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In)‘roclu\c)'ion

« My background is in database management, not theorem proving

« My interests have always been in software design
e early work on DBMS implementations
e transitioned in early 1990s to Software Engineering
* databases fundamentally shaped my view of software design

« My work focused on software product lines (SPLs)
« set of related programs that are differentiated by “features”
e feature Is an “increment in program functionality”

+ different compositions of features yield different programs _,



MS Con¥ri)3u¥ion

Understand and explain feature-based software design by simple
mathematics

Easiest way for me to express, conceive, and explain my ideas

« provided me with a different view of software design
whose underpinnings are in categories

o clear and precise notion of “composition” (function composition)

My inspiration for automated program generation...
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’Re\o\)'iono‘\ @uers O)o)'imizo}ion (RQO)

Declarative query is mapped to an relational algebra expression
Each expression is a program
Expression is optimized using algebraic identities

SQL .. _
«ect |* Efficient program generated from expression
Statement
inefficient efficient
- relational | relational R code
parser algebra " optimizer | algebra generator
expression expression
_ : : efficient
declarative automatic generative orogram

domain-specific

programming programming

language
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Keus Yo Success of RQO

Automated development of query evaluation programs
 hard-to-write, hard-to-optimize, hard-to-maintain
 revolutionize and simplify database usage

Represented program designs as expressions

Use algebraic identities to optimize expressions — can optimize
program designs

Compositional: hallmark of great engineering

Paradigm to replicate in other domains
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/Pur):oose OF _nwis _To\“?

Explain how RQO paradigm generalizes to SPLs

Also show how proofs scale from a single program to families of
programs — big win

Within an algebraic framework of automated program generation and
SPLs - general approach

ITP-6



quick tutorial on

SOFTWARE PRODUCT LINES
(SPLs)



domain

“atoms”

Domain gno\\bsis

Set of structures (programs) from which we want to decompose into
more fundamental structures and their compositions

S HD A @

W'N 1o N =

Standard engineering activity called Domain Analysis
Resulting set of atoms is not necessarily unique
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Tﬂ So-Prooo\re

 Features are semantic increments in program functionality
 View features as transformations (arrows)

 Programs are defined by a composition of transformations (arrows)
« SPL is atree whose nodes are programs and arrows are features

> Pg > P, P, P, = kBOFOD

actually categories,
but this is not
relevant to this talk
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lE;;((ZJWF)rD\GZ: Q “;-:/¥:>}”C255Y'CAT17 fssr‘:D\.

 Elementary product line of Java calculators

base sub format

[] Po Py P,
\rmat
P3
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f
base sub P, ormat P,

format

P3

class calculator {
float result;
void clear() { result=0; }
void add( float x ) { result=+x; } new methods
void sub( float x ) { result=-x; } ———— .
1 new fields 2 |0 x|

class gui { /445/ 2.500

JButton format = new JButton(“format™); — —
JButton add = new JButton(*‘+’);
JButton sub = new JButton(*-"); +

void initGui() {
ContentPane.add( format );

ContentPane.add( add ); \‘§§<<:t::::££;:lfwjeMS
ContentPane.add( sub );
} \ extend existing methods

void initListenersQ) { extend existing methods
add.addActionListener(...);
sub.addActionListener(...); format] sub ] base[1[1= P,
s

void formatResultString() {.--}
1 \‘§t:::::i new methods ITP-11




Ldeas Scole. ..

1986 database systems 80K LOC
1989 network protocols

1993 data structures

1994 avionics

1997 extensible Java preprocessors 40K LOC

1998 radio ergonomics

2000 program verification tools

2002 fire support simulators

2003 AHEAD tool suite 250K LOC
2004 robotics controllers

2006 web portlets

Others have picked up on these ideas...
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Quic\? Summo‘r«j on SPls

 Using features has right look and feel
o standard idea in software product lines
o features as transformations is key to a modern approach

o feature composition is function composition

* a generalization of RQO — program designs are expressions
* design optimization is expression optimization

e program generation is expression evaluation

e First connection (that 1 know of) to theorem proving...
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Egon Borger's 2001

JBOO0OK

Java" Vlrtual Machme

Definition,
Verification,
Validation

a- Jpringer
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S)'Y‘MC)'MY‘G OF 3%00\?

