
Copyright

by

Chang Hwan Peter Kim

2013

The Dissertation Committee for Chang Hwan Peter Kim

certifies that this is the approved version of the following dissertation:

Systematic Techniques for Efficiently

Checking Software Product Lines

Committee:

Don Batory, Supervisor

Sarfraz Khurshid, Co-Supervisor

William Cook

Darko Marinov

Vitaly Shmatikov

Systematic Techniques for Efficiently

Checking Software Product Lines

by

Chang Hwan Peter Kim, BASc., MASc.

Dissertation

Presented to the Faculty of the Graduate School of

The University of Texas at Austin

in Partial Fulfillment

of the Requirements

for the Degree of

Doctor of Philosophy

The University of Texas at Austin

December 2013

To my family

Acknowledgments

First and foremost, I would like thank my academic parents, Professor Don Batory

and Professor Sarfraz Khurshid. It was an honour for me to learn from researchers

who are world experts in automated software engineering. They taught me what

good research is, how to conduct research, and how to present ideas and results.

They were also great advisors. During my studies, they were very patient with

me, steered me in the right direction, and most importantly, encouraged me to keep

going. In particular, there were countless times when I had either nothing to present

or negative results for our weekly meetings and I absolutely dreaded entering their

offices, but every time, I came out feeling encouraged and motivated. Also, I, and

my actual parents, don’t know how they were able to put up with me for over 5

years, but they did. I will forever be grateful for all they have done for me. Thank

you, sirs.

I would also like to thank Professor William Cook, Professor Darko Marinov

and Professor Vitaly Shmatikov for serving on my committee. I had the pleasure

of discussing programming languages philosophy and research with and receiving

advice from Professor Cook. I had the fortune of collaborating with Professor Mari-

nov on a paper on dynamically pruning configurations to test during his sabbatical

at UT-Austin and Groupon. I am very grateful because he not only proposed the

idea behind the paper, but also was involved in implementation and evaluation.

Professor Shmatikov not only served on my Research Preparation Exam (RPE) and

v

dissertation committees, but was also instrumental in helping me secure postdoc-

toral positions. Needless to say, I am indebted and extremely grateful.

I would like to thank UT-Austin and funding agencies in Canada and United

States for supporting my PhD studies. In particular, my advisors and I were sup-

ported by a Natural Science and Engineering Research Council (NSERC) Postgrad-

uate Scholarship, NSF (National Science Foundation) Science of Design Project

CCF-0724979, NSF CCF-0845628, IIS-0438967, CNS-0958231. and AFOSR grant

FA9550-09-1-0351. In addition, my collaborators were supported by CASED, CCF-

1213091, CCF-1212683, CNS-0958199 and CCF-0746856.

Austin was my home for over 5 years. I will never forget watching countless

soccer matches and drinking pints at various bars, frequenting Starbucks to the point

where I should be paying rent, freezing in air-conditioned buildings that would put

Canadian winter to shame, and lining up at Torchy’s Tacos. Thank you, Austin,

Texas and my friends, for the memories.

My family was very supportive of my pursuit of the PhD, offering to help

any way they can. But more importantly, no matter where I was or what I was

doing, they always just wanted to know if I was healthy and happy. Their health

and happiness are what matter to me the most also. Thank you for your love and

support.

Last but not least, I thank the Lord for letting me complete my studies. May

He give us the strength to fight for what is right and live a life devoted to helping

others. In the name of the Father, the Son and the Holy Spirit. Amen.

Chang Hwan Peter Kim

The University of Texas at Austin

December 2013

vi

Systematic Techniques for Efficiently

Checking Software Product Lines

Publication No.

Chang Hwan Peter Kim, Ph.D.

The University of Texas at Austin, 2013

Supervisor: Don Batory

Co-Supervisor: Sarfraz Khurshid

A Software Product Line (SPL) is a family of related programs, which of each

is defined by a combination of features. By developing related programs together,

an SPL simultaneously reduces programming effort and satisfies multiple sets of

requirements. Testing an SPL efficiently is challenging because a property must be

checked for all the programs in the SPL, the number of which can be exponential

in the number of features.

In this dissertation, we present a suite of complementary static and dynamic

techniques for efficient testing and runtime monitoring of SPLs, which can be divided

vii

into two categories. The first prunes programs, termed configurations, that are

irrelevant to the property being tested. More specifically, for a given test, a static

analysis identifies features that can influence the test outcome, so that the test

needs to be run only on programs that include these features. A dynamic analysis

counterpart also eliminates configurations that do not have to be tested, but does

so by checking a simpler property and can be faster and more scalable. In addition,

for runtime monitoring, a static analysis identifies configurations that can violate a

safety property and only these configurations need to be monitored.

When no configurations can be pruned, either by design of the test or due to

ineffectiveness of program analyses, runtime similarity between configurations, aris-

ing due to design similarity between configurations of a product line, is exploited. In

particular, shared execution runs all the configurations together, executing bytecode

instructions common to the configurations just once. Deferred execution improves

on shared execution by allowing multiple memory locations to be treated as a sin-

gle memory location, which can increase the amount of sharing for object-oriented

programs and for programs using arrays.

The techniques have been evaluated and the results demonstrate that the

techniques can be effective and can advance the idea that despite the feature com-

binatorics of an SPL, its structure can be exploited by automated analyses to make

testing more efficient.

viii

Contents

Acknowledgments v

Abstract vii

Chapter 1 Introduction 1

1.1 Dissertation Overview . 2

1.2 Contributions . 4

Chapter 2 Background 7

2.1 Features and Feature Model . 7

2.2 Mapping Features to Code . 8

2.3 Product Line Test . 9

Chapter 3 Statically Pruning Configurations to Test 11

3.1 Introduction . 11

3.2 Motivating Example . 13

3.3 Relevant Features . 17

3.3.1 Pruning Features . 17

3.3.2 Conditions for Relevance . 19

3.4 Static Analysis . 20

3.4.1 Introductions . 21

ix

3.4.2 Modifications . 22

3.4.3 Indirect Effect . 24

3.5 Configurations to Test . 25

3.6 Case Studies . 27

3.6.1 Graph Product Line (GPL) 27

3.6.2 Notepad . 28

3.6.3 jak2java . 30

3.7 Discussion . 32

3.7.1 Assumptions and Limitations 32

3.7.2 Effectiveness . 34

3.7.3 Testing Missing Functionality 34

3.7.4 Threats to Validity . 35

3.7.5 Perspective . 35

3.8 Related Work . 36

3.8.1 Product Line Testing and Verification 36

3.8.2 Program Slicing . 37

3.8.3 Feature Interactions . 37

3.8.4 Compositional Analysis and Verification 38

3.8.5 Reducing Testing Effort . 38

3.9 Summary . 39

Chapter 4 SPLat: Lightweight Dynamic Analysis for Reducing Com-

binatorics in Testing Configurable Systems 40

4.1 Introduction . 41

4.2 Introduction . 41

4.3 Motivating Example . 43

4.4 Technique . 46

4.4.1 Feature Model Interface . 46

x

4.4.2 Main Algorithm . 47

4.4.3 Example Run . 51

4.4.4 Reset Function . 52

4.4.5 Potential Optimization . 53

4.4.6 Implementation . 54

4.5 Evaluation . 55

4.5.1 Software Product Lines . 55

4.5.2 Configurable Systems . 63

4.5.3 Threats to Validity . 66

4.6 Related Work . 67

4.6.1 Dynamic Analysis . 67

4.6.2 Static Analysis . 69

4.7 Summary . 69

Chapter 5 Statically Reducing Configurations to Monitor in a Soft-

ware Product Line 71

5.1 Introduction . 71

5.2 Motivating Example . 73

5.2.1 Example Monitor Specifications: ReadPrint and HasNext . . 74

5.2.2 Analysis by Example . 75

5.2.3 The Need for a Dedicated Static Analysis for Product Lines . 77

5.3 Product Line Aware Static Analysis 78

5.3.1 Required Symbols and Shadows 78

5.3.2 Presence Conditions . 80

5.3.3 Precision on a Pay-As-You-Go Basis 83

5.4 Evaluation . 84

5.4.1 Case Studies . 85

5.4.2 Discussion . 87

xi

5.5 Related Work . 88

5.6 Summary . 91

Chapter 6 Shared Execution for Efficiently Testing Product Lines 92

6.1 Introduction . 92

6.2 Shared Execution: Basic Technique 93

6.2.1 Bookkeeping . 95

6.2.2 Splitting . 96

6.2.3 Merging . 97

6.2.4 Putting Ideas Together . 99

6.3 Example . 102

6.3.1 Splitting and Merging . 102

6.4 Shared Execution: Optimizations . 104

6.4.1 Memory . 104

6.4.2 Optimistic Merging . 107

6.4.3 Garbage Collection . 108

6.5 Evaluation . 109

6.5.1 Graph Product Line (GPL) 109

6.5.2 JTopas . 111

6.5.3 XStream . 113

6.6 Discussion . 115

6.6.1 Threats to Validity . 115

6.6.2 Correctness . 115

6.6.3 Native Code . 115

6.6.4 Hybrid Approaches . 116

6.6.5 Other Benefits of Sharing Execution 116

6.7 Related Work . 117

6.7.1 Testing Conventional Programs 117

xii

6.7.2 Testing Product Lines . 118

6.8 Summary . 119

Chapter 7 Deferred Execution for Efficiently Testing Product Lines120

7.1 Introduction . 120

7.2 Multivalued Stack Operands . 121

7.3 Multiaddresses . 123

7.3.1 Writes . 124

7.3.2 Reads . 128

7.3.3 Method Invocations . 129

7.3.4 Implementing Multiaddresses 130

7.4 Evaluation . 134

7.4.1 FitNesse . 135

7.4.2 SuperCSV . 138

7.4.3 HTMLCleaner . 139

7.4.4 Overall Results . 140

7.4.5 Threats to Validity . 140

7.5 Related Work . 141

7.6 Summary . 145

Chapter 8 Discussion and Future Work 146

8.1 Threats to Validity . 146

8.2 Integrating the Techniques . 146

8.3 Improving the Techniques . 147

8.4 New Problems and Solutions . 148

8.5 Customizable Multiexecution . 149

Chapter 9 Retrospective 151

9.1 Positives . 151

xiii

9.2 Difficulties . 152

9.3 Hindsight . 152

Chapter 10 Conclusion 154

Appendices 156

Chapter A Tracejoins 157

A.1 Motivating Example . 157

A.2 Technique . 157

A.3 Next Steps for Tracejoins . 159

Bibliography 161

Vita 173

xiv

Chapter 1

Introduction

Despite advances in software engineering, programmers must write more code than

ever before in order to satisfy requirements that are growing not only in number, but

also in complexity, and to satisfy customers who want the luxury of a tailor-made

solution. Another problem is that the highly competitive nature of the software

market means that companies must satisfy as many customers as possible in as

little time as possible.

