
Abstract

Domain modeling is believed to be a key factor in
developing an economical and scalable means for con-
structing families of related software systems. In this
paper, we review the current state of domain modeling,
and present some of our work on the ADAGE project,
an integrated environment that relies heavily on domain
models for generating real-time avionics applications.
Specifically, we explain how we detect errors in the
design of avionics systems that are expressed in terms
of compositions of components. We also offer insights
on how domain modeling can benefit the engineering of
computer-based systems in other domains.

1  Introduction

Design techniques and methodologies for large
scale software systems have traditionally focussed
on one-of-a-kind products. Leveraging of software
designs, and maybe even code, from previously
built systems has largely been done in an ad hoc
manner. For many years, this approach was ade-
quate: software systems were relatively simple; it
was cost effective to write software from scratch
and to use ad hoc methods of reuse. This is no
longer true. It is widely recognized that traditional
methods of software construction are not cost
effective in realizing large systems. Further,
because software complexity is growing rapidly,
there is a critical need for economical and scalable
methods of software construction.
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Conventional software design methodologies fail
to recognize that software systems are rarely one-
of-a-kind. There is often a long history of similar
and competing designs and implementations that
give rise to next generation products. Conven-
tional methodologies fail to amortize costs of
design and implementation for creating families of
similar systems. Herein lies the key to next gener-
ation software construction.

Domain modeling is the name given to an emerg-
ing class of software design methodologies that
formally define families of related systems. A
domain model identifies the essential features,
components, capabilities, interfaces, abstractions,
etc. of a family (or domain) of systems. A domain
model explains precisely the differences and simi-
larities of distinct members of the domain, and
provides system designers with language(s) that
allow them to specify, evaluate, and possibly gen-
erate target family members. Reuse of design and
code across multiple members is both an essential
and expected benefit.

ARPA’s Domain Specific Software Architecture
(DSSA) project was created to foster innovative
approaches for generating control systems. The
goal is to use domain models and advances in non-
linear control and hierarchical control theory to
generate avionics, command and control, and
vehicle management applications with an order of
magnitude improvement in productivity and qual-
ity. ADAGE (Avionics Domain Application Gen-
eration Environment) is a DSSA project for
avionics [Cog92-93, Goo92a-b]. The premise of
ADAGE is that many of the problems in naviga-
tion, guidance, and flight director software are
well-understood. For any new avionics system,
several features will require new and innovative
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software, but much of a new system can be built
by combining and adapting existing components.

We believe that domain modeling has applications
beyond systems that are exclusively software-
based. In fact, avionics systems are a tightly-cou-
pled meld of hardware and software, so the
domain modeling techniques used in ADAGE are
definitely not limited to software. In this paper, we
review the current state of domain modeling, and
explain how a particular ADAGE tool automati-
cally detects errors in avionics systems that have
been specified as compositions of components. We
also offer insights on the role of domain modeling
in engineering computer-based systems.

2  Current State of Domain Modeling

Domain modeling is an integral part of a “software
factory” paradigm. Rather than going directly
from requirements to a design and implementation
phase to produce a product (i.e., the conventional
software design paradigm - Figure 1a), the soft-
ware factory paradigm relies on generators and
libraries of reusable components to produce a tar-
get system. Domain modeling is an essential inter-
mediate step which outlines the design of a factory
(or generator) and libraries from which to assem-
ble new products (Figure 1b). That is, a software
product is recognized to be a member of a domain
of similar software systems. A domain model cap-
tures this domain by differentiating the features of
different systems, and prescribing the libraries and

generators needed to automatically construct
domain members.

Two distinct kinds of domain models have
emerged in recent years: integrative and genera-
tive. Integrative models define target systems from
a problem-oriented feature perspective; their goal
is to automatically produce specifications for tar-
get systems. Generative models define target sys-
tems from a solution-oriented system constraint
perspective; their goal is to actually produce the
software for targeted systems. Integrative models
are the most common and best understood.

An integrative model is integrated set of distinct
submodels that are used to develop specifications
for target systems. Submodels provide different
views (i.e., information) about a target system.
Typically submodels include generalization/spe-
cialization hierarchies, state transition diagrams,
aggregation hierarchies, and features. Generaliza-
tion/specialization submodels define the funda-
mental objects of a domain and their
specializations. Aggregation hierarchy submodels
express complex aggregate object types in terms
of more primitive types. State transition submod-
els define the execution semantics of objects in
terms of finite state machines. As a general rule,
the generalization, aggregation, and state transi-
tion submodels embody direct extensions to con-
ventional software design methodologies; the
basic extension is the ability to include or exclude
optional objects, relationships, and states when
specifying a target system.
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The most innovative submodel is the feature sub-
model. A feature is a prominent or distinctive,
user-visible quality or characteristic of a system. A
feature submodel is the set of features that charac-
terize and distinguish the members of a family of
systems. System designers initially define their
target system by specifying its set of features. In
general, not all combinations of features are mean-
ingful. Thus, an important part of a feature sub-
model is a rule base/knowledge base that
constrains the selection of features to only reason-
able (or supportable) combinations. Once the set
of features for a target system have been defined,
CASE tools propagate the selected features to
their representations in the other submodels (e.g.,
generalization submodel, etc.) to make all sub-
models consistent. It is using the information in
these consistent, integrated submodels that specifi-
cations for the target system can be generated
automatically.