Java parser
Program

interpreter

interpreter

* At this point, various correctness issues are considered

* ex: equivalence of interpreter execution of program and
the JVM execution of compiled program

 JBook not written with product lines in mind
« definition, correctness of single interpreter, compiler of Javal.0
 But the tools (parser, interpreter,...) were developed by features...
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Overview O-‘? 3%00\?

« JBook presents structured way to incrementally develop a Java 1.0 grammar,
and ASM definitions of an interpreter, compiler, and bytecode (JVM) interpreter

« Start with the sublanguage of imperative expressions and incrementally extend it

Expl
[]
Stml

L]
ExpC

[]
StmC
[]
ExpO
]
EXpE
[]
StmE

: : JVM
arammar Internreter combiler

: : JVM
arammar interpreter compiler AR

: : JVM
arammar Internreter comniler

: : JVM
arammar Internreter comniler

: : JVM
arammar Internreter comniler

: : JVM
arammar interoreter compiler

. : JVM
grammar interpreter compiler .

interpreter
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Overview O-‘? 3%00\?

« JBook presents structured way to incrementally develop a Java 1.0 grammar,
and ASM definitions of an interpreter, compiler, and bytecode (JVM) interpreter

« Start with the sublanguage of imperative expressions and incrementally extend it
« Only when the Java 1.0 definitions were complete were the proofs constructed

Javal.0 javal.0 javal.0 javal.0

. . JVM
grammar Interpreter compiler
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)

Features

of’ a

rosro\m L ole

U cjo\)'e ﬂ“ Re resen)'o\)’ions
P Sten

« Can develop theorems and proofs incrementally from features as well,

lock-step like all other representations — structurally treat them no differently

Expl
Stm|
ExpC
[
StmC
ExpO
L
EXpE
L
StmE

arammar

arammar

arammar

nroofs

arammar

proofs

arammar

nroofs

nroofs

drammar

grammar

nroofs

: : JVM

Internreter comnller

. : JVM

Interpreter compiler . .

. . JVM

Internreter cnmnllpr

. : JVM

Internreter caomniler

. : JVM

Internreter cnmnllpr

. . JVM

Interpreter compiler

. . JVM

Interpreter compiler .
Interpreter

proofs

proofs
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Javal.0

TOMnCI \J\WO\)' ue l:X)DQC)'eCl...

Theorems and proofs could be developed incrementally from features as well,
lock-step like other representations — structurally treat them no differently

javal.
gramm‘

modularize theorems and proofs
along feature boundaries like
all other representations

Proofs
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C orrec)‘ness OP C om)o |\er

Theorem 14.1.1 (Correctness of the compiler). There exists a mono-

tonic mapping o from the run of the ASM for a Javag program into the run of
the ASM for the compiled JVMg program such that the following invariants
are satisfied for oo = pos,:

Statement of theorem Is a list
of Invariants

14 invariants in all

Don't need to know the
specifics of the invariants to
understand the

effects of features

(reg)
(stack)

(beg)

(exp)

(booll)

(bool2)

(new)

(stm)

(abr)
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S)‘o\;‘emen;‘ OF COY‘FQC;'heSS

Theorem 14.1.1 (Correctness of the Compiler). There exists

a monotonic mapping CJ from the run of the ASM for a Java
program into the run of the ASM for the compiled JVM program
such that the following invariants are satisfied:

(reg) (bool1) (exc)
(stack) (bool2) (exc-clinit)
(beg$S) (new) (clinit)
(begE) (stm) (Fin)
(exp) (abr)

Javal.0 = StmE

- EXpE -ExpO -StmC -ExpC -Stml -Expl
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/PY‘OO O{) C orrec)‘n ess

 Proof is a case analysis using structural induction to show
correctness of compiling each kind of expression

» Proofis a list of 83 cases that show invariants holds

14.2 The correctness proof 183

Case 6. context(posy,) = *(uopPexp) and pos, = «:
Similar to Case 3.
Case 7. context(pos,) = “(uop Pval) and pos,, = 3:

Similar to Case 5. If uop is the negation operator and « is a By (lab)-position,
then according to the compilation scheme in Fig. 9.3, the position /3 is Bg(lab)-
position. We set o(n + 1) := o(n) and the invariants (booll) and (bool2)
for /3 in state n can be carried over to «a in state n + 1.

