 3-way joins. This is the reason why, for example, we could not optimize expres-

sions containing more than 3 joins in E4 (Figure 5.6). The main reason for this tremendous

use of memory is the presence of the SELECT and MAT operators which increases the num-

ber of rules that an expression matches (see Table 5.1). These rules basically permute the

SELECT and MAT operators with the others (JOIN and RET), thus creating a large number

of equivalent expressions.

It is also interesting to compare the memory usage in the Open OODB optimizer

with the simple centralized optimizer in Section 5.2. Expression E1 in Figure 5.2(a) (which

only contains the relational operators JOIN and RET) is similar to the expression used in the

centralized optimizer (Figure 5.1(a)). However, the memory usage, as measured by the num-

ber of equivalent expressions (Figures 5.7 and Figures 5.1(c)), is vastly different in the two
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Figure 5.7: Equivalent expressions in the Open OODB optimizer

cases (256 for E1 versus 1.5 million for the centralized optimizer, for 8-way joins). What ac-

counts for this huge difference? The key lies in the implementation of the join predicates. In

the case of Open OODB optimizer, we designed the database such that join predicates were

implemented by one-way pointers7 (links), thus, the join commutativity transformation rule

did not apply; this cuts down on the number of equivalent expressions tremendously. In

the simple centralized optimizer, attributes in a join predicate were implemented as normal

columns; thus, the join commutativity rule could permute join streams and generate equiv-

alent expressions.

7The reason for this choice was that if join predicates were implemented as set-valued attributes, then join
commutativity would increase the number of equivalent expressions to an even larger explosion than that shown
in Figure 5.7. This would mean, for example, that it might not have been possible to optimize queries E31 and
E32 (generated from E3) even for 3-way joins.
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5.4 Summary

In this chapter, we presented experimental evidence that Prairie specifications do not sacrifice

performance compared to Volcano. Two sets of experiments were performed, one with a

simple centralized optimizer and another with a large-scale object-oriented optimizer; each

demonstrated comparable performances between the Prairie and Volcano optimizers. There

were also gains in lines of code, and, most importantly, gains in abstractions and extensibility.

This was made possible by using the P2V preprocessor to bridge the gap between Prairie and

Volcano.

In the next chapter, we describe how to use Prairie to build reconfigurable optimizers.

This is done by using rule sets that are constructed using reusable, recombinable building-

blocks. We will also show how the P2V preprocessor can generate monolithic optimizers

from these reconfigurable specifications, optimizers that are as efficient as any hand-written

rule set.
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Chapter 6

Reconfigurable Optimizers

In the previous chapter, we presented experimental results to evaluate the performance of

Prairie optimizers. In this chapter, we describe how the Prairie framework can be extended

to construct optimizers that satisfy the fourth goal listed in Chapter 1, reconfigurability. That

is, how can optimizers be changed quickly and seamlessly for use in a different database

system? One technique to do this is presented in this chapter. The extensions described here

were made easier by the clean design and abstractions embodied in Prairie.

6.1 Overview

Large-scale software development is an expensive undertaking. An approach that has been

proposed is that of using software components [9, 11, 26, 27]. These components, typically

used as building-blocks to construct larger systems, have well-defined and standardized im-

ported (input) and exported (output) interfaces. A system is developed by fitting together

components whose interfaces match one another. This approach not only has the advantage

of being able to assemble modular systems from parts, it also allows the reuse of the same

components in other software systems.

Database management systems (DBMSs) are large-scale software systems that can

also benefit from a component-based approach. The first system to demonstrate the feasibil-
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ity of this idea was Genesis [2, 3, 5, 6, 12]. A DBI created a customized DBMS by composing

several pre-defined components with standard interfaces. The result was a DBMS that was

tailored to the needs of a particular application.

The ideas incorporated in Genesis are not unique to databases; in fact, the GenVoca

paradigm [7–9, 11] has shown that the same component-based approach also applies to net-

works, avionics, file systems, and data structures. The P2 generator [10, 11], in particular,

has demonstrated that very efficient container data structures can be generated from a small

family of plug-compatible components.

Query optimizers are integral to most DBMSs. They also tend to be a significant and

complex part of a DBMS. The earliest query optimizer proposed, System R [46], was mono-

lithic in nature. That is, the three features of a query optimizer, namely, search space, cost

model, and search strategy, were all hard-wired into a single module that represented the op-

timizer. Many contemporary optimizers still follow this model. However, database systems

are increasingly being used to store traditional relational data as well as non-traditional data

(e.g., a database could contain relational as well as object-oriented and multimedia data);

this requires a query optimizer that can be quickly and efficiently modified to deal with the

changing properties of the underlying data. For example, in a cost model that is a weighted

sum of the CPU and I/O costs, it might be realistic to weight the I/O cost more than the CPU

cost when optimizing multimedia queries (since multimedia objects tend to be extremely

large, I/O costs might dominate CPU cost) than when dealing with relational data. As an-

other example, stored files with pointers between them would suggest specific join orders

than when no pointers are present. Thus, it might make sense to modify or change certain

rules depending on the specific application at hand.

In this chapter, we describe a building-blocks approach to the construction of rule-

based optimizers using Prairie. The goal is to generate families of rule sets automatically

where each rule set corresponds to some classical relational optimizer (centralized, distri-

bution, replication, etc.). We discuss the model, together with a few simple examples, and

show how the P2V preprocessor, described in Chapter 4, can be used to quickly generate
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efficient rule sets from component-based specifications. Currently, the P2 generator [10, 11]

does not have a framework for quickly generating efficient full-fledged optimizers. The ul-

timate goal of the research described in this chapter is to integrate the Prairie specification

language into P2 to enable automatic generation of rule-based optimizers. Thus, the goal of

this chapter is to lay a foundation for using Prairie to build optimizers for novel applications

(e.g., container data structures using P2).

6.2 Layered Rule-Based Optimizers

6.2.1 Layers

In the Prairie framework described in Chapter 3, optimizers are specified using rules (T-rules

and I-rules). The rule engine treats all rules as belonging to a single set, so at any given

stage, the rule engine transforms an expression using all applicable rules. Rule conditions

determine the search space to be generated. A shortcoming of this model is that, except

for tests in a rule, the search space is determined entirely by the particular search strategy

implemented by the rule engine.

Prairie allows a DBI to specify rules in encapsulated components. These components

are called layers and can either be defined by a DBI, or exist in pre-defined component li-

braries. Each layer is a collection of T-rules and I-rules and has well-defined import and

export interfaces that consist of database operations. The general form of a layer is shown

in Figure 6.1(a). A layer translates an abstract expression consisting of abstract operators

fO1; : : : ; Ong to a set of concrete expressions, each consisting of one or more concrete op-

erators fC1; : : : ; Cmg or algorithms. This represents a one-to-many mapping between ex-

pressions, and is typically the method used by an optimizer to construct its search space.

The term concrete refers to the fact that they are obtained by transforming abstract operators

through the use of rules; concrete operators of a layer can also be viewed as calls to abstract

operators of lower layers.

Layers in Prairie follow the GenVoca paradigm [9]. Thus, layers with the same in-
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Oi: Abstract operators

Ci: Concrete operators

LAYER

O1 On

Prairie Rules

C1 Cm

(a) General form of a layer

MERGE

JOIN SORT RET

JOIN(S1; S2) =) JOPR(SORT(S1); SORT(S2))

JOPR(S1; S2) =) Merge join(S1; S2)

JOIN(S1; S2) =) JOIN CONC(S1; S2)

SORT(S1) =) SORT CONC(S1)

RET(F1) =) RET CONC(F1)

JOIN SORT RET

(b) An example layer

Figure 6.1: General form of a Prairie layer and an example

terfaces constitute a realm; each layer is plug-compatible and interchangeable with the other

layers in its realm. Layers in Prairie are usually symmetric; that is, they have export interfaces

that are the same as their import interfaces [9]. Typically, these interfaces are comprised of

all the abstract operators in the particular database schema at hand. Symmetric layers can,

thus, be composed in arbitrary ways; this provides DBIs many ways to construct optimizers

using the same layers. However, not all the compositions are necessarily meaningful or cor-

rect. Batory and Geraci [8] describe methods for validating the correctness of component

compositions. We will assume that compositions of our layers are always correct. We will

not address the problem of validating layer compositions; we are aware these problems are

present.

