
1

Mixin-Based Programming in C++1

Abstract

Combinations of C++ features, like inheritance,
templates, and class nesting, allow for the expres-
sion of powerful component patterns. In particular,
research has demonstrated that, using C++ mixin
classes, one can express layered component-based
designs concisely with efficient implementations.
In this paper, we discuss pragmatic issues related to
component-based programming using C++ mixins.
We explain surprising interactions of C++ features
and policies that sometimes complicate mixin
implementations, while other times enable addi-
tional functionality without extra effort.

1 Introduction

Large software artifacts are arguably among the
most complex products of human intellect. The
complexity of software has led to implementation
methodologies that divide a problem into manage-
able parts and compose the parts to form the final
product. Several research efforts have argued that
C++ templates (a powerful parameterization mech-
anism) can be used to perform this division ele-
gantly.

In particular, the work of VanHilst and Notkin
[30][31][32] showed how one can implement col-
laboration-based (or role-based) designs using a
certain templatized class pattern, known as a mixin
class (or just mixin). Compared to other techniques
(e.g., a straightforward use of application frame-
works [17]) the VanHilst and Notkin method yields
less redundancy and reusable components that

reflect the structure of the design. At the same
time, unnecessary dynamic binding can be elimi-
nated, resulting into more efficient implementa-
tions. Unfortunately, this method resulted in very
complex parameterizations, causing its inventors to
question its scalability.

The mixin layers technique was invented to address
these concerns. Mixin layers are mixin classes
nested in a pattern such that the parameter (super-
class) of the outer mixin determines the parameters
(superclasses) of inner mixins. In previous work
[4][25][26], we showed how mixin layers solve the
scalability problems of the VanHilst and Notkin
method and result into elegant implementations of
collaboration-based designs.

This paper discusses practical issues related to
mixin-based programming. We adopt a viewpoint
oriented towards C++ implementations, but our
discussion is not geared towards the C++ expert.
Instead, we aim to document common problems
and solutions in C++ mixin writing for the casual
programmer. Additionally, we highlight issues that
pertain to language design in general (e.g., to Java
parameterization or to the design of future lan-
guages). Most of the issues clearly arise from the
interaction of C++ features with the constructs
under study. The discussion mainly stems from
actual experience with C++ mixin-based imple-
mentations but a few points are a result of close
examination of the C++ standard, since they refer
to features that no compiler we have encountered
implements. Even though we present an introduc-
tion to mixins, mixin layers, and their uses, the pri-

1. We gratefully acknowledge the sponsorship of Microsoft Research, the Defense Advanced Research Projects Agency (Cooper-
ative Agreement F30602-96-2-0226), and the University of Texas at Austin Applied Research Laboratories.

Yannis Smaragdakis
College of Computing

Georgia Institute of Technology
Atlanta, GA 30332

yannis@cc.gatech.edu

Don Batory
Department of Computer Sciences
The University of Texas at Austin

Austin, Texas 78712
batory@cs.utexas.edu

Don
Second International Symposium on Generative and Component-Based Software Engineering (GCSE'2000), Erfurt, Germany, October 9-12, 2000

2

mary purpose of this paper is not to convince
readers of the value of these constructs. (The
reader should consult [4], [25], [26], [27], or [30]
for that.)

We believe that the information presented here rep-
resents a valuable step towards moving some pow-
erful programming techniques into the mainstream.
We found that the mixin programming style is
quite practical, as long as one is aware of the possi-
ble interactions with C++ idiosyncrasies. As C++
compilers move closer to full implementation of
the language standard (e.g., some compilers
already support separate template compilation) the
utility of such techniques will increase rapidly.

2 Background (Mixins and Mixin Layers)

The term mixin class (or just mixin) has been over-
loaded in several occasions. Mixins were originally
explored in the Lisp language with object systems
like Flavors [21] and CLOS [18]. In these systems,
mixins are an idiom for specifying a class and
allowing its superclass to be determined by linear-
ization of multiple inheritance. In C++, the term
has been used to describe classes in a particular
(multiple) inheritance arrangement: as superclasses
of a single class that themselves have a common
virtual base class (see [29], p.402). (This is not the
meaning that we will use in this paper.) Both of
these mechanisms are approximations of a general
concept described by Bracha and Cook [6]. The
idea is simple: we would like to specify an exten-
sion without pre-determining what exactly it can
extend. This is equivalent to specifying a subclass
while leaving its superclass as a parameter to be
determined later. The benefit is that a single class
can be used to express an incremental extension,
valid for a variety of classes.

