
Implementing Reusable Object-Oriented Components

Yannis Smaragdakis and Don Batory

Department of Computer Sciences

The University of Texas at Austin

Austin, Texas 78712
{smaragd, dsb}@cs.utexas.edu

Abstract1

Object-oriented (OO) classes are generally not reusable
because they are not meaningful in isolation; most classes
only have meaning as members of cooperating suites of
classes (e.g., design patterns). These suites usually arise in
designs, but rarely exist as encapsulated entities in OO
implementations. In this paper we present a method for
directly mapping cooperating suites of classes into encap-
sulated C++ implementations. Our method is an improve-
ment over the VanHilst and Notkin approach for
implementing collaboration-based designs and constitutes
a step towards more reusable (object-oriented) compo-
nents.

1  Introduction

The reuse benefits of object-oriented programming
are often limited by the small scale of components (object
classes). Larger scale (i.e., multi-class) components have
appeared mainly as design entities (e.g., design patterns
[8]) that lead to high levels of design reuse and maintain-
ability. Ideally, we would like to obtain the same benefits
at the implementation level. This is, in general, a hard
goal. A way to achieve it is through straightforward map-
ping of design-level concepts into distinct implementation
entities. Then the original modularity of a design is pre-
served and the implementation is easily maintainable
under design changes.

Our work examines and relates two design
approaches: Object-oriented collaboration-based designs
(e.g., [6], [10], [11], [17]) and the GenVoca model [1].
Both emphasize viewing application components as a col-
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lection of responsibilities for various objects. Components
are self-contained, thus yielding high degrees of modular-
ization. Different aspects of an application can be
abstracted into individual design entities, called collabora-
tions (in collaboration-based designs) or layers (in Gen-
Voca). These satisfy the black box property: access to their
functionality can be obtained without reviewing or chang-
ing their internal implementation.

In this paper we present a method for mapping such
design entities into encapsulated OO implementations. In
this way the reusability benefits of high-level design trans-
late directly to an implementation. Our implementation
requires only standard programming language features
(inheritance and parameterization). In effect, we are say-
ing that certain component-based design methodologies
are ideally suited for implementation in languages that
support both object-orientation and generics (e.g., tem-
plates).

The usual way to map large scale OO designs into
implementations is through a framework [12]. The work of
VanHilst and Notkin [17][18][19] showed that frameworks
are not flexible enough for the task, and suggested a tem-
plates implementation instead. Our approach follows a
similar path. It yields, however, simpler implementations
with significantly better reuse and maintenance properties.
This is a result of clearly capturing collaborations and lay-
ers into black-box components (parameterized nested
classes). Our research, therefore, directly addresses the
need for future work stated in [17].

2  Collaboration-Based Designs and GenVoca

2.1  Collaboration-Based Designs

In an object-oriented design, objects are encapsulated
entities that are rarely self-sufficient. Although an object is
fully responsible for maintaining the data it encapsulates,
it needs to cooperate with other objects to complete a task.
An interesting way to encode object interdependencies is
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through collaborations. A collaboration is a set of objects
and a protocol (set of allowed behaviors) that determines
how these objects interact. The part of an object enforcing
the protocol that a collaboration prescribes is called the
object’s role in the collaboration. In general, an object of
an application may participate in several collaborations
simultaneously and, thus, may encode several distinct
roles. This means that collaborations commonly represent
(mostly) independent aspects of object interaction.

In collaboration-based design we try to express an
application as a composition of independently-definable
collaborations. In this way, each object of an application
will be a collection of roles describing actions on common
data. Each collaboration, in turn, will be a collection of
roles, and will represent relationships across its corre-
sponding objects.

2.2  An Example

We will consider the graph traversal application that
was examined initially by Holland [11] and subsequently
by VanHilst and Notkin [17]. This application defines
three different operations on an undirected graph, all
implemented using a depth-first traversal: VertexNumber-
ing numbers all nodes in the graph in depth-first order,
CycleChecking examines whether the graph is cyclic, and
ConnectedRegions classifies graph nodes into connected
graph regions. The application has three distinct classes:
Graph, Vertex, and Workspace. The Graph class describes
a container of nodes with the usual graph properties. Each
node is an instance of the Vertex class. Finally, the Work-
space class includes the application part that is specific to
each graph operation. For the VertexNumbering operation,

for instance, a Workspace object holds the value of the last
number assigned to a vertex as well as the methods to
update this number.

