
Lift ing Transformational Models
of Product Lines: A Case Study

Abstract. Model driven development (MDD) of software product lines
(SPLs) merges two increasing important paradigms that synthesize programs
by transformation. MDD creates programs by transforming models, and
SPLs elaborate programs by applying transformations called features. In this
paper, we present the design and implementation of a transformational model
of a product line of scalar vector graphics and JavaScript applications. We
explain how we simplified our implementation by lifting selected features
and their compositions from our original product line (whose implementa-
tions were complex) to features and their compositions of another product
line (whose specifications were simple). We used operators to map higher-
level features and their compositions to their lower-level counterparts. Doing
so exposed commuting relationships among feature compositions in both
product lines that helped validate our model and implementation.

Keywords. transformation reuse, code generation, model composition, hgh-
level transformations, features, product-lines.

1 Introduction
Model driven development (MDD) offers the potential to automate manual, error prone,
and time intensive tasks and replace them with high level modeling and code genera-
tion. Modeling software has a number of advantages including strategically approach-
ing problems top-down, documenting software structure and behavior, and reducing the
time and cost of application development. Feature oriented programming (FOP) solves
a complementary problem of building families of similar programs (a.k.a. software
product lines (SPL)). Features are increments in program development and are transfor-
mations (i.e., functions that map a program to a more elaborate program). Both para-
digms naturally invite simple descriptive models of program construction that are pure-

Greg Freeman1, Don Batory2, and Greg Lavender2

1Dept. of Electrical and Computer Engineering
University of Texas at Austin
Austin, Texas 78712 U.S.A.
gfreeman@ece.utexas.edu

2Dept. of Computer Sciences
University of Texas at Austin
Austin, Texas 78712 U.S.A.

{batory,lavender}@cs.utexas.edu

dsb
Text Box
International Confernce on Model Transformations (ICMT) 2008

ly transformation-based (i.e., program designs are expressed as a composition of func-
tions) and their integration is synergistic [32].
Our paper makes two contributions. First, we explain how we designed and implement-
ed a product line of scalar vector graphics (SVG) and JavaScript applications. Our ap-
proach combines FOP and MDD in a way that allows us to use the language of elemen-
tary mathematics to express our approach in a straightforward and structured way, and
to illustrate how transformational models of SPLs can be defined and implemented.
Second, we explain how we simplified our effort by lifting selected features and their
compositions from our original product line (whose implementations were complex and
tedious) to features and their compositions to another product line (whose specifications
were simple). Mathematical expressions define transformation paths that combine fea-
ture composition and model translation, exposing commuting relationships among
transformations that helped validate our model and implementation. We begin with an
overview of the domain of our case study.

2 MapStats
MapStats is an application that displays population statistics for different US states us-
ing SVG and JavaScript [26]. Scalar vector graphics (SVG) is a World Wide Web Con-
sortium (W3C) language for describing two dimensional graphics and graphical appli-
cations. JavaScript is a scripting language that can be embedded within SVG to generate
dynamic content.
MapStats displays an interactive map of the US, as shown in Fig. 1. Users can alter the
map to selectively display rivers, lakes, relief, and population diagrams. A map naviga-
tor allows users to zoom and pan the primary map.

Fig. 1. MapStats SVG Case Study Application with all Features

When a user mouses over a state, vari-
ous population statistics for the state are
shown in text and graphical charts. De-
mographic attributes can be based on
sex, age, and race. Statistics with charts
can also be shown.
We refactored MapStats into a base ap-
plication and optional features to allow
a product line of variants to be created
by composing the base with desired fea-
tures. Fig. 2 shows a customized MapStats application that excludes statistical charts.
Feature diagrams are a standard way to express a product line [12][19]. A feature dia-
gram is an and-or tree, where terminals represent primitive features and non-terminals
are compound features. Fig. 3a shows a portion of the feature diagram for the Map-
Stats product line; Fig. 3b lists the actual names and descriptions of the features that
we created. (Not shown in Fig. 3 are the compatibility constraints among features, i.e.,
selecting one feature may require the selection or deselection other features [5][12]).
MapStats features include: each statistic that can be displayed, each map layer, each
map control, and run-time display options. For example, the Rivers feature adds rivers
to the map of US states and the RiversControl feature adds a control that lets the user
turn the river layer on and off at run time.

