
Software Components in a Data Structure Precompiler1

 Marty Sirkin, Don Batory, Vivek Singhal
Department of Computer Sciences
The University of Texas at Austin

Austin, Texas 78712
{marty, batory, singhal}@cs.utexas.edu

Abstract

 PREDATOR is a data structure precompiler that gen-
erates efficient code for maintaining and querying com-
plex data structures. It embodies a novel component reuse
technology that transcends traditional generic data types.
In this paper, we explain the concepts of our work and our
prototype system. We show how complex data structures
can be specified as compositions of software building
blocks, and present performance results that compare
PREDATOR output to hand-optimized programs.

1: Introduction

Designing, writing, and debugging programs is a time-
intensive task. Of the different aspects of writing programs
of moderate to large complexity, implementing data struc-
tures often consumes a disproportionally large fraction of
a programmer's time. A data structure compiler is a suite
of tools that reduces the burden of programming data
structures. There have been several attempts to produce
such compilers. Three examples are [10, 19, 25]. In gen-
eral, however, data structure compilers have not achieved
a broad level of acceptance. The reasons include inade-
quate performance, unnecessary complexity, host lan-
guage restrictions, and limited scope.

Eliminating the drudgery of programming data struc-
tures is clearly an important problem. We believe the solu-
tion rests on a software component technology that is
defined by a combination of concepts from databases,
compilers, transformation systems, and domain modelling.
While none of these concepts are new, we are presenting a
unique combination that yields a technology for assem-
bling complex data structures from plug-compatible com-
ponents.

Two goals of a data structure compiler should be:
1. To generate efficient code, i.e. within 10% of highly

tuned and hand optimized code.
2. To allow programs to be easily written in a data

structure independent manner. This would allow
data structures to be changed without modifying the
application program.

When programs employ component technologies, there
are two distinct phases of software development: compo-
nent creation and application writing. Component creation
involves the definition of the interface and the implemen-
tation of software components. In the application writing
phase, components are combined with customized (appli-
cation-specific) code to form the completed program.
Occasionally, a programmer is forced to implement new
components, thus mixing the two phases. Our research
aims to simplify component creation and reduce the neces-
sity of implementing new components. This division of
specification and tools from application programming is
not unique [26, 23]. Our research concentrates more on
programmer productivity and code efficiency than on pro-
gram evolution and maintenance.

Our project is called PREDATOR, which is a (mis-
spelled) acronym for PREcompiler for DAta sTRuctures.
In this paper, we motivate the need for PREDATOR by
exposing important limitations of traditional parameter-
ized types, the central concept upon which all existing data
structure compilers are built (to our knowledge). We then
discuss the required abstractions and how they overcome
the limitations that we identify.

2: Traditional Parameterized Types

Existing data structure compilers accomplish software
reuse through traditional parameterized types (TPTs), e.g.,
C++ templates [24] and ADA generics [13]. A TPT is a
generic type whose parametric instantiations define a fam-
ily of related types. The classic example is the array, which
can be instantiated to produce arrays of integers, arrays of

1. This research supported in part by grants from Texas Instruments,
IBM, and Digital Equipment Corporation.

dsb
Text Box
International Conference on Software Engineering (ICSE) (Baltimore, MD), May 1993, pages 437-446

strings, etc. TPTs can be instantiated by primitive types or
by other instantiated TPTs. For example, Figure 1 depicts
a linked list TPT that has been instantiated with a binary
tree TPT, where each node of the list is the root of a dis-
tinct binary tree.

Figure 1: Traditional parameterized type: a list of
trees

There is no consensus on how software reuse can be
achieved [5]. In our opinion, there are three requirements
for successful software reuse. First, software components
must be designed to be plug-compatible and interchange-
able. Second, programming languages should provide
appropriate features for implementing such designs. And
third, these designs and programming language features
should not incur exorbitant performance penalties.

TPTs and their conventional use are insufficient to
achieve these requirements. The following discussion
explains why:

1. Difficulty of specialization (conceptual limita-
tion). A TPT offers operations that its author
believes are adequate for a wide variety of applica-
tions. A queue TPT, for example, would likely pro-
vide the operations enqueue, dequeue, is_empty and
is_full. However, in the context of a specific applica-
tion, it occurs frequently that additional operations,
unforeseen by the TPT author, are needed. Suppose
that it is necessary to delete items located in the inte-
rior of a queue. Using only the given operations, one
must dequeue each item, check to see if it is the
requested item, and enqueue it if it is not. Typically
the end of the queue is determined by either know-
ing the size of the queue or by using an end-of-
queue marker. Clearly this is both inefficient and
awkward. The situation is no better for stacks.2

2. While this example seems contrived, it really is not. A supermarket
checkout line is a queue. A common event is for a customer to leave the
middle of a queue when he realizes he needs another item.

