
In Proceedings 11th International Conference on Data Engineering, pages 201–210, Taipei, March 1995

Prairie: A Rule Specification Framework
for Query Optimizers�y

Dinesh Das Don Batory
Department of Computer Sciences
The University of Texas at Austin

Austin, Texas 78712–1188
fddas,batoryg@cs.utexas.edu

Abstract

From our experience, current rule-based query optimizers
do not provide a very intuitive and well-defined framework
to define rules and actions. To remedy this situation, we
propose an extensible and structured algebraic framework
called Prairie for specifying rules. Prairie facilitates rule-
writing by enabling a user to write rules and actions more
quickly, correctly and in an easy-to-understand and easy-to-
debug manner.

Query optimizers consist of three major parts: a search
space, a cost model and a search strategy. The approach we
take is only to develop the algebra which defines the search
space and the cost model and use the Volcano optimizer-
generator as our search engine. Using Prairie as a front-
end, we translate Prairie rules to Volcano to validate our
claim that Prairie makes it easier to write rules.

We describe our algebra and present experimental results
which show that using a high-level framework like Prairie to
design large-scale optimizers does not sacrifice efficiency.

1 Introduction

Query optimization [8] is a fundamental part of database sys-
tems. It is the process of generating an efficient access plan
for a database query. Informally, an access plan is an exe-
cution strategy for a query; it is the sequence of low-level
database retrieval operations that, when executed, produce
the database records that satisfy the query. There are three
basic aspects that define and influence query optimization:
the search space, the cost model, and the search strategy.

Thesearch space is the set of logically equivalent access
plans that can be used to evaluate a query. All plans in a

�This research was supported in part by grants from The University of
Texas Applied Research Laboratories, Schlumberger, and Digital Equip-
ment Corporation.

yAn expanded version of this paper is available as Technical Report TR
94–16 by anonymous ftp fromftp.cs.utexas.edu.

query’s search space return the same result; however, some
plans are more efficient than others. Thecost model assigns
a cost to each plan in the search space. The cost of a plan is
an estimate of the resources used when the plan is executed;
the lower the cost, the better the plan. Thesearch strategy is
a specification of which plans in the search space are to be
examined.

Traditionally, query optimizers have been built as mono-
lithic subsystems of a DBMS. This simply reflects the fact
that traditional database systems are themselves monolithic:
the algorithms used for storing and retrieving data are hard-
wired and are rather difficult to change. The need to have
extensible database systems, and in turn extensible optimiz-
ers, has long been recognized in systems like Genesis [1],
EXODUS [9], Starburst [10], and Postgres [12]. Rule-based
query optimizers are among the major conceptual advances
that have been proposed to deal with query optimizer ex-
tensibility [6, 7, 9, 10]. The extensibility translates into the
ability to incorporate new operators, algorithms, cost mod-
els, or search strategies without changing the optimization
algorithm.

In this paper, we describe an algebraic framework called
Prairie for specifying rules in a rule-based query optimizer.
Prairie is similar to other rule specification languages like
Starburst [10] and Volcano [7], and indeed, we have based
our work on Volcano to capture most of the advantages of
rule-based optimizers. However, Prairie attempts to provide
some key features that, we have found, simplify the effort in
writing rules:

1. A framework in which users can define a query opti-
mizer concisely in terms of a well-defined set of oper-
ators and algorithms.All operators and algorithms are
considered first-class objects, i.e.,any of them can oc-
cur in any rule, andonly these operators and algorithms
can appear in rules. This scheme eliminates the need
for special classes of operators and algorithms, such as
enforcers in Volcano and glue in Starburst, that signif-
icantly complicate rule specification.



2. A framework in which users can define a list of proper-
ties to characterize the expressions generated in the op-
timization process. Again, the goal here is to allow the
user to treatall properties as having equal status. This
is different from Volcano where the user must classify
properties as logical, physical, or operator/algorithm
arguments.

3. A framework in which users can specify mapping
functions between properties concomitantly with the
corresponding rules. This contrasts with existing ap-
proaches in which mappings between properties are
fragmented into multiple functions and at logically dif-
ferent places than the corresponding rules. Research
into rule-based optimizers has revealed that property-
mapping functions are a major source of user effort, so
this is an important goal.

4. The format (Prairie) in which users can cleanly specify
rules is not necessarily the same format needed for gen-
erating efficient optimizers. Thus, there is a need for
a pre-processor (written by us) that translates between
these competing representations.

Prairie strives for uniformity in dealing with issues that
have been a source of most user effort and potential user er-
rors. In the following sections, we present the Prairie frame-
work. We explain how our P2V pre-processor maps Prairie
rule specifications into Volcano rule specifications that can
be processed efficiently. Experimental results to support this
claim are given in Section 4, where we compare implementa-
tions of the Texas Instruments Open OODB query optimizer
using both Prairie and Volcano. We conclude with a sum-
mary and related research.

2 Prairie: A language for rule specifi-
cation

The basic concepts and definitions that underlie the Prairie
model are presented in this section. The goal is to lay a foun-
dation for reasoning about query optimization algebraically;
this is necessary for our subsequent discussion about trans-
lating Prairie specifications to those of Volcano.

