
Abstract
DiSTiL is a software generator that implements a
declarative domain-specific language (DSL) for con-
tainer data structures. DiSTiL is a representative of a
new approach to domain-specific language implementa-
tion. Instead of being the usual one-of-a-kind stand-
alone compiler, DiSTiL is an extension library for the
Intentional Programming (IP) transformation system
(currently under development by Microsoft Research).
DiSTiL relies on several reusable, general-purpose
infrastructure tools offered by IP that substantially sim-
plify DSL implementation.

1 Introduction

In the past few years, the popularity of domain-specific
languages has steadily increased. Such languages offer
concise ways of expressing complex, domain-specific
concepts and applications, which in turn can offer sub-
stantially reduced maintenance costs, more evolvable
software, and significant increases in software produc-
tivity [Kie96, Bat97b, Due97, Die97]. Our research is in
the design and implementation of software generators.
Generators are compilers for domain-specific languages.
Our particular research emphasis, which largely has dis-
tinguished our work from others in the generator com-
munity, is on generators that synthesize
implementations of declarative specifications of
domain-specific constructs through component compo-
sition. Thus, an integral part of our methodology, called
GenVoca [Bat92], is to identify the fundamental build-
ing blocks of software construction for a target domain.
GenVoca components actually define sophisticated pro-
gram transformations that convert domain-specific lan-
guage constructs into their host language
implementations. In this way, a domain-specific pro-
gram is reduced (transformed) into an executable host
language program by a series of transformations, where
each transformation corresponds to a component in a
domain-specific transform library. The advantage of this
approach is scalability: a small number of GenVoca
components can be composed in vast numbers of ways

to yield huge families of distinct implementations for
domain-specific constructs [Bat93].

From our experience, only 30% of the effort in building
GenVoca generators is actually spent on coding compo-
nents (i.e., writing program transformations). The
majority of the time is spent on infrastructure develop-
ment (i.e., developing tools for representing programs as
data, writing and composing components, validating
component compositions, etc.). This overhead has sub-
stantially hindered the development of GenVoca genera-
tors under realistic time and funding constraints. Tools
are needed both to reduce the effort in building genera-
tors and to promulgate their use.

In this paper, we present DiSTiL — a software generator
for the domain of container data structures. The lan-
guage of DiSTiL extends the C programming language
with domain-specific constructs for specifying complex
data structures declaratively. When a DiSTiL program is
“compiled”, the declarative data structure specifications
are replaced by their C implementation, which is speci-
fied by a composition of DiSTiL components. In the fol-
lowing, when no confusion can arise, we will use the
name DiSTiL to also mean the domain-specific lan-
guage that the generator implements.

The overall design of DiSTiL is similar to that of the
previously built GenVoca generators P1 and P2 [Sir93,
Bat92, Bat97b]. However, its implementation is radi-
cally different. Instead of being a one-of-a-kind genera-
tor that is totally specific to the data-structure domain,
DiSTiL is implemented as a transformation library for
the Intentional Programming (IP) system [Sim95],
which is currently under development by Microsoft
Research. IP provides a domain-independent implemen-
tation substrate and tools that have substantially simpli-
fied the implementation of DiSTiL.

The novelty of DiSTiL is that it is the first truly compli-
cated domain-specific generator that was built using IP.
We found that IP, by itself, lacked certain features that
were required to simplify DiSTiL’s development. In this
paper, we describe IP, our general-purpose extensions to

DiSTiL: a Transformation Library for Data Structures

Yannis Smaragdakis and Don Batory
Department of Computer Sciences
The University of Texas at Austin

Austin, Texas 78712
{smaragd,dsb}@cs.utexas.edu

dsb
Text Box
USENIX Conference on Domain-Specific Languages, October 1997

it (called generation scoping — a general-purpose
hygienic code generation facility [Sma96]), and DiSTiL
— the language and its implementation. We argue that
IP’s infrastructure is well-suited for building compilers
for DSLs, and that it substantially reduces the effort
needed for their construction.

2 Microsoft’s Intentional Programming
(IP) System

Many domain-specific languages can be implemented as
domain-specific extensions to existing programming
languages. Up to now this approach had been examined
mostly in the context of functional languages. LISP
[Ste90] and its variants (e.g., Scheme [Cli91b]) have
powerful language extension mechanisms (under the
rather misleading name “macros”) that are well-suited
for DSLs. Unfortunately, using LISP as a software gen-
erator infrastructure has undesirable consequences for
many applications: LISP’s powerful meta-programming
system is trapped inside a hard to optimize functional
language. The syntax is strange, and many operations
impose an unnecessary performance overhead to the
unsuspecting user. Furthermore, every program has to
pay the cost of garbage collection.

Nevertheless, there is no fundamental limitation pre-
venting the application of the extension approach to
other programming languages. The essential elements
are a language extensibility mechanism and a powerful
meta-programming system (i.e., constructs for repre-
senting programs as data). We note that the issue of
extending imperative languages has been addressed
before (e.g., [Wei93]). Microsoft’s IP, however, is the
first integrated programming environment specifically
designed with language independence and language
extensibility in mind. The next two sections describe the
Intentional Programming infrastructure and the machin-
ery used to build DiSTiL as a language extension.

2.1 The Intentional Programming Environ-
ment

IP [Sim95] is a language-independent programming
environment. Language independence is achieved in IP
by representing all source code (in whatever language)
as an abstract syntax tree (AST). Nodes of an AST are
called intentions and correspond to semantic constructs
of a language. Examples of intentions include if-state-
ments, for-loops, type declarations, assignment-state-
ments, etc. Thus, libraries of intentions can be created
for representing programs in various programming lan-
guages. Many intentions are themselves language-inde-

pendent; i.e., their semantic meaning (but not their
syntax) is shared in many languages [Vil97]. The if-
statement, for example, with a general form of an if
operator and a 3-tuple argument <boolean-
expression, then-statement, else-state-
ment>, is a standard “intention” in virtually all pro-
gramming languages.