Case 8. context(pos,) = “(loc = Pexp) and pos, = o
Similar to Case 3.
Case 9. context(pos,) = *(loc = Pwval) and pos, = 3:

Assume that o is an &-position and that the size of the type of the vari-
able loc is 1. (The case of size 2 1s treated in a similar way.) Accord- ITP-22




gclclinﬁ Cases

Same pattern repeats

Invariant refinement: original proof cases remains unchanged

Each program in the JBook product line had a
Proof of Correctness.

new invariants, the proof
s extended with new cases and
elaborations of existing cases.

As features are composed, the theorem is elaborated with

- -

- I ™

Javal.(

83
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’Reo\c)’ion e

JBook proofs were manually created
Need to be mechanically verified

+4
N

Our conjecture was that theorems + proofs could be generated just
like other representations of programs in an SPL

Show how our conjecture held with modern tools and approaches

Starting point for this work
ITP-25



our current work:

PRODUCT LINE OF THEOREMS



ﬂ S)"Q)’J

Showed how to build syntax &
semantic definitions of a SPL of
languages, proofs in features and
their compositions are independently
certified by Coq proof assistant

Next slides I'll review algebraic
structure that features impose on
software development

Ben will present details on how he
accomplished this in Coq

Future work...

;O roo arcl
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Product Lines of Theorems

Benjamin Delaware ~ William R. Cook  Don Batory
Department of Compuier Science
University of Texas at Austin
{bendy, woook, batoryhgcs. utexas. edu

Abstract

Mechanized proof assistants ar powerful verification tools,
but proof development can be difficult and time-consuming.
When verifying a family of related programs, the effort can
be reduced by proof reusa. In this paper, we show how toen-
gineer product line s with theorams and proofs built from fea-
ture modules. Each module contains proof fragments which
ae composed together to build & complee proof of comect-
nass for each product We consider a product line of pro-
gramming languages, where each variant includes metathe-
ory proofs verifying the comectess of its syntex and se-
mantic definitions. This apprach has been realized in the
Coq proof assistant, with the proofs of each feature indepen-
dently certifisble by Cog These proofs am composed for
each language variant, with Coq mechanically verifying that
the composie proofs are comect. As validation, we formal-
ize a com calculus for Java in Cogq which can be extended
with any combination of casts, interfaces, or generics.

1. Introduction

Mechanized theorem proving is hand: large-scale proof de-
velopments [13, 16] take multiple person-years and consist
of tens of thousand lines of proof seripis. Given the effort in-
ve stad in formal verification, it is desirable to reuse as much
of the formalization as possible when developing similiar
proofs. The problem is compounded when verifying mem-
bers of a produc fire — a family of related systems [2. 5] -
in which the prospect of developing and maintaining indi-
vidual procfs for each member is untenable.

Product lines can be decomposed inlo features — units of
functionality. By selecting and composing differant features,
members of a product line can be synthesized. The challenge
of feature modules for software product lines is that their
contents cul acoss normal object-oriented boundaries [5.
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25]. The same holds for proofs. Feature modulanization of
proofs is an open, fundamentsl, and challenging problem.

Surprisingly, the programming language literature is re-
plete with examples of product lines which include proofs.
These product lines typically only have two members, con-
gisting of a com language mich as Featherweight Jova
(FJ) [14], and an updated ome with modified syntax, seman-
tics, and proofs of comectness. Indeed, the original FJ paper
also presents Featherweight Generic Java (FGJ), a modified
version of FJ with support for generics. An integral part of
any type system ar the metatheomtic poofs showing rype
soundness — o guarantee that the type sysem siatically en-
fiorces the desired min-time behavior of alanguage, typically
preservation and progress [24].