2.1 Notation and assumptions

Stored Files and Streams. A file is stored if its tuples re-
side on disk. In the case of relational databases, stored files
are sometimes calledbase relations; we will denote them by
R orRi. In object-oriented schemas, stored files areclasses;
we will denote them byC or Ci. Henceforth, whenever we
refer to a stored file, we mean a relation or a class; when the
distinction is unimportant, we will useF orFi. A stream is a

sequence of tuples and is the result of a computation on one
or more streams or stored files; tuples of streams are returned
one at a time, typically on demand. Streams can benamed,
denoted bySi, or unnamed.

Database Operations. An operation is a computation on
one or more streams or stored files. There are two types of
database operations in Prairie: abstract (or implementation-
unspecified) operators and concrete algorithms. Each is de-
tailed below.

Operators. Abstract (or conceptual)operators spec-
ify computations on streams or stored files; they
are denoted by all capital letters (e.g., JOIN).
Operators have two types of parameters: essen-
tial and additional. Essential parameters are
the stream or file inputs to an operator; these
are the primary inputs to be processed by an
operator.Additional parameters are “fine-grain”
qualifications of an operator; their purpose is to
describe an operator in more detail than essential
parameters.

Algorithms. Algorithms are concrete implemen-
tations of conceptual operators; they will be
represented in lower case with the first letter
capitalized (e.g., Nestedloops). Algorithms
have at least the same essential and additional
parameters as the conceptual operators that they
implement.1 Furthermore, there can be, and
usually are, several algorithms for a particular
operator.

Table 1 lists some operators and algorithms implementing
them together with their additional parameters.

Operator Trees. An operator tree is a rooted tree whose
non-leaf, orinterior, nodes are database operations (oper-
ators or algorithms) and whose leaf nodes are stored files.
The children of an interior node in an operator tree are the
essential parameters (i.e., the stream or file parameters) of
the node. Additional parameters are implicitly attached to
each node. Algebraically, operator trees are compositions of
database operations; thus, we will also call operator treesex-
pressions; both terms will be used interchangeably.

EXAMPLE 1. A simple expression and its operator tree
representation are shown in Figure 1(a). RelationsR1 and
R2 are first RETrieved, then JOINed, and finally SORTed
resulting in a stream sorted on a specific attribute. The figure
shows only the essential parameters of the various operators,
not the additional parameters. �

1Algorithms may havetuning parameters which are not parameters of
the operators they implement.



Operator Description Additional Parameters Algorithm

JOIN(S1, S2) Join streamsS1, S2
tuple order Nestedloops(S1 , S2)
join predicate Merge join(S1 , S2)

RET(F ) Retrieve fileF
tuple order File scan(F )
selectionpredicate
projectedattributes Index scan(F )

SORT(S1) Sort streamS1 tuple order
Mergesort(S1)
Null(S1)

Table 1: Operators and algorithms in a centralized query optimizer and
their additional parameters

Property Description
join predicate join predicate for JOIN operator
selectionpredicate selection predicate for RET operator

tuple order
tuple order of resulting stream,
DONT CARE if none

num records number of tuples of resulting stream
tuple size size of individual tuple in stream
projectedattributes projected attributes for RET operator
attributes list of attributes
cost estimated cost of algorithm

Table 2: Properties of nodes in an operator tree

SORT (JOIN (RET (R1), RET (R2)))

SORT

JOIN

RET RET

R1 R2

(a) An expression and its
corresponding operator tree

Merge sort

Nestedloops

File scan Filescan

R1 R2

(b) Possible access plan for
operator tree in (a)

Figure 1: Example of an operator tree and access plan

Descriptors. A property of a node is a (user-defined) vari-
able that contains information used by an optimizer. An
annotation is a hproperty, valuei pair that is assigned to a
node. Adescriptor is a list of annotations that describes a
node of an operator tree; every node has its own descrip-
tor. As an example, Table 2 lists some typical properties
that might be used in a descriptor. Note that descriptors for
stream and stored files may have different properties. The
following notations will be useful in our subsequent discus-
sions. IfSi is a stream, thenDi is its descriptor. Annotations
of Si are accessed by a structure member relationship, e.g.,
Di:num records. Also, letE be an expression and letD be
its descriptor. We will write this asE : D.

EXAMPLE 2. The expression,

SORT(JOIN(RET(R1):D3;RET(R2):D4):D5):D6

corresponds to the operator tree in Figure 1(a), and shows
the descriptors of the various nodes. �

A notational simplification can be made here. Additional
parameters of operators can be treated the same way as other
properties of a node; essential parameters, however, areex-
pressions. Thus, the term descriptor in the remainder of this
paper will refer to a set of properties, including additional
parameters, as shown in Table 2.

Currently, descriptor properties are defined entirely by the
user; however, we envision providing a hierarchy of pre-
defined descriptor types to aid this process.

Access Plans. An access plan is an operator tree in which
all interior nodes are algorithms.

EXAMPLE 3. An access plan for the operator tree in Fig-
ure 1(a) is shown in Figure 1(b). �

2.2 Prairie optimization paradigm

Prairie admits two rather different means of optimization:
top-down and bottom-up. A top-down query optimizer op-
timizes the parents of a node prior to optimizing the node it-
self. A bottom-up optimizer optimizes the children of a node
prior to optimizing the node. The earliest optimizers (Sys-
tem R [11] and R� [3]) employed the bottom-up approach.

