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A key problem in software engineering is building complex software systems economically. We
believe that domain-specific software system generators is a promising technology for attacking
this problem. Generators are realizations of domain models that explain how software systems in a
target domain can be assembled from previously written components. Thus, generators require sig-
nificant problems in software reuse to be solved. In this paper, we review a related set of projects
that we have undertaken to understand better the unusual software design techniques that are
required and to evaluate the productivity and performance potentials of software system generators.

1  Introduction

Software systems are becoming progressively more complex and expensive to build. Coding systems from
scratch, with minimal leverage from one system to the next, clearly is not cost effective and is not a scal-
able means of construction. Finding more economical ways of building software is a basic goal of software
engineering. Software reuse is widely believed to be a key in achieving this goal.

We believe that domain-specific software system generators will be indispensable tools of future software
development environments. Software system generators are among the foremost technical achievements in
software reuse and software architectures: they are realizations of domain models (or reference architec-
tures) that define how software systems of a particular domain can be assembled rapidly by composing
components from reuse libraries. The primary goal of generators is to eliminate the mundane aspects of
software construction and to permit the expenditure of proportionally more effort on the critical parts of
target systems. McIlroy called this goal the “industrialization of software” [McI68].

Our research has focused on domain-specific software system generators. Our early work was Genesis, the
first generator for database management systems (DBMSs) [Bat88, Bat92a]. Genesis demonstrated that
complex and customized DBMSs could be synthesized in minutes by composing prefabricated and plug-
compatible components. The DBMSs that were produced were of university-quality; they were untuned,
but substantial in size (i.e., exceeding 60K lines of C code). Genesis was a proof-of-concept; it did not
demonstrate that synthetic DBMSs could be efficient. Our current project is Predator; it is a data structure
generator that can be understood as a next generation, high performance version of Genesis. A primary
goal of this project is to demonstrate that high quality generators that rely on reusable component libraries
offer substantial productivity and performance gains over handwritten and hand-optimized code.

Our experiences with domain-specific software generators are not unique. Similar experiences have been
noted and virtually identical software organizations have been used in independently-conceived generators
for the domains of network protocols [Oma92], data manipulation languages [Vil94], distributed file sys-
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tems [Hei93], host-at-sea buoy systems [Wei90], and real-time avionics software [Bat93b]. Thus it seems
worthwhile to factor out the common, domain-independent ideas that underlie different software system
generators, and to build tools and develop design techniques that support these particular methods of soft-
ware organization and construction. By doing so, we believe that other researchers in software engineering
can benefit from these collective experiences without having to delve into the obscure details and vagaries
of the particular domains from which they came.

In this paper, we review some of our current projects which we hope will enable other researchers to under-
stand the principles of software system generators and reusable software that have implicitly guided our
research efforts over the last ten years. We also present experimental evidence that shows software system
generators can significantly enhance productivity and produce software whose performance is comparable
to that written by hand. We conclude by exploring the challenges ahead and suggest future areas of
research that seem promising.

2  The Predator projects

Research in software reuse and software system generators is difficult and challenging for several reasons.
First, creating a software generator for any target domain requires a thorough understanding of that domain
and how software in that domain has been built. Acquiring domain expertise in order to formulate a realis-
tic domain model requires a considerable investment on the part of reuse researchers [Cur88].

Second, it is not sufficient to propose a domain model; the model must be validated through extensive pro-
totyping. We estimate that building a software system generator requires 50% to 100% more effort than
building a single system. This overhead is easy to understand: assembling a single system from compo-
nents is not impressive; one needs to build components for at least two complete systems to demonstrate
the payoff (i.e., the mix-and-match capabilities) of a generator.

Third, domain-specific results (i.e., generators) are usually of interest only to a small community of
researchers. For a domain-specific result to be accessible and appreciated by the general reuse community,
the design principles used must be identified and represented in a domain-independent way. Defining
domain-independent abstractions that are central to reuse is often a formidable intellectual undertaking.