Mixins can be implemented using parameterized
inheritance. The superclass of a class is left as a
parameter to be specified at instantiation time. In
C++ we can write this as:

template <class Super>
class Mixin : public Super {

... /* mixin body */
};

To give an example, consider a mixin implement-
ing operation counting for a graph. Operation
counting means keeping track of how many nodes
and edges have been visited during the execution
of a graph algorithm. (This simple example is one
of the non-algorithmic refinements to algorithm
functionality discussed in [34]). The mixin could
have the form:

template <class Graph>
class Counting: public Graph {

int nodes_visited, edges_visited;
public:

Counting() : nodes_visited(0),
edges_visited(0),
Graph() { }

node succ_node (node v) {
nodes_visited++;
return Graph::succ_node(v);

}
edge succ_edge (edge e) {

edges_visited++;
return Graph::succ_edge(e);

}
...

};

By expressing operation counting as a mixin we
ensure that it is applicable to many classes that
have the same interface (i.e., many different kinds
of graphs). We can have, for instance, two different
compositions:

Counting< Ugraph > counted_ugraph;

and
Counting< Dgraph > counted_dgraph;

for undirected and directed graphs. (We omit
parameters to the graph classes for simplicity.)
Note that the behavior of the composition is
exactly what one would expect: any methods not
affecting the counting process are exported (inher-
ited from the graph classes). The methods that do
need to increase the counts are “wrapped” in the
mixin.

VanHilst and Notkin demonstrated that mixins are
beneficial for a general class of object-oriented
designs [30]. They used a mixin-based approach to
implement collaboration-based (a.k.a. role-based)
designs [5][15][16][22][30]. Role-based designs
are based on the view that objects are composed of
different roles that they play in their interaction
with other objects. The fundamental unit of func-
tionality is a protocol for this interaction, called a

3

collaboration. The mixin-based approach of Van-
Hilst and Notkin results in efficient implementa-
tions of role-based designs with no redundancy.
Sometimes, however, the resulting parameteriza-
tion code is quite complicated (i.e., many mixins
need to be composed with others in a complex
fashion). This introduces some scalability prob-
lems (namely, extensions that instantiate template
parameters can be of length exponential to the
number of mixins composed—see [25]). To make
the approach more practical, by reducing its com-
plexity, mixin layers were introduced. Because
mixin layers are an incremental improvement of
the VanHilst and Notkin method, we only discuss
implementing collaboration-based designs using
mixin layers.

Mixin layers [25][26][27] are a particular form of
mixins. They are designed with the purpose of
encapsulating refinements for multiple classes.
Mixin layers are nested mixins such that the
parameter of an outer mixin determines the param-
eters of inner mixins. The general form of a mixin
layer in C++ is:

template <class NextLayer>
class ThisLayer : public NextLayer
{
public:

class Mixin1 :
public NextLayer::Mixin1

{ ... };

class Mixin2 :
public NextLayer::Mixin2

{ ... };
...

};

Mixin layers are a result of the observation that a
conceptual unit of functionality is usually neither
one object nor parts of an object—a unit of func-
tionality may span several different objects and
specify refinements (extensions) to all of them. All
such refinements can be encapsulated in a single
mixin layer and the standard inheritance mecha-
nism can be used for composing extensions.

This property of mixin layers makes them particu-
larly attractive for implementing collaboration-
based designs. Each layer captures a single collab-
oration. Roles for all classes participating in a col-

laboration are represented by inner classes of the
layer. Inheritance works at two different levels.
First, a layer can inherit entire classes from its
superclass (i.e., the parameter of the layer). Sec-
ond, inner classes inherit members (variables,
methods, or even other classes) from the corre-
sponding inner classes in the superclass layer. This
dual application of inheritance simplifies the
implementation of collaboration-based designs,
while preserving the benefits of the VanHilst and
Notkin method. An important source of simplifica-
tions is that inner classes of a mixin layer can refer
unambiguously to other inner classes—the layer
acts as a namespace.