Typically, each m search paper only adds a single new fea-
ture to a core caleulus, and this is accomplished manually.
Reuse of existing syntax, semantics, and proofs is achieved
by copying existing rules, and in the case of proofs, fol-
lowing the structure of the criginal proof with approprise
updates. As more features are added, this manual process
grows increasingly cumbersome and error prone. Further,
the enhanced languages become more difficult to maintain.
Adding a feature requires changes that cut across the normal
structural boundarie s of a language - its syniax, oparational
semantics, and type sysiem. Each change mquimes arduously
mchecking existing procfs by hand,

Using theorem provers to mechanically formalize lan-
guages and their metatheory provides an interesting testbad
fior sudy ing the modularization of product lines which in-
clude proofs. By implementing an extension in the proof as-
sistant as a feature module, which includes updates to ex-
isting definitions and proofs, we can composa feature mod-
ules to build & completely mechanized definition of an en-
hanced language, with the proofs mechanically checked by
the theorem prover. Stepwise development is enabled, and it
is possible to start with a com language and add features to
progressively build a family or product line of more detailed
languages with tool support and less difficulty.

In this paper, we present a methodology for feature-
orented development of a language using a varant of EJ
as an example. We implement feature modules in Coq [8]
and demonstrate how 1o build mechanized proofs that can
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#1. Teotures and Domains

« Given a domain D of programs to generate, identify the core features that underlie
the domain via domain analysis. Domain D has the set of features:

m—

B, // base program 2 g
D = Fy // optional feature 1
] F> // optional feature 2
Fn // optional feature n

« Program in this domain is a composition of features:

P, = F, UF, OF, OB,
P, = F, OF, 0B,

ITP-29



Small product line of 4 features:

Our |

:xo\m)o\e

base E:::::§§§\

cFJ core Featherweight Java
Cast adds casts to expressions
Interface | adds interfaces

Generic adds type parameters

Different compositions yields different languages:

cFJ
cFJ
cFJ
cFJ
cFJ
cFJ
cFJ

Cast -

Interface-
Interface - Cast -
Generic -
Generic - Cast -
Generic - Interface -

Generic - Interface
- Cast - cFJ

//
//
//
//
//
//
//
//
//
//

Core FJ
Original FJ [13]
Core FJ with Interfaces
Original FJ with Interfaces
Core Featherweight Generic Java
Original FGJ
core Generic FJ with

Generic Interfaces
FGJ with

Generic Interfaces

ITP-30




#2. TERTURE MODELS



TFeature Models

Not all combinations of features are meaningful

Some features require/preclude other features

Feature model defines the legal combinations

s a context sensitive grammar
« context free grammar whose language include all legal combinations
« constraints that eliminate nonsensical sentences

[i] [1] b ; // context free grammar
[]

1 // additional constraints

Assuming no feature interactions, sentence of a feature model (‘kjb’) is
mapped to an expression by a dot-product of its terms

kOjob
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Our |

L :- [Generic] [Interface] [Cast] cFJ;

IS just a context free grammar

Its language (sentences):

:xo\m)o\e

Cast -

Interface-
Interface - Cast -
Generic -
Generic - Cast -
Generic - Interface -

cFJ
cFJ
cFJ
cFJ
cFJ
cFJ
cFJ

Generic - Interface
- Cast -

ckFJ

//
//
//
//
//
//
//
//
//
//

Core FJ
Original FJ [13]
Core FJ with Interfaces
Original FJ with Interfaces
Core Featherweight Generic Java
Original FGJ
core Generic FJ with

Generic Interfaces
FGJ with

Generic Interfaces
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#3. LOCK-STEP UPDRATE OF
REPRESENTATLONS



TFeature Modules

 Every program has multiple consistent representations
 ex: a parser P has: grammar, source code, manual

« Base program is a tuple:

P = [ gram,,src,, man, ]

 Optional feature (F) modifies any or all representations

F = [ Agram_, Asrc., Aman_ ]