From our experience, the only way that people can truly understand software reuse and software system
generators is through hands-on experience. Data structures is among the few domains that all software
engineers consider themselves experts; it is a microcosm of the problems that exist in domains of recogniz-
ably large and complex software systems. Therefore, we have embarked on the development of two proto-
type generators for data structures, P1 and P2, to demonstrate to a wide audience the capabilities and
potential for domain-specific generators. (P1 was intended to be an experimental prototype; a more modu-
lar version, P2, is intended for distribution). Productivity and performance results on P1 and P2 are pre-
sented in Section 5.

As mentioned earlier, explaining how domain-specific results follow from an application of domain-inde-
pendent concepts is essential to software system generator promulgation. The next section (Section 3)
describes domain-independent language extensions to C++ that expose the concepts that are critical to our
approach to domain modeling, software reuse, and software system generation; these extensions also dis-
tinguish the software organizations of generators from traditional object-oriented design and language con-
cepts. We will use a running example in the next two sections, first to explain some important syntactic
concepts and then to define their semantic interpretations for the domain of data structures.
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3  GenVoca and P++

As mentioned earlier, our experience with software system generators is not unique. Our analysis of sev-
eral existing generators (e.g., Genesis - DBMSs, Avoca - network protocols, Ficus - distributed file sys-
tems, Brale - host-at-sea buoy systems) revealed the following similarities:

• Subsystems are the building blocks of generated systems.

Effective software system synthesis requires that systems be constructed from combinations of sub-
systems (or components), not just functions or classes. It is too unwieldy to construct a large software
system by selecting and assembling hundreds or thousands of functions and classes from a reuse
library. Instead, larger units of software encapsulation are needed [Joh88].

• Components import and export standardized interfaces.

The key to software system synthesis is composition. Composition is much easier when component
interfaces correspond to fundamental abstractions of the target domain and these interfaces have been
standardized. Standardization encourages functionally similar components to be plug-compatible and
interchangeable.

• Component composition and customization is achieved through parameterization.

Parameterization is an easy-to-understand model for combining and customizing components. Simple
forms of parameterization, i.e., constant and type parameters, are necessary but not sufficient for soft-
ware system generators. Components must also be able to import other components as parameters
[Gog86, Tra93].

These lessons on software design have been captured in GenVoca [Bat92b]. It is a domain-independent
model for defining families of hierarchical systems as compositions of reusable components. From our
experience, models of software design are best understood when programming languages provide direct
support for model constructs. Thus, we are developing the P++ language, an extended version of C++, to
clarify GenVoca concepts and to distinguish them from traditional object-oriented concepts. The central
features of P++ are outlined in the following paragraphs.

In GenVoca, the basic unit of software system construction is the component or subsystem. A component is
a suite of interrelated variables, functions, and classes that work together as a unit to implement a particular
feature of a software system for a given problem domain. A realm is a library of plug-compatible compo-
nents. A realm is defined by a standardized interface that consists of functions and classes. All components
of a realm inherit this interface and may specialize it by adding data and function members to existing
classes, and by adding new variables, functions, and classes.

P++ has linguistic constructs for defining realms and components. Figure 1a shows a definition for realm
DS which consists of classes container and cursor. (For the moment, we ask readers to forego assign-
ing meanings to the examples in this section, and focus on the syntactic/abstract descriptive capabilities of
P++; we will explain the semantics of this realm and its components in Section 4). Figure 1b shows the
transient component, an instance of the DS realm. Note that transient specializes the interface of DS
in three ways: (1) classes container and cursor have additional data and/or function members; (2) a
new class, element, has been added, and (3) new variables, top_of_heap and free_bytes_left, are
present.

Parameterization is a key feature of P++. Realms may be parameterized by types and constants; all realm
parameters are inherited by the realm’s components. Notice that realm DS in Figure 1a is parameterized by
class e. The transient component inherits parameter e and uses it to define class element.
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Individual components may be additionally parameterized by realms, classes, data member names, and
constants. Figure 2a shows the DS component bintree, which is parameterized by data member m and DS
component x. Figure 2b shows component hash, which has three parameters: constant integer h, data
member m, and DS component x.