Head of list

Specialization is the process of modifying a type
to provide a customized interface for an application.
Specialization of TPTs poses some difficult prob-
lems [6, 9, 20, 24]:
• Attempting to provide an exhaustive TPT inter-

face actually discourages reuse. Programmers are
intimidated by complex interfaces and would
rather design their own.

• Given TPT source code, a programmer could
attempt to integrate his own changes. However,
this essentially nullifies the productivity advan-
tages of TPTs, as programmers must now under-
stand someone else’s code in order to write and
debug their extensions.

• New operations can be defined in terms of exist-
ing operations. However, it may not be possible
to efficiently implement new operations. (Recall
the queue example).
These problems force the application writer to

choose from these unattractive alternatives: not
using TPTs at all, modifying TPT source code, or
accepting performance inefficiencies. Even with the
addition of object-oriented inheritance, these prob-
lems remain.

2. Complex compositions (conceptual limitation). It
is widely believed that TPTs are the appropriate
abstraction for encapsulating primitive data struc-
tures [6, 17, 18]. More complex structures, such as
the one depicted in Figure 1, are created through
TPT compositions.

Software component libraries are unlikely to pro-
vide implementations for many data structures used
in practice; rather, the idea is to form complex struc-
tures through composition of available TPTs. A sim-
ple example is a data structure that simultaneously
links its elements onto a binary tree (to maintain one
ordering of the elements) and onto a linked list (to
maintain a second ordering). Figure 2 illustrates this
structure. Each node contains pointers for both a
binary tree and a linked list. Note that the root of the
tree need not be the same as the head of the list.

Figure 2: A binary tree/linked list data structure

Tree pointers

List pointers

Root of tree

Head of list

It is important to recognize that the structure in
Figure 2 cannot be created by a parametric instantia-
tion of the tree and linked list TPTs; a list of binary
trees (Figure 1) and a binary tree of lists are defi-
nitely not equivalent to the structure of Figure 2.

The structure of Figure 2 can be created using
approaches such as composing TPTs via multiple
inheritance. However, application programmers
must write additional “glue” code to achieve the cor-
rect semantics in the resulting “composite” TPT.
Other languages such as SELF [8] provide more
sophisticated inheritance mechanisms, but still suf-
fer from generality (lack of knowledge about the
data structures domain) and hence are not particu-
larly efficient in creating merged, efficient compo-
nents. Mapping TPTs [6] can be used to simulate
(but not match identically) the structure of Figure 2,
but “glue” code still needs to be written. Moreover,
the resulting composite TPT incurs an additional
performance penalty because mapping TPTs intro-
duce extra pointer indirections.

Component composition is a basic operation of a
data structure compiler. As stated earlier, a funda-
mental goal of data structure compilers is to auto-
matically generate the “glue” code without incurring
performance penalties. Thus, we feel that TPTs
without compilation and domain-specific knowledge
are not sufficient to define complex data structures.

3. Type transformations (conceptual limitation).
Data structures can be modelled as mappings or type
transformations, where an abstract type, devoid of
any data structure implementation details, is mapped
to a concrete type where details are visible. For
example, a linked list TPT adds previous and
next pointers to the records that it stores.

Inheritance is a simple but common example of
such transformations. That is, inheritance can add
new fields and new operations to data types. How-
ever, there are many other type transformations that
cannot be expressed in terms of field or operation
additions. For example, a compression transforma-
tion maps an abstract record type to a completely
different type in which the fields of the original
record type are no longer identifiable. A partitioning
transformation, which divides records into (say) 100
byte segments, may not partition abstract records
cleanly along field boundaries. Only after the
abstract record is reassembled from its partitions can
the original fields (and their contents) be accessible.
These are only two of many possible type transfor-
mations that occur in data structures. Because TPTs
rely on mechanisms such as inheritance to transform

types, TPTs cannot express certain type transforma-
tions, and hence cannot express important classes of
data structures.