Our research concentrates on a top-down optimization of
operator trees. We have chosen this approach because we
intend to translate Prairie rules into the format required by
the Volcano query optimizer generator [7] which is based
on a top-down strategy. Given an appropriate search en-
gine, Prairie can potentially also be used with a bottom-up
optimization strategy; however, we will not discuss this ap-
proach in this paper.

In query optimization, there are certain annotations (such
as additional parameters) that are known before any opti-
mization is begun. These annotations can be computed at the
time that the operator tree is initialized, and will not change
with application of rules. Our following discussions assume
operator trees are initialized.

There are two types of algebraic transformations (or
rewrite rules) in Prairie: T-rules (“transformation rules”)
and I-rules (“implementation rules”). Each rule transforms
an expression into another based on additional conditions;
the transformation also results in a mapping of descriptors
between expressions. We define T-rules and I-rules precisely
in the following sections and illustrate them with examples.
Our examples are chosen from rules that would be used
in a centralized relational query optimizer; the operators,
algorithms, and properties are subsets of those in Tables 1
and 2.



E(x1; : : : ; xn) : D1 =) E
0

(x1; : : : ; xn) : D2 (1)
ff

pre-test statements
gg

test
ff

post-test statements
gg

(a) General form of a T-rule

JOIN(JOIN(S1; S2) : D4; S3) : D5 (2)

=) JOIN(S1; JOIN(S2; S3) : D6) : D7

ff

D6:attributes= union(D2:attributes;D3:attributes) ;
gg

is associative(D6:join predicate;D6:attributes;D5:join predicate)
ff

D7 = D5 ;

D7:join predicate= D4:join predicate;
D6:tuple size= D2:tuple size+D3:tuple size;
D6:num records= cardinality(D2;D3) ;

gg

(b) Join associativity

Figure 2: T-rule

2.3 Transformation rules

Transformation rules, or T-rules for short, define equiva-
lences among pairs of expressions; they define mappings
from one operator tree to another. LetE andE 0 be ex-
pressions that involve only abstract operators. Equation (1)
(shown in Figure 2(a)) shows the general form of a T-rule.
The actions of a T-rule define the equivalences between the
descriptors of nodes of the original operator treeE with the
nodes of the output treeE 0; these actions consist of a se-
ries of (C or C++) assignment2 statements. The left-hand
sides of these statements refer to descriptors of expressions
on the right-hand side of the T-rule; the right-hand sides of
the statements can refer to any descriptor in the T-rule. Func-
tion (calledhelper functions) calls can also appear on the
right side of the assignment statements. Thus, descriptors on
theleft-hand side of a T-rule arenever changed in the rule’s
actions. Atest is needed to determine if the transformations
of the T-rule are in fact applicable.

Purely as an optimization, it is usually the case that not all
statements in a T-rule’s actions need to be executed prior to a
T-rule’s test. For this reason, the actions of a T-rule are split
into two groups; those that need to be executed prior to the
T-rule’s test, and those that can be executed after a successful
test. These groups of statements comprise, respectively, the

2The actions can be non-assignment statements (like function calls), but
in this case, the P2V pre-processor (described in Section 3) needs some
hints about the properties that are changed by the statement in order to cor-
rectly categorize each property. For simplicity, in this paper, we assume all
actions consist of assignment statements.

E(x1; : : : ; xn) : D1 =) A(x1; : : : ; xn) : D2 (3)
test
ff

pre-opt statements
gg

ff

post-opt statements
gg

(a) General form of an I-rule

SORT(S1) : D2 =) Mergesort(S1) : D3 (4)

(D2:tuple order!= DONT CARE)
ff

D3 = D2 ;
gg

ff

D3:cost= D1:cost
+(D3:num records) � log(D3:num records) ;

gg

(b) Merge-sort sort algorithm

Figure 3: I-rule

pre-test andpost-test statements of the T-rule.3

EXAMPLE 4. The associativity of JOINs is expressed by
T-rule (2) in Figure 2(b). �

2.4 Implementation rules

Implementation rules, or I-rules for short, define equiva-
lences between expressions and their implementing algo-
rithms. LetE be an expression andA be an algorithm that
implementsE. The general form of an I-rule is given by
Equation (3) (shown in Figure 3(a)).

The actions associated with an I-rule are defined in three
parts. The first part, ortest, is a boolean expression whose
value determines whether or not the rule can be applied.

The second part, orpre-opt statements, is a set of descrip-
tor assignment statements that are executed only if the test
is true andbefore any of the inputsxi of E are optimized.
Additional parameters of nodes are usually assigned in the
pre-opt section. This is necessary before any of the nodes on
the right side can be optimized.

The third part, orpost-opt statements, is a set of descrip-
tor assignment statements that are executedafter all xi are
optimized. Normally, the post-opt statements compute cost
properties that can only be determined once the inputs to the
algorithm are completely optimized and their costs known.
This does not, however, imply a bottom-up optimization
strategy. It simply means that although I-rules are applied
to parents before their children are optimized, thecost (and

3We suspect it is possible to use data-flow analysis to partition the as-
signment statements automatically, but for now, we let the rule-writer do
the partitioning.



other properties in the post-opt section) of the parent cannot
be computed until the children have been optimized.