A software system specification is expressed in P++ by composing components through parameter instan-
tiation. Suppose emp denotes a class of employees which has members age and name. The following com-
positions are examples of P++ software system specifications:

typedef hash<emp> <1000, age, transient> k0;
typedef bintree<emp> <age, hash <500, name, transient>> k1;

Type k0 defines an implementation of the DS interface where the hash component is layered on top of
transient. Additional parameters to hash are 1000 and data member age. <emp> is separately listed
because it is a parameter for realm DS. Type k1 defines an implementation which stacks the bintree,
hash, and transient components (in this order). Data member age is a parameter to bintree, while
500, the member name, and the component transient are parameters of hash.

The semantics of component parameters and composition is domain dependent. In the following section,
we present a model of the data structure domain which makes these compositions meaningful.

realm DS <class e>
{
class container
{ container (); };

class cursor
{
cursor (container *c);
void move_to_start ();
void advance ();
void insert (e& obj);
void remove ();
bool end_of_container ();
...

};
};

component transient : realm DS<class e>
{

class container
{ bool opened (); };

 class cursor
 { element *obj; };

class element : class e
{ ... };

char *top_of_heap;
int free_bytes_left;

};

Figure 1a and 1b: A sample realm and component.

component bintree<member m,DS<element> x>
: realm DS<class e>

{
class container
{ element *root_element; ... };

class element : class e
{
element *left_child;
element *right_child;
...

};
};

component hash<const int h, member m,
DS<element> x> : realm DS<class e>

{
class container
{ element *bucket[h]; ... };

class element : class e
{ element *next_on_hash_chain; ... };

int hash ()
{ ... };

};

Figure 2a and 2b: Parameterized components.
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4  The data structures domain and the Predator generators

As mentioned in Section 2, data structures is among the few mature domains that are well-understood by
all software engineers. General-purpose tools for data structure generation are virtually nonexistent; most
data structures today are still coded by hand. Because the data structure domain typifies the problems that
are encountered in domains of recognizably large software systems, and because opportunities for using
generators are abundant, data structures is an ideal domain to study. Although our prototyping efforts (P1
and P2) have focussed on extensions to ANSI C, we will use P++ in this section to express the basic con-
cepts of our domain model.

4.1  A domain model for data structures

Most common data structures – binary trees, lists, arrays – are implementations of a container abstraction.
A container is a sequence of elements, where all elements of a container are instances of a single class. Ele-
ments of a container are enclosed by the container and can be referenced and modified only through run-
time objects called cursors. Readers may recognize cursors and containers as well-established concepts in
databases [Kor91]; our earlier work on Genesis and contemporary work in object-oriented databases
strongly influenced our choice of these abstractions [ACM91]. Figure 3a illustrates the basic ideas; a con-
tainer with eight elements is shown, with a cursor that references one of these objects.

DS is the realm of components that implement the container-cursor abstractions. Programs that reference
the DS interface see only container and cursor objects, yet DS components must explicitly define ele-
ment objects in order to implement container-cursor abstractions. This latter point can be seen in the
transient, bintree, and hash components of Figure 1 and Figure 2.

Every DS component behaves like a transformation that implements the objects and operations of the DS
interface. As an example, recall the hash<h,m,x> component of Figure 2b. hash links elements with
the same hash value onto a common bucket chain. The m parameter represents the name of a data member
of type e that is to be hashed, and h is the total number of bucket chains. Each object of type e is special-
ized by the addition of a data member (next_on_hash_chain) to implement a bucket list. Figure 3b
illustrates these ideas.

Note that hash is a symmetric transformation, i.e., it maps the container-cursor abstraction to concrete
implementations of the container-cursor-element classes, which in turn can be further transformed by other
DS components. Symmetry is expressed by hash’s realm parameter x, which indicates how hash-special-
ized elements (denoted by DS<element> in Figure 2b) are to be mapped by some other DS component x.

cursor

container

elements

cursor

container

elements

Figure 3a and 3b: DS abstractions and component mappings.

hash
chains
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In general, DS components encapsulate basic data structure algorithms and generic data structure features
(e.g., sequential and random storage, storage in persistent or transient memory, etc.). Using P++ syntax, a
library of DS members can be easily defined:

typedef DS<element> ds; // ds is an abbreviation

component odlist<ds d, member m>: realm DS<class e>; // doubly linked list sorted
// on member m

component dlist<ds d> : realm DS<class e>; // unsorted doubly linked list
component array<ds d, int s> : realm DS<class e>; // store elements in an array