To allow optimizer specifications using layers, the Prairie specification language de-

fined in Chapter 3 was extended in two ways. First, rules can now be declared as belonging to

a specific layer (a layer declaration demarcates rule definitions). Second, the optimizer can

be defined as a composition of layers. This composition is defined as a type expression [9]
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expressed as a linear sequence of layers. This is described in more detail in the next section.

An example layer is shown in Figure 6.1(b). This layer, called MERGE, transforms

three abstract operators, JOIN, SORT, and RET into one algorithm (Merge join) and three

concrete operators (JOIN, SORT, and RET). Note that the concrete operators bear the same

name as the abstract operators, implying that the MERGE layer is symmetric. The MERGE

layer consists of four T-rules and one I-rule. The purpose of the layer is to either transform

the JOIN operator into the Merge join algorithm, or to a concrete JOIN operator that will be

transformed into an algorithm by another lower layer. Since the MERGE layer is symmet-

ric (i.e., has the same exported and imported interfaces), we need a way to distinguish the

abstract and concrete operators in the rules. Prairie allows a DBI to append “ CONC” to an

operator to refer to a concrete operator. Thus, “JOIN” refers to the abstract join operator and

“JOIN CONC” refers to the concrete join operator.

6.2.2 Composing Layers

In a layered Prairie optimizer specification, a DBI can define layers, each consisting

of T-rules and I-rules. An optimizer can then be constructed by composing layers in a lin-

ear order. That is, the specification of an optimizer now consists of layers stacked upon one

another, instead of a set of rules specified in a single component. This is shown schemat-

ically in Figure 6.2(a). The Prairie syntax for specifying rules in individual layers and the

layer composition are shown in Figure 6.2(b). The composition shown in this figure, for ex-

ample, represents an optimizer with the SEQUENTIAL, MERGE, SORT, and RET layers

arranged in that order. This can be viewed as composing parameterized layers, where each

layer (except the terminal layer, RET) has a single parameter that is another layer. Note that

not all layers defined by the DBI are used in the composition; the P2V preprocessor deletes

unused layers. A more general framework of layer composition in the future will involve

hierarchical compositions of layers (not just linear compositions).

The semantics of layer composition is as follows. For each new expression gener-

ated by the optimizer, the rule engine applies rules to the expression in the order of layering.
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Operator Tree

Prairie Layer 1

Prairie Layer n

P2V Preprocessor

Volcano Rules

Volcano Rule Engine

Access Plan

(a) Schematic representation (cf. Figure 3.1)

%optimizer SEQUENTIAL [ MERGE [ SORT [ RET ] ] ]

%layer SEQUENTIAL

%trule JOIN(S1; S2) =)! JOIN(S2; S1)

%trule JOIN(JOIN(S1; S2); S3) =) JOIN(S1; JOIN(S2; S3))

%trule JOIN(S1; S2) =) JOIN CONC(S1; S2)

%trule SORT(S1) =) SORT CONC(S1)

%trule RET(F1) =) RET CONC(F1)

%layer SORT

%irule SORT(S1) =) Merge sort(S1)

%irule SORT(S1) =) Null(S1)

%trule JOIN(S1; S2) =) JOIN CONC(S1; S2)

%trule SORT(S1) =) SORT CONC(S1)

%trule RET(F1) =) RET CONC(F1)

%layer MERGE

%trule JOIN(S1; S2) =) JOPR(SORT(S1); SORT(S2))

%irule JOPR(S1; S2) =) Merge join(S1; S2)

%trule JOIN(S1; S2) =) JOIN CONC(S1; S2)

%trule SORT(S1) =) SORT CONC(S1)

%trule RET(F1) =) RET CONC(F1)

%layer DISTRIBUTION

%trule JOIN(S1; S2) =) JOIN CONC(XFER(S1);XFER(S2))

%irule XFER(S1) =) Ship(S1)

%irule XFER(S1) =) Null(S1)

%trule JOIN(S1; S2) =) JOIN CONC(S1; S2)

%trule SORT(S1) =) SORT CONC(S1)

%trule RET(F1) =) RET CONC(F1)

%layer REPLICATION

%trule RET(F1) =) RET CONC(F11)

%trule RET(F1) =) RET CONC(F12)

%layer RET

%irule RET(F1) =) File scan(F1)

(b) Syntactic specification. Rule actions are
omitted for clarity.

Figure 6.2: The Prairie layered optimizer paradigm

Thus, rules in a layer are applied to an expression until no more applicable rules remain in

that layer; the rule engine then applies rules in the next layer, and so on. Layer composi-

tion, thus, defines a hierarchy of rules that determines the order in which rules are applied.

This hierarchy provides the DBI with another degree of control over the search space of the

optimizer.
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One question that might arise is whether compacted layered optimizers have the same

search space as a monolithic hand-coded optimizer. While it is difficult to prove this in a for-

mal sense (since the rule actions for layered optimizers are different from those in a mono-

lithic optimizer), all the layered optimizers that we constructed (and that are described in

this chapter) resulted in exactly the same rule set as the corresponding monolithic optimizer.

Moreover, although the corresponding rule actions are not exactly the same (since the P2V

preprocessor adds some extra statements) in the two approaches, the number of expressions

in the search spaces were exactly the same for all the queries that we optimized using the

layered optimizers and their monolithic counterparts. This lends credence to the hypothesis

that a properly specified layered optimizer is semantically equivalent to a monolithic (non-

layered) specification.

6.3 Examples of Layered Optimizers

This section describes several variations of traditional relational optimizers constructed us-

ing layers.

6.3.1 Example Layers

Some examples of layers in a Prairie specification are shown in Figure 6.3.1 These

layers specify transformations typically found in traditional relational databases. There are

six different layers shown, SEQUENTIAL, SORT, MERGE, RET, DISTRIBUTION, and

REPLICATION.

The SEQUENTIAL layer encapsulates transformations that are typically found in

centralized optimizers. Join commutativity and associativity T-rules are included in this

layer. The remaining rules simply transform the abstract operators into their concrete coun-

terparts, to be transformed by lower layers.

The SORT layer encapsulates implementations of the SORT operator. In Figure 6.3,

the SORT operator is transformed to either the Merge sort or the Null algorithm. Other sort

1For clarity, we omit all rule actions in the descriptions of these layers.
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SEQUENTIAL

JOIN(S1; S2) =)! JOIN(S2; S1)

JOIN(JOIN(S1; S2); S3) =) JOIN(S1; JOIN(S2; S3))

JOIN(S1; S2) =) JOIN CONC(S1; S2)

SORT(S1) =) SORT CONC(S1)

RET(F1) =) RET CONC(F1)

SORT

SORT(S1) =) Merge sort(S1)

SORT(S1) =) Null(S1)

JOIN(S1; S2) =) JOIN CONC(S1; S2)

SORT(S1) =) SORT CONC(S1)

RET(F1) =) RET CONC(F1)

MERGE

JOIN(S1; S2) =) JOPR(SORT(S1); SORT(S2))

JOPR(S1; S2) =) Merge join(S1; S2)

JOIN(S1; S2) =) JOIN CONC(S1; S2)

SORT(S1) =) SORT CONC(S1)

RET(F1) =) RET CONC(F1)

DISTRIBUTION

JOIN(S1; S2) =) JOIN CONC(XFER(S1); XFER(S2))

XFER(S1) =) Ship(S1)

XFER(S1) =) Null(S1)

JOIN(S1; S2) =) JOIN CONC(S1; S2)

SORT(S1) =) SORT CONC(S1)

RET(F1) =) RET CONC(F1)

REPLICATION
RET(F1) =) RET CONC(F11)

RET(F1) =) RET CONC(F12)

RET

RET(F1) =) File scan(F1)

Figure 6.3: Example layers. For clarity, all rule actions are omitted.

algorithms can either be introduced in this or other SORT layers.2 The remaining rules trans-

form abstract operators into concrete operators.

The MERGE layer transforms the JOIN operator into the Merge join algorithm.3

Other join algorithms can either be encapsulated in the MERGE layer, or in a separate layer.