4. Field parameters (conceptual limitation). To our
knowledge, parameterized types of existing pro-
gramming languages may only be instantiated with
constants, functions, and data types. Certain data
structures may require TPTs to have fields as param-
eters. An ordered linked list TPT, for example,
would be parameterized by the record type to be
stored, and the field within that record type on which
the list elements are to be sorted. While the concept
of TPTs does not preclude field parameters, the need
for field parameters has not been fully appreciated.

5. Ad hoc interfaces (design limitation). Most TPTs
have unique interfaces. This means that the TPT
interface for linked lists is (typically) different from
that of arrays, binary trees, etc. When an application
program is written using a specific TPT, it is difficult
to change the underlying data structure (TPT) with-
out triggering a substantial rewrite.

It is often the case that the best choice of data
structures for an application can only be made late in
the development process. If TPTs have unique inter-
faces, then it may be too expensive to retrofit a better
suited data structure into existing code. A basic goal
of a data structure compiler is to support the inter-
changeability of data structures without impacting
program correctness. This can be accomplished by
carefully designing standardized interfaces for
TPTs. Poorly designed TPTs or TPTs with incompat-
ible interfaces make the task of a data structure com-
piler difficult, if not impossible. In practice, we note
that existing component libraries [6, 7, 16] tend not
to provide the same interface for all components.

6. Code efficiency (implementation limitation). A
standard technique of implementing TPTs is to com-
pile the code for each TPT component separately,
where references and manipulations of generic
objects are performed via pointers [13]. This intro-
duces unnecessary runtime overhead.

Another technique of TPT implementation is
macro expansion [24]. Macro expansion by itself is
not always sufficient to provide efficient code,
because context information is not considered when
optimizing the code which results from expanding
TPT compositions.

In current data structure compilers, TPTs provide a use-
ful framework for describing reusable software compo-
nents. However, for the reasons outlined above, TPTs have
conceptual, design, and implementation barriers which
preclude the creation of practical data structure compilers.

3: Overcoming TPT Limitations

As mentioned in the introduction, our research is based
on a combination of ideas from databases, compilers,
transformation systems, and domain modelling. This sec-
tion describes the basic ideas underlying our work and
explains how they overcome the TPT limitations previ-
ously identified.

3.1: Design Limitation: Ad Hoc Interfaces

Many common data structures are implementations of a
rather simple abstraction: a container of objects; binary
trees, lists, and arrays are examples. The choice of con-
tainer implementation is often made for performance rea-
sons. There are many possible interfaces to containers;
most expose the container’s implementation. However,
research on relational databases and persistent object
stores have identified interfaces that do not expose a con-
tainer’s implementation [14, 15]. Such interfaces are ideal
for use in data structure compilers because they promote
interchangeable data structure components.3

To simplify the design of our data structure compiler,
we have carefully selected an interface that is sufficiently
simple that could be shared by all data structures. Any data
structures which provide additional functionality can pro-
vide more functions to the interface, if need be. This inter-
face does not expose data structure implementations, and
thus permits one component to be swapped with another.
Exchanging data structure components makes tuning of
application programs much easier.

Consider the example of Figure 2. Suppose the records
that are stored in this container are of type customer. In
PREDATOR syntax, this data structure would be declared
as:

CONTAINER tree_list ON ELEMENT customer
= bintree(list(malloc));

The type tree_list stores customer records in a
container that is defined by the composition of the bin-
tree, list, and malloc data structures. customer
records are stored in a binary tree. The nodes of the binary
tree are chained together on a linked list, and list nodes are
dynamically allocated on a heap. The abstract transforma-
tion model that underlies components and their composi-
tion is discussed in Section 3.3.

3. Note that typical database systems offer multiple container implemen-
tations which can be either selected by users or chosen at runtime by
query optimizers. Databases are classical examples of systems that have
successfully exploited plug-compatible implementations of containers
[4].

Our container interface largely reflects work on embed-
ded relational languages and persistent languages. Itera-
tions over subsets of objects in a container are
accomplished through the use of iterators or cursors [13,
14, 1, 6]. Cursors provide SQL-like select capabilities
where programmers declaratively specify via predicates
the records (or objects) of a container that they want to
retrieve [11]. Table 1 lists some of the operations of our
container interface.

In PREDATOR, cursors and containers are first-class
objects. They may be saved in variables, passed to func-
tions, and stored in containers.

3.2: Conceptual Limitation: Difficulty of
Specialization

The interface described in Table 1 was the result of a
domain modelling [21] effort. This interface reflects the
operations that can be performed on all data structures.
Moreover, the generality and practicality of this interface
has been substantiated by twenty five years of research in
databases, because our container interface is virtually
identical to the programming language interface for rela-
tions in relational databases [14].