We illustrate our point with an example (presented
in detail in [25]) of a collaboration-based design
and its mixin layers implementation. (Full source
code is available, upon request.) This example pre-
sents a graph traversal application and was exam-
ined initially by Holland [16] and subsequently by
VanHilst and Notkin [30]. This application defines
three different algorithms on an undirected graph,
all implemented using a depth-first traversal: Ver-
tex Numbering numbers all nodes in the graph in
depth-first order, Cycle Checking examines
whether the graph is cyclic, and Connected
Regions classifies graph nodes into connected
graph regions. The application has three distinct
classes: Graph, Vertex, and Workspace. The Graph
class describes a container of nodes with the usual
graph properties. Each node is an instance of the
Vertex class. Finally, the Workspace class includes
the application part that is specific to each graph
operation. For the VertexNumbering operation, for
instance, a Workspace object holds the value of the
last number assigned to a vertex as well as the
methods to update this number.

As shown in Figure 1, we can decompose this
application into five independent collaborations—
one encompassing the functionality of an undi-
rected graph, another encoding depth-first travers-
als, and three containing the specifics of each
graph algorithm (vertex numbering, cycle check-
ing, and connected regions). Note that each collab-
oration captures a distinct aspect of the application
and each object may participate in several aspects.
That is to say, each object may play several roles.
For instance, the role of a Graph object in the

4

“Undirected Graph” collaboration supports storing
and retrieving a set of vertices. The role of the
same object in the “Depth First Traversal” collabo-
ration implements a part of the actual depth-first
traversal algorithm.

By implementing collaborations as mixin layers,
the modular design of Figure 1 can be maintained
at the implementation level. For instance, the “Ver-
tex Numbering” collaboration can be implemented
using a layer of the general form:

template <class Next>
class NUMBER : public Next
{
public:

class Workspace :
public Next::Workspace {
... // Workspace role methods

};

class Vertex :
public Next::Vertex {
... // Vertex role methods

};
};

Note that no role (nested class) is prescribed for
Graph. A Graph class is inherited from the super-
class of Number (the class denoted by parameter
Next).

As shown in [25], such components are flexible
and can be reused and interchanged. For instance,
the following composition builds Graph, Vertex,
and WorkSpace classes nested inside class CycleC

that implement vertex numbering of undirected

graphs using a depth-first traversal:2

typedef DFT < NUMBER < DEFAULTW <
UGRAPH > > > CycleC;

By replacing NUMBER with other mixin layers we
get the other two graph algorithms discussed.
Many more combinations are possible. We can use
the templates to create classes that implement more
than one algorithm. For instance, we can have an
application supporting both vertex numbering and
cycle checking on the same graph by refining two
depth-first traversals in order:

typedef DFT < NUMBER < DEFAULTW <
UGRAPH > > > NumberC;

typedef DFT < CYCLE < NumberC > > CycleC;

Furthermore, all the characteristics of an undi-
rected graph are captured by the UGRAPH mixin

Figure 1: Collaboration decomposition of the example application: A depth-first traversal of an
undirected graph is specialized to yield three different graph operations. Ovals represent collab-
orations, rectangles represent classes, and their intersections represent roles.

Graph-
Undirected

C
ol

la
bo

ra
ti

on
s

(L
ay

er
s)

Undirected
Graph

Depth First
Traversal

Vertex
Numbering

Cycle
Checking

Connected
Region

Graph Vertex Workspace

VertexWith-
Adjacencies

GraphDFT VertexDFT

VertexNumber
Workspace-
Number

VertexCycle
Workspace-
Cycle

GraphCycle

Graph-
Connected

Vertex-
Connected

Workspace-
Connected

Object Classes

2. The DEFAULTW mixin layer is an implementation detail, bor-
rowed from the VanHilst and Notkin implementation [30].
It contains an empty WorkSpace class and its purpose is to
avoid dynamic binding by changing the order of composi-
tion.

5

layer. Hence, it is straightforward to apply the same
algorithms to a directed graph (mixin layer DGRAPH

interchanged for UGRAPH):3

typedef DFT < NUMBER < DEFAULTW <
DGRAPH > > > NumberC;

This technique (of composing source components
in a large number of combinations) underlies the
scalable libraries [3] design approach for source
code plug-and-play components.

3 Component Programming with C++ Mix-
ins: Pragmatic Considerations

Since little has been written about the pragmatics
of doing component programming using C++ mix-
ins (mixin classes or mixin layers), we feel it is
necessary to discuss some pertinent issues. Most of
the points raised below concern fine interactions
between the mixin approach and C++ idiosyncra-
sies. Others are implementation suggestions. They
are all useful knowledge before one embarks into a
development effort using C++ mixins and could
serve to guide design choices for future parameter-
ization mechanisms in programming languages.
The C++ aspects we discuss are well-documented
and other C++ programmers have probably also
made some of our observations. Nevertheless, we
believe that most of them are non-obvious and
many only arise in the context of component pro-
gramming—that is, when a mixin is designed and
used in complete isolation from other components
of the system.