A solution to these two problems is the Software Product Line (SPL) paradigm,

which develops a set of related programs together to reduce programming and sat-

isfy multiple customers simultaneously. An SPL is a family of related programs in

which each program consists of code fragments defined by a unique combination

of features. An SPL allows structured development of common and different code

fragments between the programs.

Because an SPL can represent many programs, a number exponential in the

number of features, checking a property against an SPL is challenging. In particular,

checking each program in the SPL, for example by running each program against a

given test from start to finish, is expensive and may not even be feasible. But to

ensure the correctness of every program, every program must be checked.

1

Figure 1.1: Thesis Overview

1.1 Dissertation Overview

Our thesis is that an SPL’s feature-oriented structure can be exploited by automated

techniques based on static and dynamic analyses to reduce the execution space

without introducing a prohibitive overhead. We present a suite of complementary

techniques that embodies this idea. The suite can be divided into two categories:

three for pruning configurations and three for pruning bytecode instructions between

configurations when configurations cannot be pruned. Figure 1.1 visually describes

them, where the top three techniques prune configurations and the bottom two

prune bytecode instructions. Here is a brief description of them from top left to

bottom right, each of which is presented in a separate chapter and has appeared in

the proceedings that introduce each paragraph:

• AOSD 2011 [58], Chapter 3. A unit test for a conventional program tests

a small portion of the program. Similarly, a unit test for an SPL tests a

2

small portion the SPL, meaning that only a small number of features is likely

to be reachable from the test. A static analysis was developed to identify

such reachable features and further identify a subset of these features whose

presence or absence can alter the test outcome. The test then needs to be run

only on combinations of these relevant features (the diagram shows that only

two features are relevant, so the test needs to be run at most 22 times).

• FSE 2013 [62], Chapter 4. Much of the effectiveness of the AOSD 2011

result was due to identifying reachable features, rather than identifying the

relevant features, which are much more expensive to determine as their identifi-

cation requires data-flow and control-flow analyses. FSE 2013 presents SPLat ,

a dynamic analysis alternative to AOSD 2011, which is in many cases faster

and more scalable for determining reachable features. The key insight behind

SPLat is that the reachable features can be determined during execution by

modifying an existing test input generator for data structures called Korat

[18].

• RV 2010 [59], Chapter 5. A safety property for an SPL must be checked

against every program of the SPL. But if certain programs can never violate

the safety property, then these programs do not need to be monitored for

violation. This chapter presents a way to statically identify such programs or

conversely, the programs that must be monitored. The technique determines

instrumentations that must be executed for the property to be violated (shown

by the black dots) and then identifies features that allow the instrumentations

to be executed. Only programs with these features need to be monitored (in

the diagram, there are two such features and four configurations with these

two features present).

• ISSRE 2012 [60], Chapter 5. The previous three techniques prune config-

3

urations, but sometimes (e.g. when every configuration needs to be tested by

design), every configuration must be tested. In this situation, we can still do

better than just running the test from start to finish for each configuration.

Because a product line’s programs are similar by design, they are likely to be

behaviorally similar as well. Shared execution executes all the configurations

together, executing bytecode instructions common between configurations just

once, splitting where executions differ and merging back to resume sharing ex-

ecution.

• Deferred execution, unpublished. Deferred execution improves on shared

execution by allowing multiple memory locations to be treated as a single

memory location, which can increase the amount of sharing. When shared

execution and conventional execution’s running times grow proportionally to

growth in the number of configurations due to use of different memory loca-

tions, deferred execution’s running time only grows by a constant factor and

can even remain constant.

These techniques have been evaluated and the results demonstrate that they

can be effective and can advance the idea that despite the feature combinatorics of

an SPL, its structure can be exploited by automated analyses to make testing more

efficient.

1.2 Contributions

This dissertation makes the following contributions:

• Techniques for pruning configurations. These statically prune configura-

tions to test (AOSD 2011 [58], Chapter 3), dynamically prune configurations

to test (FSE 2013 [62], Chapter 4) or statically prune configurations to monitor

(RV 2010 [59], Chapter 5).

4

• Techniques for pruning bytecode instructions between configura-

tions. When configurations cannot be pruned for a test, all the configurations

can be run together through shared execution (ISSRE 2012 [60], Chapter 6)

or deferred execution (unpublished, Chapter 7).

• Implementation. Statically pruning configurations to test (AOSD 2011 [58],

Chapter 3) is implemented as an Eclipse plugin that uses Soot [85], a popu-

lar static analysis framework for Java, and SAT4J [86], an off-the-shelf SAT

solver. SPLat for dynamically pruning configurations to test (FSE 2013 [62],

Chapter 4) is implemented for Java by extending Korat [18], a tool for gen-

erating structurally complex test inputs, and using SAT4J [86]. It is also

implemented for Ruby on Rails, but by Darko Marinov, one of the co-authors

of the FSE 2013 publication [62]. Statically pruning configurations to moni-

tor (RV 2010 [59], Chapter 5) is implemented within the Clara framework

for partially evaluating runtime monitors [12], as an extension to Bodden et

al.’s earlier whole-program analysis [32]. Shared execution (ISSRE 2012 [60],

Chapter 6) and deferred execution are implemented on top of Java PathFinder

(JPF)[83], a model checker for Java that can also function as an easy-to-

extend, off-the-shelf VM.

• Evaluation. All techniques except customizable multiexecution have been

evaluated. Java SPLs, some of which have been used by other research groups

to evaluate their verification techniques, were used. Java tests and safety

properties were manually constructed by us due to lack of availability. For

SPLat, Darko Marinov evaluated the Ruby on Rails implementation against

a large configurable system (with over 171KLOC in Ruby on Rails). The

system uses over 170 configuration variables and contains over 19K tests (with

over 231KLOC in Ruby on Rails). To the best of our knowledge, this is

the largest and most complex industrial codebase used in research on testing

5

SPLs [4, 29, 51, 58, 60, 82], and SPLat scales to this size without much

engineering effort.

6

Chapter 2

Background

This chapter presents SPL concepts common to the following chapters.

2.1 Features and Feature Model

A feature represents an end-user functionality that can be included or excluded from

a program of a product line. For our purposes, it can simply be seen as a variable or

an option whose value influences code selection. Although different types of features

are allowed, such as string, number, and boolean, features in this dissertation are

restricted to boolean options. A configuration is an n-digit boolean f1...fn repre-

senting feature assignments for a product line with n features. 2n configurations

are possible, but a feature model , which defines the legal feature combinations or

configurations, typically reduces that number. There are different ways to represent

a feature model, but in this dissertation, a feature model is represented as a com-

bination of context-sensitive grammar and boolean propositional logic constraints.

For example, Figure 2.1 shows a sample feature model with four optional features

(shown in square brackets), which may have true or false, and one mandatory

feature (Base), which has the value true. The order of the features and Product-

7

1 ProductLine :: A B C D Base;
2 A or B or C or D;

Figure 2.1: Sample Feature Model

Line symbol does not matter for our purposes. The constraint requires one of the

optional features to be present, which eliminates the configuration where all features

are absent and therefore makes the number of configurations in the SPL 24−1 = 15.

2.2 Mapping Features to Code

To add or remove functionality, a feature must be able to control the presence or ab-

sence of a software artifact. In this dissertation, we consider a software artifact to be

Java code fragment. One possible control mechanism is conditional compilation, i.e.

the presence/absence of feature can determine syntactic presence/absence of a code

fragment, as is done with #ifdefs in C. We use a more practical mechanism where

control is achieved through ordinary conditional statements. More specifically, for

each feature, there is a feature variable, which is a static boolean field whose value,

for one configuration, is determined at the beginning of program execution and

must remain fixed throughout the execution. A sample product line code is shown

in Figure 2.2(a). Note that a feature variable (e.g. A or B , which correspond

to features A and B respectively) can only appear in code through an if-statement

as shown. Also, note that for the techniques in Chapter 3 and Chapter 5, a dec-

laration of a class, method, or field is annotated with a feature, which means that

the declaration only exists if the feature is present. Using language constructs such

as conditional statements and annotations to express variability facilitates adoption

of existing program analyses to the product line setting. However, not all product

line variations may be easily represented using variability mechanisms of a conven-

tional programming language. For example, pushing multiple alternative features

8

(a) Sample SPL Code (b) Sample SPL Test

Figure 2.2: Sample SPL Code and Test

into a single program may result in duplicate declarations. This can occur if two

features introduce different implementations of the same method. A workaround is

to factor code that is common in alternative features into a common feature that

the alternative features refine. We deal with product lines that can be represented

as conventional programs, albeit with some refactoring.

2.3 Product Line Test

A test of a product line is simply a main() method that executes some methods,

references some code of the product line and produces a result that can be checked

against the expected result. Figure 2.2(b) shows a sample test that calls the method

in Figure 2.2(a). It is very important to note that a feature variable can have differ-

ent values depending on which configuration is being executed for a test. Without

9

analyzing the feature model or the code, the test must be executed for every configu-

ration of the feature model, i.e. for each configuration, feature variables’ values must

be set using the configuration’s feature assignments and the test must be executed.