We stated in Section 2 that TPT authors cannot envi-
sion all specializations. Yet, the interface that we have
chosen has historically shown to be general enough to per-
mit the definition of any other container interface. The
programming language Pascal/R [22], for example,
allowed users to customize the interface to relations by let-
ting them place their own abstract data type (ADT) inter-
faces on top of relations and to implement ADT operations
as calls to relational operators. The power of relations
(containers) still remained, but a customized interface
would be used in place of a relational interface.

Given our container interface, it is straightforward to
define specialized interfaces to containers. For example,
while it is unusual to envision stacks with a relational
interface, it is easy to define the push and pop operations
in terms of relational operations, as shown below.

MACRO push(container, element)
{ INSERT(container, element,

container.stack_head, AT_END); };

MACRO pop(container, element)
{
if (!is_empty(container))
{
GETREC(element,container.stack_head));
DELETE(container.stack_head)
REVERSE(container.stack_head);

}
};

3.3: Conceptual Limitation: Complex
Compositions

We said earlier that data structures can be modelled by
type transformations. In this section, we explain the model
in more detail and focus on compositions of transforma-
tions. As we will see, a data structure component corre-
sponds to an implementation of a type transformation.

Let p be a program and c be a container that is refer-
enced by p. We will write this as p(c). p refers to c using
the generic cursor operations listed in Table 1. Because it
is not known how c is implemented, p is data structure
generic – i.e., it is not dependent on any implementation of
c.

The application of a transformation τ introduces data
structure implementation detail. When applied to c, the
result is container c’. Concomitantly, p must be trans-
formed into a program p’ that operates on c’ and pre-
serves the semantics of p(c). Thus, applying a data
structure transformation τ as a (possibly partial) imple-
mentation of c transforms p(c) to p’(c’).

It follows that a data structure component (building
block) for containers is a pair of functions (τκ: C→C, τπ:
P→P) where C is the domain of containers and P is the
domain of programs. τκ is a container mapping function
which transforms an abstract container c into a concrete
(or less abstract) container c’. τπ is a program mapping
function which transforms a program p into a correspond-
ing program p’.

Consider a component for unordered lists (LISTκ:
C→C, LISTπ: P→P). LISTκ is a container mapping
function. It links together all objects of a container onto an
unordered list. Figure 3a shows a container c with six
objects. Figure 3b shows the resulting container
LISTκ(c). This container has exactly the same objects as
c, with the addition that each object has a next attribute.
The container itself is augmented with the attribute head
to reference the head of the list.4

LISTπ: P→P is the corresponding program mapping
function. LISTπ replaces each operation on c with the
corresponding code fragment that operates on LISTκ(c).
For example, an insertion into c is mapped to an insertion

Function Call Meaning

CURSOR(k, [p [, o]]) Create and return a cursor over container k. The cursor can be positioned only on objects that sat-
isfy predicate p and the selected objects are returned in order o. Both predicate p and order o are
optional.

RESET(c, l) Repositions cursor c either to the start of the container or to the end (based on the l argument).

ADVANCE(c) Repositions cursor c on the next qualified object in c’s container. A status code is set in the cursor
to OK if the advance succeeds, EOR otherwise.

REVERSE(c) Repositions c to the previous qualified object in the container. The status code is set as in
ADVANCE.

INSERT(k, o, c [, h]) Insert object o into container k. Cursor c is an output parameter which is positioned on o in k. h
is an optional hint about where to place object o (i.e., AT_END, AT_FRONT, AFTER or
BEFORE (the position indicated by cursor c that has been positioned previously). If no hint is
supplied, the data structure semantics determine the positioning of the new object.

DELETE(c) Delete the object referenced by cursor c.

UPDATE(c, a, v) Assigns the value v to the attribute a of the object referenced by cursor c

REF(c, a) Return the value of attribute a of the object referenced by cursor c.

FOREACH(c) {code} Execute the code fragment code for each object that can be referenced by cursor c. c is reset to
the start of the container and is iterated through the container.

FIND(c, p) Position cursor c to the next object that satisfies c’s predicate and the additional predicate p. The
status code is set as in ADVANCE

GETREC(c, o) Retrieve the object referenced by cursor c and place it into the buffer specified by o.

ADDRESS(c) Return the location of the object referenced by cursor c.