A decomposition of this application into collabora-
tions is relatively straightforward. One collaboration
expresses properties of an undirected graph. Another col-
laboration encodes the specifics of depth-first traversals
and provides a clean interface for extending traversals.
That is, at appropriate moments during a traversal (the first
time a node is visited, when an edge is followed, and when
a subtree rooted at a node is completely processed) control
is transferred to specialization methods that can obtain
information from the traversal collaboration and supply
information to it. For instance, to implement the Vertex-
Numbering operation, we have to specialize the action per-
formed the first time a node is visited. The action will
assign a number to the node and increase the count of vis-
ited nodes.

Using this approach, each of the three graph opera-
tions can be seen as a refinement of a depth-first traversal
and each can be expressed by a single collaboration. Fig-
ure 1 is reproduced from [17] and presents the collabora-
tions and classes of our example application. The
intersection of a class and a collaboration in Figure 1 rep-
resents the role prescribed for that class by the collabora-
tion. A role encodes the part of an object that is relevant to
a collaboration. For instance, the role of a Graph object in
the “Undirected Graph” collaboration supports storing
and retrieving a set of vertices. The role of the same object
in the “Depth First Traversal” collaboration implements a
part of the actual depth-first traversal algorithm.

Note that the design of Figure 1 does not define any
particular composition of collaborations in an application.

Figure 1: Collaboration decomposition of the example application: A depth-first traversal of an
undirected graph is specialized to yield three different graph operations. Ovals represent collab-
orations (GenVoca layers), rectangles represent classes.
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It is really just a decomposition of a restricted software
domain into its fundamental collaborations. Actual appli-
cations may not need all three graph operations. Addition-
ally, a single application may need more than one
operation applied to the same graph. This is accomplished
by having multiple copies of the “Depth First Traversal”
collaboration in the same design (each traversal will
require its own private variables and traversal methods).
We will later see examples where composing instances of
the collaborations of Figure 1 will yield an actual applica-
tion design.

The goal of a collaboration-based design is to encap-
sulate within a collaboration all dependencies between
classes. In this way, collaborations themselves have no
outside dependencies and can be reused in a variety of cir-
cumstances. The “Undirected Graph” collaboration, for
instance, encodes all the properties of an undirected graph
(pertaining to the Graph and Vertex classes, as well as the
interactions between objects of the two). Thus, it can be
reused in any application that deals with undirected
graphs. Ideally, we should also be able to easily replace
one collaboration with another that exports the same inter-
face. For instance, it would be straightforward to replace
the “Undirected Graph” collaboration with one represent-
ing a directed graph. Of course, simple interface conform-
ance will not guarantee composition correctness — the
application writer must ensure that the algorithms used
(for example, the depth-first traversal) are still applicable
after the change. The algorithms presented in [11] for this
example are, in fact, general enough to be applicable to a
directed graph. If, however, a more efficient, specialized-
for-undirected-graphs algorithm was used (as is, for
instance, possible for the CycleChecking operation) the
change would yield incorrect results. See Section 4 for a
more detailed discussion of the dangers involved in swap-
ping reusable software components.

2.3  The GenVoca Model

Collaborations have received significant attention in
the OO literature (e.g., [6], [10], [11], [13], [18]). Interest-
ingly, the collaboration-based approach to software design
is very closely related to the GenVoca model. GenVoca [1]
is a model for constructing hierarchical software systems
from reusable components. Each GenVoca component
encapsulates a consistent refinement of multiple classes.
Components are composable because they export and
import standardized interfaces; this feature gives them
“lego-like” qualities. Different systems of a domain are
composed from these components. Although the GenVoca
design model is fundamentally object-oriented, existing
implementations do not rely on object-oriented techniques
(inheritance). Instead, powerful parameterization (e.g.,
[14]) and software generators (e.g., [3], [15]) have been

employed to produce target applications from compo-
nents.

The spectrum of GenVoca implementations varies
along two axes [4]: components may be either composi-
tional or transformational, and either dynamic or static.
Compositional components define the source code that an
application will execute; transformational components
define code that, when executed, will generate the source
code that an application will execute. The dynamic/static
attribute refers to the time of component composition.
When components are composed at application run-time,
they are dynamic. When composed at compile-time, they
are static. The choice of how components should be imple-
mented and when they should be combined is largely
dependent upon the applications that are to be constructed.