Lack of template type-checking. Templates do
not correspond to types in the C++ language. Thus,
they are not type-checked until instantiation time
(that is, composition time for mixins). Further-
more, methods of templatized classes are them-

selves considered function templates.4 Function
templates in C++ are instantiated automatically and
only when needed. Thus, even after mixins are
composed, not all their methods will be type-

checked (code will only be produced for methods
actually referenced in the object code). This means
that certain errors (including type mismatches and
references to undeclared methods) can only be
detected with the right template instantiations and
method calls. Consider the following example:

template <class Super>
class ErrorMixin : public Super {
public:

...
void sort(FOO foo) {

Super::srot(foo); // misspelled
}

};

If client code never calls method sort, the com-
piler will not catch the misspelled identifier above.
This is true even if the ErrorMixin template is
used to create classes, and methods other than sort

are invoked on objects of those classes.

Delaying the instantiation of methods in template
classes can be used to advantage, as we will see
later. Nevertheless, many common designs are
such that all member methods of a template class
should be valid for all instantiations. It is not
straightforward to enforce the latter part (“for all
instantiations”) but for most practical purposes
checking all methods for a single instantiation is
enough. This can be done by explicit instantiation
of the template class, which forces the instantiation
of all its members. The idiom for explicit instantia-
tion applied to our above example is:

template class ErrorMixin<SomeFoo>;

When “subtype of” does not mean “substitut-
able for”. There are two instances where inherit-
ance may not behave the way one might expect in
C++. First, constructor methods are not inherited.
Ellis and Stroustrup ([13], p.264) present valid rea-
sons for this design choice: the constructor of a
superclass does not suffice for initializing data
members added by a subclass. Often, however, a
mixin class may be used only to enrich or adapt the
method interface of its superclasses without adding
data members. In this case it would be quite rea-
sonable to inherit a constructor, which, unfortu-
nately, is not possible. The practical consequence
of this policy is that the only constructors that are
visible in the result of a mixin composition are the

3. This is under the assumption that the algorithms are still
valid for directed graphs as is the case with the original
code for this example [16].

4. This wording, although used by the father of C++—see
[29], p.330—is not absolutely accurate since there is no
automatic type inference.

6

ones present in the outer-most mixin (bottom-most
class in the resulting inheritance hierarchy). To
make matters worse, constructor initialization lists
(e.g.,

constr() : init1(1,2), init2(3) {})
can only be used to initialize direct parent classes.
In other words, all classes need to know the inter-
face for the constructor of their direct superclass (if
they are to use constructor initialization lists).
Recall, however, that a desirable property for mix-
ins is that they be able to act as components: a
mixin should be implementable in isolation from
other parts of the system in which it is used. Thus a
single mixin class should be usable with several
distinct superclasses and should have as few
dependencies as possible.

A possible workaround for this problem is to use a
standardized construction interface. A way to do
this is by creating a construction class encoding the
union of all possible arguments to constructors in a
hierarchy. Then a mixin “knows” little about its
direct superclass, but has dependencies on the
union of the construction interfaces for all its possi-
ble parent classes. (Of course, another workaround
is to circumvent constructors altogether by having
separate initialization methods. This, however,
requires a disciplined coding style to ensure that
methods are always called after object construc-
tion.) As a side-note, destructors for base classes
are called automatically so they should not be rep-
licated.

The second instance where subtypes are not substi-
tutable in C++ occurs with top-level function tem-
plates. Assume a function template of the form:

template <class Next> void weird_function
(Mixin<Next> arg) { ... }

This function template will be instantiated cor-
rectly when called with an argument of type
Mixin<Base>, but not when called with an argu-
ment of type NewMixin<Mixin<Base>>. Even
though the latter type is a subtype of the former,
subtyping is not involved in the function template
instantiation policy of C++. The problem is solved
only by ensuring that the template gets instantiated
with an argument of type Mixin<Base> (e.g., there
is an explicit call to weird_function with an argu-

ment of this type). Once this is done, the function
generated by the template can be invoked with
actual arguments that are subtypes of the corre-
sponding formal argument types. That is, the fol-
lowing example (using weird_function, above) is
valid code:

Base base;
Mixin<Base> derived;
weird_function(base);

// Error if above line omitted!
weird_function(derived);

But if the third line is omitted, the example
becomes invalid because the call
weird_function(derived) is now illegal—a most
counterintuitive result.

