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Abstract: Frameworks are a common object-oriented code-structuring technique that is used
in application product-lines. A framework is a set of abstract classes that embody an abstract
design; a framework instance is a set of concrete classes that subclass abstract classes to pro-
vide an executable subsystem. Frameworks are designed for reuse: abstract classes encapsu-
late common code and concrete classes encapsulate instance-specific code. Unfortunately,
this delineation of reusable v.s. instance-specific code is problematic. Concrete classes of
different framework instances can have much in common and there can be variations in
abstract classes, all of which lead to unnecessary code replication. In this paper, we show
how to overcome these limitations by decomposing frameworks and framework instances
into primitive and reusable components. Doing so reduces code replication and creates a
component-based product-line of frameworks and framework instances.

1  INTRODUCTION

A product-line architecture (PLA) is a design for a family of related
applications. The motivation for PLAs is to simplify the design and mainte-
nance of program families and to address the needs of highly customizable
applications in an economical manner. Although the idea of product fami-
lies is old (McIlroy, 1968; Parnas, 1976), it is an area of research that is only
now gaining importance in software design (Bosch, 1998; DeBaud, 1999;
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Gomaa et al., 1994; Cohen and Northrup, 1998; Batory 1998; Weiss and
Lai, 1999; Czarnecki and Eisenecker 1999).

A framework is a collection of abstract classes that encapsulate common
algorithms of a family of applications (Johnson and Foot 1998). Certain
methods of these classes are left unspecified (and hence are “abstract”)
because they would expose details that would vary among particular, fully-
executable implementations. Thus a framework is a “code template”—key
methods and other details still need to be supplied, but all common code is
present in abstract classes. A framework instance provides the missing
details. It is a pairing of a concrete subclass with each abstract class of the
framework to provide a complete implementation. These subclasses encap-
sulate implementations of the abstract methods, as well as other details
(e.g., data members specific to a particular framework instance).

Frameworks often arise in PLA implementations. This is hardly unex-
pected: frameworks are appropriate for reusing software parts and specializ-
ing them in multiple ways for distinct applications. Members of a product-
line can be created by refining framework classes with appropriate concrete
implementations. Frameworks are a fundamental technique because of their
simplicity and generality—from an implementation standpoint, frameworks
are just a coordinated use of inheritance. Since inheritance is a fundamental
mechanism in object-oriented languages, the applicability of the framework
approach is wide.

The factoring of common algorithms into reusable, abstract classes
greatly reduces the cost of software development when building a new
product-line application (i.e., when creating a framework instance). Unfor-
tunately, this delineation of reusable vs. instance-specific code has prob-
lems. Concrete classes of different framework instances can have much in
common. This situation is typically addressed by either copying code (with
predictable maintenance problems) or redeveloping concrete classes from
scratch (which is costly). A different problem arises with abstract classes:
they can have variations. Much of the code in abstract classes would be
common across variations, but some parts would be radically different.
Variability is typically handled by replicating the abstract classes of frame-
works and hard-coding the changes into a new framework. Framework pro-
liferation ensues, again incurring maintenance problems.

These problems are real. In a recent discussion with a member of IBM’s
SanFrancisco project,2 these limitations of frameworks have become appar-
ent. While code replication is not yet burdensome because SanFrancisco is



Object-Oriented Frameworks and Product-Lines 3
still new, difficulties are anticipated in the future. We believe that these
problems arise in other projects that use OO frameworks.

A simple way to state the above problem is that product lines with
optional features will not be concisely expressed using frameworks. Such
frameworks suffer from either “overfeaturing” (Codenie, De Hondt,
Steyaert, and Vercammen 1997) —a lot of not-entirely-general functional-
ity is part of the framework— or replication of the same code across many
instances. In this paper we present a general technique to solve this prob-
lem. The solution is effected by relaxing the boundary between a frame-
work (the common part of the product line) and its instantiations (the
product-specific part). More specifically our technique is based on assem-
bling both the abstract classes of frameworks and the concrete classes of
their instances from primitive and reusable components. We show that the
level of abstraction that delineates abstract classes from concrete classes
can be drawn in different ways, and by decomposing frameworks and their
instances in terms of our components, variations in abstract and concrete
classes can be handled without code replication. A particular framework or
framework instance is created by a composition of components; variations
in frameworks and their instances are expressed as different component
compositions. Our approach can be used to express any framework, but
requires more language support than plain frameworks—instead of regular
inheritance, parameterized inheritance is needed. Nevertheless, this support
is readily available in production languages like C++. An example in an
extended version of the Java language is given to illustrate our ideas.