The main concepts of GenVoca and collaboration-
based designs are identical: Object classes are of second-
ary importance and components interrelate many classes.
To build even one application class, however, many com-
ponents need to be combined. The terminology is slightly
different (for instance, GenVoca layers correspond to col-
laborations, GenVoca has no name for roles). The similari-
ties led us to observe that static-compositional GenVoca
components (e.g., P++ [14]) are a special case of collabo-
ration-based designs. In particular, they correspond to col-
laboration-based designs where instances of the same role
are never played by two different implementation classes.
In essence, GenVoca fixes the names of concrete classes
that can play a role. Such collaboration-based designs and
very common and we will mainly focus our attention on
them.

Consider again the example of Figure 1. Every collab-
oration entity (oval) can be viewed as a GenVoca layer.
Composing layers is as simple as stacking them on top of
one another. The object classes of the final application are
determined by the refinements specified in each of the lay-
ers. Our goal is to find a concrete representation of layers
(collaborations) in C++ and a method to compose them.
Then, application classes become simple by-products of
layer composition.

3  Implementing Collaboration-Based
Designs

We now consider how collaboration-based designs are
mapped to implementations. This has also been the
research focus of VanHilst and Notkin [17][18][19]. An
important point about our implementation approach is that
it is applicable only to static compositional GenVoca
designs (see Section 2.3). In other words, the way collabo-
rations (GenVoca layers) are composed to define an appli-
cation must not change at application run-time. This is



also true of the method of VanHilst and Notkin, although
not explicitly stated.

3.1  Inheritance of Nested Classes

Our implementation of layers/collaborations uses
C++ inheritance of nested classes to express layer compo-
sition. In C++, class declarations can be nested inside
other class declarations. Nested classes behave in most
respects (e.g., access control, scoping) just like regular
members of a class. Interestingly enough, nested classes
can also be inherited. Consider the following example:

class OuterParent
{ class Inner { ... }; };

class OuterChild: public OuterParent
{ };

In this case, OuterChild is a subclass of OuterPar-
ent in an inheritance hierarchy. Although no Outer-

Child::Inner class is explicitly defined, such a class
does, in fact, exist (it is inherited from OuterParent). We
will use this capability, combined with parameterization
(C++ templates), to map collaborations into implementa-
tion components.

3.2  Mapping Primitives

In our method, each collaboration corresponds to a
single parameterized class (we will subsequently use the
term “collaboration” for the implementation of a layer/col-
laboration when no confusion can result). This class will
contain nested classes that correspond to roles. More spe-
cifically, the general form of a collaboration representation
is:

template <class NextCollab>
class ThisCollab : public NextCollab
{
public:

class RoleForObject1 :
public NextCollab::RoleForObject1

{ ... };

class RoleForObject2 :
public NextCollab::RoleForObject2

{ ... };
...

}; (1)

We will call the above template a collaboration-com-
ponent and the implementation of a role a role-member.
Thus, in (1), ThisCollab is a collaboration-component
and ThisCollab::RoleForObject1 is a role-member.
Note the two mechanisms that we exploit: parameterized
inheritance (parameterize a class with respect to its super-

class) and type inheritance (inherit static entities such as
nested classes).

Collaborations are composed by instantiating one col-
laboration-component with another as its parameter. The
two classes are then linked as a parent-child pair in the
inheritance hierarchy. The final product of a collaboration
composition is a class T with the general form:

typedef Collab1 < Collab2 < Collab3 < ...
< FinalCollab > ... > T (2)

That is, Collab1, Collab2, …, FinalCollab are
collaboration components, “<...>” is the C++ operator
for template instantiation, and T is the name given to the
class that is produced by this composition2. The individual
classes that the original design describes are members
(nested classes) of the above components. Thus,
T::RoleForObject1 defines the application class
RoleForObject1, etc.

Composition (2) has a direct counterpart in GenVoca.
Applications are defined in GenVoca models as composi-
tions of components called type equations. (2) has the
exact form used in the GenVoca literature for type equa-
tions, except for syntax (“[...]” replaces “<...>”).
Thus, (2) corresponds to type equation (3):

T = Collab1 [ Collab2 [ Collab3 [ ...
[ FinalCollab ] ... ] (3)

where Collab1, … are GenVoca components. This
unification of collaboration-based designs and GenVoca
offers important insights into both approaches. What Gen-
Voca lacks is a way to recognize and express the concept
of a layer in terms of OO designs — collaboration-based
designs naturally reveal GenVoca layers and explain their
encapsulations. On the other hand, collaboration-based
designs have focused on the identification and design of
the pieces of a collaboration (i.e. role classes), rather than
on a broader, architectural framework where collabora-
tions are primitive building blocks and applications are
valid compositions of these blocks. It is this architectural
perspective — that of building scalable families of appli-
cations from components, validating compositions, etc. —
that GenVoca brings to collaboration-based designs.