One may question whether the problem arises in a
practical setting. Indeed, we encountered the prob-
lem when attempting to build a set of mixin com-
ponents based on data structure classes from the
Standard Template Library (STL) [28]. The equal-
ity operator for STL data structures (operator==
in C++) is itself a function template of the same
form as weird_function, above. For instance, the
equality operator for linked lists is defined as:

template <class T, class Alloc>
inline bool operator==

(const list<T,Alloc>& x,
const list<T,Alloc>& y)

{ ... }

This means that defining mixins (or other sub-
classes) of STL data structure classes requires
redefining operator== for each new class. Again,
this is not very desirable, given that we want mix-
ins to act as components with low overhead. Mix-
ins should know very little about their superclasses
and functionality defined for the superclass should
be transparently inherited. In practice, several
mixin components are just thin wrappers adapting
their superclass’s interface. Having to redefine
constructors and top-level function templates may
be overly tedious in this case.

Synonyms for compositions. In the past sections
we have used typedefs to introduce synonyms for
complicated mixin compositions—e.g.,

typedef A < B < C > > Synonym;

7

Another reasonable approach would be to intro-
duce an empty subclass:

class Synonym : public A < B < C > > { };

The first form has the advantage of preserving con-
structors of component A in the synonym. The sec-
ond idiom is cleanly integrated into the language
(e.g., can be templatized, compilers create short
link names for the synonym, etc.). Additionally, it
can solve a common problem with C++ template-
based programming: generated names (template
instantiations) can be extremely long, causing
compiler messages to be incomprehensible.

Designating virtual methods. Sometimes C++
policies have pleasant side-effects when used in
conjunction with mixins. An interesting case is that
of a mixin used to create classes where a certain
method can be virtual or not, depending on the
concrete class used to instantiate the mixin. This is
due to the C++ policy of letting a superclass
declare whether a method is virtual, while the sub-
class does not need to specify this explicitly. Con-
sider a regular mixin and two concrete classes
instantiating it (a C++ struct is a class whose
members are public by default):

template <class Super>
struct MixinA : public Super {

void virtual_or_not(FOO foo) { ... }
};

struct Base1 {
virtual void virtual_or_not(FOO foo)
{...}
... // methods using “virtual_or_not”

};

struct Base2 {
void virtual_or_not(FOO foo) {...}

};

The composition MixinA<Base1> designates a
class in which the method virtual_or_not is vir-
tual. Conversely, the same method is not virtual in
the composition MixinA<Base2>. Hence, calls to
virtual_or_not in Base1 will call the method
supplied by the mixin in the former case but not in
the latter.

In the general case, this phenomenon allows for
interesting mixin configurations. Classes at an

intermediate layer may specify methods and let the
inner-most layer decide whether they are virtual or
not.

As we recently found out, this technique was
described first in [12].

Single mixin for multiple uses. The lack of tem-
plate type-checking in C++ can actually be benefi-
cial in some cases. Consider two classes Base1 and
Base2 with very similar interfaces (except for a
few methods):

struct Base1 {
void regular() {...}
...

};
struct Base2 {

void weird() {...}
... // otherwise same interface as Base1

};

Because of the similarities between Base1 and
Base2, it makes sense to use a single mixin to adapt
both. Such a mixin may need to have methods call-
ing either of the methods specific to one of the two
base classes. This is perfectly feasible. A mixin can
be specified so that it calls either regular or
weird:

template <class Super>
class Mixin : public Super {

...
public:

void meth1() { Super::regular(); }
void meth2() { Super::weird(); }

};

This is a correct definition and it will do the right
thing for both composition Mixin<Base1> and
Mixin<Base2>! What is remarkable is that part of
Mixin seems invalid (calls an undefined method),
no matter which composition we decide to per-
form. But, since methods of class templates are
treated as function templates, no error will be sig-
nalled unless the program actually uses the wrong
method (which may be meth1 or meth2 depending
on the composition). That is, an error will be sig-
nalled only if the program is indeed wrong. We
have used this technique to provide uniform, com-
ponentized extensions to data structures supporting
slightly different interfaces (in particular, the red-

8

black tree and hash table of the SGI implementa-
tion of the Standard Template Library [23]).

