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Abstract

Program generation is the process of generating code in a high-level language (e.g., C, C++, Java) to
implement an abstract specification of a program. Generated programs are created by synthesizing and
composing code fragments. Binding identifiers in generated code with their correct variable declarations
has been the focus of a lot of research work in the context of macro-expansion (e.g., hygienic macro
expansion and syntactic closures mechanisms). The common solutions include automatically maintaining
identifier environments, which determine the legal bindings for an identifier.

In this paper we present generation scoping: an adaptation of hygienic macro-expansion techniques to
general-purpose program generation. The conceptual novelty of generation scoping lies in making identi-
fier environments first-class objects and organizing them explicitly into directed graphs. This approach
yields significant benefits: We are able to express scoping relationships independently of the structure of
the generated program. This way we get a stronger tool for detecting errors in the specification of gener-
ated code. Additionally, we are able to simplify the specification by employing powerful implicit qualifica-
tion. Thus, generation scoping becomes a useful layer of infrastructure for implementing software
generators: it both solves binding problems and makes code specification more convenient.

Keywords: generation scoping, software generators, program transformations, hygienic macro expansion,
syntactic closures

1  Introduction

Program generation is the process of generating code in a high-level language (e.g., C, C++, Java) to
implement an abstract specification of a program. Compilers for many modern programming languages
rely on program generation. Prominent examples include software generators (compilers for domain-spe-
cific languages — e.g., see [4], [6], [13]), parallelizing compilers (where the emphasis is on transforma-
tions of high-level abstractions to parallel programs — e.g., see [12]) and translators from one high-level
language to another. Macro expansion itself can be viewed as an example of program generation where the
target program coincides with the generator.

We believe that program generation, and software generators in particular, will play a key role in future
software development. There is already a heavy demand for language facilities to automate rote tasks (indi-
cated, for instance, by the popularity of the Microsoft Foundation Class library). Such generators can con-
tribute to program quality, simplicity, and performance by enabling domain-specific programming at a
high level of abstraction.

Writing a generator, however, is not easy. Our experience in building multiple generators (see [1], [4], [16])
suggests that it usually requires an investment of 3-5 man years distributed over a wide time frame, and
that only 30% of the effort is actually spent on specifying the way code is to be generated; the vast majority
of time is focused on infrastructure development (e.g., tools for code fragment specification, parameteriza-
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tion, and synthesis). This overhead severely limits the possibilities of serious experimentation with genera-
tors and renders the generation approach to software development virtually impractical under realistic time
and funding constraints. The purpose of our work is to provide better tools for writing generators.

Generation scoping is a model aimed at facilitating program generation. Although conceived indepen-
dently, many of the ideas it incorporates are similar to syntactic closures [5] and hygienic macro expansion
[11] in extensible programming languages. This is not surprising since the same fundamental problem is
being addressed: given a fragment of generated code, how can we determine the “meaning” of its identifi-
ers? Normally, the meaning of an identifier (also called its variable binding) is determined by its position
in the program and the language scope rules. In generated code, however, the position of a generated code
segment in the target program is not known (typically) until the entire program has been assembled. On the
other hand, the generator programmer usually has an intended meaning for generated identifiers and we
want to help him/her express it. A central concept in generation scoping is that of a generation environment
— a modified version of syntactic environments in the syntactic closures work. Generation environments
are first-class objects — they can freely be assigned to variables and passed as arguments. The operations
performed on them, however, are limited. The most important one is that of organizing them hierarchically,
in much the same way as lexical scopes are hierarchically related by nesting. With this addition, generation
environments do more than solve binding problems. They can be used to express arbitrary binding relation-
ships in generated code, help view related variables as a unit, and restrict the variables that a generated
code fragment can access.

In this paper, we explain the binding problem faced in program generation and introduce the generation
scoping mechanism. We show how its primitives can be used to solve the binding problem and to render
program generation more convenient. Furthermore, we discuss an application of the model in implement-
ing DiSTiL: a software generator for data structures. Finally, we examine which ideas in macro expansion
do and do not generalize to program generation, thus showing the differences between our mechanism and
existing macro facilities.

2  Background

2.1  Conventions and Terminology

Generators make a clear distinction between the code that is to be executed (i.e., the generator code) and
the code that is to be produced (i.e., the generated code or target program). Their namespaces (i.e., con-
structs that assign meaning to identifiers) are distinct. For instance, a variable x in generator code is quite
different from a variable x in generated code.

We use two different operators to specify code templates: quote (‘) and unquote ($). quote designates
the beginning of a code template and unquote escapes from it to evaluate a code generating expression.
For instance, the expression:

‘(sqrt($x) * ($x + 9))

has the code fragment “value”:

sqrt(5) * (5 + 9)

when x has the value ‘5. Quote expressions hide the underlying representation of source code, which
might be parameterized strings (e.g., like in the C preprocessor), generalized lists, parse trees, or abstract
syntax trees.
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The quote and unquote operators are similar to the LISP “backquote” and “comma” macro pair or the
Scheme quasiquote and unquote primitives [9]. However, an important difference is that quote and
unquote are used to represent expressions in the language of the generated code (which might be very
different from the language of the generator code). So it is perfectly reasonable to write:

code = ‘(+ x 5); (1)

if we have a quote operator in an extension of the C language that generates LISP code.

While this distinction seems elementary, in fact it is quite important. Generation scoping is related to
hygienic macro expansion and syntactic closures, which are macro expansion techniques used in extensi-
ble programming languages. A hallmark of extensible languages is the blurring of the distinction between
generator code, generated code, and their namespaces. This blurring is called reflection. Generators are
typically not reflective. ‘5 is not the same as 5 and does not evaluate to 5. That is, ‘5 is the code represen-
tation of number 5 in the language of the target program (e.g., a LISP list in (1)) while 5 is a constant in the
language of the generator program (e.g., a C integer). Thus, the separation of generator and target pro-
gram namespaces and languages is the primary distinction between program generation and macro expan-
sion (which can be viewed as a special reflective case).