2.  We will use (without distinction) two C++ idioms for creating syn-
onyms of complex instantiations. The first is using typedefs: type-
def A < B < C > > D. The second is using inheritance: class D
: public A < B < C > >. The two forms are not equivalent: the
first has the advantage of preserving constructors of component A in
the synonym D (constructor methods are not inherited in C++). The
second idiom is more cleanly integrated into the language (e.g., can
be templatized, compilers create short link names for the synonym,
etc.).



3.3  A Concrete Example

Consider again the graph traversal application of Sec-
tion 2.2. Each collaboration will be represented as a col-
laboration component. Vertex Numbering, for example,
prescribes roles for objects of two different classes: Vertex
and Workspace. Its implementation has the form:

template <class NextCollab>
class NUMBER : public NextCollab
{
public:

class Workspace :
public NextCollab::Workspace {

... // Workspace role methods
};

class Vertex :
public NextCollab::Vertex {

... // Vertex role methods
};

}; (4)

Note how the actual application classes are nested
inside the collaboration component. For instance, the roles
for the Vertex and Workspace classes of Figure 1 corre-
spond to NUMBER::Vertex and NUMBER::Workspace

respectively. Since roles are encapsulated, there is no pos-
sibility of name conflict. Moreover, our approach relies on
a standardization of role names. In this example the names
Workspace, Vertex, and Graph are used for roles in all
collaborations. Note how this is used in (4): Any class
generated by this template defines roles that inherit from
classes Workspace and Vertex in its superclass (Next-
Collab).

Other collaborations of our Section 2.2 design are
similarly represented as collaboration components. Thus,
we have a DFT and a UGRAPH component that capture the
Depth-First Traversal and Undirected Graph collabora-
tions respectively. To implement default work methods for
the depth-first traversal we introduced an extra collabora-
tion component, called DEFAULTW3.

Consider now a simple composition — for instance,
that producing the vertex numbering operation. The result-
ing application is obtained from the composition of Figure
2a. We will soon explain what this composition means but
first let us see how the different classes are related. The
final implementation classes are members of the product
of the composition, NumberC (e.g., NumberC::Graph is
the concrete graph class). Figure 2b shows the collabora-
tion-components and their role-members as they are actu-
ally composed. Each component inherits from the one
above it. That is, DFT inherits role-members from NUMBER,
which inherits from DEFAULTW, which inherits from
UGRAPH. At the same time, DFT::Graph inherits methods
and variables from NUMBER::Graph, which inherits from
DEFAULTW::Graph, which inherits from
UGRAPH::Graph. It is this parameterized inheritance of
nested classes that makes our approach so powerful. Note,
for instance, that, even though NUMBER does not specify a
Graph member, it inherits one from DEFAULTW. The sim-
plicity that this design affords will be made apparent in
Section 3.4, where we compare it with alternatives.

3.  The introduction of DEFAULTW is an implementation detail, borrowed
from the VanHilst and Notkin implementation [17]. Its purpose is to
avoid dynamic binding by changing the order of composition. We
discuss C++ specifics (such as, why composition order matters) in
Section 3.6.

typedef DFT < NUMBER < DEFAULTW < UGRAPH > > > NumberC;

Figure 2a: A composition implementing the vertex numbering operation

UGRAPH

DFT

NUMBER

Classes of participating objects

Graph Vertex Workspace

DEFAULTW

Figure 2b: Collaboration-components (ovals) and role-members (rectangles inside
ovals) in the composition. Every component inherits from the one above it. Shaded
role-members are those contained in the collaboration, unshaded are inherited.
Arrows show inter-collaboration control flow (see Section 3.6 for their significance).