The syntax (or external representation) of an intention is
user-controlled. (For example, the syntax of an if-state-
ment in C is different than in Pascal). This variability is
captured by unparsing methods that are associated with
intentions. Unparsing is the process of displaying an
AST to the user for direct manipulation. In IP, unparsing
is more than just pretty-printing — it is two-dimensional
and fully graphical. That is, an intention may be repre-
sented as a complex image and can be positioned
accordingly. This offers the possibility of developing
special, non-ASCII notation for domain-specific lan-
guages (e.g., mathematical symbols). For instance, it is
relatively straightforward to make the combinatorial

intention choose(n,m) to unparse as , in the

usual mathematical notation.

The extensibility of IP lies in its ability to define new
intentions and to define enzymes. New intentions
express domain-specific programming constructs. In
effect, adding intentions is equivalent to extending the
grammar of the host language. Enzymes are transforma-
tions on ASTs, i.e., functions that replace an AST with
another AST. Using enzymes, new intentions can be
transformed into existing ones, effectively extending the
language. The programming interface for transforma-
tions is procedural — pattern-based extensions are also
provided as a higher-level concept. Although the inter-
face for transformations is not yet final, it includes oper-
ations to traverse and create ASTs as well as operations
to manipulate semantic information (for instance, vari-
able and expression types). The semantic information
elevates the interface above the usual syntactic macros
(as, for instance, in LISP). A distinguishing factor
between IP and existing transformation systems (e.g.,
TXL [Cor91], Refine/Dialect [Rea86, Rea89]) is the
power of the transformation engine itself. The goal of IP
is to have complete, industrial-strength languages
implemented entirely as collections of enzymes. A com-
plex transformation infrastructure is in place to accom-
modate this requirement. For example, sophisticated
scheduling of transformations according to their depen-
dencies is performed. Thus, transformations that were
designed independently can be applied in such a way
that they will not interfere with each other. Additionally,
transformations may have non-local effects following a

n
m⎝ ⎠

⎛ ⎞

strictly defined protocol of permissions and information
passing.

IP uses parsers for importing programs already written
in conventional programming languages. This conver-
sion is one-way, however. After a program is expressed
as an AST it can be edited directly. IP provides a power-
ful structure editor for this purpose. Users edit unparsed
versions of a program, but all text-like editing com-
mands directly manipulate the underlying AST. This
enables enzymes to be applied at editing time. For
instance, it is possible to use a standard syntactic rewrite
like a DeMorgan transform of boolean expressions both
as an editing enzyme and as a compilation enzyme. A
user can select/highlight a boolean expression during
editing and invoke the DeMorgan enzyme (for instance,
to turn an OR expression into an AND expression for
readability). The same enzyme could be automatically
applied by IP during compilation (for instance, as an
optimization).

The IP environment is fully configurable. Opening a
source code document that refers to domain-specific
intentions can cause new commands to be added in the
environment window menus, new buttons and toolbars
to appear, etc. In this way, the author of a domain-spe-
cific language implementation can also customize the
development environment for language users.

It should be clear from the above that IP is an appropri-
ate platform for implementing domain-specific lan-
guages. It allowed us to concentrate on the task of
devising powerful data structure abstractions without
worrying about infrastructure support. At the same time,
DiSTiL is an example of the applications that IP was
intended to support. It is a powerful domain-specific
language that can be transparently integrated into the
system as an extension and take full advantage of its
transformational capabilities.

2.2 Generation Scoping

As a transformation library, DiSTiL deals extensively
with manipulating code fragments. To facilitate our
work, we designed the generation scoping mechanism:
a meta-programming system for IP in which DiSTiL
components are expressed. The system consists of code
template operators, similar to the backquote and
comma operators of the LISP language. Generation
scoping is a general-purpose facility oriented towards
large-scale code generation and was not designed to
support only DiSTiL. This section reviews its essential
features and applicability. A more complete discussion
is in [Sma96]1.

Meta-programming systems are notorious for introduc-
ing ambiguities regarding the environment in which
generated variable references are resolved. Program-
ming languages usually determine the meaning of iden-
tifiers using their position in a program. Generated
programs, however, are usually composed from small
fragments. In this case we are usually unaware of the
final position/scope of a fragment in the generated code.
Thus, it becomes a bad practice to let the position of
identifiers in the final program determine their meaning
— erroneous references can easily be introduced.

This problem has been studied extensively in the context
of macro expansion and systems that address it are
called hygienic (e.g., [Koh86], [Cli91a], [Wal97]). A
complete solution comes in the form of hygienic, lexi-
cally-scoped macros (see [Cli91a]). As we explain in
[Sma96] the standard macro-expansion methods are not
directly applicable to software generators. Instead we
had to develop the generation scoping system which is
in many ways similar to the lexically scoped macros
machinery of [Cli91a] but is better suited for generator
development. The difference is that the environments
which determine identifier bindings become first-class
objects and can be manipulated directly. Most impor-
tantly, environments can be organized hierarchically
into directed graphs with every environment having
access to all others reachable in the graph. This adds sig-
nificant power: instead of a hygienic mechanism for
small, self-contained units (macros) we get a method
that can handle complex scoping in the generated pro-
gram, independently of the target language [Sma96].

Generation scoping includes standard operators to des-
ignate code templates and escapes from them: quote,
written ‘, and unquote, written $. Also it allows
explicitly closing a code fragment when it is generated
in an environment where identifiers have specific mean-
ings. This is done using the environment operator
around one or more code templates (quoted code frag-
ments). For instance, the code fragment:

environment(E)
Output(‘int i = 0;);

will generate code that declares variable i as an integer
and initializes it. The code is generated in environment
E (assumed to have been declared before). The system
can detect that i is being declared in this fragment.

1 Generation scoping is actually yet another example of
an embedded domain-specific language. In this case, it
is a language to express and compose lexically-scoped
code fragments.

Therefore, i now becomes a declared variable in envi-
ronment E and future occurrences of identifier i in the
same environment will refer to the variable declared
above. By explicitly choosing the environment (scope)
of a generated code fragment we can completely disso-
ciate variable scoping from the variable’s position in the
generated program. This ability is used in DiSTiL to
ensure that identifiers are bound to the correct variables.