// of size s
component malloc<ds d> : realm DS<class e>; // store elements on a heap
component persistent<char *f> : realm DS<class e>; // store elements in a file f

As mentioned earlier, compositions of components define software systems, which in our domain corre-
sponds to complex data structures. Recall the compositions k0 and k1 from last section, which we repeat
below:

typedef hash<emp> <1000, age, transient> k0;
typedef bintree<emp> <age, hash <500, name, transient>> k1;

Type k0 defines a data structure where emp elements are hashed on member age and stored in transient
memory. Type k1 defines a data structure where emp elements are first linked onto a binary tree using data
member age as the key. Next, the binary-tree-specialized elements are hashed on member name and stored
in transient memory. As these examples suggest, DS components can be composed and reused in many
ways to produce a great number of complex data structures. Examples are given in Section 5.

In addition to the container-cursor-element abstractions, Predator also provides link abstractions. A link is
a relationship between elements of (possibly distinct) containers. Well-known implementations of links are
relational join algorithms and pointer-based methods (e.g., ring lists) used in object-oriented databases
[Kor91, ACM91]. We will not elaborate more on links or the realm of components that implement them.
The basic idea that we wish to convey is that our domain model relies on database-like interface to data
structures. We believe these abstractions are general enough to realize a software generator for this domain
and to make data structure programming much easier.

4.2  The Predator generators

The Predator prototypes P1 and P2 extend the ANSI C language. Both are implemented as translators
which transform Predator programs into ANSI C programs; Predator declarations and functions are
replaced with their corresponding ANSI C implementations.

Generating efficient code is a primary goal in the design of these prototypes. Because exported functions of
components tend to be small, eliminating function call overhead is a key concern. Both P1 and P2 rely on
macro expansion and partial evaluation to optimize generated code and to remove the explicit boundaries
between components. Presently, P2 is over 30K lines of C code with a library of 40 components. A sizable
fraction of P2 implements features that will be eventually provided by P++. P++ will be the platform for
our future development efforts. Further details on the architecture and optimizations of these prototypes is
given in [Bat92c, Sin93, Sir93].
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5  Results

For any generator to be practical, it must satisfy two requirements: (1) use of the generator should yield
significant productivity gains, and (2) the performance of generated code must be comparable to that of
handwritten code. Some of our findings on these topics are presented in the following sections.

5.1  Generators versus class libraries

Class (or template) libraries are a popular means of boosting programmer productivity and reducing the
time and cost of software development. The Booch Components [Boo87], libg++ [Lea88], NIHCL
[Gor90], and COOL [Fon90] are examples of such libraries. A large fraction (i.e., over 80%) of these
libraries is devoted to components for generic data structures (e.g., lists, trees, queues, etc.). These compo-
nents offered a prime opportunity for evaluating Predator.

Our first experiment was to benchmark three spell-checker programs: one implemented using Predator, a
second using Booch Components, and a third using libg++. Overall, we were pleasantly surprised that the
performance of Predator-generated code was marginally superior to (and in some cases, significantly better
than) code written for class libraries. The big win, however, was in programmer productivity. By changing
DS component compositions, we were able to alter the data structure implementations of the Predator spell-
checker immediately. In contrast, substantial effort was needed to recode spell-checkers to use different
Booch or libg++ components. Details of these experiments are presented in [Bat93a].

We learned three valuable lessons from these experiments. First, it is possible to generate code for simple
data structures that is comparable in performance to hand-crafted and hand-optimized code. Second, cur-
rent template libraries are not designed to maximize programmer productivity. Every template library con-
sists of families of related components. While members of a family may share the same interface, members
of different families will have incompatible interfaces. That is, it is very common for several families (e.g.,
binary trees, lists, arrays) to each implement the same abstraction but be given different interfaces. This
limits component interchangeability and makes libraries harder to use. A programmer must invest substan-
tial effort to learn and program different interfaces. Predator, however, offers a single standard interface for
all elementary data structures which leads to higher productivity.