ITP-35



Teo‘)'ure Com)oosi)'ion

e |s tuple composition — tuples are composed element-wise
« Extended parser (FP):

FP = FIP

=[ Agram_, Asrc., Aman. ]/l gram,, src,, man, ]

.@,

grammar of FP source of FP manual of FP

=[(Agram_ [Igra

ITP-36



Our Exo\m)o\e

 Base language (cFJ) has multiple representations

base representation specification
syntax Scry
preservation operational semantics Ocra
and progress
type system t
0r00fs ype Sy CFJ
meta-theory proofs Pcrs

« Base language is a 4-tuple:
cFJ = [ cFa 2 Ocry» thJ’ Pers ]

ITP-37



Our Exo\m)o\e

 An optional feature J extends each representation:

representation change specification
syntax (s;
operational semantics 0;
type system Ot;
meta-theory proofs p;

 Feature J Is a 4-tuple of changes (functions) that update each
representation

J = LAs;, Ao;, AT, Ap; |
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Our :xam)o\e
 Tuple for Featherweight Java FJ Is:

FJ
= Cast [] CFJ

T cast ? cast ? cast ’ Apcast ] D[ ScFJ ?» YcFJ > cFJ ? chJ ]

o e )

syntax of FJ semantics of FJ type system of FJ  theorems and proofs FJ

ITP-39



one more piece...

#4. TERTURE INTERRCTLONS



Teo‘)’ure In)‘ero\c)'ions

Feature interaction (FI) occurs when two features behave
Incorrectly together

Resolution of a feature interaction is an additional
module/transformation that “patches” features so that they correctly
work together

lllustrate with a classical example
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Teo}ure In)‘ero‘c;' Ions

 Flood control — Fire control problem (cang 2003)
e isomorphic to feature interaction problems in telephony

fire detected @i

sprinklers on @ i+1
standing water @ i+2
water turned off @ i+3

building burns down
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Teo}ure In)’ero‘c)’ Ions

 Flood control — Fire control problem (cang 2003)
e isomorphic to feature interaction problems in telephony

Flood

Fire#Flood




Neoo O):oero\;'ions on Teo\)'ures

« Cross-product () says we want the integration of two features so that they work
together correctly

fxg={F#g- -F- g

e # distributes over dot and # takes precedence over dot:
TH#@  -h)={F#g) -(F#h)

interaction of a feature with a dot-product = the dot-product of their interactions
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Connec)'ion )'o /Prior Discussions

« To account for feature interactions, a sentence of a feature model ‘kjb’ is
mapped to a expression by a cross-product (not by a dot-product) Of itS terms

p=kxJxb // def of p
_ kx(@§#bljlb) // def of x
- k#(G#b0jb)IKIG#bjIb) // def of x

—[k#j#blk#jIk#bKj#bdjHb| # #distoverD

« S0 not only do we compose features (K, J, b),
we also consider all possible 2-way and 3-way (in general n-way) interactions
of these features
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1n Our

Case Shuds

Module Description
cFJ core Featherweight Java
Cast cast
Interface interfaces
Generic generics
Generic#Interface | generic and interface interactions
Generic#Cast generic and cast interactions

Generic x Interface x cFJ

= Generic # Interface #cFJ [l Generic # Interface [I

Generic#cFJ [ Generic [] Interface#cFJ [ Interface [ cFJ

=1 [ Generic#Interface [ 1 [ Generic [J 1 [] Interface [l cFJ

= Generic # Interface [] Generic [J Interface [ cFJ

P-46



given this super-structure, here’s the next key step

#5. IMPLEMENTING, MODULES
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HOOO ue Tm)o\emen)' Moclu\\es

Design features to be monotonic: what was true before a feature is
added is true afterwards — although scope of validity may be qualified

o standard design technique
Features are allowed to make 2 kinds of changes
* add new definitions

 modify existing definitions

Single syntactic approach for all representations
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how we define and modify

SYNTAX RULES
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gclcling S:jn)‘o\x

Syntax for expressions in cFJ
Syntax for expressions in Cast
Composition CastlicFJ is the union of rules

