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This is a case study in the use of product-line architectures (PLAs) and domain-specific languages
(DSLs) to design an extensible command-and-control simulator for Army fire support. The reusable
components of our PLA are layers or “aspects” whose addition or removal simultaneously impacts
the source code of multiple objects in multiple, distributed programs. The complexity of our compo-
nent specifications is substantially reduced by using a DSL for defining and refining state machines,
abstractions that are fundamental to simulators. We present preliminary results that show how
our PLA and DSL synergistically produce a more flexible way of implementing state-machine-based
simulators than is possible with a pure Java implementation.
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1. INTRODUCTION

Software evolution is a costly yet unavoidable consequence of a successful appli-
cation. Evolution occurs when new features are added and existing capabilities
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are enhanced. Unfortunately, many applications suffer design fatigue—when
further evolution is difficult and costly because of issues not addressed in the
initial design [Graves 2001]. Creating software that is easily evolvable is a
central problem today in software engineering.

Three of several proposed complementary technologies address software
evolution: object-oriented design patterns, domain-specific languages, and
product-line architectures. Design patterns are techniques for restructuring
and generalizing object-oriented software [Gamma et al. 1995]. Evolution
occurs by applying design patterns to an existing design; the effects of these
changes are borne by programmers who must manually transform an existing
code base to match the updated design. Recent advances indicate that tool
support for automating the applications of patterns is possible [Tokuda and
Batory 1999]. Domain-specific languages (DSLs) raise the level of program-
ming to allow customized applications to be specified compactly in terms of
domain concepts; compilers translate DSL specifications into source code.
Evolution is achieved by modifying DSL specifications [Van Deursen and Klint
1997]. Product-line architectures (PLAs) are designs for families of related
applications; application construction is accomplished by composing reusable
components. Evolution occurs by plugging and unplugging components that en-
capsulate new and enhanced features [Batory 1998; Bosch 1999; Czarnecki and
Eisenecker 1999; Software Engineering Institute 2001; Weiss and Lai 1999].
Among PLA models, the GenVoca model is distinguished by an integration
of ideas from aspect-oriented programming [Kiczales et al. 1997], parameter-
ized programming [Goguen 1986], and program-construction by refinement
[Baxter 1992].

This paper presents a case study in the use of GenVoca PLAs and DSLs
to create an extensible command-and-control simulator for Army fire sup-
port. (Design patterns were also used, but they played a minor role.) We
discovered that components of distributed simulations are not conventional
DCOM and CORBA components, but rather are layers or “aspects” whose
addition or removal simultaneously impacts the source code of multiple, dis-
tributed programs. Further, we found that writing our components in a general-
purpose programming language (Java) resulted in complex code that ob-
scured a relatively simple, state-machine-based design. By extending Java
with domain-specific abstractions (in our case, state-machines), our compo-
nent specifications were more readily understood by domain experts, knowl-
edge engineers, and application programmers. Thus, this case study is inter-
esting not only because of the novelties introduced by PLAs and DSLs, but
also because of their integration: using only one technology would have been
inadequate.

We begin by explaining the ideas and terminology of fire support. We review
an existing simulator, called FSATS, and motivate its redesign. We present
a GenVoca PLA for creating extensible fire-support simulators and introduce
an extension to the Java language for defining and refining state-machines.
Finally, based on simple measures of program complexity, we show how PLAs
and DSLs individually simplify simulators, but only their combination provides
practical extensibility.
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Fig. 1. OPFAC command hierarchy.

2. BACKGROUND

2.1 The Domain of Fire Support

Fire support is a command-and-control application that includes the detection
of targets, assignment of weapons to attack the target, and coordination of the
actual attack. The entities engaged in this process, called operational facilities
(OPFACs), are soldier-operated (not machine-automated) command posts that
exchange tactical (theater-of-war) messages.

Forward observers (FO) are OPFACs that are stationed at intervals across
the frontline of a battlefield (Figure 1). They are one of several kinds of sensors
responsible for detecting potential targets. A hierarchy of fire support elements
(FSE) is responsible for directing requests from FOs to the most appropriate
weapon system to handle the attack. FOs report to their fire support team
(FIST); a FIST reports to a battalion FSE, a battalion FSE reports to a brigade
FSE, and so on. Each FSE typically has one or more supporting command
posts (CPs) with different weapon systems. For example, a battalion FSE
might be supported by a field artillery command post (FACP); a FIST might be
supported a mortar command post, and so on. In general, higher echelon FSEs
are supported by higher echelon CPs with more powerful and/or longer range
weapon systems.

FOs, FISTs, and other FSEs are responsible for evaluating a target. An eval-
uation may result in (a) assigning the target to be attacked by a supporting
weapon, (b) elevating the target to the next higher echelon FSE for evalua-
tion, or (c) denial—choosing not to attack the target. CPs are responsible for
assigning targets to the best weapon or combination of weapons under their
command. Once weapon(s) are assigned, messages are exchanged with the mis-
sion originator (usually an FO) to coordinate the completion of the mission. The
particular message sequence depends on the target and weapon. It is still gen-
erally the case that all messages are relayed along the chain of CPs and FSEs
that were involved in initiating the mission, although newer systems permit
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messages to be exchanged directly between the weapon and observer. The mes-
sage sequence for a particular mission is referred to as the mission thread.
In general, an OPFAC can participate in any number of mission threads at
one time.

A mission thread is an instance of a mission type. There are well over twenty
mission types, including:r when-ready-fire-for-effect-mortars (WRFFE-mortars)—a mortar CP is as-

signed to shoot at a target as soon as possible,r when-ready-fire-for-effect-artillery (WRFFE-artillery)—one or more artillery
CPs are assigned to shoot at a target as soon as possible,r time-on-target-artillery (TOT-artillery)—field artillery are requested to fire
at a target so that all rounds land at the specified location at the specified
time, andr when-ready-adjust-mortars (WRAdjust-mortars)—a forward observer knows
only approximately the location of the enemy and requests single rounds to be
fired with the observer sending corrections between rounds until the target
is hit, at which point it becomes a WRFFE-mortar mission.

