
Thoughts on Automated Software Design and Synthesis

Don Batory
Department of Computer Science
The University of Texas at Austin

Austin, Texas, 78712 U.S.A.
batory@cs.utexas.edu

ABSTRACT
I summarize some personal observations on the topic of automated
software design and synthesis that I accumulated over twenty years.
They are intended to alert researchers to pitfalls that may be en-
countered and to identify goals for future efforts in advancing soft-
ware engineering education and research.

Categories and Subject Descriptors
D.2.10 [Design]; D.2.2 [Design Tools and Techniques]

General Terms
Design

1. INTRODUCTION
My formal education in the late-1970s was in databases (DBs).

In the early 1990s, my research migrated to Software Engineering
(SE). After a year and with trepidation, I admitted the move pub-
licly to my department. The reputation of SE has since improved,
but arguably remains one of the less-respected disciplines in Com-
puter Science. SE is indeed engineering (nothing wrong with that);
my core complaint is that the scientific foundations for particular
subdisciplines of SE are weak, if not outright shabby. I focus my
ire on software design and synthesis, my main interest. (Hence-
forth I use the term program automation for design and synthesis).
Equating design with poetry does nothing to enhance its reputation
in the eyes of scientists. While there is artistry in bridge-building,
artistry is not what is taught in Mechanical Engineering [6]. Nor
should it be. The same holds for software design. What distin-
guished DBs from SE was a communal agreement on fundamental
concepts, core problems to solve, and a common vocabulary with
agreed-upon meanings. This trifecta remains illusive in broad areas
of program automation.

I take two positions in this paper. First, at the core of program
automation lies a Science of Design or Algebra of Design that all
CS students should be exposed. It may not help programmers in
the trenches immediately, but it will provide a long-range concep-
tual foundation for which existing and new SE technologies can be

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
FoSER-18, November 7–8, 2010, Santa Fe, New Mexico, USA.
Copyright 2010 ACM 978-1-4503-0427-6/10/11 ...$10.00.

cast, understood and related. And doing so will begin to shore up
the scientific foundations of what we do and what we teach about
design so that our students will be more literate, better prepared,
and (hopefully) more appreciative of future advances in SE.

Second, there are communal roadblocks that next generation SE
researchers may face: fundamentals of program automation, under-
graduate education, and visibility and awareness of prior work. All
are aimed at improving the scientific foundation and education of
our discipline.

2. FUNDAMENTALS
One of the greatest achievements in program automation, and

also software engineering, is relational query optimization (RQO)
[5]. Prior to RQO, people had to access a database programmati-
cally, which lead to a never-ending list of problems. Ad hoc queries
were impractical, programmers had to understand far too many im-
plementation details of data storage to write a program, programs
would have to be modified if storage details changed, optimiza-
tion of query evaluation programs was too costly, and worse, logic
errors in query evaluation programs were detected far too late. To
eliminate these difficulties required a solution to the Automatic Pro-
gramming (AP) problem. That is, map a declarative specification of
a query to an efficient program. This was no small challenge. RQO
was considered at a time (late 1970s) when the Artificial Intelli-
gence community was abandoning efforts on AP as it was too hard.
The SE community was too nascent back then to have contributed
significantly.

The genius of RQO was to represent query evaluation programs
as relational algebra expressions. If you represent programs as
expressions, you can optimize these expressions using algebraic
identities, which in turn meant that you could optimize programs
automatically. Voila! A domain-specific solution to AP. Today,
database optimizers deal with many more operations than the clas-
sical Select-Project-Join, giving testament to the longevity, power,
and practicality of the RQO paradigm. In effect, database research-
ers told us how to organize and conceptualize a domain so that
efficient programs in that domain could be generated automatically
from declarative specifications.1

It took me years to appreciate the significance and generality of
RQO: it is a compositional paradigm for program synthesis and
it fundamentally imprinted my view of program automation more
than any software engineering course (in the 1980s and maybe even
now) could have. I feel I can now point to notable successes gener-
alizing this approach [1, 2, 4].

