
Building Product-Lines with Mixin-Layers1

Don Batory and Yannis Smaragdakis
Department of Computer Sciences

The University of Texas
Austin, Texas 78712

Abstract

A mixin-layer is a building block for assembling applications of a product-line. We explain mixin-
layers, their relationship to collaboration-based designs, layered designs, and GenVoca. We also
summarize some of the product-lines that we have built using mixin-layers.

1 Introduction

A product-line architecture (PLA) is a design for a family of related applications. Our interest in PLAs
stems from our earlier work in scalable libraries and software generators [Bat93-94]. A generator converts
a high-level, declarative specification into a high-performance application. It is a tool—actually a compiler
or configuration manager—that can produce a family or product-line of related applications. A scalable
library is a small set of components that can be composed in exponential numbers of ways, where a prod-
uct-line application is a particular composition of these components. Generators that rely on scalable
libraries to produce application product-lines are called GenVoca generators.

At its core, GenVoca is a design methodology for building architecturally-extensible software—i.e., soft-
ware that is extensible via component addition and removal. To the contrary of its historical development,
GenVoca can be understood as a scalable outgrowth of an old, largely unscalable, and mostly ignored
methodology of program construction called step-wise refinement. GenVoca freshens this methodology by
scaling refinements to a component or layer (i.e., multi-class-modularization) granularity, so that applica-
tions of enormous complexity can be expressed as a composition of a few refinements (rather than hun-
dreds, thousands, or millions of small refinements) [Bat92, Boe96].

When GenVoca refinements are composed statically, their implementation can be expressed as an object-
oriented (OO) building block which we call a mixin-layer. Among the benefits of expressing GenVoca
refinements as mixin-layers is that (1) it presents a very different way in which OO designs can expressed,
(2) it presents a clean way in which to create OO PLAs from mixin-layers, and (3) it reveals a fundamental
connection with an important area of OO design called collaboration-based designs. In the following sec-
tions, we sketch the relationship of collaboration-based designs with GenVoca refinements, introduce the
idea of mixin-layers for creating mix-and-match application architectures, and review PLAs that we have
built using mixin-layers.

2 Refinements and Collaboration-Based Designs

In an object-oriented design, objects are encapsulated entities that are rarely self-sufficient. Although an
object is fully responsible for maintaining the data it encapsulates, it needs to cooperate with other objects

1. This work was supported in part by Microsoft, Schlumberger, the University of Texas Applied Research Labs, and
the U.S. Department of Defense Advanced Research Projects Agency in cooperation with the U.S. Wright Laboratory
Avionics Directorate under contract F33615-91C-1788.
1

dsb
Text Box
ECOOP 99 Workshop on Product-Line Architectures

to complete a task. An interesting way to encode object interdependencies is through collaborations. A col-
laboration is a set of objects and a protocol (i.e., a set of allowed behaviors) that determines how these
objects interact. The part of an object that enforces the protocol that a collaboration prescribes is called the
object’s role in the collaboration.

A collaboration-based design expresses an application as a composition of separately-definable collabora-
tions. In this way, each object of an application represents a collection of roles describing actions on com-
mon data. Each collaboration, in turn, is a collection of roles, that encapsulates relationships across its
corresponding objects.

Static Refinements. GenVoca refinements and collaboration-based designs have much in common: Object
classes are of secondary importance and components (collaborations) interrelate many classes. To build
even one class of an application, several components (collaborations) must be combined. The central ques-
tion is how are collaborations expressed in OO languages? Consider how static refinements are expressed
in OO. A static refinement of an individual class adds new data members, new methods, and/or overrides
existing methods. Such changes are expressed through subclassing: class A is refined by subclass B:

Both collaboration-based designs and GenVoca deal with large-scale refinements: such refinements
involve the addition of new data members, new methods, overriding existing methods, etc. simultaneously
to several classes:

The encapsulation of these subclasses in the above figure defines both a GenVoca component (or layer) and
a collaboration. (Note that we are showing only subclassing relationships in this figure; there can be any
number of “horizontal” interrelationships among individual subclasses).

To give this intuitive meaning, have you ever added a new feature to an existing OO application? If
so, you discover that changes are rarely localized. Multiple classes of an application must be
updated simultaneously and consistently for the feature to work properly. Similarly, if one subse-
quently removes that feature, all of its updates must be simultaneously removed from all affected
classes. It is this collection of changes that we want to encapsulate as a primitive application build-
ing block. This idea is called an aspect in Aspect-Oriented Programming (AOP), although GenVoca
[Bat92] predates AOP [Kic97].