Easy — only one exception to be considered shortly

E X

E.f

- (OE: |« E.m(E)

new C(E) ;

E.f
E.m(E)
new C(E)
(C)E:

ITP-50




Moc‘iﬁjing Sbn)'o\x

« Requires foresight to know how productions may be changed by other features
* engineering result from domain analysis
* no different than OO refactorings that prepare source code for extensions
* Visitor, framework, strategy patterns

E - - E : x
E.f

E‘f = I_ TP, Em (E)
.m( ) generalize ne (TPt C) (E)

new C(E) ; VP definitions <"+ ©
. efinitions
cFJ expression syntax TPy @ €

Yvariation points (VPSs)
\Z

E : (C)E; ﬁ> E . (TPy C)E;
" |P-51
Cast syntax




« Syntax for original FJ = Castl'cFJ
« Syntax for Generics

Com):oosﬂ'ion

« Syntax for GenericsiFJ
« EXxception (mentioned earliery — replace default VP definition

TP, : (T);
TP, : (T):
Generics

E @ x

E.f
TP, Em (E)
new ( TP; C) (E)
(TP: C)E;

TPn : €

TPy : €

FJ

E: x
E.f
TP, E.m (E)
new ( TP, C) (E)
(TP; C)E;
TPy : (T):
TPy : <T§;
GenericsLFJ
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Tn\inin\c)

At the end of a composition process, VP definitions can be inlined to
simplify result

E

TP,
TP,

. X

E.f

TP, Em (E)
new ( TP, C) (E)
(TP. C)E:

+(T);
:(T);

inline >

({T)

 Typically, inlining yields what you would have written by hand
 This is one way how we check If feature compositions are “correct”
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other representations are handled no differently — such as:

REDUCTION
AND TYPING, RULES

ITP-54



gc‘c‘in& ’Ru\\es

« Typing rules for cFJ expressions
 Typing rule added by Cast
« Composition CastlicFJ is the union of these rules

fields(C) =V £

fields(C) =V £ 'Fe: U U<V

: : '-e:0 U<V ['FnewC(e):C
['Fey:D D<:C _ CTNEW)

['Fey:C [] FFnewC(e):C —
(T-UCAST) (T-NEW) :
Cast . ['Feo:D D<:C
‘ ['Fep:C

cFJ (T-UCAST)

CasticFJ .



Mocliﬁﬁing Rules

Requires VPs to be defined

Typing rules for cFJ expressions

Generalize by adding VPs

VPs have more sophisticated meaning

fields(C) =V £
Fe:U U<V

['FnewC(e):C
(T-NEW)

generalize>

WF(D, TP, C)
U

fields( TP, C) =V £
D:['+e:
D U<V
D; ' new( TP; C)(€) : TP, C
(T-NEW)
T
WF.(€, C,¢€)

D :=¢




Semo\n)‘ics O-F) VPs

» Three kinds of VPs:

/ WF. (D, TP, C)
fields( TPy C) =V f

— predicates that extend the

premise of a rule D;:I'Fe:U
(true by default) D U<V
D; '+ new( TP, C)(€) : TP, C

— relational holes which

extend a judgment's (I-NEW)
signature (empty by defautt T
NFC (€¢,C,€)
— functions that transform D:=¢

existing premises and ,
conclusions ' I TP-57

(identity function by default)



* Typing rules for cFJ
o Typlng rules for GENEer ICS (replaces default declarations for WF and D)
* Typing rules for Genericsl cFJ

WF (D, TP; C)
U

fields( TP, C) =V £

D:I'F+e:

D U<V
D; ' new( TP; C)(€) : TP, C
(T-NEW)
T
WF:(¢,C,¢)
D:=¢

C om )DOSI)'l on (as Be-‘?ore)

WF(D, TP, C)
U

fields( TP, C) =V £
D;:I'+e:
D U<V
D; ' new( TP, C)(e) : TP, C
(T-NEW)
A+ (T)C ok

WE. (A, (T) C)

D:=A  |7p_sg




finally!