Propagating type information. An interesting
practical technique (also applicable to languages
other than C++) can be used to propagate type
information from a subclass to a superclass, when
both are created from instantiating mixins. This is a
common problem in object-oriented program-
ming. It was, for instance, identified in the design
of the P++ language [24] (an extension of C++
with constructs for component-based program-
ming) and solved with the addition of the forward

keyword. The same problem is addressed in other
programming languages (e.g., Beta [20]) with the
concept of virtual types.

Consider a mixin layer encapsulating the function-
ality of an allocator. This component needs to have
type information propagated to it from its sub-
classes (literally, the subclasses of the class it will
create when instantiated) so that it knows what
kind of data to allocate. (We also discussed this
example in detail in [26] but we believe that the
solution presented here is the most practical way to
address the problem.) The reason this propagation
is necessary is that subclasses may need to add data
members to a class used by the allocator. One can
solve the problem by adding an extra parameter to
the mixin that will be instantiated with the final
product of the composition itself. In essence, we
are reducing a conceptual cycle in the parameter-
ization to a single self-reference (which is well-
supported in C++). This is shown in the following
code fragment:

template <class EleType, class FINAL>
class ALLOC {
public:

class Node {
EleType element; // stored data type

public:
... // methods using stored data

};

class Container {
protected:

FINAL::Node* node_alloc() {
return new FINAL::Node();

}
... // Other allocation methods

};
};

template <class Super>
class BINTREE : public Super {
public:

class Node : public Super::Node {
Node* parent_link,

left_link, right_link ;
public:

... // Node interface
};

class Container :
public Super::Container {

Node* header;// Container data members
public:

... // Interface methods
};

};

class Comp :
public BINTREE < ALLOC < int, Comp > >

{ /* empty /* };

Note what is happening in this code fragment
(which is abbreviated but preserves the structure of
actual code that we have used). A binary tree data
structure is created by composing a BINTREE mixin
layer with an ALLOC mixin layer. The data structure
stores integer (int) elements. Nevertheless, the
actual type of the element stored is not int but a
type describing the node of a binary tree (i.e., an
integer together with three pointers for the parent,
and the two children of the node). This is the type
of element that the allocator should reserve mem-
ory for.

The problem is solved by passing the final product
of the composition as a parameter to the allocator
mixin. This is done through the self-referential (or
recursive) declaration of class Comp. (Theoreti-
cally-inclined readers will recognize this as a fix-
point construction.) Note that Comp is just a
synonym for the composition and it has to use the
synonym pattern introducing a class (i.e., the
typedef synonym idiom discussed earlier would
not work as it does not support recursion).

It should be noted that the above recursive con-
struction has been often used in the literature. In
the C++ world, the technique was introduced by
Barton and Nackman [2] and popularized by
Coplien [9]. Nevertheless, the technique is not
mixin-specific or even C++-specific. For instance,
it was used by Wadler, Odersky and the first author

9

[33] in Generic Java [7] (an extension of Java with
parametric polymorphism). The origins of the tech-
nique reach back at least to the development of F-
bounded polymorphism (e.g., [8]).

Hygienic templates in the C++ standard. The
C++ standard ([1], section 14.6) imposes several
rules for name resolution of identifiers that occur
inside templates. The extent to which current com-
pilers implement these rules varies, but full con-
formance is the best approach to future
compatibility for user code.

Although the exact rules are complicated, one can
summarize them (at loss of significant detail) as
“templates cannot contain code that refers to ‘non-
local’ variables or methods”. Intuitively, “nonlo-
cal” denotes variables or methods that do not
depend on a template parameter and are not in
scope at the global point closest to the template
definition. This rule prevents template instantia-
tions from capturing arbitrary names from their
instantiation context, which could lead to behavior

not predicted by the template author.5

A specific rule applies to mixin-based program-
ming. To quote the C++ standard (14.6.2), “if a
base class is a dependent type, a member of that
class cannot hide a name declared within a tem-
plate, or a name from the templates enclosing
scopes”. Consider the example of a mixin calling a
method defined in its parameter (i.e., the superclass
of the class it will create when instantiated):

struct Base {
void foo() { ... }

};

void foo() { }

template <class Super>
struct Mixin : public Super {

void which_one() { foo(); } // ::foo
};

Mixin < Base > test;

That is, the call to foo from method which_one

will refer to the global foo, not the foo method of
the Base superclass.