Well-known examples of integrative models are
the Evolutionary Domain Life Cycle (EDLC)
Model [Gom94], Feature Oriented Domain Analy-
sis (FODA) [Coh94], and Organization Domain
Modeling (ODM) [Sim94].

Integrative models do not generate code for the
target system; they rely on software system gener-
ators for the target domain. Generative models or
reference architecture models are the second kind
of domain model that serve as blueprints for
domain-specific software generators. Generative
models primarily deal with software architecture
issues: identifying the fundamental programming
abstractions of a domain, creating libraries of
plug-compatible and interoperable software build-
ing blocks for the domain, defining knowledge
representation languages for stating which combi-
nations of building blocks are meaningful (and
which are illegal), and classifying different types
of “glue” (i.e. communication protocols) that can
be used to interconnect legal combinations of
components.

Examples of generative models are DRACO
[Nei89], DTRE [Bla91], and GenVoca [Bat92].
Special cases of the basic ideas behind generative
models include object-oriented frameworks and
design patterns [Gam94].

Generative models capture much of the same
information as integrative models, but present
only a limited, implementation-oriented view of
target systems (i.e., in terms of software compo-
nents, their compositions, and communication
protocols). Ideally, a generative model should be
another submodel of an integrated model. How-
ever, generative and integrative have evolved
independently and their unification has not yet
been achieved.

3  The ADAGE Generative Model

ADAGE uses integrative and generative domain
models to produce avionics systems to produce
avionics systems (consisting Navigation, Guid-
ance, and Flight Director subsystems) that can
support programs as JAST (Joint Advanced Strike
Technology) and others [Cog93]. The develop-
ment and experimentation with ADAGE is ongo-
ing; recent descriptions of the ADAGE
environment and its support for specific avionics
applications are presented in [Tra95, Bat95]. In
this paper, we will focus on the generative domain
model of ADAGE, and in particular, an important
problem that arises in its generators.

ADAGE relies on GenVoca [Bat92] to express its
generative model. Briefly, avionics software can
be represented by a collection of primitive, plug-
compatible building blocks called components.
All components export and import standardized
interfaces, so components “snap” together like
legos. Libraries of components that implement the
same standardized interface are realms. A realm,
in effect, is a library of plug-compatible and inter-
changeable components. An avionics software
system is defined as a composition of components
(legos); the family of all avionics systems that can
be generated is defined by the set of all possible
combinations of realm components. In general, the
number of such compositions is very large. In the
case that needed capabilities are not available,
new components and even new realms can be
added.

This approach to modeling software imposes a
layered view of avionics systems. Figure 2 depicts
the general layering of avionics subsystems and



suggests that each major subsystem is a composi-
tion of primitive components. The bottom-most
subsystems are data source objects (DSOs), i.e.,
sensors. Examples include inertial navigation sen-
sors (INS), VHF omnirange sensors (VOR), and
global positioning sensors (GPS). DSO sub-
systems report their raw sensor values to the navi-
gation and radio navigation subsystems, which
estimate the aircraft’s position relative to earth
coordinates or a fixed-location radio beacon. The
guidance subsystem determines the difference
between mission objectives and the current air-
craft state (position). The flight director subsystem
converts guidance errors into pilot control cues or
autopilot commands.

The ADAGE generative model identifies over 40
different realms containing over 350 components.
An avionics system is modeled by a composition
of components, called a type equation, that speci-
fies how components/layers are stacked. Type
equations for even simple avionics systems tend to
be non-trivial. Equations often reference more
than 50 distinct components that are stacked 15
layers deep. The key contribution of this approach
is that it is possible to reason about avionics soft-
ware at a high level; instead of examining the
details of code and ad hoc models of software
design, properties of avionics software systems
can be deduced from the properties of its compo-
nents. Because components are “standardized”,
composition tools, generators, analysis tools, etc.

can be created to support the development of fam-
ilies of avionics software systems quickly and
inexpensively. It is this integrated suite of tools
that defines the ADAGE environment [Cog93].