THEOREMS AND PROOTS



_nweorems

« A*“general” theorem in cFJ with VPs and default definitions

« Theorem “adapts” to VP instantiations of Generic

TPt : € TPy @ €

D:=¢
T
WF”()(F. C)

1.0

M

. €L

T

T

TP+ 1 T,

TP, : T: p(Y<P);

AU ok A U< [U/Y]P

LEMMA 4.1 (Well-Formg

V — V and mbody(m, C)

N and S such that - C<N

NFe:S.

same for proofs

me(AL (Y <P),U)

(Y <P).U) :=[T/Y]U

but now elevateto /. ...

e, where A + U ok
re exists some N and

semantic composition... - s

cFJ

GenericlcFJ
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Semo‘n)'ic Com)oosi)‘ion

)’\'\OA' 3LAO\FO\F))’€€S )’\'\e COFY‘QC)’V)GSS OF )'.)FOOFS

« When VPs are used in theorems and proofs, we define properties
that must be satisfied by any VP plug-in

o stated as additional assumptions with default lemma(s)

 Allows a general theorem to be proven, independent of features that
might “plug-in” specific definitions for its VPs
* In effect, the proof assumes a general behavior for all
possible VP instantiations

 Obligation: any feature that “plugs-in” a VP definition must supply a
proof that the properties assumed by the general theorem are
satisfied ITP-61




Semo‘n)'ic Com)oosi)'ion

)’\'\OA' 3LAO\FO\F)¥€€S )’\'\e COFY‘QC)’V)GSS OF )'.)FOOFS

In effect, the assumptions of a general theorem form an explicit interface
against which a proof is written.

General theorem does not have to be recertified, reuse as Is
Plug-in theorems do not need to be recertified, reused as is

Must certify that general assumptions hold for plug-ins

Lemma

A
feature Y

Lemma

(default)

Theorem

A

AllB

B

feature X

Lemma

Theorem

AllB

B

feature YL X

ITP-62
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Coq Encoclinﬁs

Syntax, operational semantics, and typing rules are written as standard inductive
data types in Cog. Proofs are then written over these encodings

Encoding of syntax:

Definition TP m := unit.

E :

TP,
TP,

X

E.f

TP, E.n (E)
new ( TPy C) (E)
(TP, C)E;

€

€,

Definition TP t := unit.

Inductive C : Set :=
| ty : TP _t » Name - E.

. Inductive E : Set :=
mapping '| e var : Var -» E

| fd access : E » F > E
| m call : TP m » E » M > List E » E
| new : C » List E » E.

Syntax Notation

Coq Encoding

ITP-64



Semo‘n)'ic (not Synkackic!) Com)oosi)'ion

« So far, we defined composition syntactically
Fine for definitions, but how does this work with proofs?
Could do syntactic updates on proof terms

Lemma Theorem Lemma Theorem
Lemma i
(default)
[] - - — - .
: A A B A Al B
A
feature Y B B
feature X feature YCX

» Specifying VPs on large proof trees is difficult
» Have to recheck resulting term for each variant
* Need a more semantic notion of composition!

ITP-65



Semo‘n)'ic (not Syntackic) Com)oosi)'ion

 Use abstraction mechanisms built into Coq
 Definitions are parameterized on variation points
« Modules provide instantiations

« Composition is simply instantiation

Definition TP m := unit. Variable TP m : Set.

Definition TP _t := unit. Definition TP m def := unit.
Variable TP _t : Set.

Inductive C : Set := Definition TP m def := unit.

| ty : TPt » Name - E.
Inductive C : Set :=

Inductive E : Set := | ty : TP t » Name > E.

| e var : Var - E

| fd access : E » F > E Variable E : Set.

| mcall : TP m > E > M » List E » E Inductive E_def : Set :=
| new : C » List E » E. | e var : Var » E def

| fd _access : E » F » E def

| m call : TP m » E » M » List E » E def
| new : C » List E » E def.




Semo‘n)'ic (not Syntackic) Com)oosi)'ion

Parameterized definitions enable variation points in proofs
VPs are opaque to Coq

 need to make assumptions about their behavior to complete proofs

e assumptions are the proof variation points
* proof composition is again instantiation
« allows each module to be checked independently

Variable TLookup app : forall gamma delta X ty,
TLookup gamma X ty =

TLookup (app_context gamma delta) X ty.