The interpretation of the composition in Figure 2 is
straightforward: Every component is implemented in
terms of the ones above it. For instance, the DFT compo-
nent is implemented in terms of methods supplied by
NUMBER, DEFAULTW, and UGRAPH. An actual code frag-
ment from a method implementation in DFT::Vertex is
the following:

for ( v = (Vertex*)firstNeighbor();
v != NULL;
v = (Vertex*)nextNeighbor() )

{ edgeWork(v, workspace);
v->visitDepthFirst(workspace); } (5)

The firstNeighbor, nextNeighbor, and edge-

Work methods are not implemented by the DFT compo-
nent. Instead they are inherited from components above it
in the composition. firstNeighbor and nextNeighbor

are implemented in the UGRAPH component (as they
encode the iteration over nodes of a graph). edgeWork is a
traversal refinement and (in this case) is implemented by
the NUMBER component.

We can now more easily see how collaboration com-
ponents are in fact both reusable and interchangeable. The
DFT component of Figure 2 is oblivious to the components
above it. Thus, the code of (5) represents a skeleton
expressed in terms of abstract operations firstNeigh-

bor, nextNeighbor, and edgeWork. Changing the
implementation of these operations merely requires the
swapping of collaboration components. For instance, we
can create an application (CycleC) that checks for cycles
in a graph by replacing the NUMBER component with
CYCLE:

typedef DFT < CYCLE < DEFAULTW <
UGRAPH > > > CycleC;

Note that (unlike other approaches — e.g., frame-
works) no direct editing of the component is necessary and
multiple copies of the same component can co-exist in the
same composition.

As another example, the design may change to incor-
porate a different collaboration. For instance, operations
could now be performed on directed graphs. The corre-
sponding update (DGRAPH replaces UGRAPH) to the compo-
sition is straightforward (assuming that the algorithms are
still valid for directed graphs as is the case in [11]):

typedef DFT < CYCLE < DEFAULTW <
DGRAPH > > > NumberC;

Again, note that the interchangeability property is a
result of the independence of collaborations. A single
UGRAPH collaboration completely incorporates all parts of
an application that relate to maintaining an undirected

graph (although these parts span several different classes).
The collaboration communicates with the rest of the appli-
cation through a well-defined and usually narrow inter-
face. It is exactly this same notion of component
interchangeability that is the hallmark of the scalability of
GenVoca designs [2].

3.4  The VanHilst and Notkin Approach

The original implementation of this example by Hol-
land [11] used an application framework [12]. VanHilst
and Notkin presented a parameterized implementation
[17] but concentrated on representing roles — not collabo-
rations. Further, they compared their technique to a frame-
work implementation (which did not use
parameterization). Their conclusions also apply to our
work. Namely, compared to the framework implementa-
tion, both our approach and that of VanHilst and Notkin
are more flexible (parent classes are not fixed), more effi-
cient (avoid dynamic binding when not required), and
allow multiple refinements in a given composition. In the
rest of this section, we focus on the differences between
our work and that of VanHilst and Notkin.

The VanHilst and Notkin approach concentrates on
modeling roles as parameterized classes (C++ class tem-
plates). Role implementations are composed using stan-
dard C++ template parameterization to yield objects.
Collaborations, however, are only implicitly represented in
the final implementation. Compared to our method, this
complicates the resulting code (roles are finer-grain com-
ponents than collaborations and need to be composed
explicitly). It also puts a burden on the programmer; roles
have to be composed consistently when collaborations are
introduced. Additionally, local design changes cannot eas-
ily be isolated, since collaborations are not explicitly rep-
resented as components.

We can see these benefits with an example. VanHilst
and Notkin discussed in [17] a composition applying two
of the graph refinements of Section 3.3 on the same graph.
In particular, the graph class supports both the CycleCh-
ecking and the VertexNumbering operation. We select
which of the two is to be performed on a certain graph
object by casting an object pointer to the appropriate type
and using it to call the depth-first traversal method. (An
alternative would be to qualify method names directly,
e.g., g->NumberC::Graph::Traverse()). The ability
to compose more than one refinement (or multiple copies
of the same refinement) is an advantage of the templates
approach (both ours and the VanHilst and Notkin method)
over frameworks implementations.

Our implementation of this example uses components
very similar to those used by VanHilst and Notkin. Due to
the compact representation of collaborations as nested
class templates, however, our source code is much



shorter4. Our specification is shown in Figure 3a. A com-
pact representation of a Van Hilst and Notkin specification
is shown in Figure 3b. (A more readable version of the
same code included in [17] is even lengthier).