Each OPFAC (FO, FIST, FSE, etc.) performs different actions for each mission
type. For example, the actions taken by an FO for a TOT-mortar mission are
different than those for a WRFFE-artillery mission.

Clearly, the above description of fire support is highly simplified, for ex-
ample, the actions taken by specific OPFACs in a mission thread and the
translation of messages into formats for tactical transmission were omitted.
These details, however, are not needed to understand the contributions of this
paper.

2.1.1 FSATS. Simulation plays a key role in U.S. Army testing and train-
ing. It avoids costs of mobilizing live forces, provides repeatability in testing,
and allows force-on-force combat training without the liability. Simulation has
been used to model virtual environments, weapons effects, outcome adjudica-
tion, and as computational resources increase, the fidelity has been refined to
entity-level simulators.

Fire support is one of a number of domains that has been modernized by digi-
tal Command, Control, Communications, Computer, and Intelligence (C4I) sys-
tems that automate battlefield mission processing. AFATDS (Advanced Field
Artillery Tactical Data System) is arguably the most sophisticated C4I system in
existence, and provides the software backbone (message transmission, process-
ing, etc.) for fire support for the Army [Magnavox 1999]. FSATS (Fire Support
Automated Test System) is a system for testing AFATDS and other fire-support
C4I systems. FSATS collects digital message traffic from command and con-
trol communication networks, interprets these messages, and stores them in
a database for later analysis. FSATS can simulate any or all OPFACs used in
AFATDS [FSATS 1999]. The subject of a test can be overall system performance,
individual OPFAC performance, or system operator performance. Thus, FSATS
is used both in training Army personnel in fire support and debugging/testing
AFATDS.
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Fig. 2. Rule sets vs. mission threads.

2.1.2 The Current FSATS Implementation. FSATS has been under devel-
opment for almost ten years. It is typical of the systems mentioned in our in-
troductory paragraph: it began with a clean design but as its capabilities were
extended, limitations of that design became increasingly troublesome.

The implementation is a combination of decision rules encoded in database
tables, a set of “common actions” written as Ada procedures, and a decision
rule interpreter, also in Ada. One set of rules is associated with each pair of
an OPFAC type and a message type. When a tactical message is received by an
OPFAC, the appropriate rule set is selected by the interpreter and each rule in
the set is sequentially evaluated until one succeeds, at which point the action for
that rule is executed and processing of that message terminates. There are from
200 to 1000 rules associated with each OPFAC type, divided among the various
input message types. Each rule consists of a predicate, which is a conjunction
of guards, and an action which is an index to a sequence of state and message
common actions. Predicates typically contain five to ten guards (terms). The
processing of rule sets is optimized, so that predicates can assume the failure
of all previous predicates. Common actions range from simple (copy the target
number field from the input to the output message) to complex (determining
whether there exists a supporting OPFAC of type mortar which is capable of
shooting the target indicated by the current message).

There are now obvious drawbacks to this design/implementation. While rule
sets are used to express OPFAC behavior, OPFAC behavior is routinely under-
stood and analyzed in terms of mission threads. Figure 2 illustrates a mission
thread, the horizontal execution path, that associates various rules spanning
multiple OPFAC programs. This complicates the knowledge acquisition and
engineering process to derive from an analysis of multiple mission threads the
rules as they apply at each OPFAC. Conversely, it obfuscates analyzing and de-
bugging system behavior where rules for multiple mission threads are merged
into monolithic sets within each OPFAC program.

The contrast of the vertical nature of rule sets versus the horizontal or “cross-
cutting” nature of mission threads in Figure 2 illustrates an encapsulation di-
chotomy that is not unique to FSATS [Batory and O’Malley 1992; Kiczales et al.
1997; Reenskaug et al. 1992]. In general, conventional OO approaches explore
use cases (threads) for specification and analysis of system behavior. However,
the concept of a use case is transient in a design process that identifies behav-
ior (rules) with the actors (OPFACs) rather than the actions (missions). This
trade-off is seemingly unavoidable given the need to produce objects that com-
bine behaviors to react to a variety of situations. In FSATS, the transformation
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of mission threads into rule sets yields autonomous OPFACs at an increased
cost to analysis and maintenance.

As FSATS evolved, rule sets quickly became large and unwieldy. Moreover,
different missions might use the same message type at an OPFAC for slightly
different purposes. Simpler rules that once sufficed often had to be factored to
disambiguate their applicability to newer, more specialized missions. In worse
cases, large subsets of rules had to be duplicated, resulting in a dramatic in-
crease in rules and interactions. Moreover, the relationship between rules of
different OPFACs, and the missions to which they applied, was lost. Modify-
ing OPFAC rules became perilous without laborious analysis to rediscover and
reassess those dependencies. The combinatorial effect of rule set interactions
made analysis increasingly difficult and time-consuming.

FSATS management realized that the current implementation was not sus-
tainable in the long term, and a new approach was sought. FSATS would con-
tinue to evolve through the addition of new mission types and by varying the
behavior of an OPFAC or mission to accommodate doctrinal differences over
time or between different branches of the military. Thus, the clear need for
extensible simulators was envisioned. The primary goals of a redesign were to:r disentangle the logic implementing different mission types to make imple-

mentation and testing of a mission independent of existing missions,r reduce the “conceptual distance” from logic specification to its implemen-
tation so that implementations are easily traced back to requirements and
verified, andr allow convenient switching of mission implementations to accommodate re-
quirements from different users and to experiment with new approaches.

2.2 GenVoca

The technology chosen to address problems identified in the first-generation
FSATS simulator was a GenVoca PLA implemented using the Jakarta Tool
Suite (JTS) [Batory et al. 1998]. In this section, we motivate and explain basic
ideas of GenVoca and one of its implementation techniques. It is beyond the
scope of this paper to review design methodologies (i.e., how to apply GenVoca
concepts) or to explain domains simpler than FSATS to elaborate the approach
that we have taken. Interested readers should consult [Smaragdakis and
Batory 2002], [Batory et al. 1995], and [Lopez-Herrejon and Batory 2001].