Again, Fig. 3a is a portion of the feature diagram for MapStats. We further decomposed
the terminal Charts feature of Fig. 3a into a product line of charts. Fig. 4a shows its
feature diagram and Fig. 4b lists the actual names and descriptions of the Charts fea-
tures that we created. Charts features used three data sets: age, ethnic, and Hispanic.
(The Hispanic data set was an artifact of the original application which we left intact).
We used features to specify chart types: bar, stacked-bar, and pie. The combination of

Fig. 2. A Customized Application

(a) (b)

Fig. 3. MapStats Feature Diagram and Feature Descriptions

Feature Description
Base The base application
USStates Displays map of US States
Legend Adds chart displays and sta-

tistics
Charts Adds charts
Households Displays the number of

households/state
Sex Displays the ratio of males

to females
MedianAge Displays the median age
Population Displays the total population
Navigator Adds a control to let user

pan and zoom the map
Coordinate Shows the xy coordinates of

the mouse
Relief Adds relief to the map
PopCircles Adds population circles to

indicate the population of
each state

Rivers Adds rivers to the map
Lakes Adds lakes to the map
ReliefControls Adds a control to turn relief

on and off
PopCirclesControls Adds a control to turn popu-

lation circles on and off
RiversControls Adds a control to turn rivers

on and off
LakesControls Adds a control to turn lakes

on and off

chart types and data sets specified whole charts. So if two data sets and two chart types
were specified, four charts would be created representing each combination.
Thus, we began our design in the standard way: we created a feature diagram for our
product line. The next step was to implement features as transformations.

3 A Transformation-Based Model of Product Lines
GenVoca is a compositional paradigm and methodology for defining product lines sole-
ly by transformations: it does not promote any particular implementation technology or
tool. Instead, it stresses that adding a feature to a program (however the program is rep-
resented) is a transformation that maps the original program to an extended program.
There is a long history of creating and implementing GenVoca product lines in different
domains (e.g. [7][8]). We review its key ideas and then explain our model of MapStats.

3.1 GenVoca
A GenVoca representation is a set of base programs and features (transformations) that
extend or elaborate programs. The GenVoca representation expresses which features
are used to compose a product line instance and the valid combinations of features in a
product line. An example model G={f,h,i,j} contains the following parts: Base pro-
grams are values (0-ary functions):

f // base program with feature f
h // base program with feature h

and unary functions (transformations) are features:
i•x // adds feature i to program x
j•x // adds feature j to program x

• denotes function composition. The design of a program is expression:
p1 = j•f // program p1 has features j and f
p2 = j•h // program p2 has features j and h
p3 = i•j•h // program p3 has features i, j, and h

Fig. 4. Chart Feature Model and Feature Descriptions

(a) (b) Feature Description
ChartBase An empty collection of charts
Pie Creates a pie chart for each

data set
Bar Creates a bar chart for each

data set
StackedBar Creates a stacked-bar chart for

each data set
Age Creates charts with age data

for each chart type, grouped by
age ranges

Under5 Adds under 5 age group
5-17 Adds 5-17 age group
18-21 Adds 18-21 age group
22-29 Adds 22-29 age group
30-39 Adds 30-39 age group
40-49 Adds 40-49 age group
50-64 Adds 50-64 age group
65UP Adds 65 and up age group
Ethnic Creates charts with ethnic data
Hispanic Adds Hispanic data
Asians Adds Asians data
AfricanAmerican Adds African American data
Whites Adds Whites data

The set of programs defined by a GenVoca model is its product line. Expression opti-
mization is program design optimization, and expression evaluation is program synthe-
sis [6][29]. Tools that validate feature compositions are discussed in [5][30]. Note that
features (transformations) are reusable: a feature can be used in the creation of many
programs in a product line.
A fundamental characteristic of features is that they “cross-cut” implementations of
base programs and other features. That is, when a feature is added to a program, new
classes can be added, new members can be added to existing classes, and existing meth-
ods can be modified. There is a host of technologies — including aspects, languages for
object-oriented collaborations, and rewrite rules in program transformation systems —
that can modularize and implement features as transformations. In MapStats, features
not only refine JavaScript programs by adding new classes, methods and statements, but
also new graphics elements can be added to SVG programs.
The relationship of a GenVoca model (i.e., 0-ary and unary functions) to a feature dia-
gram is straightforward: each terminal of a feature diagram represents either a base pro-
gram or a unary function. Compound features correspond to GenVoca expressions.