Figure 3b makes apparent the complications of the
VanHilst/Notkin approach. Each role-component can have
an arbitrary number of parameters and can instantiate a
parameter of other role-components. In this way, parame-
terization expressions of exponential (to the number of
collaborations) length can result. To avoid this problem,
the programmer has to explicitly introduce intermediate
types to encode common sub-expressions. For instance, V
is an intermediate type in Figure 3b. Its only purpose is to
avoid introducing the sub-expression Ver-

texDFT<WS,VNumber> three different times (wherever V
is used). Of course, VNumber itself is also just a shorthand
for VertexNumber<WS,VWork>. VWork, in turn, stands
for VertexDefaultWork<WS,VGraph>, and so on5. In
the case of a composition of n collaborations, each with m
roles, the VanHilst and Notkin method can yield a parame-

terization expression of length  (although this worst
case does not exhibit itself in this example). Additional
complications arise when specifying a composition: users
must know the number and position of each parameter of a

4.  The object code is, as expected, of almost identical size.
5.  Some compilers (e.g., MS VC++, g++) internally expand template

expressions, even though the user has explicitly introduced interme-
diate types. This caused page-long error messages for incorrect com-
positions when we experimented with the VanHilst and Notkin
method, rendering debugging impossible.

role-component. Both of the above requirements signifi-
cantly complicate the implementation and make it error-
prone.

Using our method, the exponential blowup of parame-
terization expressions is avoided. Every collaboration-
component only has a single parameter (the collaboration
above it). By parameterizing a collaboration A by B, A
becomes implicitly parameterized by all the roles of B.
Furthermore, if B does not contain a role for an object that
A expects, it will inherit one from above it (as discussed in
Section 3.3). This is the benefit of making the collabora-
tions themselves be classes: they can extend their interface
using inheritance.

Another practical advantage of our approach is that it
encourages consistent naming for roles. As mentioned in
Section 3.3, no name conflicts are possible among differ-
ent collaborations: roles are encapsulated. Hence, instead
of explicitly giving unique names to role-members, we
have standard names and only distinguish instances by
their enclosing collaboration-components. In this way,
VertexDFT, GraphDFT, and VertexNumber become
DFT::Vertex, DFT::Graph and NUMBER::Vertex,
respectively.

In [17], VanHilst and Notkin questioned the scalabil-
ity of their method. One of their concerns was that the
composition of large numbers of roles “can be confusing
even in small examples...” The observations above (length
of parameterization expressions, number of components,
consistent naming) show that our approach addresses this
problem and does scale gracefully.

class NumberC : public DFT < NUMBER < DEFAULTW < UGRAPH > > > {};
class CycleC : public DFT < CYCLE < NumberC > > {};

Figure 3a: Our implementation of a multiple-collaboration composition. The individual classes
are members of NumberC, CycleC (e.g., NumberC::Vertex, CycleC::Graph, etc.).

class Empty {};
class WS         : public WorkspaceNumber                {};
class WS2        : public WorkspaceCycle                 {};
class VGraph     : public VertexAdj<Empty>  {};
class VWork      : public VertexDefaultWork<WS,VGraph>   {};
class VNumber    : public VertexNumber<WS,VWork>         {};
class V          : public VertexDFT<WS,VNumber>          {};
class VWork2     : public VertexDefaultWork<WS2,V>       {};
class VCycle     : public VertexCycle<WS2,VWork2>        {};
class V2         : public VertexDFT<WS2,VCycle>          {};
class GGraph     : public GraphUndirected<V2>            {};
class GWork      : public GraphDefaultWork<V,WS,GGraph>  {};
class Graph      : public GraphDFT<V,WS,GWork>           {};
class GWork2     : public GraphDefaultWork<V2,WS2,Graph> {};
class GCycle     : public GraphCycle<WS2,GWork2>         {};
class Graph2     : public GraphDFT<V2,WS2,GCycle>        {};

Figure 3b: Same implementation using the VanHilst/Notkin approach. V corresponds to our
NumberC::Vertex, Graph to NumberC::Graph, WS to NumberC::Workspace, etc.

mn



3.5  Non-GenVoca Designs

As mentioned in Section 3.3, static compositional
GenVoca designs are really a special case of collaboration-
based designs. An important aspect of our implementation
method is the fixed naming of role-members. This makes
our method mostly applicable to GenVoca designs (i.e.,
collaboration-based designs where instances of the same
role are always played by objects of the same class). To
implement unrestricted collaboration-based designs, the
super class of each role member must be specified via a
unique parameter. This is precisely how VanHilst and Not-
kin implement their collaborations. An alternative tech-
nique, which can be used with our method, consists of
introducing “renaming” components so that classes can
play any role, regardless of their actual names. Although
this solves the problem, the result may be cumbersome in
practice.