The DISTRIBUTION layer encapsulates the distribution of stored files in distributed

databases. It transforms the JOIN operator such that if its inputs are located at different sites,

they are first transfered to the home site (i.e., the site where the JOIN was issued) before

the join is performed. As in the MERGE layer, the XFER operator (denoting the transfer

of streams between sites) is an enforcer-operator, explicitly introduced via a T-rule. One

2In fact, we can use any sort algorithm in this layer. This is true for other layers as well.
3Note that the JOPR operator in the MERGE layer is required because all enforcer-operators (like SORT)

are explicit in Prairie. However, since the JOPR operator (presumably) does not occur in other layers, it is not
an exported operator of the MERGE layer, and thus, is not transformed into a concrete operator.
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algorithm that implements the XFER operator is Ship. The Ship algorithm here is assumed

to be a block transfer of streams (as in R� [20, 37, 45]); other transfer strategies (e.g., tuple-

at-a-time) could be defined in this or other layers encapsulating distribution transformations.

The REPLICATION layer models replicated databases. Its imported interface is a

RET operator that simulates a centralized, non-replicated database. That is, it gives the illu-

sion of a single physical file for each stored file in the database. The REPLICATION layer

translates a stored file reference into a reference to one of the physical replicas of the file.

(In Figure 6.3, we assume each stored file is replicated twice.)

The RET layer transforms a RET operator into the File scan algorithm. Note that

there are no other rules transforming abstract operators into other concrete operators. This

means that the RET layer is not symmetric, i.e., it imports the RET operator, but doesn’t

export any concrete operator. This, in turn, implies that the RET layer, as defined, is typically

last in a layer composition.

In the following sections, we will show how these layers can be used to construct

some simple optimizers. As mentioned earlier, symmetric layers admit more composition

possibilities, since the exported and imported interfaces are the same.

6.3.2 An Optimizer for a Centralized Database

An optimizer for a centralized database is shown in Figure 6.4. It is formed by com-

posing the SEQUENTIAL, MERGE, SORT, and RET layers. The SEQUENTIAL layer ap-

plies the join associativity and commutativity T-rules to a join expression. The joins of this

expression are then transformed into the Merge join algorithm by the MERGE layer. The

SORT layer then transforms the SORT operator into the Merge sort algorithm, and finally

the RET layer transforms the RET operator into the File scan algorithm. An example of

such a transformation is shown in Figure 6.4. (Horizontal lines separate the input and out-

put operator trees for each layer.) Note that each of the layers has “dummy” T-rules that

transform abstract operators into concrete operators. Thus, for instance, the SEQUENTIAL

layer can either apply the join commutativity rule to a join expression, or pass the expression
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SEQUENTIAL

JOIN(S1; S2) =)! JOIN(S2; S1)

JOIN(JOIN(S1; S2); S3) =) JOIN(S1; JOIN(S2; S3))

JOIN(S1; S2) =) JOIN CONC(S1; S2)

SORT(S1) =) SORT CONC(S1)

RET(F1) =) RET CONC(F1)

MERGE

JOIN(S1; S2) =) JOPR(SORT(S1); SORT(S2))

JOPR(S1; S2) =) Merge join(S1; S2)

JOIN(S1; S2) =) JOIN CONC(S1; S2)

SORT(S1) =) SORT CONC(S1)

RET(F1) =) RET CONC(F1)

SORT

SORT(S1) =) Merge sort(S1)

SORT(S1) =) Null(S1)

JOIN(S1; S2) =) JOIN CONC(S1; S2)

SORT(S1) =) SORT CONC(S1)

RET(F1) =) RET CONC(F1)

RET

RET(F1) =) File scan(F1)

SORT

JOIN

RET RET

dept emp

SORT

JOIN

RET RET

emp dept

SORT

Merge join

RET RET

emp dept

Merge sort

Merge join

RET RET

emp dept

Merge sort

Merge join

File scan File scan

emp dept

Figure 6.4: An optimizer for a centralized database and an example transformation

unchanged to the MERGE layer. The example transformation shown in Figure 6.4 is, thus,

one of many that can be produced by the centralized layered optimizer.

Note that some operators (e.g., JOIN CONC and SORT CONC in the SORT layer)

have no implementations in lower layers. The rules that generate these operators are dis-

carded by the P2V preprocessor for reasons to be explained later; this is described in Sec-

tion 6.4.
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MERGE

JOIN(S1; S2) =) JOPR(SORT(S1); SORT(S2))

JOPR(S1; S2) =) Merge join(S1; S2)

JOIN(S1; S2) =) JOIN CONC(S1; S2)

SORT(S1) =) SORT CONC(S1)

RET(F1) =) RET CONC(F1)

SEQUENTIAL

JOIN(S1; S2) =)! JOIN(S2; S1)

JOIN(JOIN(S1; S2); S3) =) JOIN(S1; JOIN(S2; S3))

JOIN(S1; S2) =) JOIN CONC(S1; S2)

SORT(S1) =) SORT CONC(S1)

RET(F1) =) RET CONC(F1)

SORT

SORT(S1) =) Merge sort(S1)

SORT(S1) =) Null(S1)

JOIN(S1; S2) =) JOIN CONC(S1; S2)

SORT(S1) =) SORT CONC(S1)

RET(F1) =) RET CONC(F1)

RET

RET(F1) =) File scan(F1)

SORT

JOIN

RET RET

dept emp

SORT

Merge join

RET RET

dept emp

SORT

Merge join

RET RET

dept emp

Merge sort

Merge join

RET RET

dept emp

Merge sort

Merge join

File scan File scan

dept emp

Figure 6.5: An alternative optimizer for a centralized database and an example transforma-
tion

6.3.3 Another Optimizer for a Centralized Database

An alternative optimizer for a centralized database is shown in Figure 6.5. It is sim-

ilar to the optimizer in Figure 6.4 with the SEQUENTIAL and MERGE layers reversed.

Again, an example transformation of a two-way join expression is shown in Figure 6.5. The

important point to note here is that the MERGE layer first transforms a JOIN operator into

the Merge join algorithm, then the SEQUENTIAL layer applies the join associativity and
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commutativity rules. However, any remaining JOIN operators beyond the SEQUENTIAL

layer are not transformed into any join algorithms (since the two lower layers, SORT and

RET only transform the SORT and RET operators, respectively). Thus, the transformations

in the SEQUENTIAL layer are never applied to generate valid access plans. In other words,

the layered optimizer specification shown in Figure 6.5 would remain unchanged in its be-

havior if the SEQUENTIAL layer were removed.4

Comparison of the two alternative centralized optimizers in Figures 6.4 and 6.5

shows that the one in Figure 6.4 is more general since its search space is larger. This simple

example shows that the order of layer stacking can alter the search space without any change

in the search strategy. This, in turn, implies that the optimal access plan depends on the order

of layers.

6.3.4 An Optimizer for a Distributed Database

An optimizer for a distributed database is shown in Figure 6.6. It is formed by composing

the SEQUENTIAL, DISTRIBUTION, MERGE, SORT, and RET layers. In other words, it

is obtained by adding the DISTRIBUTION layer to the centralized optimizer in Figure 6.4.

The SEQUENTIAL layer applies the join associativity and commutativity T-rules to a join

expression. The DISTRIBUTION layer then ensures that join streams are shipped to the join

site by using the Ship algorithm. The JOIN operator is then transformed into the Merge join

algorithm by the MERGE layer. The SORT layer then transforms the SORT operator into

the Merge sort algorithm, and finally the RET layer transforms the RET operator into the

File scan algorithm. An example transformation is shown in Figure 6.6.