3.2 A Model of MapStats
A GenVoca model of MapStats has a single value (Base of Fig. 3); its unary functions
are the remaining features of Fig. 3 and the features of the Charts feature diagram:

MapStats = { Base, USStates, ... // features from Fig. 3
ChartBase, Pie, ... } // features from Fig. 4

To simplify subsequent discussions, instead of using the actual names of MapStats
features, let us use subscripted letters. M0 is the base program of MapStats, M1..Mn
are the (unary function) features of the MapStats feature diagram and C0...Cm are
(unary function) chart features:

MapStats = { M0 ... Mn, // features from Fig. 3
C0 ... Cm } // features from Fig. 4

An application A in the MapStats product line is an expression:
A = (C2•C1•C0)•M1•M0 (1)

That is, application A is constructed by elaborating base program M0 with a sequence of
M features followed by a sequence of C features, where subexpression (C2•C1•C0) syn-
thesizes the JavaScript that displays one or more charts. The original MapStats applica-
tion Orig, which is part of our product line, is synthesized by composing all features:

Orig = (Cm•...•C0)•Mn•...•M0
Each MapStats feature can encapsulate SVG and JavaScript refinements (crosscuts) of
the base application (M0).

3.3 Implementation Overview
Our implementation of MapStats was straightforward. Our base program (M0) was a
pair of SVG and JavaScript programs. Each MapStats feature (Mi) could modify the
SVG program, the JavaScript program, or both. We used the AHEAD Tool Suite (ATS)

to implement MapStats features [1], and in particular, the XAK tool as the composi-
tion operator.
XAK is a language to refine XML documents and is also a tool to compose XML doc-
uments with their refinements [3]. A XAK base document is an XML file containing
labeled variation points or join points to identify positions in a document where modi-
fications can take place. A XAK refinement (unary function) is an XML file that begins
with a refine element. Its children define a set of modifications, where each modifi-
cation pairs an XPath expression with an XML fragment. The XPath expression identi-
fies variation points or join points in an XML document, and the XML fragment is ap-
pended as a child node of the selected parent node(s). XAK can also prepend, replace,
and delete nodes as well as perform operations on attributes, sibling nodes, and text
nodes, however, our need was limited to child node appending.
To illustrate, Fig. 5a shows an elementary base document; Fig. 5b is a XAK refinement
that appends an XML tree as another child of <mynode>. In Aspect Oriented Program-
ming (AOP) terms, 'xr:at' node specifies a pointcut as an XPath expression, which in
this case looks for nodes called 'mynode'. The 'xr:append' node defines the advice ac-
tion and body. The action for this example is to append 'mychildnode' with a data at-
tribute of '2'. Applying the refinement to the base yields the composite document of
Fig. 5c.1

As SVG documents are XML documents, XAK provided the language and tool for
SVG document modification. However, ATS does not have a language to express Java-
Script refinements, and a tool to compose refinements with a base JavaScript program.
To circumvent this, we used XML to encode both JavaScript and JavaScript refine-
ments, and used XAK to compose them. The resulting JavaScript program was pro-
duced by stripping XML tags.

4 Lifting
It quickly became evident that MapStat chart features C0...Cm were extremely tedious
to write. We applied a key principle of MDD to save us effort: we created a high level

1. Aspects can be implemented by transformations; aspect compilers transform an input program
to a “woven” program where additional code has been appropriately inserted [23].

<mynode>
<mychildnode data="1">
</mychildnode>

</mynode>

<xr:refine xmlns:xr="http://
www.atarix.org/xmlRef ...
 <xr:at select="//mynode">
 <xr:append>
 <mychildnode data="2">
 </mychildnode>
 </xr:append>
 </xr:at>
</xr:refine>

(a) base

(b) refinement

(c) composed

<mynode>
 <mychildnode data="1">
 </mychildnode>
 <mychildnode data="2">
 </mychildnode>
</mynode>

Fig. 5. XAK base, refinement, and Composition

DSL to specify charts and their features. Fig. 6 shows a fragment of a chart spec. A chart
XML element defines a chart and an item defines an element in the chart. XML at-
tributes can change the type of chart (pie, bar, or stacked-bar) as well as the names,
colors, and field attribute codes for chart items.

