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Introduction 

• My background is in database management, not theorem proving 
 

• My interests have always been in software design 
• early work on DBMS implementations 
• transitioned in early 1990s to Software Engineering 
• databases fundamentally shaped my view of software design 

 
• My work focused on software product lines (SPLs) 

• set of related programs that are differentiated by “features” 
• feature is an “increment in program functionality” 
• different compositions of features yield different programs 
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My Contribution 

• Understand and explain feature-based software design by simple 
mathematics 

 
• Easiest way for me to express, conceive, and explain my ideas 

• provided me with a different view of software design  
whose underpinnings are in categories 

• clear and precise notion of “composition” (function composition) 
 

• My inspiration for automated program generation… 
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• Declarative query is mapped to an relational algebra expression 
• Each expression is a program 
• Expression is optimized using algebraic identities 
• Efficient program generated from expression 

 
 
 
 
 
 
 
 
 
 
 
 

Relational Query Optimization (RQO) 

SQL 
select 

statement 

parser 

inefficient 
relational 
algebra 

expression 

efficient 
relational 
algebra 

expression 
optimizer 

declarative  
domain-specific  

language 

automatic 
programming 

code 
generator 

efficient  
program generative 

programming 
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• Automated development of query evaluation programs 
• hard-to-write, hard-to-optimize, hard-to-maintain 
• revolutionize and simplify database usage 

 
• Represented program designs as expressions 

 
• Use algebraic identities to optimize expressions – can optimize 

program designs 
 

• Compositional:  hallmark of great engineering 
 

• Paradigm to replicate in other domains 

Keys to Success of RQO 
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Purpose of This Talk 

• Explain how RQO paradigm generalizes to SPLs 
 

• Also show how proofs scale from a single program to families of 
programs – big win 
 

• Within an algebraic framework of automated program generation and 
SPLs – general approach 
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SOFTWARE PRODUCT LINES  
(SPLs) 

quick tutorial on  
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• Set of structures (programs) from which we want to decompose into 
more fundamental structures and their compositions 

 
 
 
 
 
 

 
 

• Standard engineering activity called Domain Analysis 
• Resulting set of atoms is not necessarily unique 

Domain Analysis 

domain 

“atoms” 
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In Software 

• Features are semantic increments in program functionality 
• View features as transformations (arrows) 
• Programs are defined by a composition of transformations (arrows) 
• SPL is a tree whose nodes are programs and arrows are features 
  P0 

f 
P1 

h 
P2 

k 

P6 

P2 P4 

P5 P7 

P8 

PA 

P9 

g i 

h 

i 

j 

m 

n 

m 
actually categories, 

but this is not 
relevant to this talk 

P2 = khf 

P6 

P2 P4 

P5 P7 

P8 

PA 

P9 

P0 P1 P2 
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Example: a 4-Program SPL 

• Elementary product line of Java calculators 

 P0 
base 

P1 
sub 

P2 
format 

P3 

format 
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class calculator { 
    float result; 
    void clear() { result=0; } 
    void add( float x ) { result=+x; } 
      
} 

class gui { 
     
   JButton add    = new JButton(“+”); 
     
    
   void initGui() { 
       
     ContentPane.add( add ); 
       
   } 

   void initListeners() { 
       
     add.addActionListener(...); 
       
   } 

     

} 

 
 
     
 
    void sub( float x ) { result=-x; } 
 

  
     
     
   JButton sub    = new JButton(“-”); 
    
     
       
       
     ContentPane.add( sub ); 
    

     
       
       
     sub.addActionListener(...); 
    

    

  
      
      
      
  

  
 
   JButton format = new JButton(“format”); 
     
     
    
     
     ContentPane.add( format ); 
       
       
     

     
       
       
       