The main implication of these name resolution
rules is on the way template-based programs
should be developed. In particular, imagine chang-
ing a correct class definition into a mixin definition
(by turning the superclass into a template parame-
ter). Even if the mixin is instantiated with its super-
class in the original code, the new program is not
guaranteed to work identically to the original,
because symbols may now be resolved differently.
This may surprise programmers who work by cre-
ating concrete classes and turning them into tem-
plates when the need for abstraction arises. To
avoid the potential for insidious bugs, it is a good
practice to explicitly qualify references to super-
class methods (e.g., Super::foo instead of just
foo).

Compiler support. Most C++ compilers now have
good support for parameterized inheritance (the
technique we used for mixins) and nested classes.
We have encountered few problems and mostly
with older compilers when programming with C++
mixins. In fact, most of the compiler dependencies
are not particular to mixin-based programming but
concern all template-based C++ programs. These
include limitations on the debugging support, error
checking, etc. We will not discuss such issues as
they are time-dependent and have been presented
before (e.g., [10]). Note, however, that mixin-based
programming is not more complex than regular
template instantiation and typically does not exer-
cise any of the “advanced” features of C++ tem-
plates (type inference, higher-order templates,
etc.). Overall, the compiler support issues involved
in mixin-based programming are about the same as
those arising in implementing the C++ Standard
Template Library [28].

4 Related Work

Various pieces of related work have been presented
in the previous sections. Here we will discuss
approaches that are distinct from ours but seem to
follow parallel courses. We cannot exhaustively
reference all C++ template-based programming5. This is a well-known problem in programming language

research, first identified by work in hygienic macros [19].

10

techniques but we will selectively mention two
approaches.

The most prominent example is the various imple-
mentations of the STL. Such implementations
often exercise the limits of template support and
reveal interactions of C++ policies with template-
based programming. Nevertheless, parameterized
inheritance is not a part of STL implementations.
Hence, the observations of this paper are mostly
distinct from the conclusions drawn from STL
implementation efforts.

Czarnecki and Eisenecker’s generative program-
ming techniques [10][11] were used in the Genera-
tive Matrix Computation Library (GMCL). Their
approach is a representative of techniques using
C++ templates as a programming language (that is,
to perform arbitrary computation at template
instantiation time). What sets their method apart
from other template meta-programming techniques
is that it has similar goals to mixin-based program-
ming. In particular, Czarnecki and Eisenecker try
to develop components which can be composed in
multiple ways to yield a variety of implementa-
tions. Several of the remarks in this paper are
applicable to their method, even though their use of
mixins is different (for instance, they do not use
mixin layers).

5 Conclusions

We presented some pragmatic issues pertaining to
mixin-based programming in C++. We believe that
mixin-based techniques are valuable and will
become much more widespread in the future.
Mixin-based programming promises to provide
reusable software components that result into flexi-
ble and efficient implementations.

Previous papers have argued for the value of
mixin-based software components and their advan-
tages compared to application frameworks. In this
paper we tried to make explicit the engineering
considerations specific to mixin-based program-
ming in C++. Our purpose is to inform program-
mers of the issues involved in order to help move
mixin-based programming into the mainstream.

References

[1] ANSI / ISO Standard: Programming
Languages—C++, ISO/IEC 14882, 1998.

[2] J. Barton and L.R. Nackman, Scientific and
Engineering C++: An Introduction with
Advanced Techniques and Applications,
Addison-Wesley, 1994.

[3] D. Batory, V. Singhal, M. Sirkin, and J.
Thomas, “Scalable Software Libraries”, ACM
SIGSOFT 1993.

[4] D. Batory, R. Cardone, and Y. Smaragdakis,
“Object-Oriented Frameworks and Product-
Lines”, 1st Software Product-Line
Conference, Denver, Colorado, August 1999.

[5] K. Beck and W. Cunningham, “A Laboratory
for Teaching Object-Oriented Thinking”,
OOPSLA 1989, 1-6.

[6] G. Bracha and W. Cook, “Mixin-Based
Inheritance”, ECOOP/OOPSLA 90, 303-311.

[7] G. Bracha, M. Odersky, D. Stoutamire and P.
Wadler, “Making the future safe for the past:
Adding Genericity to the Java Programming
Language”, OOPSLA 1998.

[8] P. Canning, W. Cook, W. Hill, W. Olthoff, and
J. C. Mitchell, “F-bounded Polymorphism for
Object-Oriented Programming”, in Proc.
Conf. on Functional Programming
Languages and Computer Architecture, 1989,
273-280.