2  GENVOCA AND COLLABORATION-BASED 
DESIGNS

In this section we offer an overview of some design-level ideas that
underlie our work. Many terms and concepts used in the rest of the paper
are defined here.

Collaboration-Based Designs. It is well-known in object-oriented
design that objects are encapsulated entities that are rarely self-sufficient.
The semantics of an object is largely defined by its relationship with other
objects. Object interdependencies can be expressed as collaborations. A

2.  IBM SanFrancisco is a Java-based set of components that allows developers to assemble
server-side e-business applications from existing parts, rather than building applications
from scratch.
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collaboration is a set of objects and a protocol (i.e., a set of allowed behav-
iors) that determines how these objects interact. The part of an object that
enforces the protocol of a collaboration is called the object’s role in that col-
laboration (Reenskaug, et al, 1992; VanHilst and Notkin 1996; Smaragdakis
and Batory 1998).

A collaboration-based design expresses an application as a composition
of separately-definable collaborations. In this way, each object of an appli-
cation represents a collection of roles describing actions on common data.
Each collaboration, in turn, is a collection of roles that encapsulates rela-
tionships across its corresponding objects.

Example. I (Batory) am an author of this paper. This relationship is
defined by a collaboration of two objects, one in the role of author
and another in the role of manuscript. I am also a parent—a collabo-
ration of two or more objects, one in the role of parent and others in
the role of children. I am also a car owner—a collaboration of two or
more objects, one in the role of owner and others in the role of pos-
session. And so on. I am a single object where relationships that I
have with other objects are expressed through collaborations where I
play a specific role in each collaboration.

The collaborations mentioned above are generic; they are not specific
to me but are general relationships that can be defined in isolation of
each other. Furthermore, such collaborations are applicable in differ-
ent contexts to different entities. For example, a corporation can own
a car, and so too can a government entity. The relationship between
owner and possession is the same in all cases, but the ownership roles
are played by very different classes of objects (e.g., people, corpora-
tions, government). Symmetrically, a possession could be a car, dog,
or building; the possession role can also be played by very different
classes of objects. The same holds for roles in other collaborations.

GenVoca. GenVoca is a design methodology for building architectur-
ally-extensible software—i.e., software that is extensible via component
addition and removal (Batory and O’Malley 1992). GenVoca is a scalable
outgrowth of an old and practitioner-ignored methodology of program con-
struction called step-wise refinement. GenVoca freshens this methodology
by scaling refinements to a component or layer (i.e., multi-class-modular-
ization) granularity, so that applications of enormous complexity can be
expressed as a composition of a few refinements rather than hundreds or
thousands of small refinements (c.f. (Partsch and Steinbruggen, 1983)).
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Relationship. GenVoca product-lines and collaboration-based designs
are intimately related: a GenVoca refinement is a collaboration. An applica-
tion is constructed by composing reusable refinements (collaborations).
Refinements can be composed dynamically at application run-time or stati-
cally at application compile-time. To address the problems of OO frame-
works noted in the Introduction, we consider only statically composable
refinements in this paper.

Consider how refinements are expressed statically in OO languages. A
static refinement of an individual class adds new data members, new meth-
ods, and/or overrides existing methods. Such changes are expressed through
subclassing: class A is refined by subclass B:

Both collaboration-based designs and GenVoca deal with large-scale
refinements: such refinements involve the addition of new data members,
new methods, overriding existing methods, etc. simultaneously to several
classes:

The encapsulation of these “refining” subclasses in the above figure
defines both a GenVoca component or layer and a collaboration. (Note that
we are showing only subclassing relationships in this figure; there can be
any number of “horizontal” interrelationships among individual sub-
classes).

Example. Have you ever added a new feature to an existing OO
application? If so, you discover that changes are rarely localized.
Multiple classes of an application must be updated simultaneously
and consistently for the feature to work properly. Similarly, if one
subsequently removes that feature, all of its updates must be simulta-
neously removed from all affected classes. It is this collection of
changes that we want to encapsulate as an application building block.
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B
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refined by
subclass B
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subclass

class

subclass

class

subclass

application classes

classes of a refinement
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Each subclass of a layer encapsulates a role of a collaboration-based
design. For a collaboration-based design to be “hooked” into an application,
each role must be bound with an existing class of the application. We will
see in Section 3 that layers can be expressed as templates and that such
binding is accomplished via template parameterization. Thus, a layer
defines a collaboration, while a layer instance additionally defines role/
class bindings.