Each subclass of a layer encapsulates a role of a collaboration-based design. For a collaboration-based
design to be “hooked” into an application, each role must be bound with an existing class of the applica-
tion. We will see shortly that layers can be expressed as templates, and that such binding is accomplished
via template parameterization. Thus, a layer defines a collaboration, while a layer instantiation addition-
ally defines role/class bindings.

A

B

subclass B
statically
refines
class A

class

subclass

class

subclass

class

subclass

application classes

refinement classes of
a layer or collaboration
2

Compositions. When a layer (collaboration) is composed with other layers, a forest of subclassing (inher-
itance) hierarchies is created. As more layers are composed, the hierarchies become progressively broader
and deeper. Figure 1 illustrates this phenomenon. Layer L1 encapsulates three classes. Each of these
classes root a subclassing hierarchy. Layer L2 encapsulates three classes, two classes refine existing classes
of L1 while a third starts a new hierarchy. Layer L3 also encapsulates three classes, two of which refine
classes of L1 and L2. Finally, layer L4 encapsulates two classes, both of which refine existing classes.

Each inheritance “chain” of Figure 1 represents a derivation of its terminal class. That is, each terminal
class (shaded in Figure 1) is a product of its superclasses, each of which defines a role in some collabora-
tion. In general, the classes that are instantiated by an application are the terminal classes, because these
classes encode all the roles that are required of application objects. The non-terminal (non-shaded) sub-
classes represent intermediate derivations of the application classes. Thus, the composition of layers L1
through L4 yields five classes (i.e., those that are shaded); the unshaded classes represent the “intermedi-
ate” derivations of these shaded classes. Even though the resulting class hierarchies can be complex, col-
laboration-based designs ultimately reduce complexity by shifting the design emphasis from small-scale
components (individual classes) to large-scale ones (entire collaborations).

Product Lines. Layers are basic building blocks for large families of applications, where an application is
a composition of layers. In general, n layers can be composed in excess of n! ways, because the order of
composition matters and layer replication is possible. This is the central idea behind GenVoca.

(So it is not uncommon that rather different applications of a product-line can be assembled by composing
exactly the same layers in different orders [Bat92, Hay98]. This can be seen in Figure 1: the order of L2-L4
could be permuted, provided that L4 is “below” L3.)

3 Mixin Layers

We now consider how collaboration-based designs can be implemented. We use Jak, a superset of Java that
adds parameterization, to convey the basic implementation technique, called mixin-layers. C++ expres-
sions of mixin-layers are presented elsewhere [Sma98a-b].

Mixins. A mixin is a class whose superclass is specified by a parameter. Mixins can be expressed as tem-
plates. Below we define a mixin M whose superclass is defined by parameter S:2,3

2. S can be any class since all classes implement interface AnyClass.

3. We use Bracha’s general definition of “mixin”, which is a class whose superclass is left unspecified [Bra90]. C++
has evolved a different meaning of “mixin” that is not equivalent to our use.

L1

L2

L3

L4

Figure 1 Creating Inheritance Hierarchies by Composing Layers

Legend

class

subclass relationship

most refined class
3

class M <AnyClass S> extends S { ... }

Mixins provide the capability of creating customized inheritance hierarchies when they are composed.

Nested Classes. In both Java and Jak, class declarations can be nested inside other class declarations.
Nested classes behave in most respects (e.g., access control, scoping) just like regular members of a class.
Interestingly enough, nested classes can also be inherited. Consider the following example:

class OuterParent { class Inner { ... } }
class OuterChild extends OuterParent { }

In this case, OuterChild is a subclass of OuterParent in an inheritance hierarchy. Although no Outer-
Child.Inner class is explicitly defined, such a class does, in fact, exist as it is inherited from Outer-
Parent. Nested classes emulate the encapsulation of multiple classes within a package, except this
representation allows “packages” to appear as nodes in inheritance hierarchies.

Combining Ideas. A mixin-layer is an implementation of a collaboration. It is a mixin with nested classes,
where each nested class corresponds to a role of a collaboration. A general form of a mixin-layer M is as an
Jak template that has n+1 parameters: one parameter S that defines the superclass of M, plus n additional
parameters that define the specific classes the collaboration’s role classes are to refine.

class M <AnyClass S, AnyClass r1, AnyClass r2, ... AnyClass rn>
extends S {

class role1 extends r1 { ... }
class role2 extends r2 { ... }
...
class rolen extends rn { ... }

}

Experience has shown that different collaborations often use the same names for roles, and classes that
have the same role names refine each other when their collaborations are composed. While the above tem-
plate for mixin-layer M is general, a much more common and compact form eliminates role-class parame-
ters to yield a template with a single parameter S, the mixin-layer’s superclass:

class M <AnyClass S> extends S {
class role1 extends S.role1 { ... }
class role2 extends S.role2 { ... }
...
class rolen extends S.rolen { ... }

}

Note the three mechanisms that we exploit: mixins (i.e., parameterized inheritance), nested classes (for
encapsulating multiple classes within a single unit), and name standardization (for consistent role names
across multiple collaborations).