Other important generation scoping operators include
SetParent and alias. SetParent is used to orga-
nize environments hierarchically, in much the same way
lexical scopes are hierarchically organized by nesting.
That is, a “child” environment has access to variables
introduced in a “parent” environment but variables with
the same name in the “child” eclipse variables in the
“parent”. alias is used to introduce symbolic names
for complex generated expressions. A table of the main
generation scoping operators is shown in Figure 1.
Examples of the use of generation scoping can be found
in [Sma96].

3 DiSTiL

3.1 Motivation

A central problem in software development is the cre-
ation, maintenance, and evolution of data structures. Ini-
tially, with a partial understanding of the system
requirements, a programmer invents data/storage struc-
tures to address a perceived need. These data structures
are then either implemented by hand (a tedious process)
or taken from a component library (e.g., STL [Ste95], or
the Booch components [Boo87]) . It is quite rare, how-
ever, that the projected requirements are accurately
reflected in the first design (and even if they are they

may change in time). Altering a data structure is often
costly; interfaces to different data structures can vary
widely, and thus may require extensive source code
modifications, leading to yet another (expensive) round
of coding and debugging.

We believe that data structures should not have ad hoc
interfaces. Instead they should provide a stable, well-
designed interface that insulates applications from
changes to data structure implementations. This, inci-
dentally, is also the premise behind the C++ Standard
Template Library — STL [Ste95]. STL, however, does
not take this idea to its logical conclusion. Compatibility
is limited to a specific level, while different kinds of
STL data structures (e.g., sequences and associative
containers) still have different interfaces. This signifi-
cantly restricts the interchangeability of data structures.
Moreover, STL only offers rather elementary data struc-
tures. Complex data structures must be implemented by
hand. For example, if elements of a container are to be
simultaneously linked onto two key-ordered lists, or a
key-ordered list (for sequential accessing) and a hash-
table (for fast key accessing), STL users have to either
(a) write their own, customized STL component to
accomplish the task or (b) devise ways of integrating
existing STL components manually, and write source
code that maintains the correctness of these structures
when element keys are updated. Both approaches are
unpleasant and preclude the ease of evolving data struc-
ture implementations.

We believe a different approach is needed — one based
on a declarative language that is specific to the domain
of data structures, rather than using typical component
libraries (link libraries, macro/template libraries, binary
components, etc.). Our language, called DiSTiL,
extends the C programming language with declarative

Figure 1: Generation Scoping operators

Operator Description

‘<code_template> Quote operator. Generates a code fragment according to
code_template. Similar to LISP backquote.

$<code> Escape operator. Executes code inside a quoted fragment.

environment (<Env_id>) <code> Evaluates quoted code in a given “environment”. Variable references in
quoted code will be resolved relative to this environment.

SetParent (<Env_id1>,<Env_id2>) Organizes environments hierarchically. Quoted code in the child envi-
ronment will be able to view variables in parent environment as well.

alias (<tree_expr>, <variable>) Sets the value of identifier variable to tree_expr. Every time
variable appears in quoted code (in the same environment as the
alias command) it will be replaced by tree_expr.

statements/operations on data structures. These state-
ments isolate the actual data structure implementation
from the application itself, thereby allowing radically
different implementations of data structures to be evalu-
ated without requiring modifications to the application’s
source code [Bat93-95a]. It is the responsibility of the
compiler to ensure efficiency. As an added benefit, the
ability to reason about programs is greatly enhanced,
often allowing for automatic design checking mecha-
nisms and high-level optimizations [Bat97a].

3.2 The DiSTiL Programming Language

All data structures in DiSTiL are modeled using con-
tainers and cursors. Essentially, we view all data struc-
tures in our universe as pairs of containers and cursors
(iterators). These two facets explicitly decouple the
notion of element storage from that of element access.
The cursor-container pair provides the only interface the
user has to a data-structure. When viewing a data struc-
ture as a collection of elements, the most important
operation that can be defined is that of a selection. A
selection gives the user a way to define a subset of a col-
lection according to a certain selection criterion. In the
case of DiSTiL, the effect is achieved by assigning
selection predicates to cursors. Such predicates may
express an arbitrary relation on the values of the fields of
stored elements. A cursor is guaranteed to only access
elements satisfying its selection predicate. Additionally
the user may specify the order of retrieval as an ordering
relation on element fields. The mechanisms of order and
predicate specification are the only way for the user to
control element access. The system is otherwise free to
implement data structure operations in any semantically
correct way.

An abbreviated example of container-cursor specifica-
tions in DiSTiL is given below.

typedef struct {
 char[8] phone;

char[31] name;
} phonebook_record;
// C struct declaration

Container (phonebook_record) cont1;
// abbreviated container declaration

Cursor (cont1, phone == "4783487")
curs1;

// cursor declaration
Cursor (cont1,

name > "Sm" && name < "Sn",
ascending(name)) curs2;

// another cursor declaration

This example presents a phone-book data structure. We
begin by declaring the record type for the elements as a
C type. Then a container of elements and two different
cursors on that container are declared. The first ranges
over all elements (probably a single one) with phone
number “4783487”. The second selects all records in the
data structure with a name that begins with “Sm”, in
ascending order.

DiSTiL offers a standard set of operations on containers
and cursors, regardless of the actual data structure
implementation. The code fragment below illustrates the
foreach construct, which is used to iterate over ele-
ments selected by a cursor. The element in the current
cursor position can be examined, updated, or deleted
using standard cursor operations (a summary of all DiS-
TiL operations appears in Figure 2).

foreach (curs1) {
// for each selected entry

printf(“%s”, ref(curs1, name));
// print name

update(curs1, phone, “4718731”);
// change phone number

}

goto_first: Set cursor to first legal position
goto_next/goto_prev: move cursor forward/back
goto_nth : move cursor to n-th ordered position
is_legal : is the cursor in a legal position?
foreach : iterate over all elements in cursor range
insert/delete: insert/delete current element
getrec/ref: return current record or single field
update : change value of field in current record

DiSTiL cursor operations

Figure 2: Set of DiSTiL operations

open_cont : open/initialize the container
close_cont: close the container
size : return the total number of elements
is_full : is the container full?