     

   void formatResultString() {...} 

 

base ·  =  sub · format · 

new methods 

new fields 

extend existing methods 

new methods 

new fields 

extend existing methods 

P0 P1 P2 P3 

 P0 
base 

P1 
sub 

P2 
format 

P3 

format 
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• 1986 database systems   80K LOC 
• 1989 network protocols 
• 1993 data structures 
• 1994 avionics 
• 1997 extensible Java preprocessors 40K LOC 
• 1998 radio ergonomics 
• 2000 program verification tools 
• 2002 fire support simulators 
• 2003 AHEAD tool suite   250K LOC 
• 2004 robotics controllers 
• 2006 web portlets 

 
• Others have picked up on these ideas… 

Ideas Scale...  
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Quick Summary on SPLs 

• Using features has right look and feel 
• standard idea in software product lines 
• features as transformations is key to a modern approach 

 
• feature composition is function composition 
• a generalization of RQO – program designs are expressions 
• design optimization is expression optimization 
• program generation is expression evaluation 

 
• First connection (that I know of) to theorem proving… 
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JBOOK 
Egon Börger’s 2001 
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Structure of JBook 

• At this point, various correctness issues are considered 
• ex: equivalence of interpreter execution of program and  

the JVM execution of compiled program 
• JBook not written with product lines in mind 

• definition, correctness of single interpreter, compiler of Java1.0 
• But the tools (parser, interpreter,…) were developed by features… 

Java 
Program 

Java 
AST 

parser byte 
code 

compiler 

InterpRun 

interpreter 

JVMRun 

JVM 
interpreter 

proof 
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Overview of JBook 

• JBook presents structured way to incrementally develop a Java 1.0 grammar,  
and ASM definitions of an interpreter, compiler, and bytecode (JVM) interpreter 

• Start with the sublanguage of imperative expressions and incrementally extend it 

grammar interpreter compiler JVM 
interpreter ExpI 

grammar interpreter compiler JVM 
interpreter StmI 

· 

grammar interpreter compiler JVM 
interpreter ExpC 

· 

grammar interpreter compiler JVM 
interpreter StmC 

· 

grammar interpreter compiler JVM 
interpreter ExpO 

· 

grammar interpreter compiler JVM 
interpreter ExpE 

· 

grammar interpreter compiler JVM 
interpreter StmE 

· 
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Overview of JBook 

• JBook presents structured way to incrementally develop a Java 1.0 grammar,  
and ASM definitions of an interpreter, compiler, and bytecode (JVM) interpreter 

• Start with the sublanguage of imperative expressions and incrementally extend it 
• Only when the Java 1.0 definitions were complete were the proofs constructed 

java1.0 
grammar 

java1.0 
interpreter 

java1.0 
compiler JVM 

Java1.0 
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Features Update All Representations 
of a Program Lock-Step 

• Can develop theorems and proofs incrementally from features as well,  
lock-step like all other representations – structurally treat them no differently 

grammar interpreter compiler JVM 
interpreter ExpI proofs 

grammar interpreter compiler JVM 
interpreter StmI 

· 
proofs 

· 
grammar interpreter compiler JVM 

interpreter ExpC 

StmC 
· 

proofs 
grammar interpreter compiler JVM 

interpreter proofs 
ExpO 

· 
grammar interpreter compiler JVM 

interpreter proofs 
ExpE 

· 
grammar interpreter compiler JVM 

interpreter proofs 

StmE 
· 

grammar interpreter compiler JVM 
interpreter proofs 
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Found What We Expected… 

• Theorems and proofs could be developed incrementally from features as well, 
lock-step like other representations – structurally treat them no differently 

java1.0 
grammar 

java1.0 
interpreter 

java1.0 
compiler JVM 

Java1.0 
Proofs 

ITP-19 

modularize theorems and proofs 
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all other representations 



Correctness of Compiler 
• Statement of theorem is a list 

of invariants 
 

• 14 invariants in all 
 

• Don’t need to know the 
specifics of the invariants to 
understand the 
effects of features 
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Statement of Correctness 
Theorem 14.1.1 (Correctness of the Compiler).  There exists 
a monotonic mapping s from the run of the ASM for a Java 
program into the run of the ASM for the compiled JVM program 
such that the following invariants are satisfied: 