6.3.5 An Optimizer for a Replicated Database

An optimizer for a replicated database is obtained from a centralized optimizer by inserting

the REPLICATION layer. This is shown in Figure 6.7. It is formed by composing the SE-

4The layer ordering of Figure 6.5 is actually an example of a composition error, in that the SEQUENTIAL
layer should lie above all join layers for it to be useful. Errors like this can be detected using Batory and Geraci’s
algorithms [8].
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SEQUENTIAL

JOIN(S1; S2) =)! JOIN(S2; S1)

JOIN(JOIN(S1; S2); S3) =) JOIN(S1; JOIN(S2; S3))

JOIN(S1; S2) =) JOIN CONC(S1; S2)

SORT(S1) =) SORT CONC(S1)

RET(F1) =) RET CONC(F1)

DISTRIBUTION

JOIN(S1; S2) =) JOIN CONC(XFER(S1); XFER(S2))

XFER(S1) =) Ship(S1)

XFER(S1) =) Null(S1)

JOIN(S1; S2) =) JOIN CONC(S1; S2)

SORT(S1) =) SORT CONC(S1)

RET(F1) =) RET CONC(F1)

MERGE

JOIN(S1; S2) =) JOPR(SORT(S1); SORT(S2))

JOPR(S1; S2) =) Merge join(S1; S2)

JOIN(S1; S2) =) JOIN CONC(S1; S2)

SORT(S1) =) SORT CONC(S1)

RET(F1) =) RET CONC(F1)

SORT

SORT(S1) =) Merge sort(S1)

SORT(S1) =) Null(S1)

JOIN(S1; S2) =) JOIN CONC(S1; S2)

SORT(S1) =) SORT CONC(S1)

RET(F1) =) RET CONC(F1)

RET

RET(F1) =) File scan(F1)

SORT

JOIN

RET RET

dept emp

SORT

JOIN

RET RET

emp dept

SORT

JOIN

Ship Ship

RET RET

emp dept

SORT

Merge join

Ship Ship

RET RET

emp dept
Merge sort

Merge join

Ship Ship

RET RET

emp dept
Merge sort

Merge join

Ship Ship

File scan File scan

emp dept

Figure 6.6: An optimizer for a distributed database and an example transformation
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SEQUENTIAL

JOIN(S1; S2) =)! JOIN(S2; S1)

JOIN(JOIN(S1; S2); S3) =) JOIN(S1; JOIN(S2; S3))

JOIN(S1; S2) =) JOIN CONC(S1; S2)

SORT(S1) =) SORT CONC(S1)

RET(F1) =) RET CONC(F1)

MERGE

JOIN(S1; S2) =) JOPR(SORT(S1); SORT(S2))

JOPR(S1; S2) =) Merge join(S1; S2)

JOIN(S1; S2) =) JOIN CONC(S1; S2)

SORT(S1) =) SORT CONC(S1)

RET(F1) =) RET CONC(F1)

SORT

SORT(S1) =) Merge sort(S1)

SORT(S1) =) Null(S1)

JOIN(S1; S2) =) JOIN CONC(S1; S2)

SORT(S1) =) SORT CONC(S1)

RET(F1) =) RET CONC(F1)

REPLICATION
RET(F1) =) RET CONC(F11)

RET(F1) =) RET CONC(F12)

RET

RET(F1) =) File scan(F1)

SORT

JOIN

RET RET

dept emp

SORT

JOIN

RET RET

emp dept

SORT

Merge join

RET RET

emp dept

Merge sort

Merge join

RET RET

emp dept

Merge sort

Merge join

File scan File scan

emp 1 dept 2
Merge sort

Merge join

File scan File scan

emp 1 dept 2

Figure 6.7: An optimizer for a replicated database and an example transformation
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QUENTIAL, MERGE, SORT, REPLICATION, and RET layers. The SEQUENTIAL layer

applies the join associativity and commutativity T-rules to a join expression. The JOIN op-

erator is then transformed into the Merge join algorithm by the MERGE layer. The SORT

layer then transforms the SORT operator into the Merge sort algorithm. The REPLICA-

TION layer transforms references to logical stored files into their physical replicas. Finally,

the RET layer transforms the RET operator into the File scan algorithm. An example trans-

formation is shown in Figure 6.7. Note that references to the stored files dept and emp are

translated by the REPLICATION layer into references to their corresponding physical stored

files.

6.4 Compacting Layered Optimizers

In the previous sections, we described how layers can be used to define small rule sets for

optimizers, and how these layers can be composed to construct an optimizer. However, as

seen from the example layers in Section 6.3, even simple layered optimizers can consist of

a large number of rules. A naive implementation of such a specification can result in an

inefficient optimizer. In this section, we discuss how the P2V preprocessor can be used to

compact layered optimizers to obtain a monolithic rule set.

Layers have two primary goals: to translate abstract operators into concrete ones,

and to define a hierarchy of rules (i.e., to define rule precedence). Any compaction of layers

has to preserve the semantics of these two goals. The P2V preprocessor accomplishes both

of these goals. Broadly speaking, there are two responsibilities of the P2V preprocessor in

compacting layers. The first is to compact the rules themselves, and the second is to ensure

that the compaction of rule actions generates a semantically equivalent rule set. Below, we

discuss these two steps in greater detail.

The translation of abstract operators into concrete ones by a layer implies that there

is a one-to-one correspondence between a concrete operator of one layer and an abstract op-

erator of the layer immediately below it. Thus, in the centralized optimizer of Figure 6.4,

the JOIN CONC operator in the SEQUENTIAL layer corresponds to the JOIN operator in
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SEQUENTIAL

JOIN(S1; S2) =)! JOIN(S2; S1)

JOIN(JOIN(S1; S2); S3) =) JOIN(S1; JOIN(S2; S3))

JOIN(S1; S2) =) JOIN CONC(S1; S2)

SORT(S1) =) SORT CONC(S1)

RET(F1) =) RET CONC(F1)

MERGE

JOIN(S1; S2) =) JOPR(SORT(S1); SORT(S2))

JOPR(S1; S2) =) Merge join(S1; S2)

JOIN(S1; S2) =) JOIN CONC(S1; S2)

SORT(S1) =) SORT CONC(S1)

RET(F1) =) RET CONC(F1)

SORT

SORT(S1) =) Merge sort(S1)

SORT(S1) =) Null(S1)

JOIN(S1; S2) =) JOIN CONC(S1; S2)

SORT(S1) =) SORT CONC(S1)

RET(F1) =) RET CONC(F1)

RET

RET(F1) =) File scan(F1)

MONOLITHIC

(JOIN (?1 ?2)) �!! (JOIN (?2 ?1))

(JOIN ((JOIN (?1 ?2)) ?3)) �! (JOIN (?1 (JOIN (?2 ?3))))

(JOIN (?1 ?2)) �! (Merge join (?1 ?2))

(RET ()) �! (File scan ())

Figure 6.8: Compacting the layered centralized Prairie rule set in Figure 6.4

the MERGE layer. Once this correspondence is established, the P2V preprocessor can use

the same rule compaction techniques described in Section 4.5 (and depicted in Figure 4.11)

to combine all the layers together into a single, monolithic rule specification. For the cen-

tralized optimizer shown in Figure 6.4, this process results in the compaction illustrated in

Figure 6.8. It is interesting to note that the monolithic rule set obtained by layer compaction

is basically the same5 (except for rule actions as shown in Figure 6.9) as one that might have

been hand-written by a DBI; the layered specification, however, affords more degrees of ex-

5Note, especially, that rules (e.g., the JOIN to JOIN CONC transformation in the MERGE layer) that sim-
ply transform abstract operators to concrete operators are discarded as a direct consequence of the compaction
process.
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JOIN(JOIN(S1; S2) : D4; S3) : D5 =) JOIN(S1; JOIN(S2; S3) : D6) : D7 (6.1)
ff

1. D6:attributes = union (D2:attributes;D3:attributes) ;
gg

2. is associative (D5:join predicate;D2:attributes)
ff

3. D7 = D5 ;

4. D7:join predicate = D4:join predicate ;

5. D6:join predicate = D5:join predicate ;

6. D6:record width = D2:record width +D3:record width ;

7. D6:cardinality = compute cardinality (D2;D3) ;

gg

(a) Join associativity T-rule

(JOIN ?op arg5 ((JOIN ?op arg4 (?1 ?2)) ?3)) ! (JOIN ?op arg7 (?1 (JOIN ?op arg6 (?2 ?3)))) (6.2)

%cond code
ff

1. NO OP ;
2. if (!(is associative (?op arg5 ! op arg:join predicate; ?2 ! expr:argument:log prop ! attributes))

&&(?op arg5 ! op arg:layer <= 1) )

REJECT ;

gg

%appl code
ff

3. ?op arg7 ! op arg:join predicate = ?op arg5 ! op arg:join predicate ;

3. ?op arg7 ! log prop = ?op arg5 ! log prop ;

3. ?op arg7 ! op arg:layer = ?op arg5 ! op arg:layer ;

4. ?op arg7 ! op arg:join predicate = ?op arg4 ! op arg:join predicate ;

5. ?op arg6 ! op arg:join predicate = ?op arg5 ! op arg:join predicate ;

6. NO OP ;
7. NO OP ;

8. ?op arg6 ! op arg:layer = 1 ;

gg

(b) P2V-generated trans rule corresponding to the T-rule in (a). Statement numbers correspond to the
same numbered statements in (a). Boxed clauses and statements are specific to layered optimizers (cf.
Figure 4.6(b)).