2.2.1 Motivation. Today’s models of software are too low-level, exposing
classes, methods, and objects as the focal point of discourse in software design
and implementation. This makes it difficult, if not impossible, to reason about
software architectures (a.k.a. component-based designs), to have simple, ele-
gant, and easy to understand specifications of applications, and to be able to
create and critique software designs automatically, given a set of high-level
requirements.

Simple specifications that are amenable to automated reasoning, code gener-
ation, and analysis, are indeed possible provided that the focus of discourse can
be shifted to components that encapsulate the implementation of individual and
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largely orthogonal features that can be shared by multiple applications.1 The
intuitive rationale for this shift is evident in discussions about software prod-
ucts: architects don’t speak about their products in terms of code modules, but
instead explain their products in terms of features offered to clients. That is, the
focus of discourse is on features and not on source code. GenVoca aims to raise
the level of abstraction of understanding software from code modules (or code-
encapsulation technologies) to features (or feature-encapsulation technologies).

2.2.2 Features and Refinements. At its core, GenVoca is a design
methodology for creating product-lines and building architecturally-extensible
software—software that is extensible via component additions and removals.
GenVoca is a scalable outgrowth of an old and practitioner-ignored methodology
called step-wise refinement, which advocates that efficient programs can be cre-
ated by revealing implementation details in a progressive manner. Traditional
work on step-wise refinement focussed on microscopic program refinements
(e.g., x + 0 ⇒ x), for which one had to apply hundreds or thousands of refine-
ments to yield admittedly small programs. While the approach is fundamental,
and industrial infrastructures are on the horizon [Baxter 1992; Simonyi 1995],
GenVoca extends step-wise refinement by scaling refinements to a component
or layer (i.e., multi-class-modularization) granularity, so that each refinement
adds a feature to a program, and composing a few refinements yields an entire
application.

The critical shift to understand software in this manner is to recognize that
programs are values, and that refinements are functions that add features
to programs. Consider the following constants (parameterless functions) that
represent programs with different features:

f () //program with feature f

g () //program with feature g

A refinement is a function that takes a program as input and produces a refined
(or feature-augmented) program as output:

i(x) //adds feature i to program x

j(x) //adds feature j to program x

It follows that a multi-featured application is specified by an equation that is
a named composition of functions, and that different equations define a family
of applications, such as:

app1 = i(f()); //app1 has features i and f

app2 = j(g()); //app2 has features j and g

app3 = i(j(f())); //app3 has features i, j, and f

Thus, by casually inspecting an equation, one can readily determine features
of an application.

1Griss [2000] defines a feature as a product characteristic that users and customers view as impor-
tant in describing and distinguishing members of a product-line.
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Note that there is a subtle but important confluence of ideas in this model: a
function represents both a feature and its implementation. Thus, there can be
different functions that offer different implementations of the same feature:

k1(x) //adds feature k (with implementation1) to x

k2(x) //adds feature k (with implementation2) to x

So when an application requires the use of feature k, it becomes a problem of
equation optimization to determine which implementation of k would be the
best (e.g., provide the best performance).2 It is possible to automatically design
software (i.e., produce an equation that optimizes some qualitative criteria)
given a set of declarative constraints for a target application. An example of
this kind of automated reasoning is presented in Batory et al. [2000].

As a practical matter, refinements typically cannot transform arbitrary pro-
grams. Rather, the input to refinements (functions) must satisfy a type—a set
of constraints that are both syntactic and semantic in nature. A typical syn-
tactic constraint is that a program must implement a set of well-defined Java
interfaces; a typical semantic constraint is that the implementation of these
interfaces satisfy certain behavioral properties. Thus, it is common that not
all combinations of features (or their implementations) are correct [Kang et al.
1990]. A model for expressing program types and algorithms that can automat-
ically and efficiently validate equations has been developed and is part of the
Jakarta Tool Suite [Batory and Geraci 1997].

2.2.3 Mixin-Layer Implementation. There are many ways in which to im-
plement refinements, ranging from dynamically composing objects to statically-
composed meta-programs (i.e., programs that generate other programs) [Batory
et al. 1998] and rule-sets of program transformation systems [Neighbors 1997].
One of the simplest is to use templates called mixin-layers. In the following, we
use the term component to denote a mixin-layer implementation of a refinement.

A GenVoca component typically encapsulates multiple classes. Figure 3a
depicts component X with four classes A-D. Any number of relationships can
exist among these classes; Figure 3a shows only inheritance relationships.
That is, B and C are subclasses of A, while D has no inheritance relationship
with A-C.

The concept of refinement is an integral part of object-orientation. In par-
ticular, a subclass is a refinement of its superclass: it adds new data members,
methods, and/or overrides existing methods. A GenVoca refinement scales in-
heritance to simultaneously refine multiple classes.3 Figure 3b depicts a com-
ponent Y that encapsulates three refining classes (A, B, and D) and an additional
class (E). Note that the refining classes (A, B, D) do not have their superclasses

2Technically, different equations represent different programs. Equation optimization is over the
space of semantically equivalent programs. This is identical to relational query optimization: a
query is initially represented by a relational algebra expression, and this expression is optimized.
Each expression represents a different, but semantically equivalent, query-evaluation program as
the original expression.
3There are other kinds of refinements beyond those discussed in this paper. An example is an
optimizing refinement, which maps an inefficient program to an efficient program [Neighbors 1997].
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Fig. 3. GenVoca components and their composition.

specified; this enables them to be “plugged” underneath their yet-to-be-
determined superclasses.4

In our model, where refinements are functions, we would write the composi-
tion of Ywith X as Y(X). When dealing with template implementations, however,
the convention is to use a slightly different syntax, Y<X>. Thus, there is a trivial
correspondence between model equations and their implementing mixin-layer
template expressions.