(reg) 

(begE) 

(bool1) 

(bool2) 

(exc) 

(exp) 

(new) 

(exc-clinit) 

(fin) 

ExpI 

(begS) 

(stm) 

(abr) 

StmI · 

(stack) 

(clinit) 

ExpC · StmC · ExpO · ExpE · Java1.0 = StmE · 
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Proof of Correctness 

• Proof is a case analysis using structural induction to show 
correctness of compiling each kind of expression 

• Proof is a list of 83 cases that show invariants holds 
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Adding Cases 

• Same pattern repeats 
 

• Invariant refinement: original proof cases remains unchanged 
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Each program in the JBook product line had a 
 Proof of Correctness. 

As features are composed, the theorem is elaborated with 
new invariants, the proof 

is extended with new cases and 
elaborations of existing cases. 



Reaction… 

• JBook proofs were manually created 
 

• Need to be mechanically verified 
 

 
• Our conjecture was that theorems + proofs could be generated just 

like other representations of programs in an SPL 
 

• Show how our conjecture held with modern tools and approaches 
 

• Starting point for this work 
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PRODUCT LINE OF THEOREMS 
our current work: 
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A Step Forward 

• Showed how to build syntax & 
semantic definitions of a SPL of 
languages, proofs in features and 
their compositions are independently 
certified by Coq proof assistant 
 

• Next slides I’ll review algebraic 
structure that features impose on 
software development 

 
• Ben will present details on how he 

accomplished this in Coq 
 

• Future work… 

OOPSLA 2011 

 



Welcome to the Land of Features! 

 



#1: Features and Domains 

• Given a domain D of programs to generate, identify the core features that underlie 
the domain via domain analysis. Domain D has the set of features: 
 
 
 
 
 
 
 

• Program in this domain is a composition of features: 
 
 
 
 
 
 
 
 

D      =  

B1 // base program 1 
B2 // base program 2 
F1 // optional feature 1 
F2  // optional feature 2 
… 
Fn // optional feature n 

1 n 3 1 1

2 4 1 2

P F F F B

P F F B

=
=

  

 
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Our Example 

• Small product line of 4 features: 
 
 

 
• Different compositions yields different languages: 

base 
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#2: FEATURE MODELS 
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Feature Models 

• Not all combinations of features are meaningful 
• Some features require/preclude other features 
• Feature model defines the legal combinations  
• Is a context sensitive grammar 

• context free grammar whose language include all legal combinations 
• constraints that eliminate nonsensical sentences 

 
 
 
 

• Assuming no feature interactions, sentence of a feature model (‘kjb’)  is 
mapped to an expression by a dot-product of its terms 

k j b 

D  :  [k] [i] [j] b ;    // context free grammar 
      k  j  i;           // additional constraints 
      k  j; 
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Our Example 

• Is just a context free grammar 
• Its language (sentences): 

L  :  [Generic] [Interface] [Cast] cFJ; 
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#3: LOCK-STEP UPDATE  OF 
REPRESENTATIONS 
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Feature Modules 

• Every program has multiple consistent representations 
• ex:  a parser P has: grammar, source code, manual 

 
• Base program is a tuple: 
 
 
• Optional feature (F) modifies any or all representations 

 

P P PP [ gram ,src , man ]=

F F FF [ gram , src , man ]= ∆ ∆ ∆
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Feature Composition 

• Is tuple composition – tuples are composed element-wise 
• Extended parser (FP): 

 
 
 
 
 
 

 
 
 
 
 
 
 
 
 

 

=

= ∆ ∆ ∆

= ∆ ∆ ∆

F F F P P P

F P F P F P

FP F P

[ gram , src , man ] [ gram , src , man ]

[ gram gram , src src , man man ]





  

grammar of FP source of FP manual of FP 
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Our Example 

• Base language (cFJ) has multiple representations 
 
 
 