DiSTiL container operations

The interface to DiSTiL data structures does not depend
on the actual data structure used. This way DiSTiL pro-
grams can stay the same for different data structure
implementations. For example, the phone-book could be
implemented as an ordered linked list, a binary-tree, a
hash-table, or any other structure or combinations of
structures. Nevertheless, the above program fragment
would remain the same across all different implementa-
tions.

It is worth noting that DiSTiL cursors and containers
can be composed arbitrarily. Thus we can have a data
structure storing cursors, or containers, or containers of
containers, etc. This can yield interesting data structure
configurations in their own right (i.e., we can explicitly
create complex indexes to data structures using contain-
ers of cursors).

In effect, we are giving a relational front-end to con-
tainer data structures [Bat93]. Using relational abstrac-
tions to hide data structure details is not new (e.g., see
[Coh89, Coh93]), but our ability to couple relational
abstractions with component technologies to generate
vast families of efficient implementations is novel. In
fact, readers might note that our work parallels recent
advances in object-oriented databases (OODBs) to
make them more extensible. Extensible DBMS technol-
ogies were developed in the mid-1980s, and one of the
original projects was Genesis. Genesis was the first (our
first) GenVoca generator [Bat88a-b]: it was also the first
technology for assembling relational database systems
from components.2 Combinations of Genesis compo-
nents produced different relational DBMSs with vastly
different implementations. Our work on P3 [Bat97b],
and now DiSTiL, can be viewed as a continuing evolu-
tion of the Genesis work. It exposes the relationships
between domain-specific languages, component-based
generators, and the synthesis of high-performance
domain-specific software. We could add many more fea-
tures that would put DiSTiL on par with the embedded
capabilities of object-oriented databases, but this has not
been our research emphasis or interest.

3.3 Implementation Specification Using
Component Compositions

DiSTiL applications can define the features of their data
structures and declare how their implementations are to
be generated. At the top of a DiSTiL program is a speci-

2 A similar approach to relational database system
extensibility was later (and independently) developed
and deployed in IBM’s Starburst project [Haa90].

fication of how DiSTiL constructs are to be imple-
mented. This specification, called a type equation, is a
named composition of DiSTiL components. Each DiS-
TiL component implements a sophisticated program
transformation that encapsulates a primitive building
block of container data structures.

As an example, we will show how the phone-book of
Section 3.2 can be implemented as a hash table (DiSTiL
Hash component) in conjunction with a red-black tree
(Tree) with elements that are allocated when needed
(Malloc) from main memory (Transient). The cor-
responding type equation appears below. To alter or
evolve the data structure merely requires altering the
container’s type equation and re-compiling; no other
source code modifications are needed.

typeq (phonebook_record,
Hash(Tree(Malloc(Transient))))

typeq1;
// type equation specification

The actual container that will hold the elements is
declared below. At container declaration time it is speci-
fied that the hash table is organized by phone number
(for fast lookups by phone) while the red-black tree has
the name field as its key (for fast retrievals of alphabeti-
cally ordered names). In database terminology, we are
organizing our data with a red-black tree index on the
name field and a hash table index on the phone.

Container (typeq1,
(Hash(phone), Tree(name)))

cont1;
// container declaration

Using component compositions to express complex
entities (see [Nei80]) is a hallmark of the scalability of
GenVoca. Customized software systems implement m
features out of a possible n features. Rather than build-
ing an exponential number of monolithic systems that
offer unique sets of features, one should build systems
by composing primitive components that encapsulate
individual features. Thus, by making feature combinato-
rics explicit, it is possible to describe vast families of
systems with a relatively small number of components.
The set of components that implement the same inter-
face is called a realm. A realm is, in effect, a library of
plug-compatible and interchangeable components. A
summary of DiSTiL realms and components can be
found in Appendix A.

3.4 The DiSTiL Generator

For a given type expression, it is the responsibility of the
DiSTiL generator to apply the transformations pre-
scribed by each of the participating components. The
generator will thus replace all DiSTiL operations by
their corresponding C implementation. The resulting C
program can then be compiled and executed. As a
higher level language, DiSTiL offers significant lever-
age to its compiler, allowing it to perform powerful opti-
mizations and error checking.

We illustrate DiSTiL’s actions with a concrete example.
The cursor definitions of Section 3.2 are replicated
below for quick reference.

Cursor (cont1, phone == "4783487")
curs1;

Cursor (cont1,
name > "Sm" && name < "Sn",
ascending(name))

curs2;

Consider any of the DiSTiL cursor operations on
curs1 when the container uses the type expression of
Section 3.3 (hash table and red-black tree indexes). The
most efficient way to retrieve elements satisfying the
predicate on curs1 is to use the hash index on the
phone number. DiSTiL can statically determine this by
analyzing the predicate, estimating the cost of the
retrieval using each available index and selecting the
data structure that offers the lowest cost. For example, a
goto_first DiSTiL operation3 on curs1 is imple-
mented using code that hashes the given phone number

3 The first six cursor operations of Figure 2 are retrieval
operations (that is, they are implemented using the
most efficient data structure available) while the last
five will propagate through all components in a type
expression.

and follows the hash table links until it finds the first ele-
ment satisfying the desired predicate. Similarly, opera-
tions on curs2 should be transformed only in terms of
the red-black tree structure, since this is the most
straightforward way to locate records lexicographically
by name. If the composition describing our data struc-
ture changes (for instance, if we decide we want a sec-
ond red-black tree in place of the hash table), DiSTiL
will re-evaluate the cursor predicate and choose an
appropriate way to implement its operations in the new
layout without requiring any programmer intervention.