Another way to solve the problem would be to employ
a hybrid of our method and the VanHilst/Notkin approach
(in a single application): The two kinds of components can
be combined since our collaboration-components contain
role-members analogous to the role-components of Van-
Hilst and Notkin. Hence, when it is convenient to treat
many roles as a single collaboration-component we can do
so and gain in simplicity. When, however, we need to
express role-components directly (so that they can be parts
of different classes), we can employ the VanHilst and Not-
kin method.

The fully general form of collaboration-based designs
is not often needed: all collaboration-based designs we
have encountered (including that of Section 2.2 and all
other experiments by VanHilst and Notkin) are, in fact,
GenVoca designs. This suggests that the need for the
above techniques may be rare in practice.

3.6  Discussion — C++ Specifics

There is a possible disadvantage in our approach of
grouping role-components together. This has to do with
the C++ binding policy, rather than the concepts that we
have proposed. In C++ it is more costly to have a super-
class invoke a method of its subclass than vice versa. The
only way for a superclass to transfer control to subclass
code is through a virtual method — which is bound
dynamically. Thus, the ordering of collaboration-compo-
nents in a composition is important. For best performance,
it must be done in such a way that inter-collaboration
method calls are made only to methods of classes “above”
(see Figure 2b). Most of the time there is a natural order-
ing of collaborations present in the design that we can
exploit.

In fact, similar concerns apply to the VanHilst and
Notkin method. The DEFAULTW component of Section 3.3
is the counterpart of two role-components (GraphWork
and VertexRole) introduced in [17]. These components
encoded parts of the Depth-First Search collaboration that
need to be called by the refinement code (e.g., the Vertex
Numbering collaboration). Making this code a separate
component enabled its placement above the refinement
components (NUMBER in Figure 2b). This made all control-
flow arrows (appearing in Figure 2b) point upwards. As a
consequence, no dynamic binding was required for any
methods in the application.

The essential difference of our approach is that we
have to treat all roles in a collaboration as a unit. That is,
we cannot decide to place one role “below” another indi-
vidually but only together with all other roles in its collab-
oration. In this way conflicting role ordering requirements
that were handled by the VanHilst and Notkin method may
not be as straightforward in ours. Consider the example of
Figure 4. It shows the components implementing the Con-
nectedRegions graph operation. The DFT component calls

UGRAPH

DFT

REGION

Classes of participating objects
Graph Vertex Workspace

DEFAULTW

typedef DFT < REGION < DEFAULTW < UGRAPH > > > RegionC;

Figure 4a: A composition implementing the connected regions operation

Figure 4b: Components in the ConnectedRegions composition. Arrows show inter-collaboration control flow.



methods in the REGION component to refine the traversal.
This is represented in Figure 4b by the three “up”-arrows
originating from roles in DFT. The REGION component,
however, also needs to call a method in DFT (to learn if a
node is marked during the traversal, so that the region
count can be increased). This is shown as a “down”-arrow
between REGION::Graph and DFT::Vertex in Figure
4b. This arrow creates a cycle in the collaboration-compo-
nents control flow graph (REGION—DFT—REGION). No
such cycle exists in the role-members graph: We can
parameterize DFT::Vertex with REGION::Vertex and
REGION::Graph with DFT::Vertex. This parameteriza-
tion is possible in the VanHilst and Notkin method. With
our approach, however, REGION has to be a superclass of
DFT and the only way for REGION::Graph to transfer
control to DFT::Vertex is through a virtual method
declared in REGION::Vertex.

There are two observations to be made regarding this
problem. First, if dynamic binding does turn out to be
costly in an application, we can again resort to a hybrid of
our method and the VanHilst/Notkin method (see Section
3.5). Second, in our examples we have found the simplic-
ity advantages of our approach to far outweigh the cost of
an occasional dynamic method binding. Note that in the
example of Section 3.3, only a single virtual method
needed to be added and only for the implementation of the
ConnectedRegions operation. Our VertexNumbering and
CycleChecking operations were exactly as efficient as their
implementation in [17] (since all the differences concern
compile-time parameterization issues).