POSITION(c, a) Position cursor c on the object with location a.

SWAP(c1, c2) Swap the objects referenced by cursors c1 and c2. Both cursors are referencing objects in the
same container.

Table 1: Partial list of primitive functions

into LISTκ(c) followed by a link of the object onto a list.
That is, the operation:

INSERT(c, obj, curs);

of program p is transformed into:

INSERT(c’, obj, curs);
UPDATE(curs, next, c’.head);
c’.head = ADDRESS(curs);

of program p’. Writing transformations for other cursor
operations on c is straightforward.

Now consider the component for binary trees: (BIN-
TREEκ: C,A→C, BINTREEπ: P,A→P) where A is the
domain of attributes for key fields. BINTREEκ is a con-
tainer mapping function. Given a container and a key field,
BINTREEκ produces a container where all objects of the
container are linked together onto a binary tree. Each
object in c is transformed by the addition of two fields
(left and right). The container itself is augmented
with the attribute root to reference the root of the binary
tree. Figure 4 shows the mapping of c to BINTREEκ(c,
a) where a is an attribute of the objects in c.

Figure 3: A simple container transformation

BINTREEπ is the corresponding program mapping
function. It transforms operations on c to operations on
BINTREEκ(c, a). For example, inserting an object into c
is mapped to inserting the object into BINTREEκ(c, a)
followed by linking of object into the binary tree.

A key feature of this component abstraction is the sym-
metry of their mappings: containers are mapped to con-
tainers and programs are mapped to programs; the
standard container interface remains invariant with respect
to data structure transformations. This means that many
different combinations of components are possible; each
yields a different data structure and its support algorithms.

4. Note that the order in which objects are linked onto containers reflects
the order in which objects were inserted. This ordering is defined by the
LISTπ function. Thus, there is a unique container that results from a
LISTκ mapping.

(a) Container c with (b) LISTκ(c)

Head of list

6 objects

The example of Figure 2 depicts an implementation of
container c that is implemented by a composition of the
binary tree and list components: LISTκ(BINTREEκ(c)).
Each object of c is augmented with the binary tree fields
left and right, and then is augmented with the linked
list field next. The resulting program LISTπ(BIN-
TREEπ(p)) transforms an object insertion in c into an
insertion into the container LISTκ(BINTREEκ(c)), a link
of the object onto the binary tree, and then a link of the
object onto the list.

Every component is parameterized by the container and
program that it is to map. We call these components non-
traditional parameterized types (NPTs). A container TPT
is a composition of NPTs; NPTs are the software primi-
tives from which an enormous class of container TPTs can
be built.

Figure 4: Binary tree transformation

Programmers can choose from a large number of NPTs.
Besides unordered lists and binary trees, there are NPTs
for arrays, AVL trees, data compression (which transforms
a container of uncompressed objects into a container of
compressed objects), persistence (which transforms a con-
tainer of objects in main memory into a container of
objects on disk), indexing (which transforms a container
of non-indexed objects into a container of indexed
objects), client-server (which transforms a container of
objects that appear to be stored locally into a container of
objects stored remotely), and so on.

In addition to PREDATOR, another prototype imple-
mentation of these ideas is the Genesis extensible database
management system. Genesis can produce a customized
DBMS of 70K lines by assembling prefabricated compo-
nents [3, 4].

3.4: Conceptual Limitation: Type
Transformations

Recall that there are type transformations which do not
add fields and operations to data types. Two examples are
segment and server. segment partitions a data type

(a) Container c (b) BINTREEκ(c, a)

Root

along a designated field boundary; server stores
instances of a data type on a remote machine.

Consider the following data type and transformation
composition:

struct base_elem
{

char name[30];
int age;
int height;
BYTE image[1000000];

};

CONTAINER test_cont ON ELEMENT base_elem
= segment(dlist(server(“m”),

height, dlist(server(“m”)));

The benefit of this particular NPT composition is effi-
ciency. If a program does not access the image field, then
only the name, age, and height fields are transmitted
from the remote server “m”. The data types that result
from this transformation are shown below, and are auto-
matically generated by PREDATOR:

struct base_elem_seg0
{

char name[30];
int age;
int height;
struct base_elem_seg0 *next, *prev;
struct base_elem_seg1 *seg1;

};

struct base_elem_seg1
{
BYTE image[1000000];
struct base_elem_seg1 *next, *prev;

};

3.5: Conceptual Limitation: Field Parameters

The example of the previous section also demonstrates
the utility of NPTs with field parameters. The segment
transformation requires a field name in order to know
where to partition the original data type. Other examples
of transformations with field parameters include ordered
lists, B-trees, etc.