Compositions. When a layer (collaboration) is composed with other
layers, a forest of subclassing (inheritance) hierarchies is created. As more
layers are composed, the hierarchies become progressively broader and
deeper. Figure 1 illustrates this concept: layer L1 encapsulates three classes.
Each of these classes root a subclassing hierarchy. Layer L2 encapsulates
three classes, two classes refine existing classes of L1 while a third starts a
new hierarchy. Layer L3 also encapsulates three classes, two of which
refine classes of L1 and L2. Finally, layer L4 encapsulates two classes, both
of which refine existing classes.

Each inheritance or refinement chain of Figure 1 represents a derivation
of its terminal class. That is, each terminal class (shaded in Figure 1) is a
product of its superclasses, where each superclass defines a role in some
collaboration. In general, the classes that are instantiated by an application
are the terminal classes, because these classes encode all the roles that are
required of application objects. (For example, an object of class Left in
Figure 1 plays three distinct roles which originate from collaborations L1,
L2, and L4). The non-terminal (non-shaded) subclasses represent intermedi-
ate derivations of application classes. Thus, the composition of layers L1
through L4 yields five classes (i.e., those that are shaded in Figure 1); the
unshaded classes represent the “intermediate” derivations of these shaded
classes. If the resulting complexity of class hierarchies is a concern, prepro-
cessors can be built to “accordion” (compact) inheritance chains so that

L1

L2

L3

L4

Figure 1 Creating Inheritance Hierarchies by Composing Layers

Legend

class

subclass relationship

most refined class

class Left
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only the terminal classes remain. The resulting classes would be conceptu-
ally layered, but not physically layered (Habermann, Flon, and Cooprider,
1976). In general, collaboration-based designs ultimately reduce complex-
ity by shifting the design emphasis from small-scale components (individ-
ual classes) to large-scale ones (entire collaborations). 

Product-Lines. A layer implements a feature (aspect, capability) that
can be shared by many applications of a product-line. An application that
supports a given set of features is defined by a composition of layers that
implements those features. Thus, layers are the basic building blocks for
families of applications. In general, n layers can be composed in excess of
n! ways, because the order of composition matters and layer replication is
possible.3 

3  MIXIN-LAYERS

A mixin-layer is a template representation of a GenVoca refinement
(Smaragdakis and Batory, 1998; Findler and Flatt, 1998). Templates are
important in our methodology because they allow writing source-code com-
ponents that can be used in multiple  contexts. We will use Jak, a superset of
Java that supports templates, to explain the basic technique (Batory, Lofaso,
and Smaragdakis, 1998).4 Mixin-layers are an interesting meld of parame-
terized inheritance, inner classes, and standardized naming conventions.

Mixins. A mixin is a class whose superclass is specified by a parameter
(Bracha and Cook, 1990).5 Below we define a mixin M whose superclass is
defined by parameter S. AnyClass is a Java interface that all classes imple-
ment: 

class M <AnyClass S> extends S { ... }

3.  So it is not uncommon that different applications of a product-line can be assembled by
composing exactly the same layers in different orders (Batory and O’Malley, 1992; Hayden,
1998). Figure 1 provides an illustration: the order of L2-L4 could be permuted, provided
that L4 is “below” L3.
4.  We will not offer a strict definition of the Jak language, but its diversions from Java are
few and, we hope, mostly self-explanatory. The reader can think of the semantics of our
parameterization mechanism (templates) as those resulting from straightforward textual sub-
stitution. We will not address the potential problems of an actual textual substitution imple-
mentation as these are orthogonal to the topic of this paper.
5.  C++ has a different meaning of “mixin” that is not equivalent to our use.
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Mixins provide the capability of creating customized inheritance hierar-
chies when they are composed.

Nested Classes. Class declarations in Java can be nested inside other
class declarations, and are inherited like data members and methods. Con-
sider the following example:

class Parent { class Inner { ... } }
class Child extends Parent { }

Child is a subclass of Parent. Although no Child.Inner class is
explicitly defined, such a class does exist as it is inherited from Parent.
Nested classes emulate the encapsulation of multiple classes within a pack-
age, except this representation allows “packages” to appear as nodes in
inheritance hierarchies.