Given this correspondence, Figure 3c shows the result of Y<X>. (The classes
of Y are outlined in darker ovals to distinguish them from classes of X). Note
that the obvious thing happens to classes A, B, and D of component X—they are
refined by classes in Y, as expected. That is, a linear inheritance refinement
chain is created, with the original definition (from X) at the top of the chain,
and the most recent refinement (from Y) at the bottom. As more components
are composed, the inheritance hierarchies that are produced get progressively
broader (as new classes are added) and deeper (as existing classes are refined).
As a rule, only the bottom-most class of a refinement chain is instantiated and
subclassed to form other distinct chains. (These are indicated by the shaded
classes of Figure 3c). The reason is that these classes contain all of the “features”
or “aspects” that were added by higher classes in the chain. These higher classes
simply represent intermediate derivations of the bottom class [Batory et al.
1998; Findler and Flatt 1998; Smaragdakis and Batory 1998]. A consequence of
instantiating the “bottom-most” class of a chain is that refinement relationships
take precedence over typical subclassing relationships. That is, if class A in
component X is refined, it is the most refined version of A that is the superclass
of B. This precedence relationship can be seen in Figure 3c.

Representation. A GenVoca component/refinement is encoded in JTS as
a class with nested classes. A representation of component X of Figure 3a is
shown below, where $TEqn.A denotes the most refined version of class A (e.g.,

4More accurately, a refinement of class A is a subclass of A with name A. Normally, subclasses
must have names distinct from their superclass, but not so here. The idea is to graft on as many
refinements to a class as necessary—forming a linear “refinement” chain—to synthesize the actual
version of A that is to be used. Subclasses with names distinct from their superclass define entirely
new classes (such as B and C above), which can subsequently be refined.
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classes X.B and X.C in Figure 3a have $TEqn.A as their superclass). We use the
Java technique of defining properties via empty interfaces; interface F is used
to indicate the type of component X:

interface F { } // empty

class X implements F {
class A { . . . }
class B extends $TEqn.A { . . . }
class C extends $TEqn.A { . . . }
class D { . . . }
}

Components like Y that encapsulate refinements are expressed as mixins—
classes whose superclass is specified via a parameter. A representation of Y is
a mixin-layer [Findler and Flatt 1998; Smaragdakis and Batory 1998, 2002],
where Y’s parameter s can be instantiated by any component that is of type F:

class Y < F s > extends s implements F {
class A extends s.A {. . .}
class B extends s.B {. . .}
class D extends s.D {. . .}
class E {. . .}
}

In the parlance of the model of Section 2.2.2, X is a value of type F, and Y is a
function with a parameter s of type F that returns a refined program of type F.
The composition of Y with X, depicted in Figure 3c, is expressed by:

class MyExample extends Y<X>;

where $TEqn is replaced by MyExample in the instantiated bodies of X and Y.
Readers familiar with earlier descriptions of the GenVoca model will recognize
that F corresponds to a realm interface,5 X and Y are components of realm F,
and MyExample is a type equation [Batory and O’Malley 1992]. Extensibility is
achieved by adding and removing mixin-layers from applications; product-line
applications are defined by different compositions of mixin-layers.

2.2.4 Perspective. Stepwise refinement originated in the late-1960 writ-
ings of Wirth and Dijkstra. The key to its modernization lies in scaling
the effects of individual refinements, to which there are many contributors.
Neighbors [1989] first described the architectural organization of mapping
from abstract to concrete languages in DRACO, where the mappings between

5Technically, a realm interface would not be empty, but would specify class interfaces and their
methods. That is, a realm interface would include nested interfaces of the classes that a component
of that realm should implement. Thus, nested class A of Y would extend s.A as above, but also might
implement F.IA, a particular nested interface of F. Java (and current JTS extensions of Java) do not
enforce that class interfaces be implemented when interface declarations are nested [Smaragdakis
and Batory 1998]. On going research aims to correct this situation [Cardone and Lin 2001].
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a higher (more abstract) language representation of a program to a lower
(more implementation-oriented) representation can be seen as large-scale re-
finements. Parameterized programming, which provides the conceptual infras-
tructure for early models on parametric components, was advanced by Goguen
[1986]. The earliest use of plug-compatible layers (i.e., large-scale refinements)
for creating product families and extensible applications originated in the mid-
to-late 1980s in the work of Batory and O’Malley [1992]. Feature descriptions of
applications and product-lines originated in the early 1990s with Kang’s [1990]
FODA (Feature Oriented Domain Analysis) and Gomaa’s EDLC (Evolutionary
Domain Life Cycle) [Gomaa et al. 1992] models. Collaborations, as object-
oriented representations of refinements, were discussed by Reenskaug in 1992
[Reenskaug et al. 1992]. Kiczales’s notion of aspects with “cross-cutting” effects
clarified the general need for feature encapsulations [Kiczales et al. 1997]. Re-
cent work on multi-dimensional separation of concerns examines a more flexible
way of identifying and composing features in existing software [Tarr et al. 1999].

It is also worth noting the trade-off between the large-scale refinements of
GenVoca and generic small-scale (or microscopic) refinements (x + 0 ⇒ x) that
are more commonly found in the literature (e.g., [Rich and Waters 1992]).

The traditional argument for small-scale refinements is that a relatively
small number of generic small-scale refinements can generate a larger num-
ber of large-scale refinements. Additionally, large-scale refinements tend to be
applicable less often, because they tend to make more assumptions about the
application context. (That is, the refinement Y of the Figure 3 is applicable less
often than a “sub-refinement” that only specializes A, because Y requires the
presence of B and C.) Where the case for traditional small-scale refinements
breaks down is precisely when doing domain-specific development; the genera-
tion argument fails because hardly any of the generic transforms are of interest
in a restricted domain, and the contextual assumptions argument breaks down
because the domain provides the required context.

Domain-specific small-scale refinements can indeed be used to address the
above-cited deficiencies. But, as we mentioned earlier, enormous numbers of
domain-specific small-scale refinements must be applied to produce admittedly
small programs. Scaling refinements, as we are doing, provides a more practical
way to develop complex, domain-specific software artifacts. The tools are sim-
pler, and the concepts are closer to main-stream programming methodologies
(e.g., OO collaborations, as we will see in the next section).