Because PREDATOR is a precompiler, it can easily
perform type transformations that are much more compli-
cated than just the addition of fields and operations, as pro-
vided by inheritance. We know of no other statically typed
programming language (or data structure compiler) that
supports the definition of complex type transformations.

3.6: Implementation Limitation: Code Efficiency

The efficiency of TPT code, particularly data structure
code, is critical for most applications. Our work utilizes a
precompiler optimizer to produce efficient code. There are
several advantages to this approach:

1. When PREDATOR composes multiple NPTs, it per-
forms compiler optimizations such as common sub-
expression elimination and partial evaluation.

2. PREDATOR expands inline code, thus removing
runtime functional call overhead [12].

3. PREDATOR optimizes queries to determine the
most efficient way to traverse a container [14, 3].

In the following sections, we report the results of three
experiments using PREDATOR. We specifically examine
the performance of generated code, the potential gains in
software productivity, and the advantages of using plug-
compatible data structures. It should be emphasized that
these results are preliminary and should not be taken as
definitive – merely indicative.

The results below are for programs of such simplicity
that none of the advanced PREDATOR optimizations are
used. The performance is based solely on the generated
inline code. Further, all programs were compiled in C with
the gcc compiler (version 1.40) with the same level of
optimizations.

3.6.1: Experiment #1: Simple Arrays

The first experiment examines productivity gains and
the potential efficiency of PREDATOR-generated code.
We asked a group of eight professional programmers to
write a simple four step program involving a trivial data
structure – a static array in which records could be marked
deleted. The four steps were:
• Eight records were copied from a static constant

array into the target data structure. Each record was
marked “not deleted.”

• An iteration was made over all records and each
record was printed.

• Another iteration was made where each record that
satisfied a supplied predicate was deleted.

• A final iteration printed all non-deleted records.
Each participant was asked to write three versions of

the program: a quick and dirty version, a hand-optimized
version, and a version using PREDATOR, and to note the
time taken for each task. We executed the resulting pro-

grams 10,000 times using UNIX profiling tools to gather
performance statistics. Table 2 summarizes the results.

These results of Table 2 suggest that (a) even in trivial
programs, there are clear productivity benefits when pro-
gramming with container abstractions, and (b) efficient
code can be generated by a data structure compiler. We
anticipate that these benefits will be magnified once more
complicated data structures are used.

3.6.2: Experiment #2: Berkeley Quicksort

A second experiment involved writing a data-structure-
generic quicksort algorithm and comparing its perfor-
mance to BSD UNIX quicksort, a hand-optimized quick-
sort routine. In studying the BSD version, we noticed that:
• it only works on contiguous arrays,
• it is optimized for a data record size of 48 bytes, and
• it is quite difficult to understand. Modifying and

debugging BSD quicksort is nontrivial.
Initially we intended to extract the data structure

generic algorithm implemented by the BSD code, but dis-
covered that it was too tightly coupled to the array data
structure for this to be possible. Instead, we implemented
the quicksort algorithm in [2] with a pivot selection and
base case handling similar to the BSD version. This was
important, as it assured the asymptotic complexity of both
algorithms would be similar, thereby permitting a fair
comparison to be made.

We exploited the data-structure-generic nature of the
PREDATOR quicksort algorithm by plugging in two dif-
ferent container implementations. Again, this only
required a trivial change in the container declaration; no
change was needed in the PREDATOR quicksort algo-
rithm.

The first data structure was an array, the data structure
used by BSD quicksort. The second was a segmented
record data structure: the primary segment simply contains
a pointer to the secondary segment, which contains the
data fields. This choice of segmentation is particularly
appropriate because quicksort frequently swaps data
records. In a segmented implementation, a record swap
operation translates to a pointer swap operation whose
time cost is independent of record size.

Programming system
Average time
to write (min)

Average
execution time

(sec)

Hand code (1st pass) 24.5 ± 7.5 17.5 ± 3.6
Hand code (optimized) 34.8 ± 9.1 12.2 ± 2.5
PREDATOR 8.0 ± 2.5 9.6 ± 0.1

Table 2: Simple array program results

Table 3 compares the size of these three programs as
computed by the UNIX word count (wc) utility. PREDA-
TOR code is shorter and much easier to understand. Also
note that the size of the generated PREDATOR code is
much (30%-40%) larger than the precompiler source;
PREDATOR is optimized for speed over size.