Combining Ideas. A mixin-layer is an implementation of a collabora-
tion. It is a mixin with nested classes, where each nested class corresponds
to a role of a collaboration. A general form of a mixin-layer M is a Jak tem-
plate that has n+1 parameters: one parameter S that defines the superclass
of M, plus n additional parameters {r1 …rn} that define the specific classes
the collaboration’s role classes are to refine:

class M <AnyClass S, AnyClass r1, ... AnyClass rn> 
extends S {

class role1 extends r1 { ... }
...
class rolen extends rn { ... }
...
// additional non-refining classes (if any)

}

When a domain is decomposed into primitive collaborations, experience
has shown that different collaborations use the same names for roles, and
classes that have the same role names refine each other when their collabo-
rations are composed. While the above template for mixin-layer M is gen-
eral, a much more compact form standardizes names of inner classes and
eliminates role-class parameters to yield a template with a single parameter
S, the mixin-layer’s superclass:

class M <AnyClass S> extends S {  
class role1 extends S.role1 { ... }
...
class rolen extends S.rolen { ... }
...
// additional non-refining classes (if any)

}
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This form of a source-code component is interesting because it enforces
a clear structure. Mixin-layers are written in such a way that they are com-
posable with each other. Yet, composing layers entails fixing the superclass
of all classes inside a layer. Thus, layers are simple to use (e.g., they have a
single parameter), but can affect large portions of a software application.

Collaboration Typing. Astute readers may have noticed that mixin-
layer M should not have an unconstrained parameter; substituting an arbi-
trary class for parameter S is unlikely to work. A legal instantiation of S
must satisfy constraints, e.g., it must have inner classes {role1 … rolen}.
This gives rise to the notion that collaborations (layers) are typed and so too
are their parameters. Unfortunately, Java currently offers no support for
type-checking nested classes.  For instance, it is not possible to use an
implements clause to express the requirement that a class should contain a
nested class that supports a certain interface. Therefore, we limit ourselves
to very simple properties that can be expressed in the Java type system.
Namely, we use an empty interface R. Collaborations that “implement” R
are said to be of type R; parameters of type R will be legally instantiated
only by collaborations of type R. Thus the set of layers of Figure 1 can be
represented as:

interface R { } // empty

class L1
implements R { ... } // mixin-layer L1

class L2 <R x> extends x 
implements R { ... } // mixin-layer L2

class L3 <R x> extends x 
implements R { ... } // mixin-layer L3

class L4 <R x> extends x 
implements R { ... } // mixin-layer L4

Although typing collaborations in this manner goes a long way toward
ensuring that parameters have legal instantiations, additional properties are
needed to distinguish the case where components with identical interfaces
have different semantics (Batory and Geraci, 1997; Smaragdakis and
Batory, 1998). For the purposes of this paper (and without loss of general-
ity), we make the simplifying assumption that typing is sufficient.

Compositions. Refinements are composed by instantiating one mixin-
layer with another as its parameter. The two classes are then linked as a par-
ent-child pair in an inheritance hierarchy. The final product of a collabora-
tion composition is a class Fig1 with the general form (expressed in Jak):

class Fig1 extends L4< L3< L2< L1 >>> (1)
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That is, L4, L3, …, L1 are mixin-layers, “<...>” is the Jak operator for
template instantiation, and Fig1 is the name given to the class that is pro-
duced by this composition. (This particular composition corresponds to
Figure 1). The classes of Fig1 are referenced in the usual way, namely
Fig1.role1 defines the application class role1, etc. Readers who are
familiar with GenVoca will recognize such compositions as type equations,
which has an alternative and more compact syntax: 

Fig1 = L4< L3< L2< L1 >>> // type equation of (1) (2)

The space of all type equations corresponds to all applications that can
be synthesized in this product-line.

4  LIMITATIONS OF OO FRAMEWORKS

A common case where frameworks prove to be too rigid is that of
optional features. If a set of features are often but not always used, they can-
not be encoded in the framework. (Otherwise, they will burden or render
incorrect any framework instances not needing these features.) Thus, such
features need to be encoded independently (i.e., replicated) in each frame-
work instance that uses them. We will show in this section that using mixin-
layers as building blocks for frameworks and their instances, we can encode
an optional feature as a mixin-layer and include or exclude it at will from a
specific composition.