1The SQL and QUEL languages enabled declarative specifications
of queries. Their compilers mapped queries to relational algebra
expressions. This is another fundamental contribution of RQO.

dsb
Text Box
to appear, Future of Software Engineering Research Workshop, at FSE, November 2010

As I look through the collection of SE texts in my office (which
admittedly is not voluminous), I find no references at all to this fun-
damental result. Not one. Even if I missed some, this says volumes
to me about how things must change in the future. I wonder what
others in SE are thinking about program automation (if at all), and
if RQO was ever on their radar.2

RQO taught me something fundamental. Software engineers de-
fine structures called programs and use tools to transform, manip-
ulate, and analyze them. Object orientation uses methods, classes,
and packages to structure programs. Compilers transform source
structures into bytecode structures. Refactoring tools transform
source structures into other source structures, and metamodels of
MDE define the allowable structures of model instances: transfor-
mations map metamodel instances to instances of other metamod-
els for purposes of analysis and synthesis. Software design and
development is replete with such examples.

I am not a mathematician. On the contrary, I had no formal math-
ematical background and built systems just like others to validate
ideas. But I needed a language in which to explain my ideas in a
natural way. I found the marriage of algebra and program transfor-
mations to provide a perfect language to do so. Mathematics is the
science of structures and their relationships. I use mathematics as
an informal modeling language (not as a formal model) to define
and explain the principles behind my work. And it naturally leads
to expressing software design in terms of ancient concepts: pro-
grams are values, transformations map programs to programs, and
operators map transformations to transformations. This orientation
effortlessly leads to MDE, with its emphasis on transformations
and models. This is a strong argument that we have been using
MDE concepts for some time (although certainly not in their most
general form). Viewing prior work through an MDE-lens places
program automation more on an algebraic footing, and (I argue) is
a better foundation for teaching SE concepts to undergraduates and
graduates than non-algebraic foundations. Even if students never
explore MDE in their undergraduate classes, the transition to MDE
when they do see it should be straightforward.

3. UNDERGRADUATE EDUCATION
Experience in program automation makes the following point

painfully clear: unless you have a deep understanding of both the
conceptual and engineering issues of a domain, you can not se-
riously automate the essential tasks of design and development.
The breadth of my work covers Software Product-Lines (SPLs),
layered abstractions, extensible designs, variability management,
refactorings, program synthesis, and more recently Model Driven
Engineering (MDE). There have been significant advances in all
these areas in the last decade, but the number of graduate students
that appreciate (or have any clue about) SPLs and MDE still feels
miniscule. In other words, they are not seeing these ideas in their
undergraduate education. Magnify this with the fact that if students
do not encounter an idea (such as SPLs or MDE) prior to entering
the work force, they will be imprinted with legacy concepts that
— in my experience — make it harder to adopt and/or advance SE
technology later on.

Even worse, I do not see non-SE graduate students (who come
to UT from other universities) applying standard SE knowledge in

2I recall in the early-1990s telling a pioneer in the SE community
(who will remain nameless) that I was glad I did not know much
about SE when I started my work on SPLs and program generation.
The contemporary ideas in SE back then were irrelevant to RQO,
in my opinion, and would have been put me on the wrong track.
Of course, my statement went over like a lead balloon, but it still
retains an element of truth today.

their work, say, of software architectural designs (e.g. pipes-and-
filters) that were explored 15 years ago. Students do use the ideas
— but the historical trail, terminology, and knowledge of that work
seems to have been forgotten or maybe were even never known
to them. This again suggests to me that it is time to refresh or
rethink our undergraduate education in SE so that these “holes” are
plugged.

A case in point: consider the future prominence of program au-
tomation. A domain is ripe for program automation when its body
of knowledge and software implementations are well-understood.
Ten years ago, there were many such domains. Now there are more.
Ten years from now, there will be more still. Program automation
will be familiar to SE practitioners in the future. What about au-
tomation should we teach? Tools and hacking are a poor start.

Algebraic principles should be driving force in teaching program
automation much like relational algebra is the driving force behind
query optimization. Domain analysis — the process by which a
domain is codified — should follow classical activities that are un-
dertaken in physics and chemistry: one develops theories that ex-
plain and predict — using as few concepts as possible — a set of
disparate phenomena. I am not talking about the “wind, fire, wa-
ter, earth” theory of the Greeks, which is best qualitative. Nor am
I talking about the broad, informal surveys of what has been done
or could be done that is popular today. Rather, I refer to modern
theories that have an algebraic core (compositional, automatable)
where mathematical reasoning — possibly including formal verifi-
cation — underpins design reasoning. The broader the set of phe-
nomena covered, the fewer the core concepts, the better. A theory
is evaluated by implementing a generator to synthesize programs
that exhibit predicted properties. Of course, there is a practical
benefit to all this: tasks of programming that are well-understood
are mechanized and higher-quality software is produced at less ex-
pense. To me, this is a core Science of Design activity [3] that will
become progressively more important in undergraduate education,
e.g. how to think about program automation and, later given appro-
priate background, how to use and improve automation tools.