In this paper, we use the convention of presenting quoted expressions (code templates) in boldface to make
the distinction between generator code and generated code apparent. The language used in most of our
examples (both for the generator and the target program) syntactically resembles C/C++ but we will try to
avoid C/C++ specific constructs. Lastly, we use identifier to refer to any name representing a program vari-
able. (Note: we will use the term variable to represent both program variables and method names). The
association of an identifier with a variable is called an identifier binding. In the example below, identifier k
has two different bindings depending on the scope of the corresponding variable declarations:

{ int k; …
void k() {…}; …

}

The ellipsis (…) symbol denotes an unspecified code segment.

2.2  Problems in Program Generation

Generators manipulate code as data (e.g., abstract syntax trees). Code fragments are manufactured and
composed to form a complete program. Fragments are created in isolation from each other, thereby making
it hard to determine the binding of identifiers to variable instances. Consider the following function:

CODE fun(CODE x, CODE y) {
return ‘{ int temp = $y;

printf(“%d”, temp != 0 ? 0 : $x/temp); }  } (2)

fun produces a code fragment from two input fragments (x and y). The idea of fun’s code fragment is to
evaluate the expression in y1 once, and refer to this result (stored in temp) multiple times2. The name
temp, however, could conflict with a similarly named user variable. For instance, when fun is called by
outer:

1.  When it is clear that we refer to variables in the target program, we say “the value of x” instead of “the value of the
expression in x at target program run-time”.
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CODE outer() {
return ‘{ int temp = 4;

$fun( ‘6*temp, ‘temp ); }  } (3)

The generated code fragment is:

{ int temp = 4;
{ int temp = temp;

printf(“%d”, temp != 0 ? 0 : 6*temp / temp ); } } (4)

The result is certainly not what the author of (2) or (3) expected and, furthermore, is clearly wrong (since it
uses an undefined value to initialize the inner temp variable). The problem is that two different variables
have the same identifier, and thus cannot be correctly distinguished. Correctly generated code would make
this distinction:

{ int temp_0 = 4;
{ int temp_1 = temp_0;

printf(“%d”, temp_1 != 0 ? 0 : 6*temp_0 / temp_1 ); } } (5)

Hygienic macro expansion (HME) was invented to address this problem [11], where fun is viewed as a
macro. The idea is that each code generation action (macro application) introduces its own namespace for
its generated declarations. One possible implementation of HME would “mangle” variable names and pro-
duce the code of (5). All identifiers referring to variables introduced during the n-th generation action (that
is, the n-th time that quoted code has been evaluated during generator execution) would have “mangle”
number n.3

The above example is an instance of the binding problem: how to bind4 identifiers to variables in generated
code. The binding problem is central to program generation. It can cause errors that are hard to trace and
that occur only in specific contexts. Function fun of (2) may only exist in binary form in a library. When a
user writes outer (as in (3)), he/she will discover (belatedly) the unwanted bindings. This is a problem
that we want to eliminate.

Binding problems can occur in many diverse circumstances. The example previously presented has to do
with parameterizing code fragments but problems may occur even without parameterization. A common
case is when identifiers in generated code are bound to the wrong variables just because they happenned to
be generated in the variables’ scope. One could imagine the fragment of (2) creating code in a program site
where printf means something different than the standard C library function. In the context of macro
expansion, syntactic closures were invented to solve this problem [5]. A syntactic closure is a generated
code fragment that is “closed” in a syntactic environment — a construct that specifies identifier bindings.

The above discussion seems to indicate that all program generation should be performed using lexically
scoped units, in analogy to call-by-name procedures. All variables generated in a unit should only be visi-

2.  The expression in x may not be evaluated at all (if the expression in y evaluates to 0). Hence, the semantics of this
code segment are not preserved if we generate it in a function and call it (“by value”) with the expressions in x
and y as arguments (since x will then be evaluated at least once). In a language like C that does not support call-
by-name argument passing, the code will have to be generated in-line.

3.  Actually, the only requirement is that we assign a unique “mangle” number to each generation action.
4.  Note that “bind” here does not have the usual meaning of associating names with storage locations (naming) but

the static meaning of associating names with variables (resolution). Since our discussion does not examine the
run-time of generated code at all, no confusion can result.



5

ble inside it. This is the hygiene condition for program generation and, in practice, it is often too strict.
Sometimes it is required that a newly generated variable is visible to code generated by other entities (e.g.,
macros). This constitutes breaking the hygiene of program generation. There is a variety of constructs that
cannot be implemented as a single hygienic macro (i.e., without breaking the hygiene). For this reason,
mechanisms for breaking the hygiene are available in practically every hygienic macro system (see, for
instance, [7], which also presents cases where the macro facility can automatically detect that the hygiene
needs to be broken).

A common case where the hygiene needs to be broken is when generating an iteration construct. Such a
construct can introduce an index variable for the iteration. The index variable has to be visible to the
parameters of the entity generating the iterator (e.g., the iteration body) but any other variables introduced
must remain hidden. An example of implementing an iterator “macro” will be presented in Section 3.2.

Another case where non-hygienic generation is useful is that of coordinated transformations. Such trans-
formations need to communicate information among them. To do so they must have access to common
storage locations — i.e., variables. The scope of such variables extends outside the fragment in which they
were generated. For example, consider a set of macros that add a record (structure) type to a programming
language:

{ DefineRecord (FOO, { float field1; float field2; } );
DefineInstance (FOO, foo1);
SetField (foo1, field1, 6.0);
printf(“%f\n”, AccessField(foo1, field1));  } (6)

Code segment (6) uses three macros (DefineRecord, DefineInstance, SetField, AccessField)
that cooperate. DefineInstance introduces variables that both SetField and AccessField reference.
Therefore, it cannot be implemented as an isolated hygienic macro. This case is quite common: Many pro-
gram generation activities are global program transformations — coordinated rewrites of entire programs.
Any single rewrite action cannot be considered by itself but only as a part of a larger effect.