When necessary, the terms test suite, test , and test case are distinguished.

A test suite is a collection of tests. A test does not have values assigned to feature

variables, but it can have values assigned to other variables. A test case has values

assigned to every variable except feature variables. Typically, test is considered to

mean test case, unless noted otherwise.

Note that throughout the dissertation, the terms configuration, feature com-

bination, product and program are used interchangeably to refer to both the set of

feature assigments and the corresponding code. Also, the term feature will typically

be used to refer to optional features since mandatory features, which do not affect

the number of configurations, do not affect the time it takes test SPLs, which we

are trying to reduce.

10

Chapter 3

Statically Pruning

Configurations to Test

The contents of this chapter appeared in the 2011 Conference on Aspect-Oriented

Software Development (AOSD 2011) [58]. 1

3.1 Introduction

The most obvious challenge in testing or checking the properties of programs in

an SPL is scale: an SPL with only 10 optional features has over a thousand (210)

distinct programs. The need to assume the worst-case and test all programs is

evident in the following scenario: suppose that every program of an SPL outputs a

String that each feature might modify. To see if the output always conforms to a

particular pattern, every possible feature combination must be tested.

Current practice often focuses on feature combinations that are believed to

have a higher chance of falsifying certain properties [26][27][74]. In light of no

1Chang Hwan Peter Kim, Don Batory, and Sarfraz Khurshid. Reducing Combinatorics in Prod-
uct Line Testing. Aspect Oriented Software Development (AOSD), 2011. The paper was developed
jointly with my co-authors, who are my supervisor and my co-supervisor. Implementation and
evaluation were done by me.

11

other information, this is reasonable but critical combinations may be overlooked.

Another approach is to apply traditional verification techniques directly – model

checking [42][99] or bounded exhaustive testing [18][102] – on every product of the

SPL. Again, feature combinatorics render brute force impractical. Yet another com-

plicating factor is that features often have no formal specifications; even contracts

are typically unavailable. Classen et al.[24] proposed a technique to efficiently check

a temporal property against a product line that is represented as a state machine.

However, to efficiently run a test against an object-oriented product line, which we

are interested in, a technique tailored to object-oriented programs is required.

Our work improves the state-of-the-art by leveraging the semantics of fea-

tures, i.e. increments in functionality. It is well-known that there are features whose

absence or presence has no bearing on the outcome of a test. Such features are ir-

relevant — they augment, but do not invalidate, existing behavior. To illustrate

potential benefits, suppose we determine that 8 of the 10 features in the above ex-

ample do not modify the output String and thus are irrelevant. We can confidently

run the String output test on only 22 = 4 programs to analyze the entire product

line, instead of a thousand.

In this chapter, we explore the concept of irrelevant features to reduce SPL

testing. We find features that do not influence the result of a given test (these

features are irrelevant). We accomplish this by representing an SPL in a form

where conventional program analyses can be applied, determining the features that

are irrelevant for a given test, and pruning the space of such features to reduce the

number of SPL programs to examine for that test without reducing its ability to

find bugs. This chapter makes the following contributions:

• Technique. We precisely define (ir)relevance in terms of changes that a fea-

ture can make to a program. We modify off-the-shelf static analyses for object-

oriented programs to check for relevance.

12

• Implementation. We implement our technique as an Eclipse plugin that

uses Soot [85], a popular static analysis framework for Java, and SAT4J [86],

an off-the-shelf SAT solver.

• Evaluation. We demonstrate the effectiveness of our technique on concrete

product lines and tests.

3.2 Motivating Example

Product Line. Suppose that we have the product line in Figure 3.1 that represents

bank accounts where one can add money and be rewarded for being a valuable

customer. The code of each feature in Figure 3.1 is painted a distinct color. For

now, ignore underlined code. Our product line has four features:

• Base (clear color) represents the core functionality which allows money to be

added, interest and overdraft penalty to be computed, and provides a class

(PremiumAccount) that represents premium accounts with money already

loaded in.

• Loyalty (blue) rewards a customer for adding money to the account. The

feature adds a points field, which is incremented by a percentage of the

money in the account when Account.add(int) is called. The feature

also adds PremiumAccount.overdraftPenalty(), which overrides the

method provided by Base.

• Ceiling (yellow) places a ceiling on the return value of interest(double)

and PremiumAccount.overdraftPenalty().

• Fee (dark grey) charges for adding money. The charge going into the bank’s

account is not shown.

13

Feature Model. The feature model for our example requires Base to be

present in every program and requires one of the other three features, yielding a

total of 7 distinct programs:

ProductLine :: [Ceiling] [Fee] [Loyalty] Base;

Ceiling or Fee or Loyalty;

Product Line Tests. Figure 3.2 shows three tests for our product line.

Test1 checks that there are no points when a premium account is created. Test2

checks the penalty for $200 overdraft against a premium account. Test3 adds $100

to an account and checks that there is at least that much in the account afterwards.

Although a test can be written fairly arbitrarily, such as bundling multiple

tests into one and testing many functionalities at the same time, we assume a setting

where a test exercises a small portion of the product line, the way a unit test does.

To execute a test, all of its inputs (except the boolean feature variables like LOYALTY

and FEE which are discussed later) must be set by the user.

Feature Combinatorics. Eliminating unnecessary feature combinations is

the central problem in product line testing and we tackle this problem by deter-

mining what features are relevant to a test. We can intuitively understand what

“relevance” means before we define it precisely. For example, consider Test1: only

Base and Loyalty are relevant because only the code of these features is reachable

from Test1.main(). For Test2 and Test3, the relevant features are less obvious

but can still be statically determined. In all cases, we can use knowledge of relevant

features to reduce the set of SPL programs to test.

Solution Overview. Figure 3.3 shows an overview of our solution for re-

ducing combinatorics in product line testing. We start with a product line that is

encoded as an ordinary Java program, a feature model for the product line, and a

product line test. We specialize the feature model with respect to the test to identify

unbound features, a subset of which are relevant (Section 3.3). We then feed the

14

Figure 3.1: Example Product Line

15

1 class Test1 { /*** Test1 ***/
2 static void main(String args) {
3 PremiumAccount a = new PremiumAccount();
4 assert a.points == 0;
5 }
6 }
7

8 class Test2 { /*** Test2 ***/
9 static void main(String args) {

10 PremiumAccount a = new PremiumAccount();
11 a.money = -200;
12 assert a.overdraftPenalty() == 2;
13 }
14 }
15

16 class Test3 { /*** Test3 ***/
17 static void main(String args) {
18 Account a = new Account();
19 a.add(100);
20 assert a.money >= 100;
21 }
22 }

Figure 3.2: Product Line Tests

Figure 3.3: Overview of Our Technique

16

specialized feature model, the Java product line code and the test to a static analysis

that identifies the relevant features (Section 3.4). Given the relevant features and

specialized feature model, a solver determines the configurations against which the

test must be run (Section 3.5). We begin by explaining relevant features.

3.3 Relevant Features

A feature is relevant if we need to consider both true and false values when

running a test. As we explain in Section 3.3.2, a feature is considered to be relevant

depending on whether its code can influence the test outcome. A product line’s

code, feature model and test are examined to reduce the set of features whose code

needs to be statically analyzed. We describe how to do this next.

3.3.1 Pruning Features

A bound feature has its truth value fixed for a given test. Bound features are de-

termined by adding constraints to the feature model to ensure that the test will

compile [95]. For example, a tester may decide that certain features must always

be present or absent when running a test by adding test constraints to the feature

model (e.g. if a tester wants to run Test2 with Loyalty present, the tester can

add Loyalty=true to the feature model, which binds the feature to true). Con-

straints specialize the feature model, reducing feature combinations. The complete

set of bound features are determined by mapping the specialized feature model to

a propositional formula [7] and using a SAT solver to propagate constraints [46].

Unbound features, which can take either a true or false value, are simply the

complement of bound features.

Of the unbound features, only the features whose code is reachable from the

test’s entry point (main method) need to be checked for relevance.2 The static

2Unreachable features’ code may also be relevant if the test uses reflection. See Section 3.7.1.

17

Figure 3.4: Classification of Features

analysis presented in Section 3.4 determines which features are reachable and only

checks these features for relevance.

Figure 3.4 shows our classification of features. We use the term ineffective

to describe reachable features that are not relevant (this term will be explained in

detail in Section 3.3.2). We reserve the term irrelevant to describe any feature that

is not relevant (i.e. ineffective, unreachable, and bound), for which we need only

consider one truth value when running the test. Note that whether the test passes

or fails is independent of whether an irrelevant feature is present or not. We discuss

how to isolate relevant features in Section 3.3.2 but for now, it is apparent that:

• In Test1, Base and Loyalty are bound to true as the test references

PremiumAccount (which belongs to Base) and Account.points (Loyalty).

Note that Base is required anyway due to the feature model. Features Fee

and Ceiling are unbound. These two features are also unreachable as their

code is not executed by the test.

• In Test2, only Base is bound. Although the test references Premium-

Account.overdraftPenalty() of Loyalty, the method definition need

Also, note that bound features may actually be reachable as well but we just do not label them as
such.

18

not exist as Base provides Account.overdraftPenalty(). Therefore,

Loyalty is unbound. However, if the tester wanted to test only the for-

mer method definition, the constraint Loyalty=true would be added to the

feature model. The reachable features are Loyalty and Ceiling.

• For Test3, only Base (true) is bound. All the three unbound features are

reachable. For example, Ceiling is reachable as interest(double) is

called by Loyalty.