Recall that a framework is a set of classes. For simplicity, our prior dis-
cussions assumed that all framework classes are abstract, but in general
they need not be. Non-abstract classes could encapsulate a capability that is
shared by (and can be optionally extended by) all framework instances. We
will proceed under this more general setting. We also assume that mixin-
layers have no variations (e.g., no optionally-selected algorithms) and that
their collaborations are “monolithic”. Variations in product-line applica-
tions arise only from variations in compositions of mixin-layers. We will
relax this assumption later.

To see the relationship between mixin-layers and frameworks, consider
Figure 2a which replicates the inheritance hierarchies of Figure 1. Suppose
we drew a line between layers L2 and L3, where classes above the line
define the classes of a framework. In Figure 2a, there would be four such
classes {A1, A2, A3, A4}. Note that these classes correspond to the “most
refined” classes of the refinement chains that lie above the line. The most
refined classes that lie below the line define the concrete classes of a frame-
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work instance. In Figure 2a, there would be four such classes {C1, C2, C3,
C5}. (Note that for this framework instance, A4 need not be subclassed/
refined). If we had a language preprocessor that would “accordion” (com-
pact) refinement chains so that only the most refined classes remained,
Figure 2b shows the result of this compaction. Readers will recognize
Figure 2b as an encoding of a framework’s classes and its instance classes.

Two points are worth noting. First, the classes of the framework of
Figure 2 are defined by the type equation F = L2<L1>. An instance of this
framework is any type equation whose innermost term is F (e.g., Fig1 =
L4<L3<F>>). From this we can conclude that mixin-layers are building
blocks of both frameworks and framework instances.

Second, we could have drawn our line in between any two adjacent lay-
ers and produced a different framework and one of its instances. (There is
nothing special about the boundary between L2 and L3). If the boundary is
raised, the framework will become more general (as framework classes are
simplified), but more code will need to be written for a framework instance.
If the boundary is lowered, framework classes will encapsulate more fea-
tures at an expense that the framework may be too specific (i.e., have too
many features) to be used for a particular application.

L1

L2

L3

L4

abstract 
classes of
a framework

concrete
classes of
a framework
instance

A1

A2

A3 A4

C1

C2 C3

C5

A1 A2 A3 A4

C1 C2 C3 C5

(a)

(b)

Figure 2: Refinement Hierarchies and Framework Instances
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But why partition along layer boundaries? Why not partition across
layer boundaries? To see the answer, consider Figure 3 which defines the
partitioning between framework and instance classes by crossing multiple
layer boundaries. The framework of Figure 3 would consist of classes {A1,
A2, A3}. The framework instance that is depicted would consist of concrete
classes {C1, C3, C4, C5}, where C3 includes superclass K3, and C5 includes
superclass K5. 

Look carefully at what Figure 3 implies: any instance of the framework
of Figure 3 must replicate classes C3 (which includes K3), C4, and K5. The
reason is simple: all collaborations encapsulate the implementation of some
primitive feature that is shared by many applications of a product line. If the
classes of a framework implement only part of features L2 and L3 (which
they do in this case), then any legal instance of this framework must supply
the missing parts. Classes C3, K3, C4, and K5 are the missing parts and these
parts do not vary (as we assumed at the beginning of this section). The
framework of Figure 3 is a bad design because it forces the same code to be
replicated in every framework instance. The only framework designs for
which this isn’t true are those that partition framework code from instance
code along layer boundaries. Stated another way, the classes of a framework
must fully implement an integral number of collaborations otherwise code
replication in framework instances will occur.

From our experience, the above model of framework construction cov-
ers a majority of situations that are encountered in practice. That is, varia-
tions in frameworks and their instances can be explained as the composition
of monolithic mixin-layers. Occasionally however, mixin-layers and their
collaborations do have variations. If there are few variations, one could
define a separate mixin-layer for each variant (see example of the next sec-
tion). If there are a large number of variations, it is not difficult at all to cre-
ate a generator of mixin-layers that will produce the desired variant of a

L1

L2

L3

L4

abstract 
classes of
a framework concrete

classes of
a framework
instance

A1

A2 C3

C4

C1 C5

Figure 3: Partitioning Against Layer Boundaries
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collaboration from a high-level specification (Batory, Singhal, Sirkin, and
Thomas, 1993). Doing so retains the building-block nature of mixin-layers
(as we have been advocating) while forming a more compact encoding of
the library of mixin-layers that must be maintained. By following either of
these approaches, we can restructure the problem so that “good” framework
designs can always be expressed as a partitioning along layer boundaries
and not across layer boundaries.