3  Generation Scoping

Generation scoping is a convenient facility for program generation. It emphasizes isolating unrelated gen-
erated code fragments but also makes it easy to specify complex dependencies among related ones. It helps
solve the problems outlined in Section 2.2 and keeps code generating expressions as simple as possible.

3.1  Generation Environments

A generation environment is a set of identifier-variable bindings. We say that a quoted expression is evalu-
ated within a generation environment when its identifiers are interpreted using the bindings of that environ-
ment. Such evaluations are accomplished using the environment construct, a linguistic extension to the
programming language of the generator. Its syntax is:

environment (<generation-environment>) <statement>;

where statement contains one or more quoted expressions. Consider (7): a generation environment E is
created and then used to interpret two quoted expressions, both of which generate a declaration of an inte-
ger variable:
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E = new Environment;
…
environment(E) {

x1 = ‘(int j);
x2 = ‘(int k);  } (7)

Generating these declarations causes the variable names (j and k) to be added to E’s set of bindings.
Whenever a quoted expression is subsequently evaluated within environment E and references identifiers j
or k, these identifiers will be bound to variables j and k defined above5.

Evaluating quoted expressions within an environment is equivalent to a consistent identifier renaming pol-
icy. Assume a unique “mangle” number is assigned to each generation environment. If that number is 0 for
environment E then the variables appearing as j and k in a quoted expression will be identified by j_0 and
k_0 in the target program. Thus, evaluating the expression:

environment(E)
y = ‘(k + j); (8)

assigns y the value “k_0 + j_0”.

Because generation environments are (generator) run-time objects, we can define functions like:

CODE genfun(Environment A) {
environment(A)

return ‘{ int j, k;}  }

Calling genfun with different environment arguments will produce distinct declaration instances:

E = new Environment; // has mangle number 0
F = new Environment; // has mangle number 1
genfun(E); // generates “int j_0, k_0;”
genfun(F); // generates “int j_1, k_1;” (9)

In fact, during program generation, a single template is often used many times to produce different code
fragments. We will see such examples in Section 4.1.

3.2  Problems in Program Generation Revisited

Generation environments easily solve the problems of Section 2.2. Suppose E and F are generation envi-
ronments that are used specifically to rewrite examples (2) and (3):

CODE fun(CODE x, CODE y) {
Environment E = new Environment;
environment(E)

return ‘{ int temp = $y;
printf(“%d”, temp != 0 ? 0 : $x/temp); }  }

5.  Actually, bindings also depend on lexical visibility in the target program. So if we define another variable k (e.g.,
‘(float k)) in environment E, references to identifier k will be bound according to the scoping rules of the
target language (e.g., to the variable defined in the innermost scope).
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CODE outer( ) {
Environment F = new Environment;
environment(F)

return ‘{ int temp = 4;
$fun( ‘6*temp, ‘temp ); } } (10)

Since E and F are different environments, local variables in the fragment generated by fun are hidden from
the code generated by outer. If the mangle number for the environment in E is 0 and for that in F is 1, then
code segment (5) is generated when outer is called. Similarly, we can protect against inadvertent bindings
of generated identifiers. The reference to printf in the code generated by (10) does not depend on the
meaning of printf in the lexical environment where this fragment will eventually be placed.

Furthermore, recall the case of iterator macros discussed in Section 2.2. The iteration variable needs to be
visible to the macro body but any other variables should be hidden. This is easily handled using generation
scoping. To see a concrete example consider a macro ForAllInFile iterating over the contents of a file.
This macro will have to introduce local variables (for instance, the file pointer) in its expansion. These
should remain hidden. The macro will also have to introduce a variable representing the current byte read
from the file. This variable should remain free for reference inside the macro body. Since there is no (easy)
automatic way to tell which variables should be in a private scope and which should be visible, such mac-
ros are often written by designating visible (or hidden) variables explicitly. With generation scoping this
common case comes at no extra effort. Of course, generation scoping doesn’t deal with macros but the
analogous unit would be a small, self-contained program generation entity. Thus we could have the equiv-
alent of ForAllInFile as a program generating function:

CODE CreateForAllInFile (CODE byte, CODE filename, CODE body)
{

environment(new Environment)
return ‘{

FILE *fp;
if ((fp = fopen($filename, “r”)) == NULL)

FatalError(FILE_OPEN_ERROR);
while ( feof(fp) == FALSE)

{
int $byte = fgetc(fp);
$body;

}
}

} (11)

Notice how the desired behavior is straightforwardly obtained. The declaration of fp is local to the envi-
ronment used by CreateForAllInFile. In contrast, the declaration of variable byte has the variable
name escaped. Thus the supplied variable name has already been generated in some environment (the gen-
eration environment used by the caller of CreateForAllInFile). This environment is guaranteed to be
different from the environment of CreateForAllInFile (since CreateForAllInFile creates a new
one). This way the iteration variable (byte) can be visible to the code in body (assuming it has been gen-
erated in the same environment) but the new variable (fp) introduced by CreateForAllInFile is pri-
vate. A possible call to CreateForAllInFile could have the form:

environment(E)
CreateForAllInFile( ‘buffer, ‘”tempfile.txt”, ‘putchar(buffer) );

This will generate code to print all characters in a text file. Note that the property of generation scoping
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that guarantees that the above will work has to do with the representation of generated code. Code tem-
plates (i.e., the ‘ operator) don’t evaluate to simple text but to identifiers closed in an environment (e.g.,
pairs of environment identifiers and textual names). This way, once a code fragment has been generated it
can be freely passed around and used verbatim without binding problems.

We can also use generation environments to solve the problem of (6) in Section 2.2. It is easy to relate gen-
erated code fragments that reference each other’s variables. Operator DefineInstance of (6) can gener-
ate variables for the record fields in a generation environment G. If SetField and AccessField generate
their code in the same environment G, they will be able to access the record field variables.