Binding features reduces feature combinatorics (i.e,. the number of programs

to test) from 2n, where n is the number of unbound features in the entire product

line, to 2u, where u is the number of unbound features in the test. Determining

reachable features r further reduces the number to 2r. Relevant features R, a subset

of reachable features, shrinks the number of programs to test to 2R, where 2R ≤

2r ≤ 2u ≤ 2n. We now discuss the conditions for relevance.

3.3.2 Conditions for Relevance

A reachable feature is ineffective to a test if the feature does not alter the (1) control-

flow or (2) data-flow of any feature whose code may be executed by the test. By

control-flow , we mean the control-flow graph (CFG) which is a directed graph whose

nodes are basic blocks that consist of straightline code. A feature preserves a CFG

if it only adds more code to existing basic blocks without introducing edges between

the existing basic blocks, thereby preserving the shape of the graph itself. By data-

flow , we mean the graph of def-use pairs [1]. A feature preserves def-use pairs if

it writes only to variables that it introduces. Trivially, the set of relevant features

is the complement of the ineffective features in the set of reachable features. In

Section 3.4, we precisely define the checks of relevancy, but for now, consider these

examples:

19

• For Test1, as there is no reachable feature as explained before, there is no

relevant feature and thus, only one configuration, such as {Base=true,-

Loyalty=true,Fee=false,Ceiling=false}, needs to be run.

• For Test2, both of the reachable features, Loyalty and Ceiling, are rel-

evant as the former changes the inter-procedural CFG by replacing a called

method with its own method and the latter adds an edge to a CFG to exit

early.

• For Test3, Ceiling, Fee, and Loyalty are reachable. Fee is relevant as it

alters a variable (money) of another feature (Base). Ceiling is relevant as it

changes control-flow of interest() method called from line 13. Loyalty is

relevant as it allows code of another relevant feature (Ceiling) to be reached.

With three relevant features, Test3 must be run on all configurations.

• Although there is no ineffective feature in the running example, if Loyalty

did not call interest(double) and instead incremented points by a nu-

meric value, it would be an ineffective feature for Test3.

We now present a static analysis that conservatively determines reachable

and relevant features.

3.4 Static Analysis

Using an off-the-shelf inter-procedural context-insensitive and flow-insensitive points-

to analysis called Spark [67], our Soot-based static analysis examines code that is

reachable from the start of a given test and checks if a reachable feature’s code alters

the behavior of another feature. Our static analysis identifies two classes of effects

that a relevant feature can have: direct and indirect. The check for direct effects ex-

amines two types of changes that a feature can make: introductions (Section 3.4.1)

20

and modifications (Section 3.4.2). The check for indirect effects (Section 3.4.3) de-

termines if a feature’s code can allow a direct effect to be reached. If a feature is

determined to have an effect by any of these checks, the feature is relevant.

Note that our static analysis is run once against the product line code, not on

each configuration or feature combination of the product line. Namely, one Abstract

Syntax Tree (AST) and one inter-procedural control-flow graph are created for the

entire product line and analyzed. Also, determining direct and indirect effect of a

feature does not involve considering combinations of features. Thus the algorithmic

complexity of our static analysis is not in any way exponential in the number of

features.

3.4.1 Introductions

An introduction adds a class, field, method or another type of class member. For

example, Base introduces Account, PremiumAccount and Account.money.

Loyalty introduces Account.points and PremiumAccount.overdraftPen-

alty().

In general, the only way an introduction of feature F can influence the out-

come of a test execution is for it to (a) override the introduction of another feature G

and (b) is reachable from the test. By design, a feature can only override methods,

not variable declarations, of another feature. An overriding method introduction

that is reachable from the test affects control-flow of other features because it effec-

tively replaces the CFG of the overriden method with its own. A feature with an

overriding introduction is relevant.

For example, in Test2, Loyalty is relevant because it introduces a reach-

able method PremiumAccount.overdraftPenalty() that overrides Base’s in-

troduction of Account.overdraftPenalty().

21

3.4.2 Modifications

A modification adds a contiguous block of statements to an existing method. Mod-

ifications of SPLs are always enclosed by if-conditions of feature variables, such as

lines 12-13 and 41-42 of Figure 3.1. Our static analysis for modifications was in-

spired by a similar analysis for aspects [25] that checks for data-flow and control-flow

effects. Section 3.4.2 presents the control-flow check and Section 3.4.2 presents the

data-flow check.

Control-Flow Check

The only way a modification does not preserve a CFG as described in Section 3.3.2 is

if it adds a branching statement (i.e. continue, break, and return for Java) to

the control-structure (i.e. loop, switch, and function) of another feature. A feature

with such a modification has a control-effect and is relevant.

For example, in PremiumAccount’s overdraftPenalty(), Ceiling’s

modification (line 42) optionally changes the control-flow of the method by returning

a value different from what Loyalty returns. Therefore, Ceiling is relevant to

Test2, which invokes PremiumAccount’s overdraftPenalty(). Also, Ceil-

ing is relevant to Test3 because line 26, reachable through line 13, changes the

control-flow of interest().

Data-Flow Check

The modifications made by feature F preserve def-use pairs if F ’s statements write

(i) to fields that F introduced or (ii) to fields introduced by another feature, G, but

whose base object (e.g., base object for the expression x.money is x) was allocated

by F . The reason for Condition (i) is the following: a field introduced by F cannot

have existed before F was added. As a result, writing to the field cannot possibly

override existing values. As for Condition (ii), F should be able to modify objects

22

that it itself created. Here are three examples:

• Example satisfying (i): given Test3 and the product line code, we see that

Loyalty’s modification (line 13) satisfies (i) because it only updates a field,

points, that Loyalty itself introduced.

• Example satisfying (ii): suppose that Loyalty has a modification that does

the following:

if(LOYALTY) {

Account account = new Account();

account.money = 100;

}

Even though Loyalty writes to a field (money) that is introduced by another

feature (Base), this is allowed because the modification only affects the object

account which cannot exist without Loyalty.

• Example not satisfying (i) and (ii): Fee’s modification (line 15) assigns to

another feature’s field money of the object a that was created by Test3, not

Fee.

Our data-flow check evaluates both (i) and (ii). For each reachable if(F)

statement, the check finds field writes occuring in the statement’s control-flow (other

if(G) statements in that control-flow, where G is not equal to F, are skipped as

they will be visited later). Then for each field write found, F is checked against the

feature that declared the field. If the two features are the same, the if(F) statement

satisfies condition (i). If the two are different, then for each possible allocation site

of the base object of the field being written, the feature of the allocation site must be

F for the if(F) statement to satisfy condition (ii). If neither condition is satisfied,

if(F) statement produces a data-flow effect and F is relevant.

23

We modified a Soot-based side-effect analysis [66] to implement the data-flow

check. We chose this particular analysis because it was easy to modify for our needs.

The analysis is as precise as Spark, which as mentioned is both context-insensitive

and flow-insensitive. We argue in Section 3.7.2 that a highly precise static analysis

is not necessary for our problem.

3.4.3 Indirect Effect

There are times when a feature satisfies both the control-flow and data-flow checks

of irrelevancy, but the feature is still relevant because it enables the code of relevant

features to be reached.

Indirect Data-Flow Effect. Consider Figure 3.5. An unbound feature A

that writes only to its own variables can affect the outcome of a test for m() if its

variables are read by a relevant feature C (relevant because it writes to A’s variable).

In fact, a program with C will not even compile correctly without A. This is not a

problem because a previously developed technique [95] ensures that A=true when

C=true by constructing the implementation constraint C =⇒ A.

1 @BASE
2 class Program {
3 @A
4 int a = 0;
5

6 @BASE
7 void m() {
8 if (B) {
9 if (C) { a = a + 2; }

10 }
11 }
12 }

Figure 3.5: An Example Illustrating Indirect Effect

Indirect Control-Flow Effect. C is relevant in Figure 3.5 because it writes

to A’s variable. B’s code does not change control-flow or data-flow of another feature,

but it does enable a relevant feature, C, to be reached. Generating the reachability

24

constraint C =⇒ B allows B to be treated as an irrelevant feature without fearing that

B will be turned off when C is on. However, in general, generating such reachability

constraints efficiently can be difficult as there are many ways to reach a statement.

So instead, we make a conservative approximation and consider each reach-enabling

feature like B to be relevant, taking both of their truth values, guaranteeing that

C’s code will be reachable. For this reason, in Test3, Loyalty, whose code does

not alter control-flow or data-flow but does enable through line 13 Ceiling’s mod-

ification of interest(double) to be reached, is considered relevant along with

Ceiling and Fee. Indirect control-flow effect is determined by collecting features

of the transitive callers of a relevant feature’s direct effect.

3.5 Configurations to Test

Given relevant features and the feature model specialized for the test, we now iden-

tify the configurations on which to run the test. Our algorithm, shown in Figure 3.6,

relies on the SAT4J [86] SAT solver, which can enumerate solutions to a proposi-

tional formula. Our algorithm iterates through each possible combination of the

relevant features and treats irrelevant features as don’t-cares. More specifically, we

find a solution to the specialized feature model and add it to the configurations to

test (lines 6-7). We then ensure that the configuration’s assignments to the relevant

features do not appear again by creating a blocking clause [86] consisting of the

assignments and conjoining the negation of the clause to the feature model (lines

9-16). We then check if there is another configuration and repeat the process until

there are no more configurations.3

Once the configurations to test have been identified, a test runner , shown

in Figure 3.3, goes through each configuration, creating a concrete program corre-

3A simple variation of our algorithm terminates after collecting k configurations, in case there
is a huge number of configurations to test.