Given chart specs, it is easy to write chart features (transformations). For example, a
XAK refinement of Fig. 6 that appends the age data item for 18-21 is shown in Fig. 7.
The underlined node defines a pointcut (XPath expression) that identifies all charts with
the attribute @datatype='age-population'; such a chart would have the item
AGE_18_21 appended to it. (In AOP-speak, this advice is homogenous [11]).

We wrote XSLT transformations to map a chart spec
(or chart spec refinement) to its corresponding Map-
Stat chart feature implementation (i.e., a JavaS-
cript refinement). XSLT was chosen for the transla-
tion step since our models were XML-based. The
image that is represented by the composite chart
(Fig. 6 composed with Fig. 7) is shown in Fig. 8
where all three age groups are displayed. In general,
we found a chart DSL specifications to be 4-10 times shorter than their generated Java-
Script counterparts.
By lifting (raising) the level of abstraction of chart feature implementations, in effect
what we did was create another product line — a product line of charts. That is, we lifted
the chart features C0...Cm of MapStats into a separate GenVoca model called
Charts:

Charts = { S0 ... Sm }

where S0 was the base chart spec, and each Charts feature Si was a chart spec refine-
ment. Charts features are in 1-to-1 correspondence with their MapStats chart fea-
tures. XSLT transformations τ and τ’ defined this correspondence:

C0 = τ(S0) (2)

Ci = τ’(Si) // for all i=1..m (3)

Fig. 6. A Chart Spec Fragment

<chart data-type=“age-population” type=“pieChart” ...
<item attr=“AGE_30_39” color=“lightgreen” name= ...
<item attr=“AGE_22_29” color=“lightcyan” name=...

</chart>

<xr:refine xmlns:xr="http://www.atarix.org/xmlRef ...
<xr:at select="//chart[@data-type='age-population' ...

<xr:append>
<item attr="AGE_18_21" color="cyan" ...

</xr:append>
</xr:at>

</xr:refine>

Fig. 7. Example Chart Feature

Fig. 8. Pie Chart with
Three Age Categories

τ and τ’ have very similar implementations: their difference is due to the type of their
argument: τ maps a Charts value to a MapStats function (i.e., JavaScript refinement);
τ’ maps a Charts function to a MapStats function.
Note that an operator maps an input function to an output function. τ’ is an operator
that maps a Charts refinement transformation to a MapStats refinement transforma-
tion. τ maps a Charts 0-ary function S0 to the MapStats unary function C0. Operators
τ and τ’ have a basic commuting relationship which we explain in Section 6.
Even though we now used lifted features, the way we specified a target MapStats ap-
plication changed minimally. We still used the original feature diagram of MapStats to
specify a MapStats application and to create its GenVoca expression (which starts
with the base program M0 and applying MapStats features to elaborate it). But instead
of implementing chart features C0...Cm directly in terms of JavaScript refinements, we
used chart specs and chart refinements S0...Sm. To synthesize a MapStats applica-
tion A (equation (1)), we rewrote its expression using (2) and (3):

A = (C2•C1•C0)•M1•M0 // original MapStats expr
= τ’(S2)•τ’(S1)•τ(S0)•M1•M0 // rewrite (4)

and evaluated (4) to synthesize A. We call the raising of features and their composi-
tions from one product line to another lifting. Lifting can be applied to any GenVoca
product line. Transformations (like τ and τ’) are used to define maps between unlifted
features and their lifted counterparts. Constraints that govern the composition of origi-
nal MapStats features remain unchanged.

5 Implementation Details
In this section, we illustrate some of the features and mappings discussed earlier, in or-
der to make our discussions concrete.
A chart spec defines one or more charts. Each chart is implemented by a unique JavaS-
cript class. For example, a pie chart that displays age information that includes the range
of 18-21 is defined as a JavaScript class (below named agePie) that has a method
(buildData) that populates this particular data set:

function agePie() { // JavaScript class definition
...

this.buildData = function() { // buildData method
...
this.chartAttrArray.push("AGE_18_21");
this.chartNameArray.push("18-21");
this.chartColorArray.push("cyan");
...