The above examples show that generation scoping takes the most straightforward (and low-level) route to
specifying scoping of generated code. The entities that determine identifier bindings (generation environ-
ments) become first-class and can be directly manipulated by the generator programmer. A reasonable
question is whether the same effect could be achieved by just keeping track of where a code fragment will
be placed and taking advantage of the scoping constructs in the target language. Take, for instance, exam-
ple (6) in Section 2.2. We could think of operator DefineInstance generating variables encapsulated
together with accessor functions for them (for instance, using an object definition in the target language).
Then SetField and AccessField could just expand to method calls for the right object. The object
name would serve to distinguish between the results of multiple invocations of DefineInstance. Such
an approach is not always possible, however. Consider the code in (11): There is no easy way in conven-
tional programming languages to express the fact that variable fp should be hidden while the current byte
read should be visible.

In fact, all work on hygienic program generation is exactly about overcoming such shortcomings of pro-
gramming languages. Programming languages have traditionally associated allocation with scoping. Enti-
ties that are allocated together (for instance, automatic variables of a procedure, global variables, etc.)
usually have the same scope. For instance, automatic variables of a C++ function have the same scope (the
function body). Similarly, all data members of an object are visible in object method code. In other words,
an object designates both a unit of allocation and a scope. This policy can occasionally lead into problems
and many well-known programming language mechanisms were invented to address them. C++
namespaces were introduced to make explicit scoping possible for global variables. Call-by-name proce-
dures are a way to introduce variables that have different scoping but retain the allocation properties of
their invocation site. All the examples presented in this section represent cases where scoping and alloca-
tion units do not coincide. In fact, generation scoping is all about dissociating scoping from the position
where a generated fragment will appear in the target program.

Making scoping independent from allocation is not always a good practice in programming language
design. When programs are generated automatically, however, it makes perfect sense. This observation is
exploited in the generation scoping work and should become clear in Section 3.5. Before that, we need to
introduce some extra capabilities of generation scoping.

3.3  Hierarchical Organizations of Environments

Generation environments can be organized hierarchically. This is accomplished by using the SetParent
operator with two generation environment arguments (a child and a parent). All parent bindings then
become visible to the child. Like traditional scoping mechanisms, variable bindings of the child (inner
environment) eclipse bindings of the parent (outer environment). Consider the following:
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environment(OUTER) // OUTER has mangle number 3
x1 = ‘(int j, k);

environment(INNER) // INNER has mangle number 4
x2 = ‘(float j);

SetParent (INNER, OUTER);
environment(INNER)

x3 = ‘(j + k); (12)

The application of SetParent will make all bindings of OUTER be available to INNER. The value of x1
after the execution of code segment (12) will appear in the target program as “int j_3, k_3;”. Simi-
larly, the value of x2 will appear as “float j_4;”, and the value of x3 will be generated as
“j_4 + k_3”. In other words, the binding for identifier k in OUTER will be visible but the binding for j in
INNER will take precedence over that in OUTER.6

With SetParent, generation environments can express complicated interdependencies between generated
code fragments. This is a powerful feature with many interesting applications. For instance, related vari-
ables cannot always exist together in one environment. Consider two variables foo and bar that have a
many-to-one relationship: For each generated instance of bar there are many foos that correspond to it.
This precludes entering both foo and bar in a single generation environment. The variables, however, are
related and code that refers to foo should be able to straightforwardly refer to the corresponding bar. This
can easily be accomplished by making the environment of bar a parent for all the environments of the dif-
ferent instances of foo. The resulting code is greatly simplified: The choice of a foo immediately implies
the choice of its corresponding bar. This will be further discussed in Section 3.5 and Section 4.1.

With SetParent we can emulate lexical scopes in the target program. This is most interesting when the
target language has little or no support for lexical scoping. This is the case when, for instance, the gener-
ated code is C/C++ macros (which are not lexically scoped), assembly language programs, or abstract syn-
tax trees. Generation environments can then represent “scopes” for generated identifiers.

3.4  The Alias Operator

Generation environments are mainly used to map identifiers to variables. With a simple extension, identifi-
ers can be aliases for arbitrary code fragments. This is the purpose of operator alias which, in effect,
turns identifiers into implicit parameters of code templates. Consider:

environment (D)
alias ( x, ‘xArr[ipos] );

This makes identifier x act as an implicit parameter in code templates expanded in environment D. When-
ever x is encountered in a template expansion, it is replaced by the expression xArr[ipos]. Hence, when
the above alias is in effect, statement:

6. SetParent can actually be used to organize generation environments in arbitrary directed acyclic graphs
(DAGs). The search for bindings of identifiers in a quoted code fragment begins at the current generation environ-
ment and recursively visits all its parents looking for variables with the same name. In case there is no unique
match, our policy can be described as follows: we say that a binding b1 hides another binding b2 iff all parent
chains from the current environment to the environment where b2 was introduced contain the environment where
b1 was introduced. In the case of conflicting bindings, if there exists one that hides all others, it is applied. Other-
wise the result is undefined. So care must be taken by generator programmers to ensure the correctness of envi-
ronment DAGs.
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environment (D)
      y1 = ‘(x + y); (13)

is equivalent to the statement:

environment (D)
      y1 = ‘(xArr[ipos] + y);

Section 4.2 contains more examples of the use of alias.

3.5  Grouping Variables Together

Using generation scoping, we can express scoping relationships in generated code fragments regardless of
the fragments’ locations in the target program. In this section we will examine the benefits of this
approach. The obvious one is the standard advantage of scoping: it limits the variables that a program frag-
ment can access so that it becomes easier to understand what the fragment does. Additionally, references to
variables oustide the allowed scope (for instance, due to misspelling) are reported as errors.

Having a well-defined scope also allows us to employ powerful implicit qualification over all “visible”
variables when generating code. Implicit qualification mechanisms let the user select a context and access
all its private information without needing to explicitly qualify it. Examples are the Pascal with statement
for record contexts and the C++ using statement for namespace contexts. Once we select a Pascal record
through the with statement we can access all its fields as if they were visible variables without having to
explicitly qualify them with the record name.