Compositions. Collaborations are composed by instantiating one mixin-layer with another as its parame-
ter. The two classes are then linked as a parent-child pair in an inheritance hierarchy. The final product of a
collaboration composition is a class T with the general form:

class T extends
Collab1 < Collab2 < Collab3 < ... < FinalCollab > ... >
4

That is, Collab1, Collab2, …, FinalCollab are mixin-layers, “<...>” is the Jak operator for tem-
plate instantiation, and T is the name given to the class that is produced by this composition. The classes of
T are referenced in the usual way, namely T.Role1 defines the application class Role1, etc.

4 Applications

The Jakarta Tool Suite (JTS) is a set of Java-based compiler tools for building domain-specific languages
and embedding domain-specific languages into Java. JTS has been used to create a product-line of Java
dialects, of which Jak (mentioned in previous sections) is an example. JTS and Jak have been built from
mixin-layers. Jak itself is a composition of 10 mixin-layers that encapsulate over 500 classes [Bat98].

We are now re-engineering the Fire Support Automated Test System (FSATS), a command-and-control sim-
ulator for the U.S. Army, as a GenVoca product-line where primitive building blocks are mixin-layers. Pre-
liminary results show that using mixin-layers provides a substantial simplification to FSATS design and
makes it possible to create variations of FSATS (e.g., for use by other armed-forces) that would otherwise
be infeasible.

The techniques and results discussed in this paper are not isolated; GenVoca itself has a long history of
successes, including avionics [Bat95], data structures [Bat93], and network protocols [Hay98]. Among the
technical issues previously addressed are the verification of layer composition, automatic optimization of
compositions, and meta-program implementation of refinements. Although mixin-layers were conceived
only recently, many earlier GenVoca PLAs could have been equivalently (and more cleanly) expressed in
terms of these ideas.

5 References

[Bat92] D. Batory and S. O'Malley, “The Design and Implementation of Hierarchical Software Systems with
Reusable Components”. ACM Transactions on Software Engineering and Methodology, 1(4):355-398,
October 1992.

[Bat93] D. Batory, V. Singhal, M. Sirkin, and J. Thomas, “Scalable Software Libraries”, ACM SIGSOFT 1993.

[Bat94] D. Batory, J. Thomas, and M. Sirkin, “Reengineering a Complex Application Using a Scalable Data
Structure Compiler”, ACM SIGSOFT 1994.

[Bat95] D. Batory, L. Coglianese, M. Goodwill, and S. Shafer. “Creating Reference Architectures: An Example
from Avionics”. Symposium on Software Reusability, Seattle Washington, April 1995.

[Bat98] D. Batory, B. Lofaso, and Y. Smaragdakis, “JTS: Tools for Implementing Domain-Specific Languages”.
5th International Conference on Software Reuse, Victoria, Canada, June 1998.

[Boe96] E. Boerger and I. Durdanovic, “Correctness of Compiling Occam to Transputer Code”, The Computer
Journal, Vol. 39, No. 1.

[Bra90] G. Bracha and W. Cook, “Mixin-Based Inheritance”, ECOOP/OOPSLA 90, 303-311.

[Hay98] M.G. Hayden, “The Ensemble System”, Ph.D. dissertation, Dept. Computer Science, Cornell, January
1998.

[Kic97b] G. Kiczales, J. Lamping, A. Mendhekar, C. Maeda, C. V. Lopes, J. Loingtier and J. Irwin, “Aspect-
Oriented Programming”, ECOOP 97, 220-242.

[Sma98b] Y. Smaragdakis and D. Batory, “Implementing Layered Designs with Mixin Layers”. 12th European
Conference on Object-Oriented Programming, (ECOOP '98), July 1998.

[Sma98a] Y. Smaragdakis and D. Batory, “Implementing Reusable Object-Oriented Components.” 5th
International Conference on Software Reuse, Victoria, Canada, June 1998.
5

	Building Product-Lines with Mixin-Layers
	Don Batory and Yannis Smaragdakis
	Department of Computer Sciences
	The University of Texas
	Austin, Texas 78712
	1 Introduction
	2 Refinements and Collaboration-Based Designs
	Figure 1 Creating Inheritance Hierarchies by Composing Layers

	3 Mixin Layers
	4 Applications
	5 References