I feel strongly that future research in SE cannot just be motivated
by the need to solve immediate or newly arising technical problems.
Solving such problems is admittedly important, but they are not the
only problems of substance. Much of what I have seen in my 20+
years that passes for great SE are virtuoso performances — often
by people outside the community — that expose researchers to new
challenges that lie ahead. But we should also find ways of moving
research results into our undergraduate classes.

Matthias Felleisen observed that as a community, we are good
at finding research problems to keep us busy for years at a time.
Equally important is research that keeps our undergraduates busy.
Jay Misra noted that the quality of a research area is measured by
the quality of its teaching material. We should follow their advice:
the quality of a research area is measured by the quality of its un-
dergraduate teaching material. Ask yourself (for a given paper or
area) is there material that is worth presenting to undergraduates?
If not, then perhaps something is wrong.

4. WHAT HAVE WE DONE?
I attended an NSF workshop in 2003 on the “Science of Design:

Software Intensive Systems” where after a break-out session, Fred
Brooks expressed frustration to what I have seen as a general prob-
lem: “How do we know what we are doing if we don’t know what
we have already done?” I know of research communities that are
prone to reinvent the wheel. I worry that software engineering re-
search matures at a slower rate than it does in other disciplines,
because there may not be standard names for problems or concepts

(making it harder to find related work), key results often do not
appear in flagship conferences or journals (again, making it harder
to find related work), and the role of journals in today’s research
climate may be diminishing. All reduce the impact of tomorrow’s
software engineering research, and this should be concern to all.

I was fortunate to have been a member of the 2003 ICSE pro-
gram committee. When I received my batch of papers to review,
I wondered what fraction of their citations (i.e. references to prior
work) were to earlier ICSE and ACM FSE (the flagship SE con-
ferences), and to ACM TOSEM and IEEE TSE (the flagship SE
journals). Table 1 summarizes the findings.

Total Papers Submitted 311
Citations Per Paper 21.3
IEEE TSE Citations 298 4.5%

ACM TOSEM Citations 49 0.7%
ICSE Citations 202 3.0%
FSE Citations 48 0.7%

Others 91%

Table 1: Statistics on ICSE 2003 Submissions

I was surprised to see that FSE and TOSEM had tiny percent-
ages. We all know how difficult it is to get publications in these
venues, so I began to wonder if these the venues had the highest
impact? Were the 2003 statistics outliers? Again with the help
of my students, we collected comparable statistics on the accepted
papers from two prior ICSEs (2000 and 2001). Table 2 shows the
results:

ICSE00 ICSE01
Total Papers 51 60

Citations Per Paper 19.9 21.0
IEEE TSE Citations 7.5% 4.5%

ACM TOSEM Citations 1.6% 0.8%
ICSE Citations 5.7% 4.7%
FSE Citations 1.1% 1.7%

Others 85% 88%

Table 2: Comparison of Prior ICSE Proceedings

In short, not much difference. FSE and TOSEM account for a
negligible percentage of citations; ICSE and TSE account for about
10%. Note: TOSEM publishes about 12 papers a year, TSE 48. The
factor 4 difference seems to hold for their relative citation rates (1%
vs. 5-6%), which means TOSEM papers are on average cited as
often as TSE papers. Never-the-less, 85-90% of papers cited were
not from flagship venues didn’t seem right.

Given my database background, I was curious to know similar
statistics about my former community. At the time ACM TODS
(Transactions on Database Systems) and ACM TKDE (Transac-
tions on Knowledge and Data Engineering) were the flagship jour-
nals and SIGMOD, VLDB, and PODS the flagship conferences,
where PODS was the more theoretical of the three. See Table 3.

30-40% of citations were to publications in premier DB venues,
in contrast to 10-15% for SE. Note that citations to database jour-
nals weighed in at a paltry 1.7%, raising not only the question of
the relevance of database journals, but journals in general.