Figure 6.9: Translating the join associativity T-rule in the SEQUENTIAL layer (from the
centralized optimizer in Figure 6.8)

tensibility and reusability.

Another aspect of a layered optimizer specification that must be preserved by com-

paction is that of the hierarchical nature of rules. That is, the semantics of layered rule sets

(rules in a layer applied before rules in a lower layer) must be maintained when the layers
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are compacted. This is accomplished by the P2V preprocessor as follows. The preproces-

sor automatically introduces a new property, called layer, that records the layer number in

which each expression was generated.6 Initially, all new expressions have a layer property of

1 (meaning that all rules in layers 1 and higher can be applied to them). As expressions prop-

agate through the layers, their layer property values are assigned by the P2V preprocessor

in rule actions. In other words, the P2V preprocessor augments rule actions with statements

that set the layer property value for each new expression. The test of a rule is also modified

to ensure that an expression generated in a lower layer is not transformed in a layer above.

This is best illustrated by an example.

Consider the join associativity T-rule in the SEQUENTIAL layer shown in Fig-

ure 6.9(a). When a layered optimizer consisting of the SEQUENTIAL layer (e.g., the cen-

tralized optimizer in Figure 6.4) is compacted, the actions of the join associativity rule are

modified to assign the layer property values of any new expressions. This is shown in Fig-

ure 6.9(b). The boxed statements and clause (in the test) are introduced by the P2V prepro-

cessor in addition to the other transformations described in Chapter 4. Notice that the root

of a new expression obtained by a rule has the same layer number as the root of the old ex-

pression; this is because they belong to the same equivalence class. New sub-expressions,

however, have their layer values set to 1; thus, all rules, beginning from the first layer, are

applicable to them.

The translation of I-rules works similarly, i.e., the test of an I-rule is augmented to

check if the operator being rewritten was generated by a higher or lower layer.

6.5 Benchmarking Layered Optimizers

In the previous section, we described how layered optimizer specifications are compacted

by the P2V preprocessor to generate monolithic rule sets. The question that naturally arises

is whether this method of optimizer construction (layered specification followed by com-

paction) results in a loss of efficiency of the generated optimizer. In this section, we present

6Layers are numbered in ascending order, beginning from 1 for the topmost layer.
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preliminary experimental results that demonstrate that the efficiency of an optimizer is not

sacrificed by using a layered specification.

Consider the layered centralized optimizer shown in Figure 6.4. As shown in Fig-

ure 6.8, this can be compacted to a monolithic rule set. However, rules in the monolithic

set do not have exactly the same rule actions as a non-layered Prairie specification (since

the P2V preprocessor adds statements to track layer numbers), or a hand-written Volcano

specification (since the abstractions in Prairie and Volcano are different). To verify that the

efficiency of optimizers generated from layered specifications is not sacrificed, we conducted

some experiments involving optimizer specifications for centralized, distributed, and repli-

cated DBMSs. Each optimizer was specified in three ways: layered Prairie, non-layered

Prairie, and hand-coded Volcano. Each resulting optimizer was benchmarked using a set of

randomly generated queries. The results are reported below.

The benchmarking of the layered optimizers consisted of optimizing left-deep N -

way join operator trees, for varying values ofN , as shown in Figure 6.10(a). Random queries

were generated using a uniform random number generator, as in Section 5.2. The set of rela-

tions, along with their attributes, cardinalities, and record widths was fixed. The order of re-

lations in the left-deep tree was varied. Each join had an equijoin predicate, with the two join

attributes chosen at random from the set of eligible attributes of the outer and inner streams.

For the distributed DBMS optimizers, we simulated a database with four sites; each relation

was randomly assigned to a site. For the replicated DBMS case, there were two replicas

for each stored file referenced in an operator tree; to make the replication meaningful, each

replica of a given stored file was assumed to be sorted on different attributes.

For each value N of the number of joins, we generated 10 different queries7 , and

optimized each query using optimizers generated from three different specifications: lay-

ered Prairie, non-layered Prairie, and hand-coded Volcano. The run times were measured

using the GNU time command, and averaged over the 10 queries to generate the per-query

optimization time. Each point in the graph, thus, represents the average CPU time for opti-

7We chose 10 instead of a larger number since the average run time was not substantially different for more
queries.
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(b) Query optimization time for the central-
ized DBMS optimizer (Figure 6.4)
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(c) Query optimization time for the distributed
DBMS optimizer (Figure 6.6)
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(d) Query optimization time for the replicated
DBMS optimizer (Figure 6.7)

Figure 6.10: Benchmarking layered optimizers

mizing 10 different queries. As before, all experiments were performed on a lightly loaded

DECstation 5000/200 running Ultrix 4.2.

The optimization times for the layered Prairie, non-layered Prairie, and hand-coded

Volcano optimizers are shown in Figures 6.10(b)8 , 6.10(c), and 6.10(d) for the centralized

8The optimization times for both non-layered Prairie and Volcano for the centralized optimizer are the same
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(Figure 6.4), distributed (Figure 6.6), and replicated (Figure 6.7) DBMS optimizers, respec-

tively. In each case, we can see that the three specifications are virtually equally efficient,

confirming the hypothesis that layered optimizers need not sacrifice any performance. More

experiments are needed, however, to verify that the performance is good when scaled to large

layered optimizers.

Another metric which can measure the usefulness of layered optimizer specifications

is the ease with which they can be tailored to different applications. In this case, the layered

approach is useful because it helps a DBI to clearly see the effects of any change on the search

space of an optimizer. For instance, the Open OODB optimizer results in an extremely large

search space for certain queries. If it were implemented using layers, then the DBI could

more easily experiment with adding new rules and layers in various layered configurations.

It is in this respect that we believe that the layered approach will yield the most productivity

gains.

6.6 Related Work

Optimizer design and implementation using pre-defined building-blocks has been proposed

by other researchers. Most of these proposals follow a rule-based paradigm. In this section,

we briefly describe some of these approaches. The main problem with these ideas is that

they are paper proposals, so it is not immediately clear how well they might work in practice.

Moreover, as we have seen in Chapter 4, it is important to have a compiler that can generate

efficient, compact optimizers from a specification constructed using components. None of

the proposals discussed in this section describe how that is done, or even if it is possible.

Sciore and Sieg [44] describe an optimizer generator model that allows a DBI to

construct a rule-based optimizer using modules. Each module consists of term rewrite rules,

where rewrite rules transform terms in a relational algebra. These rules can have conditions

associated with them. Each module has exported and imported interfaces which consist of

terms.

as those shown in Figure 5.1(b).
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Each module in Sciore and Sieg’s framework is allowed to have rewrite rules in its

own relational algebra. A module can also specify its search space, cost model, individual

search strategy (e.g., heuristic, exhaustive, simulated annealing, etc.), termination policy,

and rule properties (e.g., rule priorities that define the order in which rules are applied in

each module). There are also knobs that a DBI can set before optimization starts. These

knobs are essentially initialization steps that set various parameters of a module.

An optimizer is constructed by stacking various modules together. The order of mod-

ules defines the order of term rewrite rules that are applied to a term. A module can request

another to optimize a term and return its results. Thus, communication between modules is

bi-directional.

In theory, Sciore and Sieg propose a very general framework for optimizer design.

However, since this model is not implemented (to our knowledge), it is unclear whether this

approach is used as an interpreter (thus degrading performance), or to generate a monolithic

optimizer. The algorithm for the latter is not described, so the performance of the resulting

optimizer is hard to predict. Also, it is not evident whether the general nature of the frame-

work makes it hard and unwieldy to use. If so, then it defeats the purpose of an extensible

optimizer generator paradigm.

Mitchell, Dayal, and Zdonik [39, 40] propose a framework called Epoq in which op-

timizers are constructed using extensible regions. A region is defined by a stated goal (e.g.,

lower cost, join reorder, etc.). Each region defines a control strategy that transforms a query

into alternative forms based on its internal transformation rules. A region can also call a

child region to transform a subquery. In this approach, an optimizer is specified as a rooted,

directed, acyclic graph of regions.

The root region is responsible for optimizing a user query. A parent region controls

which of its child regions transforms a query. Thus, the expansion of the search space de-

pends on two factors: the internal transformations of a region, and the parent’s determination

of the most appropriate region (based on its stated goal) to effect a transformation.