An important problem that arises in modeling avi-
onics software in ADAGE (and GenVoca) is that
there are syntactically correct type equations (i.e.,
compositions of components) that are not semanti-
cally correct. That is, the specified composition of
components simply will not produce a correctly
functioning avionics system. A critical capability
of the ADAGE tool set is to detect composition
errors automatically. This capability is defined by
Variational Attribute Grammars (VAGs).

4  Variational Attribute Grammars

VAG is a functional programming language
designed for the development of constraint-based
CAD systems such as ADAGE. There are two
kinds of users of the VAG system: the VAG pro-
grammer and the CAD system user. The VAG pro-
grammer defines a set of VAG programs which are
then used as design primitives in a CAD system.
Each VAG program models the constraints associ-
ated with a particular (ADAGE) software compo-
nent. VAG programs are parameterized, much like
their ADAGE component counterparts. When an
avionics system is modeled by a composition of
components, the corresponding composition of
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VAG programs models the inter-component con-
straints that must be satisfied by that composition.
CAD systems that are built/modeled in this way
are called VAGCAD systems.

For example, in the avionics domain a natural
component is a high pass filter. Natural parameters
of a high pass filter are the frequency at which the
filter starts to pass the signal and the “sharpness”
of the step in the frequency response. Different
values of the sharpness parameter can lead to quite
different filter designs. The VAG program repre-
senting this component is a function which takes
various parameters and returns a data structure
representing the filter. The VAGCAD system is
designed to manipulate and reason about designs,
i.e., designs in which some parameters and com-
ponents are represented by variables whose value
has not been specified.

The term “VAG” is an acronym for Variational
Attribute Grammar. Traditional attribute gram-
mars play an important role in software develop-
ment tools such as compilers and editors. A
computer program is an expression satisfying the

syntactic requirements embodied in a grammar
which describes the language in which the pro-
gram is written. Traditional attribute grammars
augment traditional context free grammars with
equations that define “attributes” of programs and
program fragments [Rep85, Der88]. A set of VAG
programs can be viewed as an attribute grammar
and a VAG programmer can be viewed as a gram-
mar designer. Actually, it is the type information
associated with defined functions that plays the
role of a grammar. Type information specifies a set
of well typed expressions in much the same way
that a traditional grammar specifies a set of gram-
matical expressions. The relationship between
types and grammars has been widely studied in the
context of natural language syntax [Adj35,
Bac88]. A design can be viewed as an attributed
grammatical (or well typed) expression. However,
the analogy with attribute grammars hides the fact
that the VAG language is also a general purpose
functional programming language. Both views of
VAG --- the grammar view and the functional pro-
gramming view --- are important and useful.

.

Primitive Type Declaration

+, *, -, / number × number → number

<, <=, >, >= number × number → boolean

and, or boolean × boolean → boolean

not boolean → boolean

true, false → boolean

= σ × σ → boolean

if boolean × σ × σ → σ
cons σ × (list-of σ) → σ
car (list-of σ) → (list-of σ)
cdr (list-of σ) → (list-of σ)
nil → (list-of anything)

null? σ × (list-of σ) → boolean

member? σ × (list-of σ) → boolean

append (list-of σ) × (list-of σ) → (list-of σ)
map (σ → τ) × (list-of σ) → (list-of τ)

TABLE 1. The Primitives of VAG



Formally, VAG is best defined as a functional pro-
gramming language. It uses Lisp syntax (or lack
thereof) but unlike Lisp, VAG is strongly typed.
The language consists of the primitive functions
shown in Table 1 together with the ability to
extend the language with recursive (and non-
recursive) definitions and structure declarations.
Structure declarations are given with Common
Lisp syntax as in the following example

(defstruct drawer
(drawer-height number)
(drawer-width number)
(drawer-depth number))

The above declaration introduces drawer as a
type symbol. It also introduces four functions
make-drawer, drawer-height, drawer-
width and drawer-depth. The function
make-drawer takes three arguments, one for
each field of the drawer data structure. For exam-
ple, the value of (make-drawer 10 15 25) is
a drawer data structure with a height of 10 a width
of 15 and depth of 25. The functions drawer-
height, drawer-width and drawer-
depth each take a drawer data structure as an
argument and return a number representing the
height, width, or depth of that drawer respectively.