In writing this paper, I wondered what had changed in the inter-
vening years. So I grabbed a digital copy of the ICSE 2010 pro-
ceedings, and did a quick analysis summarized in Table 4.The ci-
tation numbers from flagship venues are better, rising from 10% to

SIGMOD00 SIGMOD01
Total Papers 42 29

Citations Per Paper 23.5 20.7
ACM TODS 1.6% 1.2%
ACM TKDE 0.1% 0.2%

SIGMOD 20.7% 10.4%
VLDB 12.8% 5.6%
PODS 1.7% 10.6%
Others 62% 72%

Table 3: Statistics for ACM SIGMOD Conferences

20%. But this is not the whole story: there are many citations to pa-
pers in OOPSLA, ECOOP, ASE, GPCE, PLDI, POPL, and ISSRE
which, not counted in Table 4, should raise the citation percentages
to respectable levels. And of course, this is not a proper statistical
survey; it represents just a few sample points.

Total Papers Accepted 54
Citations Per Paper 27.1
IEEE TSE Citations 84 5.7%

ACM TOSEM Citations 11 0.7%
ICSE Citations 127 8.7%
FSE Citations 24 4.8%

Others 80%

Table 4: Statistics for ICSE 2010

This raises a set of interesting questions that I hope someone
(eventually) will answer: Are important papers so widely dispersed
across different venues that it delays dissemination to others? Are
flagship conferences bad at focussing the attention of people on the
big ideas of the next few years? Are these conferences hurting our
community because the topics that are covered are simply too broad
and too numerous? Is it better for academic promotion to publish
in lower-tier conferences where impact may be greater because the
community is more focused?

How could we do a better job of disseminating results? One
way to promote better awareness of prior work is to have digital li-
braries list the most significant papers in recognized subdisciplines
of SE. As the publishers of these papers (ACM, IEEE, Springer,
etc.) will likely be different, only links to these papers may be
posted. But at least, there would be a clearing house of key pa-
pers that all should be aware. Committees that are representative of
subdisciplines would vote to recognize these papers. (How to keep
politics and religion out of this is not obvious). An indirect benefit
might help bring different communities closer together.

5. CONCLUDING THOUGHTS
I believe the time has come to step back and see how we can im-

prove SE as a discipline. We should ask if the relative lack of struc-
ture and coordination among the myriad SE conferences and jour-
nals is hurting us because key papers, terms, and concepts that de-
fine an area are sometimes hard to identify. We should re-examine
what we teach at the undergraduate level, and pay more attention to
updating our SE curriculums in light of more modern thinking. We
should recognize the future importance of program automation and
begin preparing our undergraduates for this future. And we should
re-examine thoughts on design and move its foundations away from
art and poetry toward more algebraic foundations, (ala query opti-
mization) which will be the core of program automation.

Acknowledgements: I gratefully thank Mark Grechanik, Tay-
lor L. Riché, Jay Misra, and Dewayne Perry for their comments
on an earlier draft. I also appreciate the input of FoSER referees.
This work was supported by NSF’s Science of Design Project CCF-
0724979.

6. REFERENCES
[1] D. Batory, M. Azanza, and J. Saraiva. The Objects and Arrows

of Computational Design. In Keynote at Model Driven
Engineering Languages and Systems (MODELS), Oct. 2008.

[2] D. Batory, J. N. Sarvela, and A. Rauschmayer. Scaling
Step-Wise Refinement. IEEE TSE, June 2004.

[3] N. S. Foundation. Science of design program. http:
//www.nsf.gov/pubs/2005/nsf05620/nsf05620.htm.

[4] G. Freeman, D. Batory, G. Lavender, and J. Sarvela. Lifting
Transformational Models of Product Lines: A Case Study.
Software and Systems Modeling, 9:359–373, 2009.

[5] P. Selinger, M. M. Astrahan, D. D. Chamberlin, R. A. Lorie,
and T. G. Price. Access Path Selection in a Relational
Databasse System. In ACM SIGMOD, 1979.

[6] W. G. Vincenti. What Engineers Know and How They Know
It: Analytical Studies from Aeronautical History. Johns
Hopkins University Press, 1990.

http://www.nsf.gov/pubs/2005/nsf05620/nsf05620.htm
http://www.nsf.gov/pubs/2005/nsf05620/nsf05620.htm

	Introduction
	Fundamentals
	Undergraduate Education
	What Have We Done?
	Concluding Thoughts
	References