25

1 Set<Configuration> solve
2 (FeatureModel specializedFM, Set<Feature> relevantFeatures) {
3 Set<Configuration> configs = new HashSet<Configuration>();
4

5 while(specializedFM.isSatisfiable()) {
6 Configuration c = specializedFM.getOneSolution();
7 configs.add(c);
8

9 PropositionalFormula blockingClause =
10 new PropositionalFormula();
11 for(VariableAssignment varAssignment: c.getVarAssignments())
12 {
13 if(relevantFeatures.contains(varAssignment.getVariable()))
14 blockingClause = blockingClause.and(varAssignment);
15 }
16 specializedFM = specializedFM.and(not(blockingClause));
17 }
18

19 return configs;
20 }

Figure 3.6: Algorithm to Find Test Configurations

Table 3.1: Configurations to Test
Test1 Test2 Test3 Base Loyalty Fee Ceiling

No No Yes 1 0 0 1
No Yes Yes 1 0 1 0
No Yes Yes 1 0 1 1
Yes Yes Yes 1 1 0 0
No Yes Yes 1 1 0 1
No No Yes 1 1 1 0
No No Yes 1 1 1 1

sponding to the configuration and running the test against that program.

Examples. Table 3.1 shows the results of analyzing our running example.

Without analysis, each row, a configuration in the original feature model, would

have to be executed for each test. However, with our analysis, given a test, only the

rows with Yes entries in the column corresponding to the test need to be examined.

For Test1, as stated in Section 3.4, there are no relevant features and thus the

enumeration algorithm returns just one configuration, {Base=true,Loyalty=-

true,Fee=false,Ceiling=false}, to test. For Test2, four combinations of

the relevant features Loyalty and Ceiling must be tested. For Test3, all seven

configurations must be tested.

26

3.6 Case Studies

We implemented our technique as an Eclipse plugin and evaluated it on three prod-

uct lines: Graph Product Line (GPL), which is a set of programs that implement

different graph algorithms [72]; notepad , a Java Swing application with functionali-

ties similar to Windows Notepad; and jak2java, which is a feature-configurable tool

that is part of the AHEAD Tool Suite [8].

Multiple tests were considered for each product line. Each test, essentially

a unit test, creates and calls the product line’s objects and methods corresponding

to the functionality being tested. We ran our tool on a Windows XP machine with

Intel Core2 Duo CPU with 2.4 GHz and 1024 MB as the maximum heap space.

Note that although the product lines were created in-house, they were created long

before this chapter’s technique was conceived (GPL and jak2java were created over

5 years ago and notepad was created 2 years ago). In fact, these product lines

were originally written in Jak [9] and for the purpose of this chapter’s technique,

we developed a Jak-to-Java translator to convert them into the Java representation.

Our plugin, the examined product lines and tests, as well as the detailed evaluation

results are available for download [54].

3.6.1 Graph Product Line (GPL)

Table 3.2 shows the results for GPL, which has 1713 LOC with 18 features and

156 configurations. Variations arise from algorithms and structures of the graph

(e.g. directed/undirected and weighted/unweighted) that are used. We report two

representative tests below.

CycleTest. 10 features are unbound (actual features are listed in [54]).

Applying the static analysis, we find that 7 out of the 10 are reachable. Out of

these 7, only 1 feature, Undirected, is relevant. Undirected is relevant because

it fails the data-flow check by adding an extra edge for every existing edge against

27

the graph which was created by the Base feature. The other reachable features

perform I/O operations on their own data and are not considered to be relevant

(see Section 3.7.1 for a discussion on I/O). With no analysis, the test would have

to be run on 156 configurations, the number of programs in the product line. By

specializing the feature model for this test and determining bound and unbound

features, we reduce that number to 40. By applying the static analysis, we reduce

the number to 2. The time taken to specialize the feature model is negligible. The

static analysis takes less than a minute and a half.

Our technique achieves a useful reduction in the configurations to test. Such

a reduction pays dividends in two ways. First, there is a good chance that it takes

less time to perform the static analysis (1.20 minutes) and run the test on the

reduced set (2) of configurations than to run the test on the original set (156) of

configurations. But more importantly, redundant test results are eliminated and

need not be analyzed by the tester. As far as the tester is concerned, there is no

extra information in the other 154 test results and any information related to success

or failure of the test can be obtained from these 2 configurations.

StronglyConnectedTest. This test requires a number of features to be

bound for compilation, leaving only 4 features unbound. Out of those 4, 3 are

reachable, but none are relevant. Just determining the unbound features already

reduces the number of configurations, and applying the static analysis returns the

best possible outcome, i.e. running the test on just 1 configuration. Like the previous

test, the static analysis takes just over a minute.

3.6.2 Notepad

Table 3.3 shows the results for Notepad, which has 2074 LOC with 25 features

and 7056 configurations. Variations arise from the different permutations of func-

tionalities, such as saving/opening files and printing, and user interface support for

28

Table 3.2: GPL Results
Lines of code 1713

Features 18
Configurations 156

CycleTest
Unbound features 10
Reachable features 7
Relevant features 1: Undirected (data-flow)

Configurations with 40
unbound features

Configurations to test 2
Duration of static 72 sec. (1.20 min.)

analysis
StronglyConnectedTest

Unbound features 4
Reachable features 3
Relevant features 0

Configurations with 16
unbound features

Configurations to test 1
Duration of static 72 sec. (1.20 min.)

analysis

them (each functionality can have an associated toolbar button, menubar button,

or both). We wrote tests for the example functionalities mentioned.

PersistenceTest. Binding still leaves 22 features unbound, but static anal-

ysis cuts down that number to 3 reachable features and only one relevant feature.

The UndoRedo feature is relevant because it fails the data-flow check by attaching

an event listener to the text area, which is allocated by another feature. Binding

reduces 7057 configurations to 5256 and this is reduced to 2 configurations after

running the analysis. Although Notepad is not large, it uses Java Swing, whose

very large call-graph must be included in order for application call-back methods to

be analyzed. This substantially raised the analysis time to 45 minutes. A common

solution to this problem is to skip over certain method calls, especially those that

are deep, in the framework, but this must be done with great care as doing so could

prevent call-back methods from being reached. Reducing analysis time is a subject

for further work.

PrintTest. The numbers are similar to the previous test, but this time,

29

Table 3.3: Notepad Results
Lines of code 2074

Features 25
Configurations 7057

PersistenceTest
Unbound features 22
Reachable features 3
Relevant features 1: UndoRedo (data-flow)

Configurations with 5256
unbound features

Configurations to test 2
Duration of static 2856 sec. (47.60 min.)

analysis
PrintTest

Unbound features 22
Reachable features 4
Relevant features 2: UndoRedo (data-flow)

Persistence (introduction)
Configurations with 5256
unbound features

Configurations to test 4
Duration of static 2671 sec. (44.51 min.)

analysis

Persistence is also found to be relevant because one of its methods overrides a

method of an off-the-shelf file filter class in the Swing framework. Still, we only have

to test 4 configurations rather than 5256. The duration is long for the same reason

as mentioned previously.

3.6.3 jak2java

Table 3.4 shows the results for jak2java, which has 26,332 LOC with 17 features

and 5 configurations. Despite the large code base and the number of features, there

are only five configurations total because of the many constraints in the feature

model. We wrote tests to execute the methods that we know are modified by other

features. We aimed to find out whether these modifications would render these

other features relevant to the method being executed. Here are some representative

results.

ReduceToJavaTest. Features sm5 and j2jClassx are relevant because

they introduce methods that override methods of another feature. Feature j2jSmx

30

Table 3.4: jak2java Results
Lines of code 26332

Features 17
Configurations 5

ReduceToJavaTest
Unbound features 4
Reachable features 3
Relevant features 3: sm5 (introduction),

j2jSmx (control-flow),
j2jClassx (introduction)

Configurations with 5
unbound features

Configurations to test 5
Duration of static 254 sec. (4.24 min.)

analysis
ArgInquireTest

Unbound features 4
Reachable features -
Relevant features -

Configurations with 5
unbound features

Configurations to test -
Duration of static -

analysis

is relevant because it fails the control-flow check by returning early from the method

of another feature. Unfortunately, all the configurations in the product line must be

tested. The reason for this is that calling reduce2java, the method being tested,

is very much like calling the main method of a product line, which reaches a large

portion of the product line’s code base. Because there is a large amount of code to

analyze, the static analysis takes 4.24 minutes. All the configurations have to be

tested because a large fraction of the product line’s interactions are reachable.

ArgInquireTest. This test calls a method that is conditionally overriden,

which our static analysis cannot handle (which will be discussed shortly in the last

bullet of Section 3.7.1). Therefore, only the feature model could be analyzed, which

determines that the 5 configurations with unbound features must be tested.

31

3.7 Discussion

We now discuss assumptions and limitations, the effectiveness of our work, testing

missing functionality, threats to validity, and a perspective.

3.7.1 Assumptions and Limitations

Off-the-shelf program analyses have well-known limitations. Indeed, although the

last assumption of the list below is unique to our work, we believe the rest are not.

• Reflection. Any change to the code base, including the addition of a class

member, can change the outcome of reflection. We assume that reflection is

not used. Another possibility is to check if reflection is used in the control-flow

of the test and consider any unbound feature to be relevant. Related work,

such as [41], also do not consider reflection.

• Native Calls. It is hard to determine if a native call, such as an I/O opera-

tion, has a side-effect using Soot. Rather than making the overly conservative

assumption that every native call has a side-effect, we assume that native calls

have no side-effect. Consequently, features can perform reads/writes to files

or standard input/output without being considered relevant.

• Timing. If a test uses the duration of its execution as an outcome, any

feature that adds instructions to the test will be considered relevant. Rather

than checking if a test indeed uses such a timer, we assume that it does not.

• Exceptions. A reachable feature that can throw an exception can be consid-

ered to have a control-effect and thus be identified as a relevant feature. The

problem with doing this is that a majority of reachable features would be con-

sidered relevant because in Java, unchecked exceptions (RuntimeException,

Error, and their subclasses) can be thrown in many expressions including

32

pointer, arithmetic, and array operations [76]. A possible solution is to rely

on a lightweight specification such as a contract (as a related work [25] does)

to determine whether a reachable feature can throw an exception and consider

it to be relevant if it can. Another possiblity is to consider only reachable

features that can throw checked exceptions to be relevant and assume that

unchecked exceptions can be found when running unit tests of these features.