Without loss of generality, let us assume “good” designs whose frame-
work-instance partitioning corresponds to a layer boundary. We can now
understand the problems of OO frameworks that we noted in the Introduc-
tion. Variations in framework classes arise whenever the type equation of a
framework changes. Consider framework F whose type equation is F =
L2<L1>. Any change to this equation—by swapping components (F1 =
L2<L0> for some new terminal component L0) or adding new components
(F2 = L2<L5<L0>> for some new nonterminal component L5)—will cause
the classes of the framework to change.

Similarly, code repetition in multiple framework instances corresponds
to the situation where the type equations of framework instances share the
same framework subexpression and some (not necessarily all) remaining
components. Consider equations Fig1 = L4<L3<F>> and Q = L4<L5<F>>.
Both framework instances are distinct, but share the same framework sub-
expression (F) and component L4.

A way to avoid code replication problems in frameworks is to decom-
pose the domain that a framework and its instances represent into a library
of refinements/components. These are the components that should be given
to application developers. They will choose which type equation (compo-
nent composition) that they need to define their framework and/or frame-
work instance. The boundary where an abstract class ends and concrete
classes begin is left up to the developer. We would expect that the library of
components that is distributed to be incomplete. That is, we would not
expect the library to have enough components to construct a target frame-
work instance (because we anticipate novel capabilities to be added by the
instance). However, if there are sufficient components (or even just a few
that can be reused), application developers will be further along their soft-
ware development than they would otherwise.
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5  AN EXAMPLE PRODUCT-LINE

To illustrate the concepts of the previous sections, we present a GenVoca
product-line model of graph traversal applications (Smaragdakis and
Batory, 1998). This application domain is interesting because of the inter-
changeability of its components. More complex examples are discussed in
Section 6 (Related Work).

The Model. A graph traversal application is a program that implements
traversals on graphs. The library of refinements that we consider focuses on
two traversals: vertex numbering and cycle checking. (The library can be
expanded with other traversals—see (Smaragdakis and Batory, 1998)). The
membership of our traversal library is:

undirected // undirected graphs
directed // directed graphs
dft<G x> // depth-first traversal
bft<G x> // breadth-first traversal
number<G x> // vertex numbering
cycle<G x> // cycle checking

where all members implement the (empty) interface G.

The mixin-layers undirected and directed implement undirected
graphs and directed graphs, respectively. Both encapsulate a pair of classes
Vertex and Graph. The methods of these classes support vertex addition
and removal from graphs, but not traversals. Both mixin-layers are designed
to implement the same interface, so that they are plug-compatible and inter-
changeable.

The mixin-layers dft<G x> and bft<G x> implement depth-first and
breadth-first traversals, respectively. Both encapsulate refinements of the
Vertex and Graph classes and add new abstract class WorkSpace. (Thus
the dft and bft mixin-layers have three inner classes, two of which are
mixins). The Vertex and Graph classes are refined with the addition of
traversal methods: GraphSearch is added to Graph and VertexSearch
is added to Vertex. Both methods take a WorkSpace object as a parame-
ter. At various times during a graph or vertex search, e.g., prior to visiting a
node and after visiting a node, a dispatch is made to the WorkSpace object
for graph-traversal-specific actions. Each WorkSpace object supports three
abstract methods: init_vertex (to initialize a vertex for a particular tra-
versal), preVisitAction, and postVisitAction.
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The mixin-layers number<G x> and cycle<G x> implement vertex
numbering and cycle checking, respectively. Both encapsulate refinements
of the Vertex and Graph classes, in addition to adding a subclass to
WorkSpace. (number adds the subclass WorkSpaceNumber; cycle adds
the subclass WorkSpaceCycle). number refines Graph by adding the
VertexNumber method (which is called by application users to invoke ver-
tex numbering); number refines Vertex by adding a public integer called
vertexCount (which holds the assigned number of a vertex). The Work-
SpaceNumber class supplies methods for initializing a vertex (i.e., setting
vertexCount to zero), doing nothing for a preVisitAction, and assign-
ing a number to a vertex for the postVisitAction. The cycle mixin-
layer encapsulates similar capabilities and refinements for cycle-checking.