EXAMPLE 5. Equation (4) (in Figure 3(b)) shows the I-
rule that implements the SORT operator by Mergesort. �

2.5 Null algorithm

Recall that, in Section 1, we mentioned that Prairie allows
users to treat all operators and algorithms as first-class ob-
jects, i.e., all operators and algorithms are explicit, in con-
trast to enforcers in Volcano or glue in Starburst. This re-
quires that Prairie provide a mechanism where users can also
“delete” one or more of the explicit operators from expres-
sions. This is done by having a special class of I-rules that
have the form given by Equation (5) in Figure 4(a). The left
side of the rule is a single abstract operatorOwith one stream
input S1. The right side of the rule is an algorithm called
“Null” with the same stream input but with a different de-
scriptor. As the name suggests, the Null algorithm is sup-
posed to pass its input unchanged to algorithms above it in
an operator tree. This is accomplished in the I-rule as fol-
lows.

The test for this I-rule is always TRUE, i.e., any node in
an operator tree withO as its operator can be implemented
by the Null algorithm. The actions associated with this rule
have a specific pattern. The pre-opt section consists of three
statements. The first statement copies the descriptor of the
operatorO to the algorithm Null. The second statement sets
the descriptor of the streamS1 on the right side to the de-
scriptor of the streamS1 on the left side. Why is it necessary
to do this? The key lies in the third statement. This statement
copies the property “property” of the operatorO node on the
left side to the “property” of the input streamS1 on the right
side. Since left-hand side descriptors cannot be changed in
an I-rule, a new descriptorD3 is necessary forS1 to convey
the property propagation information.

The post-opt section in the I-rule has only a cost-
assignment statement; this simply sets the cost of the
Null node to the cost of its optimized input stream.

The Null algorithm, therefore, serves to effectively trans-
form a single operator to a no-op.

EXAMPLE 6. Equation (6) (in Figure 4(b)) shows the I-
rule that rewrites the SORT operator to use a Null algorithm.
�

3 The P2V pre-processor

In Section 1, we enumerated the four primary goals of
Prairie, viz., uniformity in operator and algorithms; unifor-
mity in properties; uniformity in property-transformations;

O(S1) : D2 =) Null(S1 : D3) : D4 (5)
TRUE
ff

D4 = D2 ;
D3 = D1 ;
D3:property= D2:property;

gg

ff

D4:cost= D3:cost;
gg

(a) General form of a “Null” I-rule

SORT(S1) : D2 =) Null(S1 : D3) : D4 (6)

TRUE
ff

D4 = D2 ;
D3 = D1 ;
D3:tuple order= D2:tuple order;

gg

ff

D4:cost= D3:cost;
gg

(b) Null sort algorithm

Figure 4: The “Null” algorithm concept

and efficient generation of Prairie optimizers. The first
three goals are driven by the need for conceptual simplicity;
however, they alone do not necessarily generate efficient
optimizers. The P2V pre-processor ensures that efficient
optimizers can be realized from Prairie specifications, by
translating them to the Volcano framework and then gen-
erating an optimizer by compiling with the Volcano search
engine. This Prairie optimizer-generator paradigm is shown
schematically in Figure 5. The pre-processor itself is 4500
lines offlex andbison code. In this section, we briefly
describe the pre-processor steps and explain why the Prairie-
to-Volcano transformation is non-trivial. A more detailed
description of the pre-processor is given in [5].

The specification of an optimizer in Volcano consists of a
set of transformation rules (called “transrules”) and imple-
mentation rules (called “implrules”), a set of properties, and
some support functions. The join associativity transrule (cf.
Figure 2(b)) in Volcano is as follows4:

(JOIN ?oparg5 ((JOIN ?oparg4 (?1 ?2)) ?3))

�>(JOIN ?oparg7 (?1 (JOIN ?oparg6 (?2 ?3))))

The important point to note is the use ofoperator argu-
ments (denoted by “oparg” in rules); these arguments con-
tain properties used in the rule’s actions, but unlike Prairie,
they do not containall the properties of an operator tree
node. There are other property classes, like algorithm argu-
ment, logical property, system property, physical property,
and cost. Thus, while Prairie uses a uniform descriptor to

4There are conditions and actions associated with Volcano rules that are
not shown here.



Prairie Rule Set

P2V Pre-processor

Volcano Rule Set

Volcano
Optimizer-Generator

Query OptimizerOperator Tree Access Plan

Figure 5: The Prairie optimizer-generator paradigm.
Double-boxed modules represent software generators,
shaded boxes represent generated programs. The outer-
most double-boxed portion denotes the Prairie optimizer
generator.

encode properties, Volcano partitions the properties into dif-
ferent classes. The P2V pre-processor partitions a Prairie de-
scriptor into the different property classes required by Vol-
cano. This is a non-trivial task, since it requires parsing the
Prairie rules and their actions.