Let’s have a look at an example of implicit qualification. The example discussed comes from C++
namespaces but similar comments apply to most other such mechanisms. Consider the following fragment
of C++ code:

namespace RGB_COLOR {
int red, green, blue;

}

namespace PHYS_POINT {
using namespace RGB_COLOR;
int x, y;
BOOL marked;

}

namespace LOG_POINT {
using namespace RGB_COLOR;
float x, y, z;
BOOL marked;

}
...
void Filter()
{

using namespace PHYS_POINT;
draw( x, y, red*C1 + green*C2 + blue*C3 / C4 ); //C1...C4 constants

} (14)

The interesting part of this example is that the PHYS_POINT and LOG_POINT namespaces both have access



11

to the declarations of namespace RGB_COLOR. Thus, when a filter function accesses the declarations of
namespace PHYS_POINT, it immediately gets access to namespace RGB_COLOR. This way it can use infor-
mation pertaining to both the point coordinates (x, y) and the color of the region the point belongs to. This
kind of implicit qualification is quite powerful: by specifying a single “context” (namespace in this case)
we can automatically access declarations of a different (“parent”) context as well.

Note that the three namespaces of example (14) cannot be collapsed into one, for then we would have
name conflicts between variables of PHYS_POINT and LOG_POINT (e.g., marked). We could access the
necessary variables using explicit qualification, which in this example would yield the code fragment:

...
draw( PHYS_POINT::x, PHYS_POINT::y,

RGB_COLOR::red*C1 + RGB_COLOR::green*C2 + RGB_COLOR::blue*C3 / C4);

The advantage of implicit qualification lies in the simplicity of the resulting code (written in its most gen-
eral form without worrying about binding problems). The disadvantage is that we are weakening the
encapsulation provided by the namespaces mechanism (e.g., it is not easy to see what an identifier refers
to).

Now imagine that the code fragment in (14) was generated automatically using a software generator that
employs generation scoping. We could encode essentially the same relationships between generated decla-
rations by using generation environments instead of namespaces. Each generation environment would cor-
respond to one of the namespaces of program (14). We could make all the declarations of an environment
visible to another by linking them together through the SetParent primitive (corresponding to the using
statement inside namespaces PHYS_POINT and LOG_POINT). References to declarations in an environ-
ment are implicitly qualified when we generate code in this environment (i.e., the code template is in the
scope of a generation scoping environment primitive).

But generation scoping can do much more than what shown in (14). Its “namespaces” (generation environ-
ments) can represent any collection of declarations. Variable scoping is completely dissociated from the
position of a variable in the program — a single scope (generation environment) may contain global vari-
ables, automatic variables, fields of several classes, etc. Being able to implicitly qualify over all of them
simplifies the specification of generated code inside the generator.

Since this is hard to show using the generated code specification itself, we will present the analogous con-
cept as an extension of C++ namespaces. In other words, we will try to show what generation environ-
ments can do by walking on more familiar ground and presenting an extension of C++ namespaces that
could do the same. Our example should demonstrate clearly the kinds of scoping relationships that can be
expressed using generation scoping as well as how we can take advantage of them.

Namespaces in C++ can only include global declarations. Let’s extend the semantics of namespaces to
include any kind of declarations (e.g., of class/structure fields, automatic variables, etc.). These extended
namespaces are otherwise similar to the existing C++ namespaces. It is easy to simulate the effect of
extended namespaces in an automatically generated program using generation scoping. Each namespace
can be mapped straightforwardly to a generation environment and “using namespace” clauses corre-
spond to SetParent statements. In the following example, one can think of extended namespaces and
generation environments as equivalent notions (although generation environments are applicable only
when the program in question is created automatically).

Now, consider a program fragment that manages complex data structures — inspired by the DiSTiL soft-
ware generator, presented in Section 4. All data structures can be modeled as three distinct entities: a con-
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tainer, elements, and iterators. The example presented here uses a simpler model, omitting iterators
(pointers to elements can be used instead). One such data structure consists simultaneously of a doubly
linked list and a singly linked list (and conceptually could be much more complicated). The doubly linked
list can be ordered by a certain field of the records stored in the structure (e.g., “salary”), while the singly
linked list could be organized by a different field (e.g., “name”). Using extended namespaces this program
fragment can be written as:

// We need a namespace here to avoid conflicts with other data structures
namespace DS1 {

struct ELEMENT {
int salary;
char *name;
namespace DLIST1 {

ELEMENT *next;
ELEMENT *prev;

} // These two fields have to do with the doubly-linked list
namespace SLIST1 {

ELEMENT *next;
} // This field has to do with the singly-linked list

};

struct CONTAINER {
namespace DLIST1 {

ELEMENT *first;
ELEMENT *last;

} // This is the same namespace as the one used for the
// doubly-linked list fields of ELEMENT!

namespace SLIST1 {
ELEMENT *first;

} // This is the same namespace as the one used for the
// singly-linked list field of ELEMENT!

};
}

namespace DLIST1 {
using namespace DS1;

// Declarations of DS1 (e.g., CONTAINER) are visible from DLIST1
}

namespace SLIST1 {
using namespace DS1;

// Declarations of DS1 (e.g., CONTAINER) are visible from SLIST1
}

using namespace DLIST1; // Our implicit qualifier
void delete(CONTAINER cont, ELEMENT *el)
{

if (el->next != NULL)
el->next->prev = el->prev;

if (el->prev != NULL)
el->prev->next = el->next;

if (cont->first == el)
cont->first = el->next;
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if (cont->last == el)
cont->last = el->prev;

// No explicit qualification needed for CONTAINER, ELEMENT,
// prev, next, first, last
} (15)

What is interesting about this example is that in two cases (DLIST1, SLIST1) we have a single namespace
containing some fields from one record type and some from another. The obvious advantage of grouping
declarations this way is that it becomes clear which entities can access what data. For instance, delete is
prevented from accessing any variables introduced in the SLIST1 namespace.