The Product-Line. Consider the following type equations:

frame1 = dft<undirected>
inst11 = number<frame1>
inst12 = cycle<frame1>
inst13 = number<cycle<frame1>>

A framework is defined by frame1: it is a set of classes that encapsulate
a depth-first traversal on undirected graphs. These classes are incomplete in
that there is no traversal application; an application must be supplied by
extending these classes in a framework instance. Distinct framework
instances are defined by inst11—inst13. A vertex numbering applica-
tion is defined by inst11; a cycle checking application is defined by
inst12; inst13 defines an application that supports both vertex number-
ing and cycle checking. Note that one of the limitations of frameworks is
exposed by this example: two different framework instances share common
code (e.g., inst11 and inst13 share the number component; inst12 and
inst13 share the cycle component). By encapsulating domain features as
mixin-layers, we minimize code replication through component reuse.

Now consider the equations:

frame2 = dft<directed>
inst21 = number<frame2>
inst22 = cycle<frame2>
inst23 = number<cycle<frame2>>

A framework is defined by frame2: it is a set of classes that encapsu-
lates a depth-first traversal on directed graphs. The framework instances
inst21—inst23 respectively define applications for vertex numbering,
cycle checking, and both numbering and cycle checking on directed graphs.
Note that the other limitation of frameworks is exposed by this example: the
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variation of classes in a framework (e.g., frame1 and frame2 are distinct
frameworks that share the dft component). Other variations can be created
by swapping dft with bft. This would yield vertex numbering and cycle
checking applications on directed graphs using breadth-first search algo-
rithms.6

Note that our frameworks above encapsulated a pair of features: a graph
encoding and a traversal; a framework instance added the traversal applica-
tion(s). We could have “raised the delineation line” so that our framework
merely encoded a graph; instances of this framework would have to provide
a traversal method and application:

frame0 = undirected;
inst01 = number<dft<frame0>> // equivalent to inst11
inst02 = cycle<bft<frame0>>

The advantages of this decision is that the framework is more general,
but writing instances is more work. Alternatively, we could have “lowered
the delineation line” to enrich the capabilities of our framework:

frame00 = number<dft<undirected>> // same as inst11
inst01 = cycle<frame00> // same as inst13

The advantages of this decision is that less code needs to be written in
framework instances at an expense that the framework may be too special-
ized to use for a particular application. Mixin-layers, however, eliminates
the annoying problem of deciding where to draw the framework-instance
“line”; application designers are free to define the contents of frameworks
as they see fit. This provides designers more flexibility in customizing their
applications than using frameworks whose designs are inflexible to such
customizations.

6  RELATED WORK

Use of Mixin-Layers. Product-lines using mixin-layer components
have been created for extensible compilers (Batory, Lofaso, Smaragdakis,
1998; Findler and Flatt, 1998) and command-and-control simulators for fire
support for the U.S. Army (Batory, Johnson, MacDonald, and von Heeder,

6.  Note that there is a definite order in which components can be legally composed: a
directed/undirected graph component can be refined by a depth/breadth-first component,
which can be refined by one or more traversal applications. Our typing of these components
does not encode these constraints. See (Smaragdakis and Batory, 1998; Batory and Geraci,
1997) for constraint enforcement.
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2000). Non-OO implementations of early versions of mixin-layers can be
found in product-lines for databases, file systems, and network protocols
(Batory and O’Malley, 1992; Heidemann and Popek, 1994).

Library Scalability. The drawbacks that we have noted with frame-
works are classical examples of the library scalability problem (Batory,
Singhal, Sirkin, and Thomas, 1993; Biggerstaff, 1994). The idea is simple:
in a domain where there are n optional features, there can be in excess of n!
different programs, each implementing a unique combination of features.
Library components should not implement combinations of features,
because (obviously) libraries would have exponentially large memberships.
A better approach is to populate libraries with building blocks that imple-
ment individual features, and compose these blocks to synthesize the pro-
gram with the desired combination of features. Such libraries are scalable:
they grow at a linear rate, but the number of programs that can be synthe-
sized from component combinations grows at an exponential rate.

We have seen that the classes of a framework may correspond to a com-
position of primitive refinements (i.e., mixin-layers). The classes of a
framework instance may also correspond to a composition of primitive
refinements. Since both are treated as encapsulated units, any variation
made to either (corresponding to the addition, removal, or replacement of
one or more refinements) will theoretically lead to an exponential number
of variations to maintain. Our contribution in this paper is to show how to
solve the library scalability problem for frameworks and framework
instances.