3. THE IMPLEMENTATION

The GenVoca-FSATS design was implemented using the Jakarta Tool Suite
(JTS) [Batory et al. 1998], a set of Java-based tools for creating product-line ar-
chitectures and compilers for extensible Java languages. The following sections
outline the essential concepts of our JTS implementation.

3.1 A Design for an Extensible Fire-Support Simulator

The Design. The key idea behind the GenVoca-FSATS design is the en-
capsulation of individual mission types as components. That is, the central
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Fig. 4. OPFAC inheritance refinement hierarchy.

variabilities in FSATS throughout its history (and projected future) lie in the
addition, enhancement, and removal of mission types. By encapsulating mis-
sion types as components, evolution of FSATS is greatly simplified.

We noted earlier, that every mission type has a “cross-cutting effect”, be-
cause the addition or removal of a mission type impacts multiple OPFAC pro-
grams. A mission type is an example of a common kind of refinement called a
collaboration—a set of objects that work collectively to achieve a certain goal
[Reenskaug et al. 1992; Smaragdakis and Batory 1998; Van Hilst and Notkin
1996]. Collaborations have the desirable property that they can be defined
largely in isolation from other collaborations, thereby simplifying application
design. In the case of FSATS, a mission is a collaboration of objects (OPFACs)
that work cooperatively to prosecute a particular mission. The actions taken
by each OPFAC are defined by a protocol (state machine) that it follows to
do its part in processing a mission thread. Different OPFACs follow different
protocols for different mission types.

An extensible, component-based design for FSATS follows directly from these
observations. One component (Vanilla) defines an initial OPFAC class hier-
archy and routines for sending and receiving messages, routing messages to
appropriate missions, reading simulation scripts, and so forth. Figure 4 depicts
the Vanilla component encapsulating multiple classes, one per OPFAC type.
The OPFACs that are defined in Vanilla do not know how to react to external
stimuli. Such reactions are encapsulated in mission components.

Each mission component encapsulates protocols (expressed as state ma-
chines) that are added to each OPFAC that could participate in a thread
of this mission type. Composing a mission component with Vanilla extends
each OPFAC with knowledge of how to react to particular external stimuli
and how to coordinate its response with other OPFACs. For example, when
the WRFFE-artillery component is added, a forward observer now has a pro-
tocol that tells it how to react when it sees an enemy tank—it creates a
WRFFE-artillery message which it relays to its FIST. The FIST commander, in
turn, follows his WRFFE-artillery protocol to forward this message to his battal-
ion FSE, and so on. Figure 4 depicts the WRFFE-artillery component encapsu-
lating multiple classes, again one per OPFAC type. Each enclosed class encap-
sulates a protocol which is added to its appropriate OPFAC class. Component
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composition is accomplished via inheritance, and is shown by dark vertical
lines between class ovals in Figure 4. The same holds for other mission compo-
nents (e.g., TOT-artillery). Note that the classes that are instantiated are the
bottom-most classes of these linear inheritance chains, because they embody all
the protocols/features that have been grafted onto each OPFAC. Readers will
recognize this is an example of the GenVoca paradigm of Section 2.2, where
components are mixin-layers.

The GenVoca-FSATS design has distinct advantages:r it is mission-type extensible (i.e., it is comparatively easy to add new mission
types to an existing GenVoca-FSATS simulator),6r each mission type is defined largely independently of others, thereby reducing
the difficulties of specification, coding, and debugging, andr understandability is improved: OPFAC behavior is routinely understood and
analyzed as mission threads. Mission-type components directly capture this
simplicity, avoiding the complications of knowledge acquisition and engineer-
ing of rule sets.

Implementation. There are over twenty different mixin-layer components
in GenVoca-FSATS, all of which are composed now to form a “fully-loaded”
simulator. There are individual components for each mission type, just like
Figure 4. However, there is no monolithic Vanilla component. We discovered
that Vanilla could be decomposed into ten largely independent layers (totalling
97 classes) that deal with different aspects of the FSATS infrastructure. For
example, there are distinct components for:r OPFACs reading from simulation scripts,r OPFAC communication with local and remote processes,r OPFAC proxies (objects that are used to evaluate whether OPFAC comman-

ders are supported by desired weapons platforms),r different weapon OPFACs (e.g., distinct components for mortar, artillery,
etc.), andr GUI displays for graphical depiction of ongoing simulations.

Packaging these capabilities as distinct components, simplifies both specifi-
cations (because no extraneous details need to be included), and debugging (as
components can largely be debugged in isolation). An important feature of our
design is that all OPFACs are coded as threads executing within a single Java
process. An “RMI adaptor” component transforms this design into a distributed
program where each OPFAC thread executes in its own process at a different
site [Batory et al. 1999]. The advantage here is that it is substantially easier to
debug layers and mission threads within a single process than to debug remote

6Although a product-line of different FSATS simulators is possible; presently the emphasis of
FSATS is on mission type extensibility. It is worth noting, however, that exponentially-large
product-lines of FSATS simulators could be synthesized—i.e., if there are m mission components,
there can be up to 2m distinct compositions/simulators.
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Fig. 5. CORBA and DCOM vs. layers (refinements).

executions. Furthermore, the adaptor is included in an FSATS design only when
distributed simulations are needed.

Perspective. It is worth comparing our notion of components with those
that are common in today’s software industry. Event-based distributed archi-
tectures, where DCOM and CORBA components communicate via message ex-
changes, is likely to be a dominant architectural paradigm of the future [Taylor
1999]. The original design of FSATS is a classic example: OPFAC programs
are distributed DCOM/CORBA “components” that exchange messages. Yet the
“components” common to distributed architectures are orthogonal to the compo-
nents in the GenVoca-FSATS design. (This is depicted below in Figure 5 where
each vertical inheritance chain corresponds to an OPFAC that is a CORBA
or DCOM class, whereas an FSATS mission type is depicted by a horizon-
tal slice through all OPFACs). That is, our components (layers) encapsulate
fragments of many OPFACs, instead of encapsulating an individual OPFAC.
(This is typical of approaches based on collaboration-based or “aspect-based”
designs).