[9] J. Coplien, “Curiously Recurring Template
Patterns”, C++ Report, 7(2):24-27, Feb.
1995.

[10] K. Czarnecki and U. Eisenecker. Generative
Programming: Methods, Tools, and
Applications. Addison-Wesley, 2000.

[11] K. Czarnecki and U. Eisenecker,
“Synthesizing Objects”, ECOOP 1999, 18-
42.

[12] U. Eisenecker, “Generative Programming in
C++”, in Proc. Joint Modular Languages
Conference (JMLC’97), LNCS 1204,
Springer, 1997, 351-365.

[13] M.A. Ellis and B. Stroustrup, The Annotated
C++ Reference Manual, Addison-Wesley,
1990.

11

[14] E. Gamma, R. Helm, R. Johnson, and J.
Vlissides, Design Patterns: Elements of
Reusable Object-Oriented Software.
Addison-Wesley, 1994.

[15] R. Helm, I. Holland, and D. Gangopadhyay,
“Contracts: Specifying Behavioral
Compositions in Object-Oriented Systems”.
OOPSLA 1990, 169-180.

[16] I. Holland, “Specifying Reusable
Components Using Contracts”, ECOOP
1992, 287-308.

[17] R. Johnson and B. Foote, “Designing
Reusable Classes”, J. of Object-Oriented
Programming, 1(2): June/July 1988, 22-35.

[18] G. Kiczales, J. des Rivieres, and D. G.
Bobrow, The Art of the Metaobject Protocol.
MIT Press, 1991.

[19] E. Kohlbecker, D. P. Friedman, M. Felleisen,
and B. Duba. “Hygienic Macro Expansion”.
In Proc. of the SIGPLAN ‘86 ACM Conf. on
Lisp and Functional Programming, 151-161.

[20] O.L. Madsen, B. Møller-Pedersen, and K.
Nygaard, Object-Oriented Programming in
the BETA Programming Language. Addison-
Wesley, 1993.

[21] D.A. Moon, “Object-Oriented Programming
with Flavors”, OOPSLA 1986.

[22] T. Reenskaug, E. Anderson, A. Berre, A.
Hurlen, A. Landmark, O. Lehne, E.
Nordhagen, E. Ness-Ulseth, G. Oftedal, A.
Skaar, and P. Stenslet, “OORASS: Seamless
Support for the Creation and Maintenance of
Object-Oriented Systems”, J. of Object-
Oriented Programming, 5(6): October 1992,
27-41.

[23] Silicon Graphics Computer Systems Inc., STL
Programmer’s Guide. See: http://

www.sgi.com/Technology/STL/ .

[24] V. Singhal, A Programming Language for
Writing Domain-Specific Software System
Generators, Ph.D. Dissertation, Dep. of
Computer Sciences, University of Texas at
Austin, August 1996.

[25] Y. Smaragdakis and D. Batory,
“Implementing Reusable Object-Oriented
Components”. In the 5th Int. Conf. on
Software Reuse (ICSR 98).

[26] Y. Smaragdakis and D. Batory,
“Implementing Layered Designs with Mixin
Layers”. In ECOOP 98.

[27] Y. Smaragdakis, “Implementing Large-Scale
Object-Oriented Components”, Ph.D.
Dissertation, Department of Computer
Sciences, University of Texas at Austin,
December 1999.

[28] A. Stepanov and M. Lee, “The Standard
Template Library”. Incorporated in ANSI/
ISO Committee C++ Standard.

[29] B. Stroustrup, The C++ Programming
Language, 3rd Edition, Addison-Wesley,
1997.

[30] M. VanHilst and D. Notkin, “Using C++
Templates to Implement Role-Based
Designs”. JSSST International Symposium on
Object Technologies for Advanced Software,
Springer-Verlag, 1996, 22-37.

[31] M. VanHilst and D. Notkin, “Using Role
Components to Implement Collaboration-
Based Designs”. OOPSLA 1996.

[32] M. VanHilst and D. Notkin, “Decoupling
Change From Design”, ACM SIGSOFT 1996.

[33] P. Wadler, M. Odersky and Y. Smaragdakis,
“Do Parametric Types Beat Virtual Types?”,
unpublished manuscript, posted in October
1998 in the Java Genericity mailing list
(java-genericity@cs.rice.edu).

[34] K. Weihe, “A Software Engineering
Perspective on Algorithmics”, available at
http://www.informatik.uni-konstanz.de/

Preprints/ .