Lemma GJ Weaken Subtype app : forall gamma S T
(sub S T : GJ subtype gamma S T),
Weaken Subtype app P~ sub S T.
cbv beta delta; intros; apply GJ subtype Wrap.
inversion sub S T; subst.
econstructor; eapply TLookup app; eauto.
Qed.

ITP-67



Teo\;‘ur‘e Moclu\es N Coo‘

« One Coq file per feature, which encapsulates all pieces of that feature

« Each file is independently certified by Coq
« To compose modules, a new file is created

« Definitions and proofs are composed one at a time by instantiating
variation points in definitions from features

« Coqg simply checks that each proof's assumptions are satisfied

« Effectively an interface check
 No need to recheck proof terms from the modules

ITP-68



Tea)’ur‘e Moc‘u\e S)’o\)‘is)‘ics

One Coq file per module that encapsulates all representations

Module Description Length of Coq Scripts

cFJ core Featherweight Java 2612 LOS

Cast casts 463 LOS

Interface Interfaces 499 LOS

(Generic generics 6740 LOS

Genernc#Cast gene_ric and _in’[erfa{:e 1632 LOS
Interactions

Generic¥Interface ge_neric ar‘_ld cast 296 LOS
Interactions

ITP-69



Performance

Once proofs in each feature module have been certified, they do not need to be
rechecked for a target language

Practical effect: certification time for feature modules is non-trivial
Certifying all products in our SPL approx. same time as required by cFJ module

Coq Certification Time for Feature Modules and Products
3

2.4

1.8

hirutes

- o il

B cFr Generic ] All Other Features [ All Products
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:n\'somcecl Su)o)oor)' N Coq

 Relying on parameterization for feature composition has clear benefits:
— Everything works “out of the box”: same level of assurance as anything in Coq

— Separate verification of feature modules means we don'’t have to recheck
proofs for each product

« Butthere are drawbacks:
— Composition scripts are tediously built piece-by-piece

— Adding a new feature requires modifying existing features to allow for
extension:

* Recursion needs to be opened and VPs added to inductive data types
« Every proof over an extended type has to be reengineered
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We are looking at extending Coq to better support feature composition

Ideally, a feature module can be designed without extension in mind
Subsequent feature modules can extend its definitions with new cases or variations

Given an extension and an existing proof, a feature module provides the necessary
pieces to build a new proof

« typing rules of CIC indicate where the proof extensions need to occur

A feature-module-level composition operator builds the complete set of definitions
and proofs from a product specification automatically

ITP-73
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« Safe Composition

« A general structural analysis certifies that all programs of an SPL are type correct

— uses a SAT solver and feature model to examine all legal combinations of
features to verify type safety properties of all programs in an SPL

— much faster than building and verifying each product separately

* Believe a similar analysis can be done to certify correctness of all Coq products in an
SPL

— won't have to generate and then certify theorems for each product
— know ahead of time that the process is correct
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Conc\usions

Mechanically verifying artifacts using theorem provers is hard work
Compounded when verifying all members of a product line

Features are a natural way to decompose a family of programs
Decomposing proofs along feature boundaries enables a natural reuse of proofs
« same for other representations as well

Follows a typical way in which language definitions (syntax, semantics, type system, proofs)
evolve over time

We use simple design and implementation techniques to structure a product line of
theorems and their proofs, requiring:

* engineering features so that they “fit together”

» mathematical foundation of feature structures
ITP-76
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Applied ideas to an SPL of Featherweight Java, using standard facilities in Coq to
mechanically check proofs of progress and preservation for composed languages

A feature-based approach supports a structured evolution of languages
from a simple core to a fully-featured language

Doing so transforms a mechanized formalization of a language from a rigorous
check of correctness into an important way to reuse definitions and proofs across a
family of related languages

We conjecture that our success can be replicated in other domains, and herein lies
future work. We welcome your thoughts and suggestions.

T h a n k Q u ! -
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