For now, we leave exceptions as future work.

• Local Variables. A method can declare variables local to it. We assume a

feature’s modification does not reference or modify local variables introduced

by other features. Features are written in a dedicated language like Jak [9]

that restricts a feature’s modifications in this way. We assume this restriction

holds and we use an off-the-shelf side-effect analysis, which, by definition of

“side-effect” of a method, need not consider writes to local variables. Our

benchmarks satisfy this assumption as they were translated from Jak to Java

representation using a translator. It would not require much effort to remove

this limitation.

• Conditional Method Overriding and Field Hiding. We assume that

a method is not conditionally overriden due to a feature, i.e. the overriding

method cannot be annotated with a feature (A) that is different from the

feature (B) of the overriden method. The reason this is not allowed is because

allowing it would require the call-graph to include calls to both the overriding

method (for the case where A is true) and the overriden method (for the case

where A is false), which standard static analysis frameworks like Soot cannot

construct because they are unaware of features (their call-graph construction

would have to be modified to include both calls, which would reqire non-trivial

programming effort). Similarly, we assume that a field is not conditionally

hidden due to a feature, i.e. the hiding field cannot be annotated with a

33

feature (A) that is different from the feature (B) of the hidden field. Allowing

this would require a field reference to be traced back to both the hiding field

(for the case where A is true) and the hidden field (for the case where A is false),

which standard static analysis frameworks against cannot establish because

they are unaware of features (modifying this would again require non-trivial

programming effort).

3.7.2 Effectiveness

Our technique works because there are tests that exercise a small portion of the

product line involving a few features. Even just binding features can cut down many

configurations. Further reductions are possible as not many features are reachable

from a test and even fewer are relevant. Determining reachable and relevant features

is difficult to do manually and requires a dedicated program analysis like ours.

Although a highly precise program analysis can significantly reduce false positives,

our case studies illustrate that a context-insensitive analysis suffices because only

a small set of classes and methods, relevant to the functionality being tested, are

instantiated and invoked.

3.7.3 Testing Missing Functionality

Suppose feature Interest should modify the data-flow of a method deposit(int).

The feature’s author forgets to make the modification, which causes our analysis to

report that Interest is irrelevant when testing deposit(int).

Interest is irrelevant because it is missing functionality, rather than hav-

ing an orthogonal functionality as previous example features did. Without a spec-

ification, e.g. that Interest is supposed to be relevant to deposit(int), the

burden of detecting missing functionality rests on the alertness of testers; no pro-

gram analysis could detect this error. This is a general problem of testing and is

34

not limited to our work. In fact, our work helps in that it reports information on

feature (ir)relevance, which may provide a clue to such errors.

3.7.4 Threats to Validity

Our technique can take longer than running the test on all the configurations, as

is the case with ReduceToJavaTest for jak2java since there is no reduction in

configurations. But we believe this case is an outlier and the static analysis is worth

running to achieve even a small reduction for several reasons. First, testing a product

requires it to be generated, which takes non-negligible time. Second, it takes time to

run the tests themselves. Third, a configuration’s test result may be redundant with

another configuration’s test result due to an irrelevant feature between the two, yet

the tester will have to waste time analyzing both configurations’ results. Further

experience with our analysis will bear out these points.

3.7.5 Perspective

Initially, our belief was that existing analyses for conventional programs could be

directly applied to a Java representation of a product line. However, we discovered

that analyzing a Java product line was much more challenging than we had antici-

pated. Consider the following example. While some parts of our analysis, including

reachability and data-flow check, are performed using a backend abstraction like

3-address code, other parts of our analysis, notably the control-flow check, must

be performed on a frontend abstraction like Abstract Syntax Tree because branch

statements like break and continue are often optimized away on the backend

[13]. This presents the technical challenge of developing a bridge between frontend

and backend analyses. For example, we only want to perform control-flow checks on

the reachable methods, but these methods are determined by a backend analysis.

Currently, we provide a string representation that the frontend and the backend

35

abstractions both map to. Developing a more robust intermediate abstraction may

be necessary in the future.

3.8 Related Work

3.8.1 Product Line Testing and Verification

There is a considerable amount of research in product line testing and verification

(see [73] for a survey). We discuss research most closely related to ours.

Monitoring. After developing this chapter’s technique, we and a colleague

published a paper on a related idea of statically eliminating monitors from config-

urations that provably cannot trigger a monitor used to enforce safety properties

against a product line [59]. The two techniques are different both in setting and

technique. In setting, in this chapter’s technique, only one of the configurations that

produce the identical test outcome needs to be tested. In [59], even if a hundred

configurations are identical in the way they trigger a monitor (e.g. through the

same feature), all hundred configurations need to be monitored because all hundred

can be used by the end-user. In technique, [59] needs to determine configurations

that do not satisfy an API-level property, i.e. a sequence of method calls, while this

chapter’s technique needs to determine configurations that do not satisfy a much

lower level and orthogonal property, i.e. control-flow or data-flow effect. Thus the

two works are complementary.

Model-Checking. Classen et al.[24] recently proposed a technique to check

a temporal property against a product line that is in the form of Feature Transi-

tion Systems (FTS), which is a preprocessor-like representation, but for transition

systems. Their technique composes the product line’s FTS with the automaton of

the temporal property’s negation and reports violating configurations. Although

we both tackle the general problem of checking a property against a product line,

36

they work on a representation (transition systems) and setting (verifying temporal

properties) different from ours (object-oriented programs and testing), making the

two techniques complementary.

Sampling. In sampling, an SPL tester selects a subset of configurations to

test using domain knowledge, such as the tendency for certain configurations to be

more problematic than others. For example, an SPL tester may choose a subset

of features for which all combinations must be examined, while for other features,

only t-way (most commonly 2-way) interactions are tested [26][27][74]. Sampling

approaches can miss problematic configurations, whereas we use a program analysis

to safely prune feature combinations.

Test Construction. Instead of generating tests from a complete specifica-

tion of a program, tests are generated incrementally from feature specifications [98].

There is also research on constructing a product line of tests so that they may be

reused [10][79]. We address the different problem of minimizing test execution for a

single given test.

3.8.2 Program Slicing

Determining relevant features is closely related to backwards program slicing [100],

which uses a dataflow analysis to determine the minimal subset of a program that can

affect the values of specified variables at a specified program point. Our definition

of relevance is more conservative than a “slice” [100] but at the same time, requires

less precision: our goal is to reduce feature combinations to test by determining

features, not statements, for which we need only assign one truth value.

3.8.3 Feature Interactions

There is a large body of work on detecting feature interactions using static anal-

ysis [80][90][31][25][68], of which harmless advice [31] and Modular Aspects with

37

Ownership (MAO) [25] are the most relevant. Harmless advice introduces a type

system in which aspects can terminate control-flow but cannot produce data-flow to

the base program. MAO relies on contracts to determine if an aspect changes the

control-flow or data-flow of another module. Our analysis was inspired by MAO,

but is technically closer to harmless advice, as both perform an inter-procedural

analysis and do not rely on contracts. But unlike harmless advice, our approach

does not require every feature to be harmless or irrelevant.

More importantly, MAO and harmless advice assume a setting where all

modules (i.e. aspects/features) are required for the program to work, which is

sharply different from SPLs. Indeed, related work in feature interactions perform

analysis more for modular reasoning of a single program, rather than for reducing

combinatorics in product line testing.

3.8.4 Compositional Analysis and Verification

Currently, we perform a static analysis for each test. With multiple tests, it is

possible that the same classes and methods of the product line will be analyzed

multiple times. It may be possible to analyze the product line once and combine

the result against that of analyzing each test using compositional static analysis [28]

and verification [36][68].

3.8.5 Reducing Testing Effort

Reducing testing effort for a single program, typically using output from some anal-

ysis, has a long history. For example, [84] identifies a subset of existing tests to run

given a program change. Our technique, which identifies a subset of existing fea-

tures that are relevant for a given test in a product line, is a technique for reducing

testing effort that is specific to a product line.

38

3.9 Summary

Software Product Lines (SPLs) represent a fundamental approach to the economical

creation of a family of related programs. Testing SPLs is more difficult than testing

conventional programs because of the combinatorial number of programs to test in

an SPL.

Features are a fundamental, but unconventional, form of modularity. Com-

binations of features yield different programs in an SPL and each program is iden-

tified by a unique combination of features. Features impose a considerable amount

of structure on programs (that is why features are composable in combinatorial

numbers of ways), and exploiting this structure has been the focus of this chapter’s

technique.

Our key insight is that every SPL test is designed to evaluate one or more

properties of a program. A feature might alter any number of properties. In SPL

testing, a particular feature may be relevant to a property (test) or it may not.

Determining whether a feature is relevant for a given test is the critical problem.

We presented a framework for testing an SPL. Given a test, we determine

the features that need to be bound for it to compile. This already reduces con-

figurations to test. Of the unbound features, we determine the features reachable

from the entry point of the test, further reducing configurations. And of the reach-

able features, we determine the features that affect the properties being evaluated,

reducing configurations even more.

Several case studies were presented that showed meaningful reductions in the

number of configurations to test, and more importantly, lends credence to the folk-

tale that many features of a product line add new behavior without affecting existing

behavior. We demonstrated the idea of leveraging such features to exhaustively but

efficiently test product lines. Our work is a step forward in practical reductions in

SPL testing.