}
}

At run-time, a JavaScript object is created for each chart, populated with data, and then
displayed:

var agepie = new agePie(); // instantiate object
agepie.buildData(); // populate data
agepie.showData(); // display

To see how this JavaScript class was synthesized, let’s look at a Charts feature expres-
sion that could generate it:

AGE_18_21•Age•Pie•ChartBase

That is, the chart spec begins with ChartBase, it is refined to a pie chart that displays
age information (Age•Pie), and then the age category 18-21 is added. Internally, our
tools generate unique names for each chart. The manufactured name given to the chart
of our example is “agePie”.
Let’s now focus on the AGE_18_21 feature. The XAK refinement that defines it was
depicted in Fig. 7, which we reproduce below:

<xr:refine xmlns:xr="http://www.atarix.org/xmlRef ...
<xr:at select="//chart[@data-type='age-population' ...
<xr:append>

<item attr="AGE_18_21" color="cyan" ...
</xr:append>

</xr:at>
</xr:refine>

This transformation adds the age category 18-21 to all charts of a charts spec that dis-
play age information. In our example, there is only one chart, agePie. Note that the un-
derlined code denotes the pointcut (XPath expression) that captures the relevant charts
to modify.
Let’s see the result of transforming the AGE_18_21 Charts feature into its correspond-
ing MapStats feature (denoted AGE_18_21mapstats). The τ’ operator maps
AGE_18_21 to AGE_18_21mapstats, where a fragment of AGE_18_21mapstats is:

<xr:refine ... >
<xr:at select="//function[@data-type='age-population']

[@parentId='ChartArea2'][@name='buildData']"...>
<xr:append>

<statement>
this.chartAttrArray.push("AGE_18_21");
this.chartNameArray.push("18-21");
this.chartColorArray.push("cyan");

</statement>
</xr:append>

</xr:at>
</xr:refine> (5)

That is, the above XAK refinement adds the JavaScript code in italic red to the
buildData method of each JavaScript class of a chart that displays age information.
Note that the underlined code denotes the pointcut (XPath expression) that captures the
relevant buildData methods. So the translation of AGE_18_21 to
AGE_18_21mapstats maps a pointcut (XPath expression) whose joinpoints are in chart
specs to a pointcut whose joinpoints are in JavaScript programs. Also, the addition of a
chart element is mapped to the addition of statements in the JavaScript method build-
Data.
As mentioned earlier, operators τ and τ’ are implemented in XSLT. They look for pat-
terns in charts specifications and instantiate JavaScript code templates. For example,
when a 'chart' element is encountered in a chart spec, a corresponding JavaScript class

is added with the methods buildData and showData. When an 'item' element is
found in a chart spec, statements are added to an appropriate JavaScript method. As an
example, a fragment of the XSLT definition of τ’ is shown below:

<xsl:template match="xr:at/xr:append/c:item">
... map Charts pointcut to MapStats pointcut...

<xr:at select="{$path}">
<xr:append>

<xsl:variable name="attr" select="@attr"/>
<xsl:variable name="color" select="@color"/>
<xsl:variable name="name" select="@name"/>
<statement>
this.chartAttrArray.push("<xsl:value-of select="$attr"/>");
this.chartNameArray.push("<xsl:value-of select="$name"/>");
this.chartColorArray.push("<xsl:value-of select="$color"/>");
</statement>

</xr:append>
</xr:at>

</xsl:template> (6)

Note that the code in italic red is a template whose parameters are provided by the
input to τ’. In our example, the AGE_18_21 input to τ’assigns the value AGE_18_21
to attr,18-21 to name, and cyan to color. The italic red code of (5) is gener-
ated by instantiating the τ’ template with these parameters. By writing a general trans-
formation τ’ once and reusing it (to translate other Charts features that were differen-
tiated only by their parameters), saved us considerable effort as mentioned earlier. No-
tice also that part of τ’ is to map the pointcut of a charts spec to a corresponding
pointcut that captures the corresponding JavaScript methods. This mapping is done via
string manipulation, which we elide the details, and indicate by underlined code in (6).