Event-based architectures are clearly extensible by their ability to add and
remove component instances (e.g., adding and removing OPFACs from a simu-
lation). This is (OPFAC) object population extensibility, which FSATS definitely
requires. But FSATS also needs feature extensibility—OPFAC programs must
be mission-type extensible. While these distinctions seem obvious in hind-sight,
they were not so, prior to our work. FSATS clearly differentiates them.

3.2 A Domain-Specific Language for State Machines

We discovered that OPFAC rule sets were largely representations of state ma-
chines. We found that expressing OPFAC actions as state machines was a sub-
stantial improvement over rules; they are much easier to explain and under-
stand, and require very little background to comprehend. A major goal of the
redesign was to minimize the “conceptual distance” between architectural ab-
stractions and their implementation. The problem we faced is that encodings of
state machines are obscure, and given the situation that our specifications often
refined previously created machines, expressing state machines in pure Java
code was unattractive. To eliminate these problems, we used JTS to extend Java
with a domain-specific language for declaring and refining state machines, so
that our informal state machines (nodes, edges, etc.) had a direct expression as
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Fig. 6. JavaSM state machine specification.

a formal, compilable document. This extended version of Java is called JavaSM,
and took us a bit more than a week to code into JTS.

Initial Declarations. A central idea of JavaSM is that a state machine
specification translates into the definition of a single class. There is a generated
variable (current state) whose value indicates the current state of the protocol
(i.e., state-machine-class instance). When a message is received by an OPFAC,
a designated method is invoked with this message as an argument; depending
on the state of the protocol, different transitions occur. Figure 6a shows a simple
state machine with three states and three transitions. When a message arrives
in the start state, if method booltest() is true, the state advances to stop;
otherwise the next state is one.
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Fig. 7. Refining state machines.

Our model of FSATS required boolean conditions that triggered a transition
to be arbitrary Java expressions with no side-effects, and the actions performed
by a transition, to be arbitrary Java statements. Figure 6b shows a JavaSM
specification of Figure 6a. (1) defines the name and formal parameters of the
void method that delivers a message to the state machine. In the case that
actions have corrupted the current state, (2) defines the code that is to be ex-
ecuted upon error discovery. When a message is received and no transition is
activated, (3) defines the code that is to be executed (in this case, ignore the
message). The three states in Figure 6a are declared in (4). Edges are declared
in (5): each edge has a name, start state, end state, transition condition, and
transition action. Java data member declarations and methods are introduced
after edge declarations (6). When the specification of Figure 6b is translated,
the class exampleJavaSM is generated. Additional capabilities of JavaSM are
discussed in Batory et al. [1998].

Refinement Declarations. State machines can be progressively refined
in a layered manner. A refinement is the addition of states, edges, data mem-
bers, and methods to an existing machine. A common situation in FSATS is
illustrated in Figure 7. Protocols for missions of the same general type (e.g.,
WRFFE) share the same protocol fragment for initialization (Figure 7a). A par-
ticular mission type (e.g, WRFFE-artillery) grafts on states and edges that are
specific to it (Figure 7b). Additional missions contribute their own states and
edges (Figure 7c), thus allowing complex state machines to be built in a step-
wise manner.

The original state machine and each refinement are expressed as separate
JavaSM specifications that are encapsulated in distinct layers. When these
layers are composed, their JavaSM specifications are translated into a Java
class hierarchy. Figure 7d shows this hierarchy: the root class was generated
from the JavaSM specification of Figure 7a; its immediate subclass was gen-
erated from the JavaSM refinement specification of Figure 7b; the terminal
subclass was generated from the JavaSM refinement specification of Figure 7c.
Figure 8 sketches a JavaSM specification of this refinement chain.

Inheritance (i.e., class refinement) plays a central role in this implementa-
tion. All the states and edges in Figure 7a are inherited by the machine refine-
ments of Figure 7b, and these states, edges, and so forth, are inherited by the
machine refinements of Figure 7c. The machine that is executed, is created by
instantiating the bottom-most class of the refinement chain of Figure 7d. Read-
ers will again recognize this an example of the GenVoca paradigm of Section 2.2.
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Fig. 8. A JavaSM refinement hierarchy.

Perspective. Domain-specific languages for state machines are common
(e.g., Berry and Gonthier 1992; Ellsberger et al. 1997; Harel 1987; Harel and
Gery 1996; Neighbors 1997). Our way of expressing state machines—as states
with enter and exit methods, edges with conditions and actions—is an elemen-
tary subset of Harel’s Statecharts [Harel 1987; Harel and Gery 1996] and SDL
extended finite state machines [Ellsberger et al. 1997]. The notion of refinement
in Statecharts is the ability to explode individual nodes into complex state ma-
chines. This is very different than the notion of refinement explored in this
paper. Our work is closer to the refinement of extended finite state machines in
SDL where a process class (which encodes a state machine) can be refined via
subclassing (i.e., new states and edges are added to extend the parent machine’s
capabilities). While the idea of state machine refinements is not new, it is new
in the context of a DSL-addition to a general-purpose programming language
(Java), and it is fundamental in the context of component-based development
of FSATS simulators.

4. PRELIMINARY RESULTS

Our preliminary findings are encouraging—the objectives of the redesign were
met by the GenVoca-FSATs design:r it is now possible to specify, add, verify, and test a mission type independent

of other mission types (because a version of FSATS can be created with a
single mission),
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r it is now possible to remove and replace mission types to accommodate vary-
ing user requirements, andr JavaSM allows a direct implementation of a specification, thereby reducing
the “conceptual distance” between specification and implementation.

As is common in re-engineering projects, detailed statistics on the effort
involved in the original implementation are not available. However, we can
make some rough comparisons. From our experience with the original FSATS
simulator, we estimate the time to add a mission to be about 1 month. A similar
addition to GenVoca-FSATS, including one iteration to identify and correct an
initial misunderstanding of the protocols for that mission, was accomplished in
about 3 days.