Third and most important, most template libraries are unscalable. To our knowledge, most data structure
libraries reflect feature combinatorics; that is, every component in a library represents a unique combina-
tion of features. For example, there are 3 × 3 × 2 = 18 varieties of deques (double-ended queues) in the
Booch library. They are derived from the cross-product of 3 concurrency control features (sequential,
guarded, synchronized), 3 memory allocation features (bounded, unbounded, dynamic), and 2 ordering
features (ordered, unordered). Adding new features, in general, may cause libraries to double in size. For
example, all data structures in the Booch library reside in transient memory. If a persistent memory option
is added, the library doubles (i.e., 18 transient deques, 18 persistent deques). The problem is actually
worse: data structures used in operating systems, compilers, and database systems are far more sophisti-
cated than those available in contemporary template libraries. These applications would require highly spe-
cialized features to be frequently added to libraries. Handwritten template libraries are clearly not the
solution. Predator offers an attractive alternative: its components implement primitive features and Preda-
tor is the tool for composing components. By making feature combinatorics explicit, it is possible that a
practical and scalable tool for data structure generation can be realized. This prospect led to our next series
of experiments.
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5.2  A re-engineering of OPS5/C LEAPS

OPS5/C LEAPS is a state-of-the-art production system compiler that translates complex OPS5 rule sets
into C programs [Mir91, Bra92-93]. The run-time efficiency of LEAPS-generated programs has been doc-
umented to be several orders of magnitude faster than that of OPS5 interpreters. In addition to the obvious
increase in performance by compilation, most of the gains are due to the use of special algorithms for rule
processing that avoid materialization of intermediate matches and that rely on sophisticated data structures.
The LEAPS data structures implement a main-memory database of assertions that are probed by highly-
optimized temporal queries. This database uses predicate and attribute indices, unusual structures for iden-
tifying negated working memory elements, and a special implementation of nested loops to process (rela-
tional) joins of containers.

LEAPS is a complex, performance-driven application. It was an ideal next target for Predator for three rea-
sons. First, we knew that each of the data structure features needed by LEAPS (e.g., temporal predicates,
attribute indices) were certainly not part of any template library; LEAPS presented an acid test for data
structure scalability. Second, the primary goal of the LEAPS compiler was performance; head-to-head
comparison of run-times would reveal the quality of generated code for non-trivial data structures. Third, it
was well-known that the monolithic design of OPS5/C made experimentation with internal data structures
very difficult; such experimentation – although difficult – has been vital to the continued improvement of
the compiler. Thus, the quality and extensibility of a Predator-generated system would be tested.

LEAPS took approximately three person-years to build. Re-engineering LEAPS took approximately five-
person months: two months to understand the LEAPS algorithms and data structures and another three
months to build the additional components needed for the LEAPS data structures. Initially, OPS5 rule sets
were translated by hand into P1 programs; we have since written a translator to automatically generate P1
programs given an OPS5 rule-set. (This translator took six-person months to build.)

We used a variety of rule sets to benchmark LEAPS and our re-engineered version, called RL. Starting
with simple rule sets and small numbers of stored objects, and then progressing to more complex rule sets,
we compared RL run-times with those of LEAPS. We were surprised to find that with virtually no excep-
tions, the running times of RL-generated programs performed at least 10% better than their LEAPS coun-
terparts. Figure 4 displays the differences in performance for two simple rule sets: triples and bigjoin.
triples is a rule set for generating all triples <x,y,z> of integers less than n, where x < y < z < n.
bigjoin is a rule set that performs a database join on two containers of n objects. Both the RL and
LEAPS implementations used very complicated data structures to solve the triples and bigjoin rule
sets. Performance results on more complex rule sets are presented in [Sir94].

The productivity gains using Predator became clear when we altered RL to store its data in persistent mem-
ory. This took two days for us to write and debug a persistent DS component; to swap it with the tran-
sient DS component took minutes. We compared persistent-RL to DATEX, the persistent-memory
version of LEAPS [Bra93]. DATEX was a reimplementation of LEAPS using the Genesis file manager
[Bat88] and took many months to build. Interviewing members of the LEAPS team suggests that Predator
offers a factor of 3 in productivity that leads to a more extensible product. Moreover, since the Genesis file
manager was never tuned, we had expected a 50-fold performance improvement; we measured at least a
factor of 60. Details of these experiments are presented in [Sir94].