Parameterized Components. GenVoca is an example of a program-
ming paradigm called parameterized programming—that applications are
synthesized by composing components via parameter instantiation
(Goguen, 1986). It is interesting to note that programming support for
mixin-layers is presently limited in Java. The most well-known versions of
Java that offer parameterization (e.g., Pizza and GJ (Odersky and Wadler,
1997; Bracha, Odersky, Stoutamire, and Wadler, 1998)) do not support
parameterized inheritance. This led to the development of JTS, a tool suite
for creating a product-line of Java dialects, which does support parameter-
ized inheritance (Batory, Lofaso, and Smaragdakis, 1998).

Most work on parameterized programming deals with parametric source
code. Industry prefers to distribute binaries rather than source. Our
approach presently cannot extend binary components, where the source
code of mixin-frameworks is unavailable. This is a temporary problem. The
static parameterizations of mixin-layers are simple enough to be expressed
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as parameterized binaries (e.g., parameterized Java .class files). That is,
parameter instantiation is accomplished at class load time rather than at
mixin-layer compile time. Recent work on parameterized Java class bina-
ries suggests this possibility is not far off (Duncan and Hölzle, 1999). Thus,
we anticipate in the future that libraries of binaries will be distributed.

Aspect-Oriented Programming (AOP). AOP is intimately related to
refinements. An aspect is feature of a domain whose implementation
“cross-cuts” multiple application classes (Kiczales, et. al., 1997). When an
aspect is added to an existing application, multiple classes must updated.
Clearly, aspects are refinements. An application-specific AOP implementa-
tion can provide custom refinements to any existing application. GenVoca
implementations, on the other hand, start by conceptually decomposing leg-
acy applications and resynthesizing them in an extensible way through
component composition. Interface conformance plays a prominent role in
the software composition process of GenVoca, more so than in AOP.

Reuse Contracts. The problems of framework version proliferation and
architectural drift may be mitigated through formal annotations on classes
(Codenie, De Hondt, Steyaert, and Vercammen, 1997). Reuse contracts
record the design intentions of reusable classes and the assumptions made
by actual users of those classes. Automated annotation checking can detect
if new modifications violate the contract from either the producer or con-
sumer point of view. Codifying the management of framework evolution in
this way limits the proliferation of code that violates reuse conventions.

GenVoca is “neutral” on the use of contracts. Contracts can be used in
the development and composition of mixin-layers. So the benefits accrued
by using contracts are also available to layered designs.

Framework Coding Techniques. The use of traditional object-oriented
construction techniques and patterns is typically not restricted when build-
ing frameworks under GenVoca. For example, inverting control through the
use of hook methods (Fayad and Schmidt, 1997) is common in traditionally
constructed frameworks and can easily encapsulated as GenVoca compo-
nents. Many of the design choices that current framework developers face
still need to be addressed when using GenVoca. For instance, the choice
between black box and white box framework implementations must still be
made when using a layered approach.



Object-Oriented Frameworks and Product-Lines 19
7  CONCLUSIONS

A framework is an object-oriented code-structuring technique that
seems ideal for product-lines. The classes of a framework encapsulate the
common algorithms that arise in a family of related applications. A particu-
lar application of a product-line is created by defining an instance of this
framework, i.e., supplying concrete subclasses of framework classes to pro-
vide the necessary customizations. While frameworks are indeed useful, we
and others have noticed that frameworks fail miserably in the very common
case of optional features. Framework classes can vary (which leads to
framework proliferation); classes of different framework instances can have
much in common (which leads to code replication). 

The core of these problems is that frameworks exhibit a rather inflexible
design: the delineation between the content of framework classes and
classes of framework instances is fixed. Application features are either
hard-coded into framework classes or hard-coded into instance classes. In
this paper, we have outlined a different approach for product-line imple-
mentation. We have presented a component-based model that reveals the
building blocks of frameworks and framework instances. Our components
allow application designers to define the set of features that they want both
in their framework classes and instance classes. If features need to be
changed, our model supports this by adding, swapping, or removing com-
ponents from previously defined compositions. In general, the application
product-lines that we can express with our model is much more varied with
far less code replication than that which can be expressed by frameworks.

The essence of our approach is understanding software in terms of
object-oriented collaborations or refinements, and creating a parametric
model of product-lines that is based on refinement/collaboration composi-
tion. Many product-lines have been built using this approach before; the
contribution of this paper is demonstrating that this approach offers signifi-
cant advantages over frameworks in building application product-lines.
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