6 Commuting Relationships
Lifting defines a commuting relationship between Charts features and MapStats fea-
tures that relate τ and τ’ and that offers us yet another way to synthesize MapStats ap-
plications. Instead of separately translating each Charts feature Si to its Ci counterpart
as we did in (4), we could synthesize a composite chart spec S (e.g., S=S2•S1•S0) by
starting with a base spec S0, and add features S1 and S2, and then transform S into its
corresponding JavaScript implementation. That is, another way to synthesize applica-
tion A is:

A = τ(S2•S1•S0)•M1•M0 (7)

The equivalence of (4) and (7) is due to the commuting relationship:
τ(Si•S) = τ’(Si)•τ(S) (8)

where S is a Charts expression and Si is a Charts feature. (8) says composing
Charts features and translating to a MapStats representation equals translating each
Chart feature separately and composing. The value of commuting relationships is that
they define properties of valid implementations of transformational models of product
lines. The correctness of a model and tools is demonstrated when its commuting rela-
tionships are demonstrated. Commuting relationships provide a simple means to ex-

press and compare different methods of applying transformations and transformation
of transformations (i.e., operators).

Note: a general name for (8) is a homomorphism: given two sets X and Y and a sin-
gle binary operation on them, a homomorphism is a map Φ:X→Y such that:

Φ(u⊗v) = Φ(u)⊕Φ(v) (9)

where ⊗ is the operation on X and ⊕ is the operation on Y. In MapStats, X is the
Charts model and Y is the MapStats model; ⊗ and ⊕ both are •. Homomorphisms
define how expressions in one algebra are translated to expressions in another, i.e.,
(8)defines how Charts expressions are mapped to MapStats expressions.
Note: what is the justification for (8)? Experimentally we have observed that com-
positions of features and derivations commute: when they do not, we find bugs in
our transformation or tool chains. The commuting of features and derivations is an
axiom of Feature-Oriented MDD (FOMDD) [31][32], which our work on Map-
Stats is an example case study.

As we do not have formal models of Charts and MapStats, we do not have a proof of
(8) for all Charts and MapStats features. Instead, we tested the correctness of (8).
We synthesized multiple applications in two different ways (i.e., (4) and (7)) and then
visually compared and executed both programs since (4) and (7) did not produce syn-
tactically equivalent code. Graphical SVG applications with multiple transformation
outputs allowed side-by-side visual comparison of many test cases. Other tests were
performed with randomly selected features to ensure that each properly transformed the
appropriately selected features. Although more sophisticated and thorough testing was
possible (e.g., [24]), manual comparisons were sufficient for our goals.
Commuting relationships not only define properties that can be used to prove or test
model and implementation correctness, but sometime they have additional benefits. We
have observed in other domains that program synthesis can be substantially more effi-
cient using one synthesis path (e.g., (4) or (7)) than another. For example, exploiting
commuting relationships led to a 2-fold speed-up in synthesizing portlets [32], and over
a factor of 10 in synthesizing test programs using Alloy [22]. Although we did observe
trade-offs in building MapStats applications, they were not particularly significant. The
utility of commuting relationships in MapStats was restricted to model and transforma-
tion validation.

7 Related Work
FOP and MDD paradigms have their historic roots in Lisp, which promoted the idea that
programs are values (or “programs as data”) and transformations are functions that map
values to values.
Combining MDD and product line transformations is not new [2][4][13][17][18]
[28][31][32]. Trujillo et al. used XAK and AHEAD to build web portlets from state
chart models [32]. Our work builds upon theirs and provides further evidence that trans-
formation-based models of product lines (that represent both features and model trans-
lations as transformations) expresses a general approach to software development. Al-