To evaluate the redesign in a less anecdotal fashion, we collected statistics on
program complexity. We used simple measures of class complexity: the number
of methods (nmeth), the number of lines of code (nloc), and the number of to-
kens/symbols (nsymb) per class. (We originally used other metrics [Chidamber
and Kemerer 1991], but found they provided no further insights.) Because of our
use of JTS, we have access to both component-specification code (i.e., layered
JavaSM code written by FSATS engineers), and generated non-layered pure-
Java code (which approximates code that would have been written by hand).
By using metrics to compare pure-Java code vs. JavaSM code, and layered vs.
non-layered code, we can quantitatively evaluate the impact of layering and
JavaSM on reducing program complexity, a key goal of our redesign.

Complexity of Non-Layered Java Code. Consider a non-layered design
of FSATS. Suppose all of our class refinement chains were “squashed” into
single classes; these would be the classes that would be written by hand if
a non-layered design were used. Consider the FSATS class hierarchy that is
rooted by class MissionImpl; this class encapsulates methods and an encoding
of a state machine that is shared by all OPFACS. (In our prototype, we imple-
mented different variants of WRFFE missions.) Class FoMission, a subclass of
MissionImpl, encapsulates the additional methods and the Java-equivalent of
state machine edges/states that define the actions that are specific to a Forward
Observer. Other subclasses of MissionImpl encapsulate additions that are spe-
cific to other OPFACs. The “Pure Java” columns of Table I present complexity
statistics of the FoMission and MissionImpl classes. Note that our statistics
for subclasses, by definition, must be no less than those of their superclasses
(because the complexity of superclasses is inherited).

One observation is immediately apparent: the number of methods (117) in
MissionImpl is huge. Different encoding techniques for state machines might
reduce the number, but the complexity would be shifted elsewhere (e.g., methods
would become more complicated). Because our prototype only deals with
WRFFE missions, we must expect that the number of methods in MissionImpl
will increase, as more mission types are added. Consider the following: there
are 30 methods in class MissionImpl alone that are used in WRFFE missions.
When we add a WRFFE mission that is specialized for a particular weapon
system (e.g., mortar), another 10 methods are added. Since WRFFE is repre-
sentative of mission complexity, as more mission types are added with their
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Table I. Statistics for Non-Layered Implementation of Class FoMission

Pure Java JavaSM

Class Name nmeth nloc nsymb nmeth nloc nsymb

MissionImpl 117 461 3452 54 133 1445

FoMission 119 490 3737 56 143 1615

weapon specializations, it is not inconceivable that MissionImpl will have sev-
eral hundred methods. Clearly, such a class would be both incomprehensible
and unmaintainable.7

Now consider the effects of using JavaSM. The “JavaSM” columns of Table I
show corresponding statistics, where state exit and enter declarations and edge
declarations are treated as (equivalent in complexity to) method declarations.
We call such declarations method-equivalents. Comparing the corresponding
columns in Table I, we see that coding in JavaSM reduces software complexity
by a factor of 2. That is, the number of method-equivalents is reduced by a factor
of 2 (from 119 to 56), the number of lines of code is reduced by a factor of 3 (from
490 to 143), and the number of symbols is reduced by a factor of 2 (from 3737
to 1615). However, the problem that we noted in the pure-Java implementation
remains. Namely, the generic WRFFE mission contributes over 10 method-
equivalents to MissionImpl alone; when WRFFE is specialized for a particular
weapon system (e.g., mortar), another 3 method-equivalents are added. While
this is substantially better than its non-layered pure-Java equivalent, it is not
inconceivable that MissionImpl will have over a hundred method-equivalents
in the future. While the JavaSM DSL indeed simplifies specifications, it only
delays the onset of design fatigue. Non-layered designs of FSATS may be difficult
to scale and ultimately hard to maintain, even if the JavaSM DSL is used.

Complexity of Layered Java Code. Now consider a layered design im-
plemented in pure Java. The “Inherited Complexity” columns of Table II show
the inheritance-cumulative statistics for each class of the MissionImpl and
FoMission refinement chains. The rows where MissionImpl and FoMission data
are listed in bold represent classes that are the terminals of their respec-
tive refinement chains. These rows correspond to the rows in Table I. The
“Isolated Complexity” columns of Table II show complexity statistics for in-
dividual classes of Table II (i.e., we are measuring class complexity, and not
including the complexity of superclasses). Note that most classes are rather
simple. The MissionAnyL.MissionImpl class, for example, is the most complex,
with 43 methods. (This class encapsulates “infrastructure” methods used by all
missions.) Table II indicates that layering disentangles the logic of different
features of the FoMission and MissionImpl classes into units that are small
enough to be comprehensible and manageable by programmers. For example,

7It would be expected that programmers would introduce some other modularity, thereby decom-
posing a class with hundreds of methods into multiple classes with smaller numbers of methods.
While this would indeed work, it would complicate the “white-board”-to-implementation mapping
(which is what we want to avoid) and there would be no guarantee that the resulting design would
be mission-type extensible.

ACM Transactions on Software Engineering and Methodology, Vol. 11, No. 2, April 2002.



210 • D. Batory et al.

Table II. Statistics for a Layered Java Implementation of Class FoMission

Inherited Complexity Isolated Complexity

Class Name nmeth nloc nsymb nmeth nloc nsymb

MissionL.MissionImpl 9 25 209 9 25 209

ProxyL.MissionImpl 11 30 261 2 5 52

MissionAnyL.MissionImpl 51 179 1431 43 149 1170

MissionWrffeL.MissionImpl 83 314 2342 35 135 911

MissionWrffeMortarL.MissionImpl 93 358 2677 13 44 335

MissionWrffeArtyL.MissionImpl 109 425 3187 19 67 510

MissionWrffeMlrsL.MissionImpl 117 461 3452 11 36 265
BasicL.FoMission 117 461 3468 0 0 16