Also, both DLIST1 and SLIST1 have access to all the declarations of another namespace (DS1). As a
result, the code of operation delete that needs access to all these variables is substantially simplified. The
straightforward alternative would be to introduce intermediate structures to hold the fields for doubly
linked and singly linked list elements and containers. Then, for instance, the CONTAINER class declaration
would become:

struct CONTAINER {
DLIST_CONT dlcont; // DLIST_CONT is a new structure containing

// fields first and last
SLIST_CONT slcont; // SLIST_CONT contains first

};

Any such alternative, however, does not offer the option of implicitly qualifying over all doubly-linked list
or singly-linked list declarations. Hence, the code for delete would become something like:

using namespace DS1; // Our implicit qualifier for CONTAINER, ELEMENT
void delete(CONTAINER cont, ELEMENT *el)
{

if (el->dlelem.next != NULL)
el->dlelem.next->prev = el->dlelem.prev;

if (el->dlelem.prev != NULL)
el->dlelem.prev->next = el->dlelem.next;

if (cont->dlcont.first == el)
cont->dlcont.first = el->dlelem.next;

if (cont->dlcont.last == el)
cont->dlcont.last = el->dlelem.prev;

} (16)

This second implementation of delete is unnecessarily complicated by explicit qualification. This could
become much worse in more complex namespace configurations. Such configurations are commonly
encountered in automatically generated programs. Note that, in general, automatically generated programs
have greater scoping requirements than hand-written programs. For instance, several slightly different cop-
ies of variable collections could exist (possibly generated by running the same generator code more than
once with different parameters). Such collections are highly likely to introduce declarations with conflict-
ing names and, thus, should be isolated in private contexts. These contexts may have complex interdepen-
dencies.

Powerful implicit qualification (such as that presented in (15)) is dangerous. Unqualified identifiers may be
bound to different variables than those intended by the programmer. Also, it is hard to determine the bind-
ing of an identifier just by inspecting the code. For automatically generated programs, however, this danger
is not present. Note that what happened in program (15) was that the declarations of fields next and prev
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for the element class were grouped together with the declarations of fields first and last of the con-
tainer class. This encodes a piece of higher level knowledge, namely that all these fields cooperate to
implement a doubly linked list. From the perspective of the generator programmer, such relationships are
easy to maintain. Although the four fields may not be close in the target program (e.g., first and last
belong to a different class than next and prev), they will probably be together in the specification of a
doubly linked list inside a generator (and so will be all other declarations that will be generated in the same
generation environment/namespace). In the example of (15) this means that the code that generates the
implementation of the delete operation will probably be close to the code generating the declarations of
fields next, prev, first, and last. In other words, generation scoping allows scoping to be expressed
relative to the position of code in the specification — not in the target program. This way the meaning of an
identifier may not be apparent when inspecting the generated code but is more apparent in the generator
components (which is what matters).

Observation shows that the structure of generator components is much different than the structure of gener-
ated programs (even though generated programs consist of component fragments). This is why it may be
quite useful to dissociate scoping of generated code fragments from their location in the target program.
Also, what constitutes a good practice from the perspective of the generated program is not necessarily as
good from the perspective of the generator. In our particular example, extended namespaces may not be a
good idea for general purpose C++ programming (e.g., implicitly qualifying their members can lead to
code that is hard to understand). Nevertheless, emulating extended namespaces using syntactic environ-
ments in automatically generated programs does not suffer from the same problems.

4  Application: DiSTiL

Generation scoping was implemented as part of IP (Intentional Programming) [15], a general-purpose
transformation system under development by Microsoft Research. It was subsequently used to build the
DiSTiL software generator as a domain-specific extension to IP. DiSTiL is a GenVoca generator for con-
tainer data structures that evolved from P2 [4] and follows the GenVoca [2] design paradigm. In the follow-
ing sections, we examine some interesting applications of generation scoping in the implementation of
DiSTiL.

4.1  Encapsulating Related Variables

GenVoca generators are a class of sophisticated software generators that synthesize high-performance, cus-
tomized programs by composing pre-written components called layers. Each layer encapsulates the imple-
mentation of a primitive feature in a target domain. The P2 and DiSTiL generators are GenVoca generators
for the domain of container data structures. Complex container data structures can be synthesized by com-
posing primitive layers, where each layer implements either a primitive data structure (e.g., ordered linked
lists, binary trees, etc.) or feature (sequential or random storage, logical element deletion, element encryp-
tion, etc.). Code for each operation is generated by having each layer manufacture a code fragment (that is
specific to the operation whose code is being generated) and by assembling these fragments into a coherent
algorithm.

P2 and DiSTiL data structures are modeled in much the same way as the data structures of Section 3.5.
That is, each data structure consists of three distinct entities: a container, elements, and iterators (called
cursors). The approach outlined in Section 3.5 is followed: Variables are grouped together into a common
scope according to the entity to which they are related. For instance, all declarations related to the cursor
part of a doubly linked list will belong in a single generation environment. These declarations, however,
may vary considerably in their allocation behavior: some may be fields of more than one records, others
can be global variables, types, automatic variables, etc. We will now examine in detail the kinds of genera-
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tion environments used in DiSTiL.

In general, there is a many-to-one relationship between cursors and containers (i.e., there can be many cur-
sors — each with a different retrieval predicate — per container). So using a single generation environment
to encapsulate both cursor and container data members is not possible in DiSTiL. Instead, separate envi-
ronments are defined for every cursor and container. The ContGeneric environment encapsulates ele-
ment data members (because element types are in one-to-one correspondence with container types) and
generic container-related variables (including the container identifier, which is subsequently aliased).
The CursGeneric environment encapsulates generic cursor-related variables (including the cursor
identifier, which also is subsequently aliased). By making ContGeneric a parent of CursGeneric, code
for operations on containers (which do not need cursors) can be generated using the ContGeneric envi-
ronment, while code for operations on cursors (which invariably reference container fields) is generated
using the CursGeneric environment. Figure 1a depicts this relationship.