This problem is entirely an artifact of C++ binding
and parameterization. One can easily imagine a mecha-
nism that supports static binding for method invocation
from a superclass. Such a feature does not break the sepa-
rate compilation abstraction and would seem to fit nicely
in the C++ framework. Similarly more powerful parame-
terization facilities would also solve the problem. In fact,
the parameterization mechanism of the P++ language [14]
addresses this problem directly.

4  Related Work

There is a wealth of research work on design and code
reuse through components. Instead of citing an enormous
list of references, we chose to only position our approach
relative to a few fundamental pieces of work and discuss
others that we feel have influenced us significantly.

Biggerstaff [7] has pointed out that concrete compo-
nent technologies are not suited for high levels of reuse.
According to his vertical/horizontal scaling dilemma,
components should incorporate large parts of an applica-
tion’s functionality (to obtain high levels of reuse) but
when this happens they become more specific and, hence,

less reusable. On the other hand, if components have large
interfaces in an attempt to become more reusable, their
performance deteriorates or the number of versions needed
to support specific combinations of features increases
exponentially. Our approach follows the factored library
paradigm [7] and, as such, it partly addresses this concern.
Components can be composed in exponentially many
ways to adapt to many uses (scale horizontally) and form
large parts of an application (scale vertically). Features
that are not required don’t participate in the composition
and impose no overhead.

Goguen’s distinction between vertical and horizontal
parameterization of components (e.g., see [9]) is a particu-
larly important one. We have used template arguments to
express both kinds of parameters in our experiments. Our
technique relies on passing all horizontal parameters as
vertical ones to the bottom-most layer and letting them
propagate upwards. Hence, our approach does not distin-
guish between the two kinds of parameterization, but we
believe it is as good as could be hoped for, under the
restrictions of commonly used programming languages.
With extra linguistic support, horizontal parameterization
could be straightforwardly expressible (as is, for instance,
in P++).

Actually, the P++ language [14] is relevant to our
work in more than one way. P++ extends C++ with syntac-
tic features especially suited for the development of static
compositional GenVoca components. Compared to the
P++ approach, ours obtains the benefits of its reusable
components without employing any special purpose tools.
P++, however, has other advantages, such as a type system
for composition parameters. We saw in Section 2.2 how
composing different concrete components (for instance,
DFT with a directed graph) may lead to incorrect pro-
grams. This is indicative of the dangers involved in reusing
components. To reduce the potential for error we would
like to have some method for expressing properties of
components and checking them at parameterization time.
C++ does not offer any mechanism to validate a template
parameterization. The P++ type system for components,
on the other hand, allows a parameterization to be con-
strained to only certain types of component parameters. In
this way many erroneous compositions can be detected at
parameterization time.

Type checking alone is insufficient. Additional prop-
erties often need to be represented to validate constraints
and more expressive mechanisms may not be automated.
For instance, the contracts formalism, (e.g., [10]) can be
used to make invariants explicit at the design level. Errors
can still be introduced in the specification of design invari-
ants or in mapping them to an implementation. They will,
however, be genuine mistakes — not the result of insuffi-
cient information about the component specifications.



5  Conclusions

Software development in OO languages will be ubiq-
uitous in the foreseeable future. Nevertheless, basic OO
languages mechanisms are not sufficient to obtain high
degrees of reuse: The reuse of individual classes is mini-
mal, because most classes have no meaning in isolation. It
has been observed [2][6][11][18] that software building
blocks are suites of reusable classes. It is these suites that
we want to encapsulate both as design and as implementa-
tion building blocks of applications. The work of VanHilst
and Notkin has showed how collaboration-based designs
can be the basis for reusable OO software component tech-
nologies. Their implementation of OO components, how-
ever, had serious shortcomings which raised questions
about the practicality and scalability of their approach. We
have presented an alternative implementation method
based on similar ideas and showed that it is practical and
does scale. We rely on a sophisticated use of nested
classes, parameterization, and inheritance to achieve
encapsulations of “large-scale” OO components. We have
also shown how collaboration-based designs relate to Gen-
Voca, a scalable model of component-based software con-
struction.

We are already conducting further work based on
these ideas. In another paper [16] we examine the general
OO language principles behind our technique and we look
at ways to apply it to languages other than C++. We imple-
mented a medium-size software project in Java using our
component approach: The Bali compiler-precompiler gen-
erator [5] encapsulates language extensions as collabora-
tion-components. The components are of substantial size
(some with over a hundred classes) and they form the core
of the Bali language extension mechanism. In all, we feel
that our technique yields significant modularity and reus-
ability benefits in an elegant fashion.
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