so, our use of lifting illustrates how basic concepts in elementary mathematics (e.g., op-
erators and homomorphisms) lie at the core of program-development-by-
transformations. The use of elementary mathematics as a language to express our de-
sign allows us to make this connection directly.
Trujillo et al. also apply model transformations that aid in the building of FOMDD (Fea-
ture Oriented Model Driven Development) applications, which include multiple trans-
formation steps and different paths to generate an application [31].
Avila-García and others used transformations to apply features to models [4]. Their
work focused on transformations of transformations that composed features for families
of UML diagrams. Our work instead focuses on transforming high level models into ex-
ecutable applications.
Gonzalez-Baixauli and others have proposed using MDD to help product line engineers
determine application variation points, and to assess the feasibility of automating soft-
ware product line development with MDD [17]. Work by Deelstra and others have also
used MDD as a means of identifying variations points within a product line [15]. Both
papers infer that a feature could use Platform Independent Model (PIM) to Platform
Specific Model (PSM) transformations to implement features that specify different plat-
forms and implementation technologies.
Czarnecki and Helsen combined features and MDD in a different way by surveying dif-
ferent types of transformation methods and analyzing the various features of these
methods [14]. Other prior work defined a taxonomy of different types of transforma-
tions and classified them as endogenous and exogenous [25]. Feature composition is an
endogenous transformation, which uses the same source and target model representa-
tions. The τ and τ’ transformations are exogenous, which use different source and tar-
get model (XML schema) representations.
Czarnecki and Antkiewicz connect features and behavioral models using model tem-
plates [13]. Model elements are tagged with predicates that reference features; the ele-
ments appear in a model instance when selected features satisfy the predicate. This is
an alternative approach to artifact development in product lines; our approach stresses
the modularization of features and their connection to transformations.
Kurtev uses XML transformations to develop XML applications [21]. The design of
web applications includes functionality, content, navigation and presentation compo-
nents.
Many results in MDD have laid a foundation for model transformations [9][10][20].
Even though this case study covers a specific domain and does not use UML model rep-
resentations, model representations serve the same purpose of abstracting representa-
tions at different levels of detail. The Charts model representation is a type of PIM and
the SVG and JavaScript model representations are types of PSMs.

8 Conclusions
We presented a product line of SVG+JavaScript applications that was defined and im-
plemented solely in terms of transformations. Features of a product line were imple-

mented as transformations, and programs were specified as compositions of transfor-
mations. When we discovered that certain features were tedious to implement, we ap-
plied a basic principle of MDD to “lift” low-level implementations to DSL
specifications and wrote transformations (operators) to map DSL specs (and their re-
finements) back to their SVG+JavaScript counterparts, ultimately saving effort.
What makes lifting interesting is its product line setting: we lifted selected features and
their compositions from our original product line (MapStats) to features and compo-
sitions of another product line (Charts). We defined how features (transformations) in
one product line could be transformed into features (transformations) of another via op-
erators (τ and τ’). Doing so exposed commuting relationships between compositions of
functions (i.e., tool chains and features). Such commuting relationships define proper-
ties of transformational models of program development; proving or validating (via
testing) that these properties hold helps demonstrate model correctness. Our case study
illustrated these ideas.
A primary reason why we were able to recognize commuting relationships and explain
how features of one product line were related to another is that we used the language of
elementary mathematics to express transformation-based designs of programs. Doing
so enabled us to express our ideas in a straightforward and structured way and at the
same time compactly illustrate how transformational models of software product lines
can be defined, implemented, and explained.
Acknowledgements. We thank Prof. Hartmut Ehrig (University of Berlin), and Salva-
dor Trujillo (University of the Basque Country) for their helpful comments on an earlier
draft. We also thank the anonymous referees for their helpful insights. We gratefully ac-
knowledge the support of the National Science Foundation under Science of Design
Grants #CCF-0438786 and #CCF-0724979 to accomplish this work.

9 References
[1] AHEAD Tool Suite, www.cs.utexas.edu/users/schwartz/index.html

[2] Anastaspoulos, M., et al.: Optimizing Model Driven Development by Deriving Code Gen-
eration Patterns from Product Line Architectures. NetObject Days (2005)

[3] Anfurrutia, F. I., Diaz O., Trujillo, S.: On the Refinement of XML. ICWE (2007)
[4] Avila-García, O., García A.E., Redbull, E.V.S.: Using Software Product Lines to Manage

Model Families in Model-Driven Engineering. SAC (2007)
[5] Batory, D.: Feature Models, Grammars, and Propositional Formulas. SPLC (2005)
[6] Batory, D., Robertson, E., Chen, G., Wang, T.: Design Wizards and Visual Programming

Environments for Genvoca Generators. IEEE TSE (2000)
[7] Batory, D., O´Malley, S.: The Design and Implementation of Hierarchical Software Sys-

tems with Reusable Components. ACM TOSEM (1992)
[8] Batory, D., Sarvela, J.N., Rauschmayer, A.: Scaling Step Wise Refinement. IEEE TSE

(2004)
[9] Bezivin, J.: Model Driven Engineering: Principles, Scope, Deployment, and Applicability.