 
 

 
 

• Base language is a 4-tuple: 

base representation specification 
syntax scFJ 

operational semantics ocFJ 

type system tcFJ 

meta-theory proofs pcFJ 

cFJ cFJ cFJ cFJcFJ [s ,o ,t ,p ]=

preservation 
and progress 

proofs 
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Our Example 

• An optional feature j extends each representation: 
 

 
 
 
 
 
• Feature j is a 4-tuple of changes (functions) that update each 

representation 
 

representation change specification 
syntax sj 

operational semantics oj 
type system tj 

meta-theory proofs pj 
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Our Example 

• Tuple for Featherweight Java FJ is: 
 
 
 
 
 
 
 

 
 

FJ

Cast cFJ= 

cast cast cast cast cFJ cFJ cFJ cFJ[ s , o , t , p ] [s ,o ,t ,p ]= ∆ ∆ ∆ ∆ 

cast cFJ cast cFJ cast cFJ cast cFJ[ s s , o o , t t , p p ]= ∆ ∆ ∆ ∆   

syntax of FJ type system of FJ theorems and proofs FJ semantics of FJ 
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#4: FEATURE INTERACTIONS 
one more piece… 
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Feature Interactions 

• Feature interaction (FI) occurs when two features behave 
incorrectly together 

 

• Resolution of a feature interaction is an additional 
module/transformation that “patches” features so that they correctly 
work together 
 

• Illustrate with a classical example 
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• Flood control – Fire control problem (Kang 2003) 

• isomorphic to feature interaction problems in telephony 

Feature Interactions 

Fire 

Flood 

Flood 

Fire 

fire detected @ i 
sprinklers on @ i+1 
standing water  @ i+2 
water turned off @ i+3 
building burns down 
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• Flood control – Fire control problem (Kang 2003) 

• isomorphic to feature interaction problems in telephony 

Feature Interactions 

Fire 

Flood 

Flood 

Fire 

Fire#Flood 



New Operations on Features 

• Cross-product ()  says we want the integration of two features so that they work 
together correctly 

 
 

• # distributes over dot and # takes precedence over dot: 
 
 
 

 interaction of a feature with a dot-product = the dot-product of their interactions 
 
 
 

 

⋅ = ⋅f #(g h) (f # g) (f # h)

× = ⋅ ⋅f g (f # g) f g
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Connection to Prior Discussions 

• To account for feature interactions, a sentence of a feature model ‘kjb’ is 
mapped to a expression by a cross-product (not by a dot-product) of its terms 

 
 
 
 
 
 

• So not only do we compose features (k, j, b),  
we also consider all possible 2-way and 3-way (in general n-way) interactions  
of these features 

= × ×
= × ×
= ×
=

p k j b // def of p

k (j# b j b) // def of

k #(j# b j b) k (j# b j b) // def of

k # j# b k # j k # b k j# b j b // # dist over

 

     

      
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In Our Case Study 
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Generic Interface cFJ

Generic # Interface

Generic Interface cFJ

Generic # Interface

Generic # Interface # cFJ

Gen

Generic Interface cFJ

Generic # Interface Generic Interface c

eric # cFJ Interface # cFJ

1 1 1

FJ

× ×

=

=

=

 

   

     

  



#5: IMPLEMENTING MODULES 
given this super-structure, here’s the next key step 
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How We Implement Modules 

• Design features to be monotonic: what was true before a feature is 
added is true afterwards – although scope of validity may be qualified 

• standard design technique 
 

• Features are allowed to make 2 kinds of changes 
• add new definitions 
• modify existing definitions 

 
• Single syntactic approach for all representations 
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SYNTAX RULES 
how we define and modify 
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Adding Syntax 

• Syntax for expressions in cFJ 
• Syntax for expressions in Cast 
• Composition CastcFJ is the union of rules 
• Easy – only one exception to be considered shortly 