A hallmark of GenVoca layers is that they encapsulate refinements of multiple classes. Each DiSTiL layer
refines cursor, container, and element types by adding layer-specific data members. The data members
added to the container and element types by layer Li are encapsulated by environment Conti which is a
child of ContGeneric. Similarly, data members added by Li to the cursor type are encapsulated by envi-
ronment Cursi which is a child of both CursGeneric and Conti (because cursors of layer Li reference
layer-specific container-data members as well as layer-specific cursor data members). Figure 1b shows this
hierarchical organization of environments.

An ordered doubly-linked list layer, for example, would refine elements by adding next and prev fields,
and would refine containers by adding first and last fields. This refinement can be accomplished by a
RefineTypes() method: elem_type, cont_type, and curs_type are code fragments that respec-
tively define the set of variables (data members) in element, container, and cursor classes. When Refine-
Types() is called with these code fragments as parameters, the next, prev, first, and last fields are
added to the element and container types. As these fields are always used together, they are declared within
a single environment Cont (which is equal to some Conti of Figure 1):

void RefineTypes( CODE *elem_type, CODE *cont_type, CODE *curs_type,
 Environment Cont) {

environment(Cont) {
*elem_type = ‘{ $(*elem_type); element *next, *prev; };
*cont_type = ‘{ $(*cont_type); element *first, *last; };

}
}

...

...

pc

Legend:

ContGeneric

CursGeneric

Cont1 Cont2 Cont3

Curs1 Curs2 Curs3

ContGeneric

CursGeneric
p is parent-of c

(a)

(b)

Figure 1: Hierarchical Organizations of Environments in DiSTiL
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It is common in a composition of GenVoca layers that a single layer appears multiple times. An example in
P2 and DiSTiL would be linking elements of a container onto two (or more) distinct ordered lists, where
each list has a unique sort key. Every list layer adds its own fields to the element and container types. Main-
taining the distinction among these fields (so that the code for the j-th list will only reference its own fields
nextj, prevj, etc.) is trivial using generation environments as organized in Figure 1. Each copy of the list
layer will have its own generation environments Contj and Cursj, and all code generated by that copy
would always use these environment variables.

As in example (15) of Section 3.5, we use implicit qualification to simplify the code specification in the
generator. For instance, the DiSTiL counterpart of the delete operation of (15) is the Remove method for
ordered doubly-linked lists, appearing below. Let Remove_Code be the code that is to be generated for
removing an element from a container. The Remove method for ordered doubly-linked lists adds its code
(to unlink the element) when it is called (the code that actually deletes the element is added by another
layer). Thus, given Remove_Code and the environment Curs (equal to some Cursi of Figure 1),
Remove() adds the unlinking code where the next, prev, etc. identifiers are bound to their correct vari-
able definitions.

void Remove( CODE *Remove_Code, Environment Curs ) {
environment(Curs) {

*Remove_Code =‘{ $(*Remove_Code);
 if (cursor->next != null)

cursor->next->prev = cursor->prev;
if (cursor->prev != null)

cursor->prev->next = cursor->next;
if (container->first == cursor.obj)

container->first = cursor->next;
 if (container->last == cursor.obj)

container->last = cursor->prev; };
}

} (17)

Note that, for instance, the bindings of identifiers cursor, container, and next in this template exist in
three different generation environments: container is in ContGeneric, cursor in CursGeneric, and
next in Conti. Nevertheless, all of them can be accessed from environment Curs (following its parent
links), so this is the only environment that needs to be specified.

4.2  Aliases in DiSTiL

A very powerful use of alias is to replace explicit parameters (using the $ operator) with implicit param-
eters7. Let’s revisit (17), a portion of which is replicated below:

*Remove_Code =‘{ ...
if (container->first == cursor.obj)

container->first = cursor->next; ... };

This code fragment defines a general relationship between cursors and containers when deleting elements
from an ordered list. The identifiers cursor and container need not be restricted to reference particular
cursor and container variables; rather the cursor identifier should be able to represent any expression that

7.  Obviously the effect of alias could be simulated by creating macros in the target document but this seems gratu-
itous for simple expressions. It also relies on the macro processor of the target language which may be very prim-
itive (like the C/C++ pre-processor, which is token-based and observes no scoping rules).



17

evaluates to a cursor, and the container identifier should be able to represent any expression that evalu-
ates to the container referenced by that cursor. This can be accomplished by using aliases. The Curs and
Cont environments below bind cursor and container to their respective expressions:

environment (Cont)
alias( container, ‘(Container_array[j]) );

environment (Curs) {
alias( cursor, ‘(Cursor_array[j]) );

When the Remove() method of (17) is called (given a null code fragment as input):

environment(Curs) {
Remove_Code = ‘{}; // null code fragment
Remove( Remove_Code, Curs ); // add on unlinking statements

}

The value of Remove_Code will be:

... if (Container_array[j]->first == Cursor_array[j].obj)
Container_array[j]->first = Cursor_array[j]->next; ...

In building multiple generators, we have found that highly parameterized code fragments, such as (17), are
very common. Creating implicit parameters, which is the primary use of alias, greatly simplifies the
specification of generated code fragments. Such fragments are substantially easier to write, to understand,
to debug, and to maintain than their explicitly parameterized (i.e., using the $ operator) counterparts.

Also, in using the alias construct, we found that it makes specifications of quoted expressions more flex-
ible. A typical scenario that we encountered in the development of DiSTiL was that an identifier x referred
to a single variable in the majority of code templates. At some point later in DiSTiL’s development, we dis-
covered an exception where x needed to represent an entire expression. Instead of rewriting all existing
quoted expressions to treat x as an explicit parameter, we aliased it to the expression in the environment
of the special case.

4.3  Experience

The P2 generator, which was the inspiration of DiSTiL, had a similar facility (XP) to allow writing data
structure code in a form as simple as that of (17). XP was written specifically for the domain of data struc-
tures. Its keywords include Cursor and Container, and it was aware of relationships between such enti-
ties (for instance, it knew that there is one container for each cursor). Generation scoping is a significant
advance for generators like P2. It provides a general-purpose, domain-independent way to express gener-
ated code fragments and dependencies among them conveniently. The use of generation scoping made
DiSTiL much easier to write.