39

Chapter 4

SPLat: Lightweight Dynamic

Analysis for Reducing

Combinatorics in Testing

Configurable Systems

The contents of this chapter appeared in the 2013 Conference on Foundations of

Software Engineering (FSE 2013) [62]. 1

1 Chang Hwan Peter Kim, Darko Marinov, Sarfraz Khurshid, Don Batory, Sabrina Souto, Paulo
Barros, and Marcelo d’Amorim. SPLat: Lightweight Dynamic Analysis for Reducing Combinatorics
in Testing Configurable Systems. In Foundations of Software Engineering (FSE), 2013. Darko
conceived the idea of the paper, co-developed with me the Java implementation, developed the
Ruby on Rails implementation, conducted the Groupon (Ruby on Rails) evaluation, and contributed
to writing the paper. I co-developed the Java implementation (with Darko), conducted the Java
evaluation, and took the lead in writing the paper. Sabrina, Paulo and Marcelo assisted with the
Java evaluation and contributed to writing the paper. Sarfraz and Don contributed to writing the
paper.

40

4.1 Introduction

4.2 Introduction

The previous chapter’s technique can be essentially divided into two analyses: reach-

ability analysis that statically determines a subset of the features that are reachable

from the test’s entry point and relevance analysis that statically determines a subset

of those reachable features that change data-flow or control-flow of other features.

The test then needs to be run only on combinations of such relevant features. Evalu-

ation showed that reachability analysis typically has a greater impact than relevance

analysis, i.e. the difference between the total number of features and the number of

reachable features is likely to be larger than the difference between the number of

reachable features and the number of relevant features.

This chapter presents SPLat, a new lightweight technique for determining

configurations to run against a test during test execution, rather than using an

up-front static analysis like the previous chapter’s technique. Although SPLat

performs only a reachability analysis, the effectiveness of SPLat is comparable to

the previous chapter’s technique. And most importantly, SPLatis generally faster

and more scalable than the reachability analysis of the latter and existing dynamic

analysis techniques because SPLatuses stateless exploration [37], which explores

different configurations by simply restarting execution rather than having to save

and restore state.

As in the previous chapter, we assume a test exercises a subset of the code

base, which means that some of the features are likely to never even be encountered

during the test execution. Combinations of such unreachable features yield many

test runs that have the same trace or sequence of bytecode instructions executed

by the test. SPLat determines for each test the set of unique traces and hence the

smallest set of configurations to run. Specifically, let p1 . . . pk (for k ≥ 1) be the

41

configuration variables for a program. Each pi takes a value from a finite domain

Di—in the case of SPLs, each variable takes a boolean value that represents whether

the feature is selected or not. Let c and c′ be two different configurations to run

on a test t, and let τ and τ ′ be their traces. In both runs, t fixes the input values

for non-configuration variables. Configuration c′ is unnecessary to execute if c has

been executed and τ ′ = τ . The set of all configurations with unique traces forms a

revealing subdomain for t [101].

SPLat achieves an optimal reduction in the number of configurations, i.e. for

any test, SPLat runs only configurations that have a unique trace. Experimental

results show that SPLat yields a reduction in testing time that is proportional to the

reduction in the number of configurations. Our insight into pruning configurations

was inspired by the Korat algorithm for test-input generation [18], which introduced

the idea of execution-driven pruning for solving data-structure invariants written as

imperative code.

SPLat supports constraints among configuration variables, which defines the

valid configurations. For a SPL, these constraints are expressed through a feature

model [49] that (1) provides a hierarchical arrangement of features and (2) defines

allowed configurations. SPLat uses SAT to prune invalid configurations and in

tandem uses execution-driven pruning to further remove the valid configurations

that are unnecessary for execution of each test.

SPLat is effective because it monitors the accesses of configuration variables

during test execution. Monitoring is lightweight—both in terms of its execution

overhead and in terms of its implementation effort. We developed two implementa-

tions, one for Java and one for Ruby on Rails. The Java implementation of SPLat

was developed by this dissertation’s author and Darko Marinov, one of the authors

of the publication [62] corresponding to this chapter, and it leveraged the publicly

available Korat code [64]. The Ruby on Rails implementation of SPLat was devel-

42

oped by Darko Marinov from scratch and took only two days to implement while

being robust enough to run against a large, industrial codebase at Groupon, Inc.

The results from Groupon, Inc. were obtained by Darko Marinov as well.

This chapter makes the following contributions:

• Lightweight analysis of configurable programs: We introduce the idea

of lightweight monitoring for highly configurable systems to speed up test

execution. SPLat instantiates this idea and can be easily implemented in

different run-time environments.

• Implementation: We describe two implementations of SPLat, one for Java

and one for Ruby on Rails.

• Evaluation: We evaluate SPLat on 10 Java SPLs. Experimental results show

that SPLat effectively identifies relevant configurations with a low overhead.

We also apply SPLat on a large configurable system (with over 171KLOC in

Ruby on Rails). The system uses over 170 configuration variables and contains

over 19K tests (with over 231KLOC in Ruby on Rails). To the best of our

knowledge, this is the largest and most complex industrial codebase used in

research on testing SPLs [4, 29, 51, 58, 60, 82], and SPLat scales to this size

without much engineering effort.

4.3 Motivating Example

To illustrate the testing process, we use a simple Notepad product line. Figure 4.1

shows the feature model of Notepad. This model has one mandatory feature, BASE,

and three optional features, MENUBAR, TOOLBAR, and WORDCOUNT. The constraint

requires every Notepad configuration to have a MENUBAR or TOOLBAR. For example,

assigning false to both TOOLBAR and MENUBAR would violate the disjunction

43

constraint and therefore be invalid. In contrast, assigning false to one of these

two features and true to the other feature is valid.

ProductLine :: [MENUBAR] [TOOLBAR] [WORDCOUNT] BASE;
MENUBAR or TOOLBAR;

Figure 4.1: Notepad Feature Model

Figure 4.2(a) shows the code for Notepad. BASE (clear color) represents the

core functionality, which, in this case, corresponds to constructing a Notepad with

a JTextArea that the user types into. TOOLBAR (green color) adds a JToolBar to

the frame. MENUBAR (red color) sets a JMenuBar against the frame. WORDCOUNT

(blue color) adds its toolbar icon if the toolbar is present or its menubar item if the

menubar is present.

Figure 4.2(b) shows an example test that instantiates the Notepad class

and creates a toolbar for it. Note that test does not call the createMenuBar()

method. To be able to execute a test, each variable in the test, except the feature

variables, must be given a value.

We use the automated GUI testing framework FEST [33] to run the test.

The helper method newFixture() is not shown for simplicity. The test execution

launches the frame, simulates a user entering some text into the JTextArea of the

frame, checks that the text area contains exactly what was entered, and closes the

frame.

Without analyzing the feature model or the code, this test would need to

be run on all 8 combinations of the 3 optional features, to check all potential test

outcomes. However, some configurations need not be run. Analyzing the feature

model, we note that two configurations are invalid : MTW = 000 and MTW = 001,

where M , T , and W stand for MENUBAR, TOOLBAR, and WORDCOUNT respectively.

Hence, no more than 6 configurations need to be run.

SPLat further reduces that number by dynamically analyzing the code that

44

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

class Notepad extends JFrame {

Notepad() {

getContentPane().add(newJTextArea());

}

void createToolBar() {

if(TOOLBAR) {

JToolBar toolBar = new JToolBar();

getContentPane().add

("North", toolBar);

if(WORDCOUNT) {

JButton button = new

JButton("wordcount.gif");

toolBar.add(button);

}

}

}

void createMenuBar() {

if(MENUBAR) {

JMenuBar menuBar = new JMenuBar();

setJMenuBar(menuBar);

if(WORDCOUNT) {

JMenu menu = new

JMenu("Word Count“);

menuBar.add(menu);

}

}

}

}

(a) Code

public void test() {

Notepad n = new Notepad();

n.createToolBar();

// Automated GUI testing

FrameFixture f = newFixture(n);

f.show();

String text = “Hello”;

f.textBox().enterText(text);

f.textBox().requireText(text);

f.cleanUp();

}

1

2

3

4

5

6

7

8

9

10

11

12

(b) Test

Figure 4.2: Notepad SPL and Example Test

the test executes. For example, executing the test against the configuration c :=

MTW = 100 executes the same trace as configuration c′ := MTW = 101. The

45

reason is that the test only calls createToolBar(), which is empty in both con-

figurations c and c′ since TOOLBAR is false in both configurations. Although the code

in createMenuBar() is different in c and c′, the test never executes it. Therefore,

having executed c, execution of c′ is unnecessary. We will show in Section 4.4.3 that

SPLat runs this test for only three configurations (eg MTW = 010, MTW = 011,

MTW = 100).

4.4 Technique

Given a test for a configurable system, SPLat determines all relevant configurations

on which the test should be run. Each configuration run executes a unique trace

of the test. SPLat executes the test on one configuration, observes the values of

configuration variables, and uses these values to determine which configurations

can be safely pruned. SPLat repeats this process until it explores all relevant

configurations or until it reaches a specified bound on the number of configurations to

examine. We first describe the feature model interface and then the core algorithm.

4.4.1 Feature Model Interface

Figure 4.3 shows the code snippet that defines the FeatureModel interface. The

type FeatureVar denotes a feature variable. A VarAssign object encodes an

assignment of boolean values to feature variables. An assignment can be complete,

assigning values to all the features, or partial , assigning values to a subset of the

features. A complete assignment is valid if it satisfies the constraints of the feature

model. A partial assignment is satisfiable if it can be extended to a valid complete

assignment.

The FeatureModel interface provides queries for determining the validity

of feature assignments, obtaining valid configurations, and checking if specified fea-

tures are mandatory. Given an assignment α, the method getValid() returns

46

class FeatureVar {...}
class VarAssign { ...
Map<FeatureVar, boolean> map; ...}

interface FeatureModel {
Set<Assign> getValid(Assign a);
boolean isSatisfiable(Assign a);
boolean isMandatory(FeatureVar v);
boolean getMandatoryValue(FeatureVar v);

}

Figure 4.3: Feature Model Interface

the set of all complete assignments that (1) agree with α on the values of feature

variables in α and (2) assign the values of the remaining feature variables to make

the complete assignment valid. If the set is not empty for α, we say that α is satis-

fiable; the method isSatisfiable() checks this. The method isMandatory()

checks if a feature is mandatory according to the feature model and the method

getMandatoryValue() returns the mandatory value for the specified feature.