 = 
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Modifying Syntax 

• Requires foresight to know how productions may be changed by other features 
• engineering result from domain analysis 
• no different than OO refactorings that prepare source code for extensions 
• visitor, framework, strategy patterns 

cFJ expression syntax 

Cast syntax 
generalize 

generalize 

variation points (VPs) 

VP definitions 



Composition 

• Syntax for original FJ = CastcFJ  
• Syntax for Generics 
• Syntax for GenericsFJ 
• Exception (mentioned earlier)   – replace default VP definition 

 = 
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Inlining 

• At the end of a composition process, VP definitions can be inlined to 
simplify result 
 
 
 
 
 

 
 

• Typically, inlining yields what you would have written by hand 
• This is one way how we check if feature compositions are “correct” 

inline 

ITP-53 



REDUCTION  
 AND TYPING RULES 

other representations are handled no differently – such as: 

ITP-54 



Adding Rules 

• Typing rules for cFJ expressions 
• Typing rule added by Cast 
• Composition CastcFJ is the union of these rules 

 = 
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cFJ 

Cast 

CastcFJ 



Modifying Rules 

• Requires VPs to be defined 
• Typing rules for cFJ expressions 
• Generalize by adding VPs 
• VPs have more sophisticated meaning 

generalize 
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Semantics of VPs 

• Three kinds of VPs: 
 
– predicates that extend the 

premise of a rule  
 (true by default) 

  

– relational holes which 
extend a judgment's 
signature (empty by default)  
 

– functions that transform 
existing premises and 
conclusions  
(identity function by default) 
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Composition (as Before) 

• Typing rules for cFJ 
• Typing rules for Generics  (replaces default declarations for WFC and D) 

• Typing rules for GenericscFJ 

 = 
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THEOREMS AND PROOFS 
finally! 
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Theorems 

• A “general” theorem in cFJ with VPs and default definitions 
• Theorem “adapts” to VP instantiations of Generic 
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Semantic Composition 
 that guarantees the correctness of proofs 

• When VPs are used in theorems and proofs, we define properties 
that must be satisfied by any VP plug-in  

• stated as additional assumptions with default lemma(s) 
 

• Allows a general theorem to be proven, independent of features that 
might “plug-in” specific definitions for its VPs  

• in effect, the proof assumes a general behavior for all 
possible VP instantiations 

 
• Obligation: any feature that “plugs-in” a VP definition must supply a 

proof that the properties assumed by the general theorem are 
satisfied ITP-61 



Semantic Composition 
 that guarantees the correctness of proofs 

• In effect, the assumptions of a general theorem form an explicit interface 
against which a proof is written.   

• General theorem does not have to be recertified, reuse as is 
•    Plug-in theorems do not need to be recertified, reused as is 
•    Must certify that general assumptions hold for plug-ins 

feature X 

Lemma 
  . 
(default) 

  .   
  A 

Theorem 
   . 
   . 
   .   
A  B 

B feature Y 

Lemma 
  . 
  . 
  .   
  A 

 = 
Theorem 
   . 
   . 
   .   
 A  B 

B 

Lemma 
  . 
  . 
  .   
  A 

feature YX ITP-62 



ENCODING FEATURE 
 MODULES IN COQ 

VP for Ben 
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Coq Encodings 

• Syntax, operational semantics, and typing rules are written as standard inductive 
data types in Coq.  Proofs are then written over these encodings 

• Encoding of syntax: 

mapping 

Syntax Notation 
Coq Encoding 

ITP-64 



Semantic (not Syntactic!) Composition 

• So far, we defined composition syntactically 
• Fine for definitions, but how does this work with proofs? 
• Could do syntactic updates on proof terms 

 
 
 
 
 

 
• Specifying VPs on large proof trees is difficult 
• Have to recheck resulting term for each variant 
• Need a more semantic notion of composition! 
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feature X 

Lemma 
  . 
(default) 