Figure 3 shows a possible run-time configuration of the
data structure. Keeping it as a guide, let’s see what hap-
pens if we change the phone number in one of our
records (for instance, “Keen”). The change is one that
would regularly be encountered in a realistic setting —
people’s phone numbers change. The most straightfor-
ward way to update the structure is to remove the
affected element and re-insert it after the change has
been performed. DiSTiL, however, can do better than
this: Since only the phone number changes, the record
can stay in its original place in the tree. The only struc-
ture that needs to be updated is the hash table, which is
organized by phone number. DiSTiL detects this by ana-
lyzing the update operation according to the field
being updated. Subsequently, the operation is trans-
formed into code that performs the corresponding
changes only to the primitive structures that actually
depend on the changed field. In our case, the “Keen”
record will remain at the root of the tree but its phone
number will be re-hashed in the table possibly making
the record to be linked in a different place. Again, the
mechanism is straightforward. All DiSTiL components
that support the update operation implement it
according to the pseudo-code of Figure 4. The element
is removed and re-inserted only if the update actually

Keen

Jones Lam

Mann

Land Smith

Guy Koch

Ajit

Figure 3: Phone book example

Hash Table Red-black tree Tree pointer

Hash table pointer

affects the key for this particular component. This opti-
mization is a typical example of partial evaluation: the
operation is specialized at compile time by exploiting a
restriction on its (implicit or explicit) parameters. This is
just one of the many cases where partial evaluation (in
the form of specialization) is used in DiSTiL.

Additionally, the DiSTiL specification offers itself for
easy checking of design consistency. A composition and
the operations performed on it can be validated to ensure
that they are meaningful. This is the role of the design-
rule checker of DiSTiL. DiSTiL components come with
higher-level knowledge about their properties (explicitly
encoded using boolean attributes). This information is
used to express domain-specific properties like “this
component does not leave the cursor in a valid position
after deletion” or “this component keeps track of the
data structure size”. Compositions are checked in two
ways: The system ensures that all their components can
co-exist and that they support all operations performed
on the particular composition. In other words, composi-
tions may be correct relative to a certain set of opera-
tions but not to another (for instance, a certain data
structure may not support deletions). It is of interest to
examine the results of the design rule checker applica-
tion. The attributes associated with components are at a
much higher level than regular static information (types)
in programming languages. As a consequence, the
checking mechanism can provide more informative,
comprehensive and accurate error messages [Bat97a].

The previous examples are indicative of the flexibility
afforded by DiSTiL through use of meta-level reasoning
about the code it produces. DiSTiL components are
“intelligent”: They exchange information to coordinate
their actions. This interaction can make code easy to
evolve (DiSTiL handles the changes automatically) even
though the actual model of operation (for instance, the
structures actually used to implement a retrieval) has
changed. The ability to process predicates and reason
about the best way to implement the associated opera-
tions is what sets DiSTiL apart from usual data structure
libraries. In short, cursor actions in DiSTiL are specified

intentionally (declaratively) instead of operationally.
The system transforms specifications into efficient code
using its knowledge of the characteristics of the given
data structure. Such knowledge may include the number
and kind of indexes on the stored elements and informa-
tion specific to each of the data structure components
(for instance, that a binary tree is an ordered structure).
Additionally, the domain-specific knowledge encoded in
DiSTiL components enables higher-level error checking
of component compositions. With DiSTiL the level of
programming is effectively raised, resulting in code that
is much easier to understand and that can straightfor-
wardly evolve to match changing needs.

3.5 Generator Implementation

The DiSTiL generator is a 10Kloc (thousands of lines of
code) library that operates on top of the Intentional Pro-
gramming system. The way to interface with user pro-
grams is through the use of new intentions (like the
container and cursor types and the insert,
goto_first, etc. operations). In other words, DiSTiL
keywords are introduced as linguistic extensions to IP.
Each DiSTiL component implements all the interface
operations of Figure 2. The implementations are inte-
grated in a top-down fashion to produce the final trans-
formation for the given operation.

Consider again the example of Section 3.3 (structure
with hash table and red-black tree indexes). When an
insert operation is transformed, the hash table com-
ponent contributes code of the form:

‘(if (Container->bucket[i] == 0)
{ Container->bucket[i] =

Cursor.obj;
Cursor.obj.next = NULL; }

else ...)

Similarly, all other components contribute their own
insertion code. For instance, the red-black tree compo-
nent creates the insertion code fragment

‘(ELE_TYPE* y = &Container->header;

Figure 4: Update operation (implementation dependent)

CODE update(CODE field, CODE new_value)
{
 if (field == key_field)
 return ‘(
 { $unlink();
 $update_code(field, new_value);
 $link(); });
 else return update_code(field, new_value));
}

ELE_TYPE* x =
Container->header.parent;

while (x != Container->NIL)
...

...)

The hash table component (being first in the composi-
tion order) determines how the two code fragments are
composed. In this case the composition is as simple as
adding the hash table code right after the red-black tree
insertion code.

The above code expressions are generated in distinct
generation environments (see Section 2.2). This way, for
instance, the expression Container->bucket is
only legal in the context of hash table operations. Isolat-
ing the generation environment for each instance of a
component allows us to specify component code in an
abstract form. If a certain composition contained three
different containers, each of which is organized using
two different red-black trees, the expression Con-
tainer->header would still be unambiguous. All
the context information is captured in the generation
environment structure (which only has to be set up
once). The interested reader is referred to [Sma96] for a
more complete example.

In the IP framework no parser is needed for the DiSTiL
language — instead we have added support for editing
source code with DiSTiL operators directly (in abstract
syntax tree format using the IP graphical structure edi-
tor). The new primitives are given the right properties to
be correctly displayed on screen. The unparsing (dis-
play) in this case is straightforward (for instance, we
have to make sure that the foreach primitive is dis-
played as an iterator with its last argument being a state-
ment instead of an expression). The graphical unparsing
capabilities of IP are used in several other cases as well.
For example, code templates (quoted code fragments) in
DiSTiL components can be displayed in special styles or
colors, etc.