Both structure declarations and function defini-
tions can associate constraints with structure types
and functions respectively. Figure 3 shows an
example of a constraint associated with a structure
type. It is a conjunction of two primitive con-
straints: the first states that the sum of the drawer
heights is 10 units less than the height of the

dresser, and the second states that the widths of all
drawers equals the width of the dresser minus 5
units. This constraint involves the defined func-
tions sum and every, each having simple recur-
sive definitions. Now suppose that we ask the
system to consider the following partial design:

(defvar w number)
(defvar h1 number)
(defvar w1 number)
(defvar d number)
(defvar w2 number)
(make-dresser w 50

(list (make-drawer h1 w1 d)
(make-drawer 15 w2 d)
(make-drawer 15 30 d)))

The above design states that the height of a dresser
is 50 units; the height of the bottom two drawers is
15 units, and the width of the bottom drawer is 30
units. The constraints generated by this expression
will be partially evaluated to yield the following:

(and (= (+ h1 (+ 15 15)) (- 50 10))
(and (= w1 (- w 5))

(and (= w2 (- w 5))
(and (= 30 (- w 5))

(true)))))

Given these formulas, VAGCAD’s boolean and
numerical reasoning will derive that h1 is 10, w is
35, and w1 and w2 are both 30. Note that in this
example, the design is incomplete. That is, param-
eter d, the depth of the dresser, cannot be inferred
from constraints and remains to be defined.

Traditional attribute grammars make a distinction
between inherited attributes whose values are

(defstruct (dresser
(with-constraint
(and (= (sum (map (lambda (x) (drawer-height x))

 (dresser-drawers self)))
(- (dresser-height self) 10))

(every (map (lambda (drawer)
 (= (drawer-width drawer)

(- (dresser-width self) 5)))
 (dresser-drawers self))))))

(dresser-width number)
(dresser-height number)
(dresser-drawers (list-of drawer)))

Figure 3. A VAG Constraint



derived from context and synthesized attributes
whose values are computed from subexpressions.
In a VAG expression, attributes are related by con-
straints which allow multidirectional flow of infor-
mation. Variational attribute grammars are similar
to, but formally simpler than, relational attribute
grammars as described in [Cou88]. Although the
value of a VAG attribute can be inferred using
multidirectional constraint flow, at a semantic
level the VAG language has only synthesized
attributes. An attribute width of an object x,
denoted by (width x), is represented by the term
which is semantically no different from any other
term in a functional programming language. The
value of the term (width x) is derived by apply-
ing the function width to the object x. However,
if x is a variable, or contains free variables, then
the value of (width x) can not be determined in
this way. It might be determined, however, by glo-
bal constraints on the design from which one can
infer that the term (width x) must have value 3.
In this way multidirectional constraints can be
used to derive the value of the attribute of the
object x.

Although VAG is formally a functional program-
ming language, VAG programming is quite differ-
ent from programming in traditional functional
languages. VAG programs are intended to be used
as parts of partial designs. In particular, the VAG
interpreter is designed to operate on partial
designs. In a VAGCAD system, a partial design is
a VAG expression in which some parts are not
given. These yet to be designed parts are repre-
sented by variables. In order to create useful VAG
primitives the VAG programmer must understand
the constraint based reasoning mechanisms that
will be available to the VAGCAD system user.
The VAG functions created by the VAG program-
mer should be such that the VAGCAD reasoning
mechanisms can reason about them effectively.

The use of variables to represent yet to be
designed components is formally similar to the use
of logic variables in constraint logic program-
ming. The main difference is the intended degree
of interaction between the system and a human
designer. In a VAGCAD system, logic variables
range over yet to be designed aspects of a system.
The VAGCAD system performs as much con-

straint based reasoning as is feasible but the sys-
tem relies on a human designer to make major
decisions in filling in a design.

5  Engineering of Computer-Based
Systems

Designing and building systems (largely) from
prefabricated components has long been a com-
mon engineering discipline. Standards and criteria
for acceptable designs have been established;
common sets of analyses can be applied to interro-
gate specific capabilities of designs and to identify
potential weaknesses. The design environments
for computer software have not matched their
counterparts of computer hardware. How one
designs large software systems from existing com-
ponents is only now becoming the focus of exten-
sive research [Gar93].

The benefits of creating (domain) models that
define families of related systems are clear
[Par79]; the cost of creating multiple systems is
amortized over the lifetime of a domain model.
(Reports that a payback is achieved within the first
few systems uses of the domain model are com-
mon [Bar94]).

Much effort has been invested in studying the
practices of other (non-software) disciplines in
order to discern how to build software better.
These efforts have largely failed; it is not obvious
how lessons learned from, say, the mechanics of
building bridges or designing homes can be
applied to software. We believe that projects like
ADAGE and its reliance on VAGS to detect errors
in designing systems as compositions of compo-
nents will ultimately lead to practical paradigms
for mass-producing customized software. Only
after such projects have matured will correlations
with other engineering disciplines be truly valu-
able and meaningful.
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