MissionWrffeMortarL.FoMission 117 468 3547 4 7 79

MissionWrffeArtyL.FoMission 119 484 3687 7 16 140

MissionWrffeMlrs.FoMission 119 490 3737 3 6 50

Table III. Statistics on a Layered JavaSM Implementation of Class FoMission

Inherited Complexity Isolated Complexity

Class Name nmeth nloc nsymb nmeth nloc nsymb

MissionL.MissionImpl 8 20 169 8 20 169

ProxyL.MissionImpl 10 25 221 2 5 52

MissionAnyL.MissionImpl 34 90 877 24 65 656

MissionWrffeL.MissionImpl 45 115 1132 11 25 255

MissionWrffeMortarL.MissionImpl 48 121 1231 3 6 99

MissionWrffeArtyL.MissionImpl 52 129 1383 4 8 152

MissionWrffeMlrsL.MissionImpl 54 133 1445 2 4 62
BasicL.FoMission 54 133 1461 0 0 16

MissionWrffeMortarL.FoMission 54 136 1518 2 3 57

MissionWrffeArtyL.FoMission 55 140 1586 3 4 68

MissionWrffeMlrs.FoMission 56 143 1615 2 3 29

instead of having to understand a class with 117 methods, the largest lay-
ered subclass has 43 methods; instead of 461 lines of code there are 149 lines,
and so on.

To gauge the impact of a layered design in JavaSM, consider the “Inher-
ited Complexity” columns of Table III that show statistics for MissionImpl and
FoMission refinement chains written in JavaSM. The “Isolated Complexity”
columns of Table III show corresponding statistics for individual classes. They
show that layered JavaSM specifications are indeed compact: instead of a class
with 43 methods there are 24 method-equivalents, instead of 149 lines of code
there are 65 lines, and so on. Thus, a combination of domain-specific languages
and layered designs greatly reduces program complexity.

Our use of the “Isolated Complexity” metric as the indicator of class complex-
ity requires some discussion. It is indeed the case that the “true” complexity
of a class is somehow related to the total complexity of its superclasses plus
the additional complexity of the class itself. So it could be argued that the
“Inherited Complexity” metric might be a better measure of the actual diffi-
culty of understanding a given layer. This is not the case for FSATS. Typically
FSATS layers simply invoke methods of their superclass, much in the same
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way that COM and CORBA components invoke methods of server interfaces.
Implementation details are hidden behind such interfaces, thereby making it
easy for programmers to invoke server methods without having to know how
servers are implemented. The same holds for layers in FSATS. The only dif-
ference here, is that a few methods of each FSATS class override (i.e., extend)
previously defined methods, thereby requiring programmers to know more of
the “guts” of superclass implementation. But for FSATs (and other genera-
tors that we have built), this additional implementation knowledge is minimal.
Further, there may be layers in superclass implementations that provide in-
frastructure that programmers of mission-layers do not need to be aware of at
all; they are simply methods that are private to that layer. For these reasons,
we believe that “Isolated Complexity” is closer to the true complexity of a class
than “Inherited Complexity.”

The reduction in program complexity is a key goal of our project; these tables
support the observations of FSATS engineers: the mapping between a “white-
board” design of FSATS protocols and an implementation, is both direct and
invertible with layered JavaSM specifications. That is, writing components in
JavaSM matches the informal designs that domain experts use; it requires
fewer mental transformations from design to implementation, which simplifies
maintenance and extensibility, and makes for a much less error-prone product.
In contrast, mapping from the original FSATS implementation back to the
design was not possible due to the lack of an association of any particular rule
or set of rules with a specific mission.

5. CONCLUSIONS

Extensibility is the property that simple changes to the design of a software
artifact require a proportionally simple effort to modify its source code. Extensi-
bility is a result of premeditated engineering, whereby anticipated variabilities
in a domain are made simple by design. Two complementary technologies are
emerging that make extensibility possible: product-line architectures (PLAs)
and domain-specific languages (DSLs). Product-lines rely on components to en-
capsulate the implementation of basic features or “aspects” that are common
to applications in a domain; applications are extensible through the addition
and removal of components. Domain-specific languages enable applications to
be programmed in domain abstractions, thereby allowing compact, clear, and
machine-processable specifications to replace detailed and abstruse code. Ex-
tensibility is achieved through the evolution of specifications.

FSATS is a simulator for Army fire support and is representative of a com-
plex domain of distributed command-and-control applications. The original im-
plementation of FSATS had reached a state of design fatigue, where antici-
pated changes/enhancements to its capabilities would be expensive to realize.
We undertook the task of redesigning FSATS so that its inherent and pro-
jected variabilities—that of adding new mission types—would be easy to intro-
duce. Another important goal was to minimize the “conceptual distance” from
“white-board” designs of domain experts to actual program specifications; be-
cause of the complexity of fire-support, the specifications had to closely match
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these designs to make the next-generation FSATS source understandable and
maintainable.

We achieved the goals of extensibility and understandability through an in-
tegration of PLA and DSL technologies. We used a GenVoca PLA to express the
building blocks of fire support simulators as layers or refinements, whose addi-
tion or removal simultaneously impacts the source code of multiple, distributed
programs. But a layered design was insufficient, because our components could
not be easily written in pure Java. The reason is that the code expressing state
machine abstractions was so low-level that it would be difficult to read and
maintain. We addressed this problem by extending the Java language with a
domain-specific language, to express state machines and their refinements, and
wrote our components in this extended language. Preliminary findings confirm
that our component specifications are substantially simplified; “white-board”
designs of domain experts have direct and invertible expressions in our speci-
fications. Thus, we believe that the combination of PLAs and DSLs is essential
in creating extensible fire support simulators.

While fire support is admittedly a domain with specific and unusual require-
ments, there is nothing domain-specific about the need for PLAs, DSLs, and
their benefits. In this regard, FSATS is not unusual; it is a classical example
of the many domains where both technologies naturally complement each other
to produce a result that is better than either technology could deliver in isola-
tion. Research on PLA and DSL technologies should focus on infrastructures
(such as IP [Simonyi 1995] and JTS [Batory et al. 1998]) that support their
integration; research on PLA and DSL methodologies must be more cognizant
that synergy is not only possible, but desirable.
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