GTTSE (2005)
[10] Booch, G., Brown, A., Iyengar, S., Rumbaugh, J., Selic, B.: The IBM MDA Manifesto.

The MDA Journal, (2004)

[11] Colyer, A., Rashid, A., Blair, G.: On the Separation of Concerns in Program Families.
Technical Report COMP-001-2004, Computing Department, Lancaster University (2004)

[12] Czarnecki, K., Eisenecker, U.: Generative Programming Methods, Tools, and Applica-
tions. Addison-Wesley, Boston, MA (2000)

[13] Czarnecki, K., Antkiewicz, M.: Mapping Features to Models: A Template Approach Based
on Superimposed Variants. GPCE (2005)

[14] Czarnecki, K., Helsen, S.: Feature-based Survey of Model Transformation Approaches.
IBM Systems Journal, Vol. 45#3 (2006)

[15] Deelstra, S., Sinnema, M., van Gurp, J., Bosch, J.: Model Driven Architecture as Approach
to Manage Variability in Software Product Families. MDAFA Workshop (2003)

[16] Ehrig, H., Ehrig, K., Ermel, C., Hermann, F.: Taentzer, G.. Information Preserving Bidi-
rectional Model Transformations. FASE (2007)

[17] Gonzlez-Baixauli, B., Laguna, M.A., Crespo, Y.: “Product Lines, Features, and MDD”.
EWMT Workshop (2005)

[18] Gray, J., et al.: Model Driven Program Transformation of a Large Avionics Framework.
GPCE (2004)

[19] Kang, K., Cohen, S., Hess, J., Nowak, W., Peterson, S.: Feature-Oriented Domain Analysis
(FODA) Feasibility Study. Technical Report, CMU/SEI-90TR-21 (1990)

[20] Kleppe, A. , Warmer, J., Bast, W.: MDA Explained: The Model Driven Architecture: Prac-
tice and Promise. Addison-Wesley (2003)

[21] Kurtev, I., van den Berg, K.: Building Adaptable and Reusable XML Applications with
Model Transformations. WWW (2005)

[22] Khurshid, S., Uzuncaova, E., Garcia, D., Batory, D.: Testing Software Product Lines Us-
ing Incremental Test Generation. Submitted.

[23] Lopez-Herrejon, R., Batory, D., and Lengauer, C.: A Disciplined Approach to Aspect
Composition. PEPM (2006)

[24] Memon, A.M., Pollack, M.E., Soffa, M.L.: Using a Goal-driven Approach to Generate
Test Cases for GUIs. ICSE (1999)

[25] Mens, T., Czarnecki, K., van Gorp, P.: A Taxonomy of Model Transformations. GraMoT
(2005)

[26] Neuman, A.: US Population 2000: Ethnic Structure and Age Distribution, http://
www.carto.net/papers/svg/samples

[27] Sabetzadeh, M., Easterbrook, S. M.: Analysis of Inconsistency in Graph-Based View-
points: A Category-Theoretic Approach. ASE (2003)

[28] Schmidt, D., Nechypurenko, A., Wuchner, E.: MDD for Software Product Lines: Fact or
Fiction. Models, Workshop 8 at MODELS (2005)

[29] Selinger, P., et al.: Access Path Selection in a Relational Database System. ACM SIGMOD
(1979)

[30] Thaker, S., Batory, D., Kitchin, D., Cook, W.: Safe Composition of Product Lines. GPCE
(2007)

[31] Trujillo, S., Azanza, W., Diaz, O.: Generative Metaprogramming .GPCE (2007)
[32] Trujillo, S., Batory, D., Diaz, O.: Feature Oriented Model Driven Development: A Case

Study for Portlets. ICSE (2007)

	Lifting Transformational Models of Product Lines: A Case Study