Impl rules in Volcano defer most of the actions associ-
ated with the rules to support functions. Each algorithm has
four support functions associated with it. A Prairie specifica-
tion, on the other hand, contains all the actions in the corre-
sponding rule. The P2V pre-processor parses a Prairie I-rule,
and automatically generates all the Volcano support func-
tions from the rule. This is also a complex process, since
it depends partly on the partitioning of properties mentioned
in the last paragraph, and also because it requires relocating
pieces of code from Prairie rules to Volcano support func-
tions.

The third salient feature of a Volcano specification is
the presence of implicit, or hidden, algorithms, calleden-
forcers. In Prairie, all algorithms are explicit. Consider,
for example, the Mergesort algorithm in Figure 3(b). In a
Volcano specification, this algorithm would be classified as
an enforcer, since it enforces the sortedness property. The
P2V pre-processor determines the Prairie algorithms that
are functionally Volcano enforcers, and deletes the corre-
sponding Prairie rules to generate the Volcano specification.
This requires the pre-processor to migrate the (deleted)
rule’s actions to Volcano support functions.

The P2V pre-processor also generates a set of compact
Volcano rules by merging Prairie rules whenever possible.
Consider, for example, the following set of rules in Prairie:

JOIN(S1;S2):D3 =) JOPR(SORT(S1):D4;SORT(S2):D5):D6

SORT(S1):D2 =) Null(S1:D3):D4

JOPR(S1;S2):D3 =) Nestedloops(S1:D4;S2):D5

The first rule is a T-rule, and the next two are I-rules. The
P2V pre-processor combines the above set of Prairie rules
into a single I-rule,

JOIN(S1;S2):D3 =) Nestedloops(S1:D4;S2):D5

and then translates it into a single Volcano implrule.

4 Experimental results

This section presents experimental results which demon-
strate the value of Prairie in specifying rule sets of rule-
based optimizers. Our experiments consist of specifying
rule-based optimizers using Prairie and generating optimiz-
ers using the P2V pre-processor and the optimizer-generator
paradigm of Figure 5.

In [4], we presented an implementation of a centralized re-
lational query optimizer using Prairie. Using the P2V trans-
lator, we translated this to Volcano format and optimized sev-
eral queries using the resultant optimizer. For comparison,
we hand-coded the same optimizer directly in Volcano. The
results presented there showed that, using Prairie (compared
to directly using Volcano) resulted in approximately 50%
savings in lines of code with negligible (less than 5%) in-
crease in query optimization time. However, the optimizer
was quite small in terms of the number of operators, algo-
rithms and rules.

For a more realistic evaluation of Prairie, we needed an-
swers to the following questions:

1. Is Prairie adequate for large-scale rule sets?

2. How is programmer productivity enhanced by the
high-level abstractions of Prairie?

3. Can Prairie rule sets be translated automatically into ef-
ficient implementations?

We addressed the first question by using the Texas Instru-
ments Open OODB query optimizer rule set, which has the
largest publicly available rule set. We describe this optimizer
in the next section, and then give our assessments to the last
two questions in subsequent sections.

4.1 The Texas Instruments Open OODB
query optimizer

The Texas Instruments Open Object-Oriented Database
Management System is an open, extensible, object-oriented
database system which provides users an architectural
framework that is configurable in an incremental manner.
The query optimizer in the Open OODB [2] is generated



using Volcano. It is written as a set of transrules and
impl rules that define the algebra of an object-oriented
database system. Currently, there are 17 transformation
rules and 9 implementation rules together with about
13; 000 lines of code for support functions; this, of course,
can be changed by an Open OODB user for specific needs.

4.2 Programmer productivity

Programmer productivity can be measured in different ways.
An admittedly simplistic metric is the number of lines of
code that must be written. But there are also less tangible
measures, such as the amount of conceptual effort needed to
understand a particular programming task. Our experience
with the Open OODB query optimizer suggests that Prairie
excels on the latter, while offering modest reductions in the
volume of code that needs to be written.

We converted by hand the Open OODB query optimizer’s
Volcano specifications to Prairie. This was a non-trivial task
because of the relatively large size of the rule set and the
complexity of the support functions. This was where we
found Prairie helped in conceptually simplifying the rules
and actions. We then used our P2V pre-processor to reconsti-
tute these Prairie specifications as Volcano specifications. As
described in Section 3, this process involved a considerable
level of complexity, partly because the Prairie specification
had 22 T-rules and 11 I-rules compared to 17 transrules and
9 impl rules in the Volcano specification; the reconstituted
Volcano specification had the same number of transrules
and impl rules as the original hand-coded specification.

Converting the Open OODB optimizer rule set into Prairie
format actually simplified its specification as the complexi-
ties of the Volcano model were removed. The reduction in
lines of code was modest — there was about a 10% savings.5

However, as mentioned above, savings in lines of code do
not adequately reflect increases in programmer productiv-
ity. We found the encapsulated specifications of Prairie —
namely, the use of a single descriptor and fewer explicit sup-
port functions — made rule programmingmuch easier.

4.3 Performance results using the Open
OODB optimizer

The acid test of Prairie was whether Prairie specifications
could be translated into efficient optimizer implementations.
Our experiments using the Open OODB consisted of opti-
mizing 8 different queries using the two query optimizers
generated, respectively, using Prairie and using Volcano di-
rectly (in the remainder of this section, we will use “Prairie”
and “Volcano” to denote these two approaches). There were

5The original Volcano specification had13; 400 lines, the Prairie speci-
fication had12; 100 lines, and the P2V-generated Volcano specification had
15; 800 lines.