The result of compiling DiSTiL in the IP system is a
DLL (dynamic link library) with system extensions. To
create a DiSTiL program, the user includes a DiSTiL
interface file as a library. This causes the DLL to be
loaded. The new intentions can now freely be used in an
IP source file — the file becomes a DiSTiL specifica-
tion. Every time such a file is transformed (compiled)
the compiler will dispatch to the DLL to handle DiSTiL-
specific intentions. DiSTiL will validate the composi-
tions used, type-check the arguments, and possibly
report error-messages using standard IP interfaces. If no
errors are detected, it will compose abstract syntax tree

fragments to create an implementation for the given
operation expressed using only core IP primitives. The
result is a program generated through transformation
and (possibly) linking to a static library. The static
library implements component aspects orthogonal to
DiSTiL (like hash functions and persistent storage rou-
tines).

The efficiency of the compilation process is obviously a
major concern in any transformation system. Since IP is
still under development, it is too early to judge the speed
of compilation for code with transformation extensions.
In our experience, however, transformation from DiS-
TiL primitives to C code accounted for only a small part
of the time spent in compiling.

Detecting specification errors is the responsibility of the
DiSTiL design-rule checker. Each DiSTiL component
has two logical propositions and two boolean functions
associated with it. The first two express the conditions
that the component expects the layers “above” it and
“below” it to satisfy. The notions of “above” and
“below” refer to the ordering of components in a com-
position (see Section 3.3). The two boolean functions
specify the properties of the component in terms of the
properties of the layers above and below it. Using these
logical attributes the correctness of a composition can be
checked with a single traversal of the composition struc-
ture. Additionally, DiSTiL operations can impose a con-
dition on the properties of the entire composition. This
can ensure that a certain operation is supported in the
given type expressions. The mechanics of this validation
are rather straightforward and the interested reader can
find more details in [Bat97a].

4 Lessons Learned

The design and implementation of DiSTiL gave rise to
several interesting observations of wider applicability in
the area of domain-specific languages. Below, we dis-
cuss some of the lessons we have learned.

Domain-Specific Language Design. Abstracting away
the details of an implementation leads to simpler and
more powerful specifications. This is the principle
behind higher-level languages and it is exploited fully in
DiSTiL. So the main goal of a DSL design should be a
significant rise in the level of abstraction that the user is
exposed to. Thus, one can radically alter the implemen-
tation of a specification without needing to modify the
application source. Ideally we would like to have imple-
mentation-independent declarative specifications. Des-
ignating what needs to be done and not how it should be
done is the first step in the abstraction process. No DSL,

however, is usable unless it offers acceptable perfor-
mance. Otherwise an abstract specification can only
serve as a design guideline and the actual implementa-
tion will have to result from manual refinement of the
specification. The challenge for the DSL designer is to
discover a level of abstraction that is amenable to auto-
mated reasoning for error-checking and optimization. In
this way, the advantages of both abstraction and effi-
ciency can be obtained.

These observations are clear in DiSTiL. All DiSTiL data
structure components have a common interface and
operations on them are specified through a mix of opera-
tional and declarative primitives. The DiSTiL generator
can automatically perform the right operation to the
right data structure by analyzing the predicate associ-
ated with the current cursor. Thus, the two main benefits
of domain-specific languages are obtained: The design
goal of simplicity is satisfied by the abstract interface
and the practical goal of efficiency is satisfied by the
generator optimizations. Many of the same optimiza-
tions have been applied in the past in the P2 lightweight
DBMS generator with impressive results [Bat97b]. It
should be noted that the optimizations are applied on top
of quite efficient individual component implementa-
tions. Our red-black tree component, for instance, with-
out any optimizations, will produce code almost
identical to the most common implementation of the
STL tree component (the, publicly available, Hewlett
Packard implementation of STL).

Domain-Specific Language Implementation. In writ-
ing DiSTiL, we found it valuable to have an extensible
system (IP, in our case) in which a DSL can be
expressed as incremental changes. IP relieves the gener-
ator writer from having to parse source code constructs
and to maintain source information (for instance,
scope). At the same time it offers an easy mechanism for
specifying transformations, reporting errors to the user,
etc. Furthermore, the extensibility of the system can be
exploited during generator implementation. Any
machinery commonly used in generators can be
expressed as an extension and reused exactly as if it was
a part of the original language. In other words, during
the implementation of DiSTiL we created domain-spe-
cific extensions for the domain of generators itself (e.g.,
generation scoping of Section 2.2). Generation scoping
is a powerful hygienic meta-programming system — a
valuable layer of infrastructure for all generators trans-
forming their primitives into code in a high-level lan-
guage.

To realize the flexibility afforded by the DiSTiL design,
consider the P2 generator. P2 used its own parser, data-

definition language, component specification language
and back-end [Bat97b]. All these elements were specific
to data-structures and changes to the system could not
be easily isolated. For instance, it was not uncommon
that limitations of the component specification language
required changing the back-end to add functionality
needed for new kinds of components.

DiSTiL relies on IP for obtaining an abstract syntax tree
representation of the specification, so it does not need a
specialized parser. IP also provided a set of intentions
implementing the C language on which DiSTiL was
based. Additionally, the system relieved us from a series
of low-level chores associated with managing source
code. Another big gain was in the area of target code
generation. The P2 component specification language
(XP) had a generation scoping facility similar to that
described in Section 2.2. XP, however, was severely lim-
ited in capabilities (being a token-based macro proces-
sor) and highly specific to the data structure domain
(with built-in keywords like container and cur-
sor). In contrast, generation scoping presents a
domain-independent way to express generated code
fragments and dependencies among them conveniently.

DiSTiL is an excellent demonstration of the benefits of
using IP. DiSTiL’s net development time was in the
order of 9 man-months (excluding the development time
for the generation scoping facility). The principal devel-
oper had not implemented a GenVoca generator before,
so it is unlikely that this productivity was based on expe-
rience. A comparison with the P2 system may be useful,
even though it is hard to compare directly the two gener-
ators (there are DiSTiL features that have no P2 counter-
part and vice versa). We estimate that the P2 system
required more than 3 man-years of work before it
reached a level of functionality comparable to that of
DiSTiL. The difference is reflected in the relative source
sizes of the two generators. DiSTiL is about 10Kloc,
with more than half of it (5.2Kloc) being components.
P2, on the other hand, is not that much richer in compo-
nents (17.1Kloc) but has an over 112Kloc infrastructure.