The transformation rules in a region consist of applicability conditions together with

97



a test to check whether a transformed query meets the region’s stated goal. If not, then trans-

formation rules are applied repeatedly (perhaps based on some heuristic) until either the goal

is satisfied, or the region fails and returns to its parent.

As in the Sciore and Sieg approach, the model proposed by Mitchell, Dayal, and

Zdonik has not been implemented. Thus, it is not clear whether such a general framework

can generate optimizers that are efficient and that encompass a large domain of commonly

available optimizers. It is also not clear whether the interaction between regions can be ex-

pressed in a compact framework so that regions can be reused in various optimizer config-

urations.

6.7 Summary

In this chapter, we described how layered optimizers can be constructed using Prairie, and

how the P2V preprocessor can generate monolithic optimizers from a layered specification.

We also presented preliminary experimental evidence from simple layered optimizers that

demonstrate that optimizer performance is not sacrificed by using reusable, extensible layers.

More experiments are necessary to conclusively validate that a layered optimizer can be just

as efficient as (and more extensible than) monolithic optimizers. Our primary goal in this

chapter was to quickly design and implement a practical framework for specifying layered

optimizers. Future work can add more generality to this approach. An important goal is to

use Prairie to automatically generate efficient optimizers in P2 [10, 11].
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Chapter 7

Conclusion

This dissertation described Prairie, an algebraic framework for rule-specification in query

optimizers. This chapter summarizes the contributions of our research, and suggests avenues

of future work.

7.1 Contributions of Dissertation

To design open DBMSs that are easily tailorable and retargetable to different architectures

and applications, the major components of a DBMS should be specified using abstractions

that are independent of the underlying implementation details. To that end, we have pro-

posed, designed, and implemented Prairie, an algebraic specification framework for con-

structing rule-based query optimizers. In Chapter 1, we enumerated four critical require-

ments in such a framework. Below, we summarize and describe how Prairie meets all of

these intended goals.

� Abstractions. Well-defined and high-level abstractions are critical to the success of

an open system. Prairie provides abstractions that are central to the specification of

any optimizer; these abstractions capture the operation of an optimizer without regard

to their implementation. Operators, algorithms, rules, descriptors, and layers repre-

sent the various abstractions that are key to Prairie’s success. Operators represent the
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abstract computations on streams. Algorithms describe the implementations of oper-

ators. Rules (T-rules and I-rules) specify the transformations that an optimizer applies

to generate its search space; the internal representation of the search space is left as

an implementation-level detail. Descriptors are used to encapsulate the properties of

expressions in the search space. Unlike other rule-based optimizers which use multi-

ple structures to specify properties (based on their use), descriptors represent all the

properties used in an optimizer; the classification of properties based on their usage

is an internal detail, better left to an implementation. Layers encapsulate larger rule

sets; each layer typically represents a rule specification in its own right.

� Extensibility. Extensibility refers to the ease with which an existing system can be

changed. The language constructs that Prairie provides to specify the abstractions

mentioned above are designed to enable a DBI to quickly and efficiently add or delete

operators, algorithms, rules, properties, or layers to construct an optimizer for a new

query environment. This is an improvement over existing rule-based optimizers be-

cause any changes made by the DBI are seamless. Thus, modifying an optimizer using

Prairie need not result in a system with lots of patches applied haphazardly; brittleness

of the resulting optimizer is less of a concern.

� Performance. Performance of an optimizer is critical since the search spaces are typ-

ically exponential in the size of an operator tree. The experiences of many researchers

have shown that a very general framework of system construction can result in inef-

ficient implementations either because the abstractions do not adequately capture the

system semantics, or because the translation of the specification into an executable

system does not exploit the properties of the target application or architecture. In our

research, we have used Volcano as the target framework for translating Prairie specifi-

cations. We have implemented the P2V preprocessor that transforms the abstractions

embodied in Prairie to the lower-level details expected by the Volcano rule engine. We

took care to ensure that the translation process generated efficient internal represen-

tations for the various abstractions. To validate the performance of this approach, we
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presented various benchmark experiments, both with small and large optimizer spec-

ifications using Prairie. The results confirm our belief that the preprocessor approach

is a valid step, and that Prairie abstractions have efficient implementations.

� Reconfigurability. Layers in Prairie encapsulate a set of rules; they can be used as

subsystems to construct a larger system (optimizer). We have extended Prairie to al-

low DBIs to specify layers, and to build optimizers as a linear composition of layers.

The P2V preprocessor uses the composition semantics to generate an efficient mono-

lithic optimizer from a composition of layers. Again, this process results in little or

no loss in performance of the resulting optimizer as our preliminary experimental ev-

idence shows.

7.2 Future Work

Prairie provides an open environment for the high-level specification of query optimizers.

Together with the P2V preprocessor to generate executable optimizers, this approach results

in extensible specifications. Future work will make this paradigm even more useful. In this

section, we describe avenues for further research.

� Continuing validation of Prairie is important to ensure that the abstractions embodied

within it are well-defined and represent important concepts of optimization. In this

dissertation, we have presented experimental evidence using simple optimizers and

the Open OODB optimizer. In the future, interesting experiments will involve dis-

tributed and parallel databases, multi-query optimization, and real-time queries. Each

application introduces a set of constraints concerning the evaluation of queries and

experimentation is needed to verify that Prairie specifications can adequately capture

the semantics of the application. An example of such an application is extending the

Open OODB optimizer (described in Chapter 5) to build distributed or parallel object-

oriented optimizers.
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� Layered Prairie specifications present several opportunities for future work. Cur-

rently, Prairie allows DBIs to encapsulate a set of rules in a layer. Encapsulation of

other abstractions in Prairie is highly desirable. For example, a layer can define new

properties in a descriptor, or new helper functions. The site information of streams in

an optimizer for a distributed DBMS, for instance, can be defined as a new property

in the DISTRIBUTION layer (see Chapter 6). The P2V preprocessor can be modified

to compact layers and generate a monolithic rule set, descriptor, and a single set of

helper functions.

� In this dissertation, we presented preliminary experimental evidence to validate the

performance of layered optimizers. Future work will include more experiments with

large layered optimizer specifications. For instance, the Open OODB optimizer is a

good candidate for such a specification. It will also be instructive to extend the layered

Open OODB specification to distributed or replicated databases.

� Extending the Prairie specification language to allow hierarchical, non-linear compo-

sitions (as opposed to linear compositions) will allow a DBI to specify more optimiz-

ers than are currently possible. This means that layers can have multiple parameters,

each of which can be instantiated by a layer. For example, a retrieval layer implement-

ing an abstract RET operator with the index scan algorithm may require an additional

parameter to define the implementation of the index. Experience with Genesis [4] has

shown that such parameterized layers can capture the semantics of many widely used

optimization algorithms. Extending Prairie to allow such compositions will necessi-

tate a modification of P2V’s layer compaction algorithm.

� Extensible search strategies is another important area of future work. Currently, the

P2V preprocessor translates Prairie specifications into Volcano specifications to be

compiled with Volcano’s rule engine. However, Volcano’s rule engine implements

a hard-wired search strategy that is very rigid. Moreover, the implementation itself

does not lend itself to easy change; modifying it will (we hypothesize) require ma-
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jor changes. Since Prairie provides abstractions that are high-level and (mostly) inde-

pendent of the underlying search strategy, we believe that Prairie specifications can be

easily translated to another rule engine with an appropriate preprocessor. Moreover,

since Prairie allows encapsulation of rule sets in layers, we can foresee each layer en-

capsulating a rule engine. Thus, the need for a global search strategy disappears, and

each layer implements its own search strategy (in addition to its own search space and

cost model). This is similar to the frameworks proposed in [39, 40, 44]. One interest-

ing problem is the compaction of layers — namely, how can we generate a mono-

lithic rule set with a search strategy that is semantically equivalent to the composition

of the search strategies in the different layers? Since each layer can have a different

rule engine, any compaction of layers should generate a monolithic rule engine that is

provably equivalent to the actions of the hierarchical ordering of the individual rule

engines.

� In Chapter 6, we mentioned that layers in Prairie are mostly symmetric. This affords a

much greater flexibility in layer composition. However, not all legal compositions are

necessarily valid or meaningful. This implies a need for some validation techniques

that can detect invalid compositions. Batory and Geraci [8] describe a useful method

for design rule checking in layered systems that validates layer compositions. A future

goal is to integrate this validation into the P2V preprocessor.