5  Comparison

Generation environments are similar to syntactic environments in the syntactic closures work. There are,
however, significant differences: Syntactic environments can only represent the set of variables that are
lexically visible at a specific point in a program8. In contrast, generation environments can be arbitrary col-

8.  In the original syntactic closures work [5] this point was almost always the site of the macro call. Later, syntactic
environments were used to represent macro definition sites, as well (see, for instance, [10]).
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lections of bindings (i.e., smaller sets of lexically visible variables) that can be organized hierarchically
using SetParent. We saw earlier in Section 3.3 and Section 4.1 that these features enable generation
environments to express complex scoping relationships in generated programs and to simplify parameter-
ized code fragment specification by using implicit qualification on groups of variables.

Technically, generation scoping departs from the syntactic closures approach of [5] in many ways. Variable
references are not represented as text which is then “closed” in the right environment. Instead they are gen-
erated from the beginning as “closed” references (for instance, as a name-environment pair). This tech-
nique is similar to syntactic closures that implement hygienic, lexically scoped macros [8]. Such
implementations (see, for instance, [14]) “close” in a syntactic environment only the generated code frag-
ments — not the user-supplied parameters to a macro. The implementation of generation scoping is very
similar to that described in [14], and thus provides generation environments the power to emulate the
hygienic macros of [11]9. The difference is that in generation scoping the environments of [14] become
visible to the user of the mechanism (first-class objects). They can then be explicitly organized hierarchi-
cally using SetParent.

Lexically scoped macros have proven to be particularly useful in solving binding problems. Their behavior
is best illustrated by an example:

{ int foo = 4;
#define bar foo/2
{ int foo = 8;
y = bar; } } (18)

If C macros were lexically scoped (assuming they were part of the language and not handled by a prepro-
cessor) the code fragment in (18) would set y to the value 2. In other words, macro bar would always refer
to the variable foo that is visible where bar was defined — not where it is used.

What is interesting about lexically scoped macros is that they present another way to determine the bind-
ings of generated identifiers (for instance, foo in the second line of (18)). The variables that can bind such
identifiers, however, are those lexically visible at the macro definition site (like foo in the first line of
(18)). In other words, static information in the program is used to determine bindings automatically. This is
a desirable feature that we would like to exploit in general-purpose program generation.

Unfortunately, this seems unlikely. Program generation, in general, deals with three distinct program enti-
ties: the generator, the source program (specification), and the target program (generated code). Each can
have its own namespace as depicted in Figure 2. Generators compile domain-specific specifications into
target programs coded in familiar high-level languages. For instance, the P2 generator [4] compiles its
specification (C extended with declarative data structure primitives) into pure C code. Figure 2 also sug-

9.  As explained in [8], syntactic closures cannot be used to implement hygienic macro expansion.

LISP

Figure 2: The three separate program spaces involved in program generation

Generator (Transformer)

CSpecLangSource
Program

Target
Program
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gests implementation languages for the three programs to emphasize their independence at source level. In
the case of Scheme and other languages whose extensibility is based on macros, these three namespaces
collapse into one: there is a single namespace that contains macro definitions (transformer), macro invoca-
tions (source program), and macro expansion code (target code).

Lexically-scoped macros use the variables visible in the generator to determine bindings of code in the tar-
get program. If, however, the three namespaces are separate, this is not feasible — the generator writer will
have to specify the bindings of generated identifiers explicitly. Consider example:

{ int foo = 4;
#define bar foo/2
{ Generate ‘(/ bar 2); } } (19)

There does not seem to be any good reason to equate the two bar identifiers in (19). The generated identi-
fier bar is a variable in a code fragment written in a LISP variant. The other bar is a C macro in the gen-
erator. The two are obviously distinct. In general, it is not likely that we can ever solve binding problems
for generated identifiers by using static information from the source program or the generator.

The separation of namespaces gives rise to other basic differences between program generation and macro
expansion. For instance, generator code is normally compiled into a binary format for reasons of source-
code hiding and efficiency. This precludes generating new “generator code” on-the-fly. (Again, this is
because generators, unlike macro systems, are not reflective). In macro systems, however, it is common to
have macros that expand into the definitions of other macros (since the generator coincides with the target
program, specifying new transformations is as easy as generating code).

6  Conclusions

Program generation is a valuable technique for software development that will become progressively more
important in the future. In this paper we have argued for dissociating the scoping of generated variables
from their position in the target program. Instead, variables are grouped together intentionally — that is,
according to their roles in the generated program. We have presented generation scoping as a general-pur-
pose, domain-independent mechanism to address all scoping needs of generated programs. This approach
can make writing software generators easier and more convenient. These capabilities were proven in the
design and implementation of DiSTiL, a GenVoca generator for container data structures. We used
Microsoft’s IP as the platform for our development; generation scoping is now an integral part of the IP
toolset.

There are many interesting issues that can be explored further. First, the facility presented here is not cur-
rently suited for incremental program generation. Generators typically do not produce code incrementally:
if a small part of a specification changes, the entire target application will be re-generated. In many cases
this is not necessary. The problem can be solved by adding a mechanism to persistently store the genera-
tion environment structures for a given target document. These can later be retrieved and guide the incre-
mental generation process. Another interesting issue is that of implementing a stand-alone version of
generation scoping, perhaps in conjunction with a powerful macro facility. This should provide easy ways
to extend an existing language. Second, generation scoping was developed in the context of the C-language
(or IP’s version of C). Integration of generation scoping with object-oriented languages appears to offer
enhanced opportunities of programming convenience.

We believe that generation scoping is a useful mechanism for program generation. It is safe, simple, and
efficient. We hope the ideas incorporated in its design will find their way in other similar tools (for
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instance, macro expansion facilities).
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