The actual experiments involved sorting randomized
sets of unique records. Randomization is important
because the two algorithms use slightly different pivot
selection methods. Uniqueness is significant because the
PREDATOR [2] algorithm improves greatly when there
exist duplicates and we did not want that to bias the
results. Also, we ran each sample size many times to arrive
at an accurate mean time.

The following graph shows the average sorting time for
sample sizes ranging from 1000 to 110,000 records. The
record size was set to 48 bytes. The sort key was com-
posed of three fields, two 20 character strings and one inte-
ger with the primary field being a string.

Figure 5 shows a constant factor of time difference

between the BSD execution time and that for each of the
two PREDATOR examples. Thus, we conclude that the
algorithms have the same asymptotic complexity. This
means that we are measuring the true efficiency of the gen-
erated code, not the order of complexity of the different
algorithm implementations.

Figure 6 and Figure 7 show the effect of varying the
size of the data record on the execution times. We mea-

Source file Number of words

BSD Quicksort 460

PREDATOR Source 323

Array (generated) 462

Segment (generated) 531

Table 3: Source code size comparison

0 50000 100000 150000
Number of records

0

10

20

30

40

Ti
m

e
(s

ec
)

48 byte records

Figure 5: Quicksort performance

BSD Quicksort

PRED Array

PRED Segment

sured this both for small and large data set samples and
found similar behavior in both cases. Both the BSD quick-
sort and the PREDATOR array vary linearly in the size of
the data record. This makes sense since they both copy the
entire data record during a record swap. The PREDATOR
segment case, however, is clearly superior to the other two
because only the pointers to records, not the records them-
selves, are swapped. The very slight increase in the seg-
ment times is due to page faulting. Also note that there is a
small region in which the BSD sort is superior to the
PREDATOR array. This occurs at a record size of 8 bytes
or below. This is due to the start-up costs associated with
the segmentation and could be reduced even further with
improvements to the PREDATOR optimizer.

We believe the advantages that the PREDATOR quick-
sort demonstrates over the BSD quicksort are:
• The PREDATOR version is generic, i.e. it works for

any unordered data structure.
• The PREDATOR version was quick to write, easy to

understand and can be modified without much diffi-
culty. We do not feel that this is true of the BSD
quicksort.

• The performance of the prototype PREDATOR pre-
compiler compares impressively against shipped,
optimized code which is currently being used by
many programmers.

3.6.3: Experiment #3: The rwho Utility

Many UNIX system utilities (rwho, ls, df, etc.) are
fairly simple programs. In general, they involve data col-
lection, placing the results in a data structure, sorting, and
printing the results. These utilities are perfect candidates
for re-implementation with PREDATOR.

rwho is a utility which prints a list of users who are
logged on to the various machines in a local network. It
reads this information from data files, stores data in an
array, sorts the array, and prints the results. rwho uses BSD
quicksort and stores the data in a static array. If there hap-

0 50 100 150 200
Record size (bytes)

0

2

4

6

8

Ti
m

e
(s

ec
)

Varying record size

Figure 6: Quicksort of 1000 records

BSD Quicksort

PRED Array

PRED Segment

pen to be more than 100 entries, rwho fails. This is an
example of unnecessary data structure dependencies that
affect program behavior. PREDATOR-style programs with
generic algorithms can easily remove this type of depen-
dence.

We rewrote rwho using PREDATOR in less than an
hour. We chose a linked list data structure to remove the
upper limit on the number of entries. While its perfor-
mance is (marginally) better than that of the original rwho,
the important point here is that PREDATOR helped us
improve the functionality of the rwho program in a conve-
nient manner.

4: Assessment and Conclusions

We believe that data structure compilers show promise
in offering programming productivity gains without sacri-
ficing performance. We have identified conceptual, design,
and implementation limitations in traditional parameter-
ized types (TPTs). We believe that TPTs alone are not suf-
ficiently powerful to form the foundation of a data
structure compiler.

To overcome the limitations of TPTs, we have pre-
sented several techniques for capturing data structures as
NPTs (i.e. type transformations). Using PREDATOR,
NPTs can be combined to produce efficient implementa-
tions of complex data structures. In addition, by designing
NPTs to have the same interface, plug-compatibility and
interchangeability is assured. This significantly simplifies
the task of building a data structure compiler and enhances
opportunities for software reuse.