  .   
  A 

Theorem 
   . 
   . 
   .   
A  B 

B feature Y 

Lemma 
  . 
  . 
  .   
  A 

 = 
Theorem 
   . 
   . 
   .   
 A  B 

B 

Lemma 
  . 
  . 
  .   
  A 

feature YX 



Semantic (not Syntactic) Composition 

• Use abstraction mechanisms built into Coq 
• Definitions are parameterized on variation points 
• Modules provide instantiations 
• Composition is simply instantiation 
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Semantic (not Syntactic) Composition 

• Parameterized definitions enable variation points in proofs 
• VPs are opaque to Coq 

• need to make assumptions about their behavior to complete proofs 
• assumptions are the proof variation points 
• proof composition is again instantiation 
• allows each module to be checked independently 

ITP-67 



Feature Modules in Coq 

• One Coq file per feature, which encapsulates all pieces of that feature 
 

• Each file is independently certified by Coq 
• To compose modules, a new file is created 
• Definitions and proofs are composed one at a time by instantiating 

variation points in definitions from features 
 

• Coq simply checks that each proof’s assumptions are satisfied 
• Effectively an interface check 
• No need to recheck proof terms from the modules 
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Feature Module Statistics 

• One Coq file per module that encapsulates all representations 
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Performance 

• Once proofs in each feature module have been certified, they do not need to be 
rechecked for a target language 

• Practical effect: certification time for feature modules is non-trivial 
• Certifying all products in our SPL approx. same time as required by cFJ module 
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FUTURE WORK 
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Enhanced Support in Coq 

• Relying on parameterization for feature composition has clear benefits: 
– Everything works “out of the box”: same level of assurance as anything in Coq 
– Separate verification of feature modules means we don’t have to recheck 

proofs for each product 
 

• But there are drawbacks: 
– Composition scripts are tediously built piece-by-piece 
– Adding a new feature requires modifying existing features to allow for 

extension: 
• Recursion needs to be opened and VPs added to inductive data types 
• Every proof over an extended type has to be reengineered 
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Enhanced Support in Coq 

• We are looking at extending Coq to better support feature composition 
 

• Ideally, a feature module can be designed without extension in mind 
• Subsequent feature modules can extend its definitions with new cases or variations 

 
• Given an extension and an existing proof, a feature module provides the necessary 

pieces to build a new proof 
• typing rules of CIC indicate where the proof extensions need to occur 

 
• A feature-module-level composition operator builds the complete set of definitions 

and proofs from a product specification automatically 
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Holy Grail 

• Safe Composition 
 

• A general structural analysis certifies that all programs of an SPL are type correct 
– uses a SAT solver and feature model to examine all legal combinations of 

features to verify type safety properties of all programs in an SPL 
– much faster than building and verifying each product separately 

 
• Believe a similar analysis can be done to certify correctness of all Coq products in an 

SPL 
– won’t have to generate and then certify theorems for each product 
– know ahead of time that the process is correct 
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CONCLUSIONS 
VP for Don 
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Conclusions 

• Mechanically verifying artifacts using theorem provers is hard work 
• Compounded when verifying all members of a product line 

 
• Features are a natural way to decompose a family of programs  
• Decomposing proofs along feature boundaries enables a natural reuse of proofs 

• same for other representations as well 
• Follows a typical way in which language definitions (syntax, semantics, type system, proofs) 

evolve over time 
 

• We use simple design and implementation techniques to structure a product line of 
theorems and their proofs, requiring: 

• engineering features so that they “fit together” 
• mathematical foundation of feature structures 
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Proof of Concept 

• Applied ideas to an SPL of Featherweight Java, using standard facilities in Coq to 
mechanically check proofs of progress and preservation for composed languages 
 

• A feature-based approach supports a structured evolution of languages  
from a simple core to a fully-featured language 
 

• Doing so transforms a mechanized formalization of a language from a rigorous 
check of correctness into an important way to reuse definitions and proofs across a 
family of related languages 
 

• We conjecture that our success can be replicated in other domains, and herein lies 
future work.  We welcome your thoughts and suggestions. 
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