4 distinct expressions that were used to generate the queries
used in the experiments; these are shown in Figure 6. Each
expression represents anN -way join query for varyingN .

The first expression E1 is a simple retrieval and join of
base classes. The second, E2, is also a join of base classes;
however, after each class retrieval, an attribute has to be ma-
terialized (i.e., brought into view) before the join. The third
and fourth expressions (E3 and E4) are the same as the first
and second (E1 and E2) respectively, except that there is a
selection of attributes (the select operator is the root of the
expressions).6

The algebra that was used in the Prairie and Volcano op-
timizers for our experiments consisted of 5 relational oper-
ators SELECT, PROJECT, JOIN, RET and UNNEST (for
set-valued attributes) and an object-oriented operator called
MAT (for MATerialize; it is fundamentally a pointer-chasing
operator for attributes of a class). There were 8 algorithms.

There are many parameters that can be varied when bench-
marking a query optimizer. Since our objective was to ver-
ify that the Prairie approach did not sacrifice efficiency, our
criteria for the queries was that they test a majority of the
rules, with varyingproperties of the base classes. To this end,
we tested our optimizer (and the Volcano optimizer) with 8
different queries (shown in Table 3). The eight queries Q1
through Q8 are derived from the 4 expressions in Figure 6.
Each expression E1 through E4 is used to obtain two queries
for a fixed numberN of JOINs in the expression. The only
difference between the two queries obtained from an expres-
sion is that the first one does not contain any indices on any
classes, whereas the second one contains a single index on
each base class occurring in the expression. In expressions
where a SELECT is present (E3 and E4), the selection pred-
icate is a conjunction of equality predicatesbci == consti,
wherebci is an attribute of classCi, andconsti is a constant
(we arbitrarily set this toi, because its value doesn’t affect
the correctness or performanceof the optimizer). In addition,
for queries with a SELECT and whose base classes have in-
dices (Q6 and Q8 in Table 3), the (single) index of each base
class was chosen to be the attribute referenced in the selec-
tion predicate. For example, classCi was chosen to have
an index on attributebci. The join predicates for each JOIN
were chosen at random, and were always equality predicates.
The choice of JOIN predicates was such that the queries cor-
responded to linear query graphs. In the future, we will ex-
periment with non-linear (e.g., star) query graphs.

Table 3 also shows the number of transrules and

6The most complex expression E4 consists of all operators in the alge-
bra, except PROJECT and UNNEST. PROJECT was not considered be-
cause it appeared in only one implrule and no transrules, and thus, would
not affect the size of the search space of abstract expressions. UNNEST
was not considered because it appeared in exactly one transrule and one
impl rule; including it in our queries would have increased the number of
parameters that could affect our run-times. We preferred to concentrate on
simple JOIN expressions.



C1

RET

C2

RET

JOIN

:
:
:

RET

Cn

JOIN

(a) E1

C1

RET

C2

RET

MAT MAT

JOIN

:
:
:

RET

Cn

MAT

JOIN

(b) E2

C1

RET

C2

RET

JOIN

:
:
:

RET

Cn

JOIN

SELECT

(c) E3

C1

RET

C2

RET

MAT MAT

JOIN

:
:
:

RET

Cn

MAT

JOIN

SELECT

(d) E4

Figure 6: Expressions used in generating queries for experiments

Query Indices? Expression
Rules matched

transrules impl rules
Q1 No

E1 3 3Q2 Yes
Q3 No

E2 8 4Q4 Yes
Q5 No

E3 9 5Q6 Yes
Q7 No

E4 16 7Q8 Yes

Table 3: Queries used in experiments

impl rules that are matched by each expression. These
are the rules whose left hand sides match a sub-expression.
However, not all the rules were necessarily applicable. For
instance, an implrule with an index scan would not apply
to Q3, although it might apply to Q4.

Queries Q1 through Q8 were optimized for increasing
numberN of JOINs. For a fixed number of JOINs in a query,
we varied the cardinalities of the base classes 5 times, each
time generating a query with different class properties, and
averaged the run-times over the 5 query instances to gener-
ate the per-query optimization time. Thus, each point in our
graphs represents the average of 5 queries. The run-times
were measured7 using the GNUtime command. All ex-
periments were performed on a lightly loaded DECstation
5000/200 running Ultrix 4.2.

The optimization times for each query for both approaches
(Prairie and Volcano) are shown in Figures 7(a) through 7(h).
The number of joins in each set of graphs was varied to a
maximum of 8, or until virtual memory was exhausted.

The first set of graphs (Figures 7(a) and 7(b)) shows the
performance of a simple relational-type query. The opti-
mization times are almost identical between Prairie and Vol-
cano, and the notable point is that the presence of an index
does not change the optimizer’s behavior, i.e., the two graphs
are identical. This arises because the optimizer algebra had
only two join algorithms (pointer join and hash join), neither
of which makes use of any indices.