PREDATOR is based on concepts from databases,
compilers, transformation systems, and domain modelling.
By themselves, the ideas presented here are not new. How-
ever, we do believe their combination is unique for solving
important problems in data structure compilers.

Our preliminary results using PREDATOR are promis-
ing. We have found that programmers are able to write
data-structure-independent code more easily, that the gen-

0 20 40 60 80 100
Record size (bytes)

0

20

40

60

80

T
im

e
(s

ec
)

Varying record size

BSD Quicksort

PRED Array

PRED Segment

Figure 7: Quicksort of 99000 records

erated code is efficient, and that software reuse is accom-
plished. Moreover, our model is sufficiently robust to
handle NPTs for a wide variety of data structures. Finally,
the PREDATOR model does not seem to be incompatible
with related concepts such as concurrency, persistence,
and data distribution. Augmenting the model for these fea-
tures is future work.

5: References

[1] ACM. Next Generation Database Systems.
Communications of the ACM, October 1991.

[2] A. V. Aho, J. E. Hopcroft, and J. D. Ullman. Data
Structures and Algorithms, Addison-Wesley, 1983.

[3] D. S. Batory. Concepts for a DBMS Synthesizer.
Symposium on Princ. of Database Sys., 1988.

[4] D. S. Batory. The Genesis Database System Compiler:
User Manual, University of Texas TR-90-27.

[5] T. Biggerstaff and A. Perlis. Software Reusability, ACM
Press, 1989.

[6] G. Booch. Software Components with ADA, Benjamin/
Cummings Publishing, 1987.

[7] G. Booch and M. Vilot. The Design of the C++ Booch
Components. OOPSLA ECOOP 90, ACM Press, 1990.

[8] C. Chambers, D. Unger, and E. Lee. An Efficient
Implementation of SELF, a Dynamically-Typed Object-
Oriented Language Based on Prototypes. OOPSLA 89,
ACM Press, 1989.

[9] S. Cohen. Ada 9X Project Report, 1990.
[10] D. Cohen. AP5 Manual, USC Information Sciences

Institute, 1991.
[11] C. J. Date. An Introduction to Database Systems, Addison-

Wesley, 1983.
[12] J. Davidson. Subprogram Inlining: A Study of its Effects

on Program Execution Time. IEEE Trans. on Soft. Engr.,
February 1992.

[13] C. Ghezzi and M. Jazayeri. Programming Language
Concepts, John Wiley & Sons, 1987.

[14] H.F. Korth and A. Silberschatz. Database System
Concepts, McGraw-Hill, 1991.

[15] C. Lamb, G. Landis, J. Orenstein, and D. Weinreb. The
ObjectStore Database System. Communications of the
ACM, October 1991.

[16] D. Lea. libg++, The GNU C++ Library. C++ Conference
USENIX Association, Denver, CO 1988.

[17] D. G. McNicoll, C. Palmer, et al. Common Ada Missle
Packages (CAMP) Volume I: Overview and Commonality
Study Results, AFATL-TR-85-93, May 1986.

[18] D. G. McNicoll, C. Palmer, et al. Common Ada Missile
Packages (CAMP) Volume II: Software Parts Composition
Study Results, AFATL-TR-85-93, May 1986.

[19] G. Novak. Software Reuse by Compilation through View
Clusters. Submitted for publication in IEEE Trans. on Soft.
Engr., 1992.

[20] C. Palmer and S. Cohen. Engineering and Applications of
Reusable Software Resources. Aerospace Software
Engineering: A Collection of Concepts, ed. C. Anderson
and M. Dorfman. Vol. 136, Progress in Astronautics and
Aeronautics, 1990.

[21] R. Prieto-Diaz and G. Arango. Domain Analysis and
Software Systems Modeling, IEEE Computer Society
Press, 1991.

[22] J. Schmidt. Some High Level Language Constructs for
Data of Type Relation, ACM Trans. on Database Sys.,
1977.

[23] R. Snodgrass. The Interface Description Language,
Computer Science Press, 1989.

[24] B. Stroustrup. The C++ Programming Language, 2nd
edition, Addison-Wesley, 1991.

[25] D. Volpano and R. Kieburtz. Software Templates, Proc.
Eighth Intl. Conf. on Soft. Eng., IEEE Computer Society,
1985.

[26] D. Weiss. Synthesis Operational Scenarios, Software
Productivity Consortium, Inc, 1990.