Domain-Specific Languages in Software Engineer-
ing. Domain-specific languages emphasize interface
abstraction. This way, they can incorporate components
that are uniformly treated and independently compos-
able. Thus, the potential for software evolution becomes
much greater. In DiSTiL this effect is obvious. Not only
can the implementation of a primitive data structure
change without affecting user code, but the specification
of any user-defined data structure can also change with-
out affecting the application. This is a characteristic of
GenVoca generators. In the greater scheme of software

engineering methods, GenVoca generators are compact
representations of exponential-size libraries.

Programming in Domain-Specific Languages. In the
evolution of languages, the development environments
and supporting tools are at least as important as the mer-
its of a language design. New languages require power-
ful compilers, good editing support, convenient
debuggers, and useful libraries of components. This
need is acknowledged in the design of IP. The system
facilitates incremental changes both to the language and
to the development environment. Thus, the cost of pro-
viding supporting tools for development in a new DSL
is lowered.

Technical Advantages of Domain-Specific Lan-
guages. Domain-specific languages, as a means of soft-
ware reuse, offer concrete technical advantages over
standard static libraries (procedure libraries, object
libraries, or binary component libraries). These mainly
fall under the three categories of simplicity, efficiency,
and error detection. A DSL can provide a uniform inter-
face for different operations, thus simplifying its specifi-
cation. Also, a DSL can often be more efficient than a
static library: The flexibility of the DSL approach allows
developers to experiment with different ways to express
their requirements. Since a DSL implementation has
access to high-level information, its optimizations are
large scale (i.e., global program transformations) and
often result in better code than that produced by a typi-
cal programmer. These benefits are well documented in
the literature: The controlled-environment study of
[Kie96] indicates productivity gain ratios of about 2.9
resulting from the use of generator technology. Our
experience with P2 [Bat97b] showed performance gains
of at least an order of magnitude in re-engineering a
complex application.

Another advantage of the DSL approach is that it
enables error checking that is more thorough and at a
much higher level than that of general purpose lan-
guages. This enables error reporting that is both exten-
sive and accurate [Bat97a], as in the case of DiSTiL. In
contrast, traditional static libraries rely on the type
checking facilities of their host language. Such mecha-
nisms may be limited and, sometimes, almost non-exis-
tent: A well known disadvantage of STL is that C++
offers no mechanism to constrain a parameterization. As
a result, invalid compositions are only detected well
after composition time, yielding inaccurate and, depend-
ing on the implementation, possibly misplaced error
messages.

Disadvantages of Domain-Specific Languages. The
DSL approach has disadvantages. First of all, there is
the non-trivial cost of designing and implementing a
DSL. Assuming technical problems can be overcome
and a DSL has been specified and implemented, a more
serious obstacle emerges. The education cost associated
with having developers use a new tool can be signifi-
cant. This includes the reluctance of developers to aban-
don their favorite environments and learn to use new
mechanisms (language, interpreter/compiler, debugger,
etc.). If the DSL is simple and well supported, the prob-
lem is alleviated. The decision of adopting a DSL is
based on the trade-off between the education cost and
the expected benefits.

In the case of DiSTiL, a new element comes into play.
The IP system helps reduce the education cost by letting
the entire development environment adapt to a DSL.
Making small, incremental changes to the programming
environment (compiler, debugger) results in lower edu-
cation costs than implementing a whole new system.
There is a different price, however, that the user will
have to pay. This is the one-time cost associated with
learning to use the IP environment in the first place. The
process involves a departure from text-based program-
ming and the use of a structure editor, so the cost is not
negligible. It will be interesting to see if the benefits of
domain-specific extensions can offset this cost, making
IP successful.

5 Conclusions and Further Research

DiSTiL is a software generator for the domain of data
structures. It implements a powerful domain-specific
language in a novel way: As an extension to the IP trans-
formation system and using generation scoping — a
general purpose meta-programming tool. We are inter-
ested in further exploring ways to facilitate implement-
ing domain-specific languages. We assert that the
existence of an extensible system in which new transfor-
mations can easily be specified is a very promising
approach to designing domain-specific software. We
believe that writing software generators as language
extensions is a significant advancement that enables
generator programmers to concentrate on the complexi-
ties of their task and not tedious infrastructure develop-
ment. Hopefully, the future will bring more and more
generators implemented as simple extensions and lever-
aging off common infrastructure.

Directions for future research include further develop-
ment of a common ground for generator
implementation — that is, a set of mechanisms widely
applicable in generator writing. Such an effort will

require careful modeling of generator activities and, par-
ticularly in the case of GenVoca, the interconnections
between generator components. We expect this work to
culminate to a collection of language primitives ideal for
writing generators, in other words, a domain-specific
language for implementing domain-specific languages.

6 References

[Bat88a] D.S. Batory, J.R. Barnett, J.F. Garza, K.P.
Smith, K. Tsukuda, B.C.Twichell, T.E. Wise,
“GENESIS: An Extensible Database Man-
agement System”, IEEE Transactions on
Software Engineering, Vol. 14 #11 (Novem-
ber 1988), 1711-1730.

[Bat88b] D.S. Batory, “Concepts for a Database Sys-
tem Synthesizer”, ACM Principles Of Data-
base Systems Conference 1988, 184-192.

[Bat92] D. Batory and S. O’Malley, “The design and
implementation of hierarchical software sys-
tems with reusable components”, ACM
Transactions on Software Engineering and
Methodology, October 1992.

[Bat93] D. Batory, V. Singhal, M. Sirkin, and J. Tho-
mas, “Scalable Software Libraries”, ACM
SIGSOFT 1993.

[Bat95a] D. Batory, L. Coglianese, M. Goodwin, and
S. Shafer, “Creating Reference Architec-
tures: An Example From Avionics”, ACM
SIGSOFT Symposium on Software Reusabil-
ity, Seattle, 1995, 27-37.