The second set of graphs (Figures 7(c) and 7(d)) shows
the results of optimizing Q3 and Q4. Here, as in Figures 7(a)
and 7(b), the presence (or absence) of indices makes no dif-
ference. Both the Prairie and Volcano approaches have com-
parable run-times. The sharp jump in the graphs from 7-way
to 8-way joins is due to the fact that since all optimization is
done in main memory, dynamic memory allocation (caused
by malloc calls) results in a lot of thrashing at this point.

7Since the run-times were too small to be measured accurately with
time, each query instance was optimized 3000 times (in a loop) and the
total time was divided by 3000 to get the per-query optimization time.

We speculate that in systems with more virtual memory, the
graphs will be smoother.

The third and fourth sets of graphs in Figures 7(e) through
7(h) are optimizations of queries with a selection predicate.
In these cases, the presence of an index makes a difference if
the index is referenced in the selection predicate (as we de-
signed). Also, in these two figures, the performance of both
Prairie and Volcano was almost identical, except that Prairie
does slightly worse due to the larger number ofmalloc
calls that the P2V translator introduces. Also, note that we
could only go up to 3-way joins before virtual memory was
exhausted. As the available memory decreases, there is in-
creased thrashing (as shown by the sharp changes in slope in
the plots) resulting in a much slower optimization process.

In all four sets of plots, we can see that Prairie performs
with almost (less than5% variation) the same efficiency as
Volcano. In extreme cases, when memory is scarce, Prairie
runs more slowly (about15%) (e.g., Figure 7(f)), but we be-
lieve that this situation already represents a serious bottle-
neck for both Volcano and Prairie.

The results presented in this section show that Prairie opti-
mizers need not sacrifice efficiency for clarity, even for large
rule sets. More research and validation is necessary to verify
that Prairie is an efficient tool for optimizer specification.

5 Related research

The System R optimizer [11] was the most important devel-
opment in query optimization research. It was a cost-based
centralized relational query optimizer and introduced a va-
riety of key concepts like “interesting” expressions, cardi-
nality estimation using selectivity factors and dynamic pro-
gramming with pruning of search space. These concepts
continue to be important in query optimizer research.

The query optimizer in R� [3] works in essentially the
same way as that of System R, except that R� is a distributed
database system which introduces some subtle complica-



0 1 2 3 4 5 6 7 8
Number of joins

0

1000

2000

3000

C
P

U
 ti

m
e 

(m
ic

ro
se

co
nd

s)

Prairie
Volcano

(a) Query 1

0 1 2 3 4 5 6 7 8
Number of joins

0

1000

2000

3000

Prairie
Volcano

(b) Query 2

0 1 2 3 4 5 6 7 8
Number of joins

0

1000

2000

3000

4000

5000

C
P

U
 ti

m
e 

(m
ic

ro
se

co
nd

s)

Prairie
Volcano

(c) Query 3

0 1 2 3 4 5 6 7 8
Number of joins

0

1000

2000

3000

4000

5000

Prairie
Volcano

(d) Query 4

0 1 2 3
Number of joins

0

2000

4000

6000

8000

C
P

U
 ti

m
e 

(m
ic

ro
se

co
nd

s)

Prairie
Volcano

(e) Query 5

0 1 2 3
Number of joins

0

2000

4000

6000

8000

10000

Prairie
Volcano

(f) Query 6

0 1 2 3
Number of joins

0

2000

4000

6000

8000

10000

C
P

U
 ti

m
e 

(m
ic

ro
se

co
nd

s)

Prairie
Volcano

(g) Query 7

0 1 2 3
Number of joins

0

2000

4000

6000

8000

10000

Prairie
Volcano

(h) Query 8

Figure 7: Query optimization times for Q1 through Q8

tions in its query optimizer.
The Starburst query optimizer [10] uses rules for all de-

cisions that need to be taken by the query optimizer. The
rules are functional in nature and transform a given operator
tree into another. The rules are commonly those that reflect
relational calculus facts. In Starburst, the query rewriting
phase is different from the optimization phase. The rewrit-
ing phase transforms the query itself into equivalent operator
trees based on relational calculus rules. The plan optimiza-
tion phase selects algorithms for each operator in the opera-
tor tree that is obtained after rewriting. The disadvantage of
separating the query rewrite and the optimization phases is

that pruning of the search space is not possible during query
rewrite, since the rewrite phase is non-cost-based.

Freytag [6] describes a rule-based query optimizer simi-
lar to Starburst. The rules are based on LISP-like represen-
tations of access plans. The rules themselves are recursively
defined on smaller expressions (operator trees). Although
several expressions can contain a common sub-expression,
Freytag doesn’t consider the possibility of sharing. Expres-
sions are evaluated each time they are encountered. This is
obviously inefficient. In addition, as in Starburst, he doesn’t
consider the cost transformations inherent in any query op-
timizer; rules are syntactic transformation rules.

EXODUS [9] provides an optimizer generator which ac-
cepts a rule-based specification of the data model as input.
The optimizer generator compiles these rules, together with
pre-defined rules, to generate an optimizer for the particular
data model and set of operators. Unlike Freytag, the opti-
mizer generator for EXODUS allows for C code along with
definitions of new rules. This allows the database implemen-
tor the freedom to associate any action with a particular rule.
Operator trees in EXODUS are constructed bottom-up from
previously constructed trees.