� Multi-phase query optimizers are being investigated as a means of limiting the enor-

mous size of the search spaces in most optimizers. In this approach, the optimizer

is implemented as a composition of separate phases, each phase optimizing the out-

put of another. Systems like XPRS [48] and Mariposa [47] are some examples of this

approach. The Mariposa distributed DBMS, for instance, implements a three-phase

optimizer; these phases are compilation, parallelization, and distribution. The com-

pilation phase optimizes an operator tree assuming a centralized DBMS, the paral-

lelization phase introduces intra-operator parallelism, and the distribution phase se-

lects sites for the execution of the various algorithms. As Stonebraker et al point out
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in [47], partitioning the optimization process into multiple phases can result in sub-

optimal plans. However, careful design and implementation of each phase can signif-

icantly reduce the search space of the optimizer (and, consequently, the optimization

time), while still generating a good access plan. The design of such multi-phase op-

timizers can be greatly facilitated by ensuring that each phase is reconfigurable; this

will enable DBIs to fine-tune each phase to generate plans that are most likely to yield

the best access plan for queries in a particular application. Prairie may be a valuable

tool in building multi-phase optimizers, where each phase is layered and specified us-

ing Prairie.

� Since Prairie depends on Volcano’s rule engine, and since Volcano implements a top-

down search strategy, a future area of research would involve investigating the use of

Prairie for specifying bottom-up optimizers. Since most of Prairie’s abstractions do

not depend on the underlying search strategy, this implies that Prairie might serve as

a useful framework for both top-down and bottom-up optimizers.

7.3 Retrospective

Our research concentrated on developing a high-level framework for rule specification in

query optimizers, and a preprocessor for the generation of efficient optimizers. We have

used Volcano as the backend rule engine for our preprocessor and for our experiments.

Most of the abstractions in Prairie capture optimizer actions succintly. The descriptor

abstraction, for instance, not only allows a DBI to concisely represent all properties, but also

for the same expression to have different descriptors (i.e., different properties) depending on

which side of a rule it occurs on. Abstract operators and algorithms that are all treated as first-

class objects allows Prairie specifications to scale gracefully. We feel, thus, that Prairie is a

good beginning for constructing extensible, scalable, and efficient optimizers.

Although Volcano’s rule engine uses an efficient, exhaustive search strategy, its im-

plementation leaves it extremely inextensible. Moreover, some of the details of the rule en-
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gine propagate up to the Volcano rule specification language. For example, the data struc-

tures used to store operator trees and their properties are optimized for maximum storage

efficiency. Unfortunately, this also means that the DBI has to be careful and knowledgable

enough to partition properties appropriately. Another example of this inflexibility is the mul-

titude of support functions with specific parameter lists that is required by Volcano. This not

only disperses the optimizer actions over a wider area, but also constrains the DBI since

the parameter lists of the support functions restrict the properties accessible in the function.

Since Prairie is designed to be independent of many of these implementation details, it is the

P2V preprocessor that currently has to bear the brunt of the burden of generating many of

the low-level “abstractions” of Volcano. A better approach to our research would probably

have been to implement our own rule engine (instead of using Volcano) with the same four

goals (abstractions, extensibility, performance, and reconfigurability) as the rule specifica-

tion language.

Cost-based query optimization is a well-studied area of research. Even though the

techniques are well understood, building an optimizer is still an expensive proposition. This

problem will only be magnified as DBMSs are called upon to support larger amounts of data

as well as unstructured, novel, or heterogeneous data. What is needed are tools that can help

in a streamlining the process of optimizer development; these tools have to be general and

contain abstractions that are applicable to a wide variety of applications. This dissertation

is a step in that direction.
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Appendix A

Complexity of the System R

Optimizer

In this appendix, we sketch a proof for the asymptotic complexity of the System R optimizer

[46] for joining n relations. This complexity holds when the query graph is fully connected

or the heuristic of delaying cross-products is dropped. This is the worst-case scenario.

The System R optimizer only generates left-deep operator trees. That is, the inner

input of a join operator is the retrieval of a stored file. It is easy to see that, under this as-

sumption, the total number of distinct expressions is n!. However, System R uses dynamic

programming [19] to substantially reduce this complexity.

Below, we derive the complexity of the System R optimizer using dynamic pro-

gramming. The optimizer constructs optimal plans for each possible join of j relations, for

j = 0; : : : ; n. At each stage, only the best plan for joining a given subset of relations is main-

tained. Thus, the complexity of the System R optimizer is determined by the total number

of operator trees that need to be examined at each stage.

The number of operator trees with 1 relation is n =
�n
0

�
. The number of operator

trees with 1 relation after pruning is n =
�n
1

�
.

The number of operator trees with 2 relations is
�n
1

�
(n � 1);

�n
1

�
is the number of

1-relation operator trees, and (n � 1) is the number of 2-relation operator trees generated
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from each 1-relation tree. The number of operator trees with 2 relations after pruning is
�n
2

�
.

In general, the number of operator trees with j relations is
� n
j�1

�
(n � j + 1). The

number of operator trees with j relations after pruning is
�n
j

�
.

The complexity of the System R optimization algorithm is, thus, given by the sum

n�1X
j=0

 
n

j

!
(n� j) = n2n�1

In other words, the System R optimizer has a worst-case complexity that is exponen-

tial in the number of relations to be joined.
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Appendix B

Benefits of Rule Compaction

In this appendix, we present an informal argument that the run-time of an optimizer decreases

when rules are compacted using the techniques described in Chapter 4.

Assume that O original rules are compacted to C rules (C < O). If the compacted

rule set (with C rules) runs in time T , then the original rule set (with O rules) runs inOCT

time. To see this, if a compacted rule c is obtained by compacting k original rules, then one

application of the compacted rule c requires the equivalent of the k original rule applications.

That is, a linear speedup is achieved by compacting rules.

Note, however, that T (the time it takes to optimize a query) is actually exponential in

n (the number of relations to be joined), as proved in Appendix A. Thus, the benefits of rule

compaction also extend to reducing memory requirements: each time a rule is applied, a new

operator tree is introduced. By compacting rules, intermediate trees are not generated. There

might be a very large (e.g., exponential) number of such intermediate trees whose creation

are eliminated through rule compaction.

108



Appendix C

The Open OODB Rule Set

In this appendix, we list the rules that appear in the Open OODB optimizer. Figure C.1

shows the 17 transformation rules and 9 implementation rules using the Volcano optimizer-

generator. Figure C.2 shows the 22 transformation rules and 11 implementation rules in

the Prairie framework. Note that the first five Prairie T-rules (Figure C.2) have no coun-

terparts on the Volcano side; these additional T-rules are required to introduce the enforcer-

operator PR ASSEMBLY into the various operator trees. Similarly, the last two Prairie I-

rules (Figure C.2) are required to introduce the Null algorithm and the enforcer-algorithm

Enf assembly. The remaining Prairie rules have a one-to-one correspondence with the Vol-

cano rules.