We believe that the productivity and performance advantages of using Predator stem from three sources.
First, decomposing complex monolithic data structures into primitive, independent, encapsulated compo-
nents significantly simplifies implementation and makes possible performance optimizations that are diffi-
cult, if not impossible, to accomplish by hand. Second, the high-level programming abstractions offered by
Predator radically simplify software system design and permits programmers to concentrate on more criti-
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cal aspects of software construction. Third, alteration and experimentation with different implementations
is facilitated by component compositions.

6  Related work

We noted in earlier sections that the basic ideas of GenVoca can be recognized in the work of many other
researchers. Component definition constructs are provided by languages like Ada 9X [Bar93] and Modula
3 [Car89]. Realms and symmetric components can be seen in Volpano’s STS [Vol85]. Goguen provides a
model for parameterized programming in the languages LIL [Gog86] and FOOPS [Gog93]; the functional
language ML [Mil90] takes another approach to parameterization.

Software system generators are related to application generators. Many application generators provide a
domain-specific programming language, and include either an interpreter or compiler for that language
[Kru92]. Well-known examples of application generators include Lex, Yacc, VisiCalc, Mathematica, and
so-called fourth generation languages (4GL’s). The reuse advantages of application generators are well-
known, affording gains in productivity over general-purpose programming languages for constructing fam-
ilies of related programs. The disadvantages of application generators are (1) limited availability, (2) lack
of appropriate functionality, or (3) poor performance [Kru92].

Software system generators provide the advantages of application generators while addressing their disad-
vantages. In our case, we have noted: (1) GenVoca describes a model and P++ provides a tool for formaliz-
ing and simplifying the construction of generators, thus facilitating the development of new generators in
other domains. (2) Encapsulating functionality into separate components makes it easier to add new fea-
tures – the new code can be written without having to understand and modify the existing code. (3) If each
component separately implements a different feature, it is easy to select an appropriate set of components
to meet specific functional and performance requirements (versus monolithic systems which trade general-
ity for performance).

Figure 4: Performance of two rule sets.
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Draco was one of the first tools for software system generators based on transformation systems. Unlike
GenVoca, system designs were expressed in an application-specific language, and were mapped to expres-
sions in other domain-specific languages during the process of code generation [Nei84, Nei89]. Therefore,
Draco embodied a different model of application generators than GenVoca does.

7  Conclusions and future work

We are convinced that software reuse is inherently an experimental discipline; the techniques to achieve
reuse are best revealed, understood, and learned through experience. Software reuse is often mistaken to be
an end-product; rather, it is a by-product in achieving other goals. We have investigated reuse in our quest
to define design techniques, languages, and prototypes of domain-specific software system generators.

We chose the domain of data structures as the basis for our research. It is a mature domain that is univer-
sally understood; there are numerous applications with handwritten data structures that could be re-engi-
neered and regenerated using a data structure generator. Our preliminary results have been encouraging.
We have obtained significant productivity gains without sacrificing run-time performance using our gener-
ators. More significantly, we also have evidence that our generated data structure code is more extensible
(and hence more maintainable) than handwritten code. However, we have no illusions that our experimen-
tal results to date are conclusive; many more experiments (particularly by others using P2) will be needed
before a solid case (for or against generators) can be made and the limits of data structure generators are
understood.

As mentioned earlier, creating a software system generator for data structures is not the primary emphasis
of our work. We are interested in general design techniques to create generators for other domains, where
the P1 and P2 prototypes are simply instances of these ideas. The P++ project extends C++ with linguistic
features for expressing large-scale components: that is, P++ supports component abstraction, encapsula-
tion, parameterization, composition, and inheritance. These extensions reinforce our belief that design
techniques needed for large-scale software reuse and software system generators are inadequately covered
by conventional (object-oriented) languages and software design techniques. Here again, we believe that
P++ is certainly not the final point for language support for reuse; it is simply a first step. Experience using
P++ in software generators is the next order of business.

Acknowledgments. The authors would like to thank Dan Miranker and Kelsey Shepherd for their helpful
comments on earlier drafts of this paper.
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