The Volcano optimizer generator project [7] evolved from
the EXODUS project. It is different from all the above op-
timizers in one significant way: it is a top-down optimizer
compared with the bottom-up strategy of the others. Opera-
tor trees are optimized starting from the root while sub-trees
are not yet optimized. This leads to a constraint-driven gen-
eration of the search space. While this method results in a
tight control of the search space, it is unconventional and re-
quires careful attention on the part of the optimizer imple-
mentor to ensure that legal operator trees are not accidently
left out of the search space. We have used Volcano as our
back-end search engine.

6 Conclusion and future work

Current rule-based query optimizers do not provide a very
intuitive and conceptually streamlined framework to define
rules and actions. Our experiences with the Volcano opti-
mizer generator suggest that its model of rules and the ex-
pression of these rules is much more complicated and too
low-level than it needs to be. As a consequence, rule sets in
Volcano are fragile, hard to write, and debug. Similar prob-
lems may exist in other contemporary rule-based query op-
timizers.

We believe that rule-based query optimizers will be stan-
dard tools of future database systems. The pragmatic diffi-
culties of using existing rule-based optimizers led us to de-
velop Prairie, an extensible and structured algebraic frame-
work for specifying rules. Prairie is similar to existing op-
timizers in that it supports both transformation rules and



implementation rules. However, Prairie makes several im-
provements:

1. it offers a conceptuallymore streamlined model for rule
specification;

2. rules are encapsulated, there are no “hidden” operators
or “hidden” algorithms;

3. implementation hints (e.g., enforcers) are deduced au-
tomatically;

4. and it has efficient implementations.

We have explained how the first three points are impor-
tant for simplifying rule specifications and making rule sets
less brittle for extensibility. A consequence is that Prairie
rules are simpler and more robust than rules of existing op-
timizers (e.g., Volcano). We addressed the fourth point by
building a P2V pre-processor which uses sophisticated al-
gorithms to compose and compact a Prairie rule set into a
Volcano rule set. To demonstrate the scalability of our ap-
proach, we rewrote the TI Open OODB rule set as a Prairie
rule set, generated its Volcano counterpart, and showed that
the performance of the synthesized Volcano rule set closely
matches the hand-crafted Volcano rule set.

Our future work will concentrate on developing higher-
level abstractions using Prairie, including automatically gen-
erating Prairie rule sets, and combining multiple Prairie rule
sets to automatically generate efficient optimizers.

Acknowledgments

We wish to thank Texas Instruments, Inc. for making the
Open OODB source code available to us. Comments by Jos´e
Blakeley, Anne Ngu, Vivek Singhal, Thomas Woo and the
anonymous referees greatly improved the quality of the pa-
per.

References

[1] D. S. Batory. Building blocks of database management
systems. Technical Report TR–87–23, The University
of Texas at Austin, February 1988.

[2] José A. Blakeley, William J. McKenna, and Goetz
Graefe. Experiences building the Open OODB query
optimizer. InProceedings 1993 ACM SIGMOD Inter-
national Conference on Management of Data, pages
287–296, Washington, May 1993.

[3] Dean Daniels, Patricia Selinger, Laura Haas, Bruce
Lindsay, C. Mohan, Adrian Walker, and Paul Wilms.
An introduction to distributed query compilation in R�.

In Proceedings 2nd International Conference on Dis-
tributed Databases, pages 291–309, Berlin, Septem-
ber 1982.

[4] Dinesh Das and Don Batory. Prairie: An algebraic
framework for rule specification in query optimiz-
ers. In Proceedings of the Workshop on Database
Query Optimizer Generators and Rule-Based Optimiz-
ers, pages 139–154, Dallas, September 1993.

[5] Dinesh Das and Don Batory. Prairie: A rule speci-
fication framework for query optimizers. Technical
Report TR 94–16, The University of Texas at Austin,
May 1994.

[6] Johann Christoph Freytag. A rule-based view of query
optimization. InProceedings 1987 ACM SIGMOD
International Conference on Management of Data,
pages 173–180, San Francisco, May 1987.

[7] Goetz Graefe. Volcano, an extensible and parallel
query evaluation system. Technical Report CU–CS–
481–90, University of Colorado at Boulder, July 1990.

[8] Goetz Graefe. Query evaluation techniques for large
databases.ACM Computing Surveys, 25(2):73–170,
June 1993.

[9] Goetz Graefe and David J. DeWitt. The EXODUS
optimizer generator. InProceedings 1987 ACM SIG-
MOD International Conference on Management of
Data, pages 387–394, San Francisco, May 1987.

[10] L. M. Haas, J. C. Freytag, G. M. Lohman, and H. Pi-
rahesh. Extensible query processing in Starburst. Re-
search Report RJ 6610, IBM Almaden Research Cen-
ter, December 1988.

[11] P. G. Selinger, M. M. Astrahan, D. D. Chamberlin,
R. A. Lorie, and T. G. Price. Access path selection
in a relational database management system. InPro-
ceedings 1979 ACM SIGMOD International Confer-
ence on Management of Data, pages 23–34, Boston,
May 1979.

[12] Michael Stonebraker and Lawrence A. Rowe. The
design of Postgres. InProceedings 1986 ACM SIG-
MOD International Conference on Management of
Data, pages 340–355, Washington, May 1986.