Most of the rules in the Open OODB optimizer are quite complex with substantial

portions of code for manipulating properties. We compare two simple transformation rules

in Figure C.3, which shows the corresponding rules for delaying the materialization opera-

tion. Figure C.3(a) shows the Volcano rule, and Figure C.3(b) shows the Prairie rule for this

transformation. Note that the Prairie T-rule has more statements that compute properties of

new expressions. This is because some properties in Volcano are computed automatically (by

DBI-written support functions) when rules are applied, as mentioned in Chapter 2. Prairie

requires a DBI to specify all property transformations explicitly.
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Transformation rules
(OP SELECT ?op arg1 (?1)) �! (OP SELECT ?op arg2 ((OP SELECT ?op arg3 (?1))))

(OP MAT ?op arg1 ((OP SELECT ?op arg2 (?1)))) �!!(OP SELECT ?op arg3 ((OP MAT op arg4 (?1))))

(OP SELECT ?op arg1 ((OP MAT ?op arg2 (?1)))) �!!(OP MAT ?op arg3 ((OP SELECT op arg4 (?1))))

(OP SELECT ?op arg1 ((OP UNNEST ?op arg2 (?1)))) �! (OP UNNEST ?op arg3 ((OP SELECT op arg4 (?1))))

(OP MAT ?op arg1 (?1)) �! (OP JOIN ?op arg2 (?1 (OP GET ?op arg3 ())))

(OP SELECT ?op arg1 ((OP JOIN ?op arg2 (?1 ?2)))) �! (OP JOIN ?op arg3 (?1 (OP SELECT op arg4 (?2))))

(OP SELECT ?op arg1 ((OP JOIN ?op arg2 (?1 ?2)))) �! (OP JOIN ?op arg3 ((OP SELECT op arg4 (?1)) ?2))

(OP JOIN ?op arg1 (?1 (OP MAT ?op arg2 (?2)))) �! (OP MAT ?op arg3 ((OP JOIN op arg4 (?1 ?2))))

(OP JOIN ?op arg1 ((OP SELECT ?op arg2 (?1)) ?2)) �!!(OP SELECT ?op arg3 ((OP JOIN op arg4 (?1 ?2))))

(OP MAT ?op arg1 ((OP JOIN ?op arg2 (?1 ?2)))) �! (OP JOIN ?op arg3 ((OP MAT op arg4 (?1)) ?2))

(OP JOIN ?op arg1 (?1 ?2)) �!!(OP JOIN ?op arg2 (?2 ?1))

(OP SELECT ?op arg1 ((OP SELECT ?op arg2 (?1)))) �!!(OP SELECT ?op arg3 ((OP SELECT op arg4 (?1))))

(OP MAT ?op arg1 ((OP MAT ?op arg2 (?1)))) �!!(OP MAT ?op arg3 ((OP MAT op arg4 (?1))))

(OP SELECT ?op arg1 ((OP SELECT ?op arg2 (?1)))) �!!(OP SELECT ?op arg3 (?1))

(OP JOIN ?op arg1 ((OP JOIN ?op arg2 (?1 ?2)) ?3)) �! (OP JOIN ?op arg3 (?1 (OP JOIN op arg4 (?2 ?3))))

(OP MAT ?op arg1 ((OP MAT ?op arg2 (?1)))) �! (OP MAT ?op arg3 (?1))

(OP JOIN ?op arg1 (?1 ?2)) �!!(OP JOIN ?op arg2 (?2 ?1))

Implementation rules
(OP JOIN ?op arg1 (?1 ?2)) �! (Al hh join ?al arg1 (?1 ?2))

(OP JOIN ?op arg1 (?1 (OP GET ?op arg2 ()))) �! (Al ptr hh join ?al arg1 (?1))

(OP SELECT ?op arg1 (?1)) �! (Al filter ?al arg1 (?1))

(OP MAT ?op arg1 (?1)) �! (Al assembly ?al arg1 (?1))

(OP GET ?op arg1 ()) �! (Al file scan ?al arg1 ())

(OP UNNEST ?op arg1 (?1)) �! (Al unnest ?al arg1 (?1))

(OP PROJECT ?op arg1 (?1)) �! (Al project ?al arg1 (?1))

(OP SELECT ?op arg1 ((OP MAT ?op arg2 ((OP GET ?op arg3 ()))))) �! (Al index scan ?al arg1 ())

(OP SELECT ?op arg1 ((OP GET ?op arg2 ()))) �! (Al index scan ?al arg1 ())

Figure C.1: Volcano rules for the Open OODB optimizer
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Transformation rules
OP SELECT(S1) : D2 =) PR SELECT(PR ASSEMBLY(S1) : D3) : D4

OP PROJECT(S1) : D2 =) PR PROJECT(PR ASSEMBLY(S1) : D3) : D4

OP JOIN(S1; S2) : D3 =) PR JOIN(PR ASSEMBLY(S1) : D4; PR ASSEMBLY(S2) : D5) : D6

OP MAT(S1) : D2 =) PR MAT(PR ASSEMBLY(S1) : D3) : D4

OP UNNEST(S1) : D2 =) PR UNNEST(PR ASSEMBLY(S1) : D3) : D4

OP SELECT(S1) : D2 =) OP SELECT(OP SELECT(S1) : D3) : D4

OP MAT(OP SELECT(S1) : D2) : D3 =) OP SELECT(OP MAT(S1) : D4) : D5

OP SELECT(OP MAT(S1) : D2) : D3 =)! OP MAT(OP SELECT(S1) : D4) : D5

OP SELECT(OP UNNEST(S1) : D2) : D3 =) OP UNNEST(OP SELECT(S1) : D4) : D5

OP MAT(S1) : D2 =) OP JOIN(S1;OP GET(F3) : D4) : D5

OP SELECT(OP JOIN(S1; S2) : D3) : D4 =) OP JOIN(S1;OP SELECT(S2) : D5) : D6

OP SELECT(OP JOIN(S1; S2) : D3) : D4 =) OP JOIN(OP SELECT(S1) : D5; S2) : D6

OP JOIN(S1;OP MAT(S2) : D3) : D4 =) OP MAT(OP JOIN(S1; S2) : D5) : D6

OP JOIN(S1;OP SELECT(S2) : D3) : D4 =)! OP SELECT(OP JOIN(S1; S2) : D5) : D6

OP MAT(OP JOIN(S1; S2) : D3) : D4 =) OP JOIN(OP MAT(S1) : D5; S2) : D6

OP JOIN(S1; S2) : D3 =)! OP JOIN(S2; S1) : D4

OP SELECT(OP SELECT(S1) : D2) : D3 =)! OP SELECT(OP SELECT(S1) : D4) : D5

OP MAT(OP MAT(S1) : D2) : D3 =)! OP MAT(OP MAT(S1) : D4) : D5

OP SELECT(OP SELECT(S1) : D2) : D3 =)! OP SELECT(S1) : D4

OP JOIN(OP JOIN(S1; S2) : D4; S3) : D5 =) OP JOIN(S1;OP JOIN(S2; S3) : D6) : D7

OP MAT(OP MAT(S1) : D2) : D3 =) OP MAT(S1) : D4

OP JOIN(S1; S2) : D3 =)! OP JOIN(S2; S1) : D4

Implementation rules
PR JOIN(S1; S2) : D3 =) Al hh join(S1 : D4; S2 : D5) : D6

PR JOIN(S1; OP GET(F2) : D3) : D4 =) Al ptr hh join(S1 : D6) : D5

PR SELECT(S1) : D2 =) Al filter(S1 : D4) : D3

PR MAT(S1) : D2 =) Al assembly(S1 : D4) : D3

OP GET(F1) : D2 =) Al file scan(F1) : D3

PR UNNEST(S1) : D2 =) Al unnest(S1 : D4) : D3

PR PROJECT(S1) : D2 =) Al project(S1 : D4) : D3

PR SELECT(PR MAT(OP GET(F1) : D2) : D3) : D4 =) Al index scan(F1) : D5

PR SELECT(OP GET(F1) : D2) : D3 =) Al index scan(F1) : D4

PR ASSEMBLY(S1) : D2 =) Null(S1 : D3) : D4

PR ASSEMBLY(S1) : D2 =) Enf assembly(S1 : D3) : D4

Figure C.2: Prairie rules for the Open OODB optimizer
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(OP JOIN ?op arg1 (?1 (OP MAT ?op arg2 (?2)))) �! (OP MAT ?op arg3 ((OP JOIN op arg4 (?1 ?2)))) (C.1)
%cond code
ff

1. if (dependent mat and pred(?op arg2; ?op arg1; PRED DEPENDS ON MAT) == TRUE)
REJECT ;

gg

%appl code
ff

2. copy operator arg(?op arg4; ?op arg1) ;
3. copy operator arg(?op arg3; ?op arg2) ;

gg

(a) Volcano rule

OP JOIN(S1;OP MAT(S2) : D3) : D4 =) OP MAT(OP JOIN(S1; S2) : D5) : D6 (C.2)

ff

gg

1. dependent mat and pred(&(D3:oa);&(D4:oa); PRED DEPENDS ON MAT)! = TRUE
ff

2. dcopy(D5:oa;D4:oa) ;
3. dcopy(D6:oa;D3:oa) ;
4. dcopy(D6:lp;D4:lp);
5. init descriptor OP JOIN(&(D5);&(D1);&(D2)) ;

gg

(b) Prairie rule corresponding to the rule in (a). Statement numbers correspond to the same numbered
statements in (a).

Figure C.3: Comparison of an Open OODB rule
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