[Bat97a] D. Batory and B.J. Geraci, “Composition
Validation and Subjectivity in GenVoca Gen-
erators”, IEEE Transactions on Software
Engineering, February 1997.

[Bat97b] D. Batory and J. Thomas, “P2: A Light-
weight DBMS Generator”, Accepted for
publication in the Journal of Intelligent
Information Systems, 1997.

[Boo87] G. Booch, Software Components with Ada,
Benjamin/Cummings, 1987.

[Cli91a] W. Clinger and J. Rees. “Macros that Work”.
Conference Record of the Eighteenth Annual
ACM Symposium on Principles of Program-
ming Languages, January 1991, 155-162.

[Cli91b] W. Clinger and J. Rees (editors), “The
Revised4 Report on the Algorithmic Lan-
guage Scheme”. Lisp Pointers IV(3), July-
September 1991, 1-55.

[Coh89] D. Cohen, AP5 Training Manual. USC Infor-
mation Sciences Institute 1989.

[Coh93] D.Cohen and N.Campbell, “Automating
Relational Operations on Data Structures”.
IEEE Software, 10(3):53-60, May 1993.

[Cor91] J. Cordy, C. Halpern-Hamu and E. Promis-
low, “TXL: A Rapid Prototyping System for
Programming Language Dialects”, Com-
puter Languages 16,1(Jan. 1991):97-107,
also in Proc. IEEE 1988 Intl. Conf. on Com-
puter Languages, 280-285.

[Die97] P. Dietz, C. Jervis, M. Kogan, and T.
Weigert, “Automated Generation of Marshal-
ling Code from High-Level Specifications”,
RNSG Research, Motorola, Schaumburg,
Illinois, 1997./

[Due97] A. Van Duersen and P. Klint, “Little Lan-
guages: Little Maintenance?”, Proc. First
ACM SIGPLAN Workshop on Domain-Spe-
cific Languages, Paris 1997.

[Haa90] L. Haas, et al., “Starburst Mid-Flight: As the
Dust Clears”, IEEE Transactions on Knowl-
edge and Data Engineering, March 1990,
143-151.

[Kie96] R. Kieburtz, L. McKinney, J. Bell, J. Hook,
A.Kotov, J. Lewis, D. Oliva, T. Sheard, I.
Smith and L. Walton, “A Software Engineer-
ing Experiment in Software Component
Generation”, Fifth International Conference
on Software Engineering, 1996.

[Koh86] E. Kohlbecker, D. P. Friedman, M. Felleisen,
and B. Duba, “Hygienic Macro Expansion”.
In Proceedings of the SIGPLAN ‘86 ACM
Conference on Lisp and Functional Pro-
gramming, 151-161.

[Nei80] J. Neighbors, “Software Construction Using
Components”, Ph.D. Thesis, ICS-TR-160,
University of California at Irvine, 1980.

[Per97] G. Jimenez-Perez and D. Batory, “Memory
Simulators and Software Generators”, 1997
Symposium on Software Reuse, 136-145.

[Rea86] Reasoning Systems Incorporated, “REFINE
User's Guide”, Palo Alto, 1986.

[Rea89] Reasoning Systems Incorporated, “Dialect
User’s Guide”, Palo Alto, 1989.

[Sim95] C. Simonyi, “The Death of Computer Lan-
guages, the Birth of Intentional Program-
ming”, NATO Science Committee
Conference, 1995.

[Sim97] C. Simonyi, personal communication.

[Sir93] M. Sirkin, D. Batory, and V. Singhal, “Soft-
ware components in a data structure precom-
piler”. In Proceedings of the 15th
International Conference on Software Engi-
neering, May 1993.

[Sma96] Y. Smaragdakis and D. Batory, “Scoping
Constructs for Program Generators”. Techni-
cal Report TR-96-37, Department of Com-
puter Sciences, University of Texas at
Austin, December 1996.

[Ste90] G. Steele Jr., Common Lisp: The Language.
Digital Press, 1990.

[Ste95] A. Stepanov and M. Lee, “The Standard
Template Library”. Incorporated in ANSI/
ISO Standards Committee C++ Draft.

[Vil97] E.E. Villarreal and D. Batory, “Rosetta: A
Generator of Data Language Compilers”,
1997 Symposium on Software Reuse, 146-
156.

[Wei93] D. Weise and R. Crew, “Programmable Syn-
tax Macros”. In Programming Language
Design and Implementation, 1993, 156-165.

Realm Component Description

Data
Structures

Array Random access array. Multi-dimensional in its general form but automatically special-
ized to fit the current specification without imposing run-time overhead.

Dlist Simple doubly-linked list.

Hash Hash table — re-implementation of the corresponding P2 layer.

Odlist Ordered doubly-linked list.

Tree Red-black tree (self-balancing binary tree). Code written to closely match the HP STL
[HPSTL] implementation, more efficient than the AVL trees of P2.

Storage Malloc Elements are allocated on demand.

Bounded A maximum number of elements is pre-allocated. For cases when the maximum num-
ber of allocated elements is bounded.

Persistent Elements are stored persistently (on disk).

Transient Elements are stored in main memory (data structures don’t outlive the process that cre-
ated them).

Architectural Functional Forces code to be generated in functions to avoid source code bloating due to inlining.

DS Supplements Delflag Implements element deletion by marking them as deleted instead of de-allocating
them.

Sizeof Keeps track of the data structure size.

Check Adds run-time bound checks.

Inbetween Ensures that a cursor always points to a valid element after deletions.

Hidden Order Factors out common code from all ordered layers. Inverts operations when the retrieval
order is “decreasing” instead of “increasing”.

Outofbounds Factors out common code from ordered layers. If a retrieval finds an element outside
the range of a predicate, the search is complete.

Predicate Factors out common predicate handling code.

Special Purpose Lrutree A layer developed for a special-purpose application (LRU memory policy simulation).
Implements a queue with special characteristics (quick position computation, move at
top of queue).

Appendix A: DiSTiL Realms and Components