We build on a SAT solver (SAT4J [86]) to implement these feature model opera-

tions.

4.4.2 Main Algorithm

Figure 4.4 lists the SPLat algorithm. It takes as input a test t for a configurable

system and a feature model fm. To enable exploration, the algorithm maintains a

state that stores the values of feature variables (line 2) and a stack of feature

variables that are read during the latest test execution (line 1). SPLat performs

a mostly stateless exploration of paths: it does not store, restore, or compare pro-

gram states as done in stateful model checking [4, 29, 51, 60, 82]; instead, SPLat

stores only the feature decisions made along one path and re-executes the code

to explore different program paths, which corresponds to valid and dynamically

reachable configurations. To that end, SPLat needs to be able to set the values of

47

feature variables, to observe the accesses to feature variables during a test run, and

to re-execute the test from the beginning.

The algorithm first initializes the values of feature variables (lines 6–11)

using the feature model interface. Mandatory features are set to the only value

they can have, and optional features are initially set to false. Note that initial

assignment may be invalid for the given feature model. For example, initially setting

feature variables to false would violate the constraint in our Notepad example.

We describe later how SPLat enforces satisfiability during execution (in line 43).

It adjusts the assignment of values to feature variables before test execution gets

to exercise code based on an invalid configuration. Such scenario could potentially

lead to a “false alarm” test failure as opposed to revealing an actual bug in the

code under test. Note that the calls to state.put() both in the initialization

block and elsewhere not only map a feature variable to a boolean value in the state

maintained by SPLat but also set the value of the feature variable referred to by

the code under test.

SPLat then instruments (line 12) the code under test to observe feature

variable reads. Conceptually, for each read of an optional feature variable (eg read-

ing variable TOOLBAR in the code if(TOOLBAR) from Figure 4.2), SPLat replaces

the read with a call to the notifyFeatureRead() method shown in Figure 4.4.

The reads are statically instrumented so that they can be intercepted just before

they happen during test execution. Mandatory feature variable reads need not be

instrumented because the accessed values remain constant for all configurations.

SPLat next runs the test (line 16). The test execution calls the method

notifyFeatureRead() whenever it is about to read a feature variable. When

that happens, SPLat pushes the feature variable being read on the stack if it is

not already there, effectively recording the order of the first reads of variables. This

stack enables backtracking over the values of read feature variables. An important

48

1 Stack<FeatureVar> stack;
2 Map<FeatureVar, Boolean> state;
3 FeatureModel fm; // input, shared with instrumented code
4

5 void SPLat(Test t) {
6 // Initialize features
7 state = new Map();
8 for (FeatureVar f: fm.getFeatureVariables())
9 state.put(f, fm.isMandatory(f) ?

10 fm.getMandatoryValue(f):
11 false);
12 instrumentOptionalFeatureAccesses();
13 do {
14 // Repeatedly run the test
15 stack = new Stack();
16 t.runInstrumentedTest();
17 VarAssign pa =
18 getPartialAssignment(state, stack);
19 print("configs covered: ");
20 print(fm.getValid(pa));
21

22 while (!stack.isEmpty()) {
23 FeatureVar f = stack.top();
24 if (state.get(f)) {
25 state.put(f, false); // Restore
26 stack.pop();
27 } else {
28 state.put(f, true);
29 pa = getPartialAssignment(state, stack);
30 if (fm.isSatisfiable(pa))
31 break;
32 }
33 }
34 } while (!stack.isEmpty());
35 }
36

37 // called-back from test execution
38 void notifyFeatureRead(FeatureVar f) {
39 if (!stack.contains(f)) {
40 stack.push(f);
41 VarAssign pa =
42 getPartialAssignment(state, stack);
43 if (!fm.isSatisfiable(pa))
44 state.put(f, true);
45 }
46 }

Figure 4.4: SPLat Algorithm

49

step occurs during the call to notifyFeatureRead() (line 43). The initial value

assigned to the reached feature variable may make the configuration unsatisfiable.

More precisely, at the beginning of the exploration, SPLat sets an optional feature

value to false. When the code is about to read the optional feature, SPLat

checks whether the false value is consistent with the feature model, i.e. whether

the partial assignment of values to feature variables on the stack is satisfiable for

the given feature model. If it is, SPLat leaves the feature as is. If not, SPLat

changes the feature to true.

Note that updating a feature variable to true guarantees that the new par-

tial assignment is satisfiable. The update occurs before execution could have ob-

served the old value which would make the assignment unsatisfiable. The reason

why this change of value keeps the assignment satisfiable follows from the overall

correctness of the SPLat algorithm: it explores only satisfiable partial assignments

(line 30), and it checks if the assignment is satisfiable in every variable read (line 43);

thus, if a partial assignment was satisfiable considering all features on the stack,

then it must be possible to extend that assignment with at least one value for the

new feature that was not on the stack but is being added. If the variable associated

with the new feature stores false at the moment execution accesses that variable,

and if the partial assignment including that feature variable is not satisfiable, then

we can change the value to true (line 44). Recall that optional feature variables

are initialized to false.

After finishing one test execution for one specific configuration, SPLat ef-

fectively covers a set of configurations. This set can be determined by enumerating

every complete assignment that (1) has the same values as the partial assignment

specified by variables state and stack (lines 17–18) and (2) is valid according to

the feature model (line 20).

SPLat then determines the next configuration to execute by backtracking

50

on the stack (lines 22–33). If the last read feature has value true, then SPLat

has explored both values of that feature, and it is popped off the stack (lines 24–27).

If the last read feature has value false, then SPLat has explored only the false

value, and the feature should be set to true (lines 27–32). Another important

step occurs now (line 30). While the backtracking over the stack found a partial

assignment to explore, it can be the case that this assignment is not satisfiable for

the feature model. In that case, SPLat keeps searching for the next satisfiable

assignment to run. If no such assignment is found, the stack becomes empty, and

SPLat terminates.

4.4.3 Example Run

We demonstrate SPLat on the example from Figure 4.2. According to the feature

model (Figure 4.1), NOTEPAD and BASE are the only mandatory features and are

set to true. The other three feature variables are optional and therefore SPLat

instruments their reads (Figure 4.2(a), lines 7, 11, 20, and 23). Conceptually, the

exploration starts from the configuration MTW = 000.

When the test begins execution, notifyFeatureRead() is first called

when TOOLBAR is read. TOOLBAR is pushed on the stack, and because its as-

signment to false is satisfiable for the feature model, its value remains unchanged

(i.e. stays false as initialized). Had the feature model required TOOLBAR to be

true, the feature’s value would have been set to true at this point.

With TOOLBAR set to false, no other feature variables are read before the

test execution finishes. (In particular, WORDCOUNT on line 11 is not read because

that line is not executed when TOOLBAR is false.) Therefore, this one execution

covers configurations MTW = −0− where − denotes a “don’t care” value. However,

configurations MTW = 00− are invalid for the given feature model, so this one

execution covers two valid configurations where TOOLBAR is false and MENUBAR is

51

true (MTW=10-). Note that even though the value of WORDCOUNT does not matter

here, it is given a value nonetheless for an execution because in an execution, each

variable must have a concrete value. So let us say MTW=100 here.

SPLat next re-executes the test with TOOLBAR set to true, as it is sat-

isfiable for the feature model. WORDCOUNT is encountered this time, but it can

remain false, and the execution completes, covering MTW=-10 (again, for an ex-

ecution, all variables need to be set, so let us say that MTW=010 is what actually

executes). SPLat then sets WORDCOUNT to true, and the execution completes, cov-

ering MTW=-11 (let us say MTW=011 was used). SPLat finally pops off WORDCOUNT

from the stack because both its values have been explored, and pops off TOOLBAR

for the same reason, so the exploration finishes because the stack is empty. In

summary, the test’s first execution covers MTW=10- (MTW=100 is executed), sec-

ond execution covers MTW=-10 (MTW=010 is executed) and third execution covers

MTW=-11 (MTW=011 is executed). Therefore, the technique covers all 6 valid con-

figurations by executing just three configurations.

4.4.4 Reset Function

While a stateless exploration technique such as SPLat does not need to store and

restore program state in the middle of execution like a stateful exploration tech-

nique does, the stateless exploration does need to be able to restart a new execution

from the initial program state unaffected by the previous execution. Restarting an

execution with a new runtime (eg spawning a new Java Virtual Machine (JVM)

in Java) is the simplest solution, but it can be both inefficient and unsound. It

is inefficient because even without restarting the runtime, the different executions

may be able to share a runtime and still have identical initial program states, eg if

the test does not update any static variables in the JVM state. It can be unsound

because a new runtime may not reset the program state changes made by the pre-

52

vious executions (eg previous executions having sent messages to other computers

or having performed I/O operations such as database updates). We address these

issues by sharing the runtime between executions and requiring the user to provide

a reset function that can be called at the beginning of the test.

Our sharing of the runtime between executions means that settings that

would normally be reset automatically by creating a new runtime must now be

manually reset. For example, Java static initializers must now be called from the

reset function because classes are loaded only once. However, we believe that the

benefit of saving time by reusing the runtime outweighs the cost of this effort,

which could be alleviated by a program analysis tool. Moreover, for the Groupon

code used in our evaluation, the testing infrastructure was already using the reset

function (developed independently and years before this research); between any test

execution, the state (of both memory and database) is reset (by rolling back the

database transaction from the previous test and overwriting the state changes in

the tearDown and/or setUp blocks after/before each test).

4.4.5 Potential Optimization

The algorithm in Figure 4.4 is not optimized in how it interfaces with the feature

model. The feature model is treated as a blackbox, read-only artifact that is oblivi-

ous to the exploration state consisting of the state and stack. Consequently, the

isSatisfiable() and getValid() methods are executed as if the exploration

state was completely new every time, even if it just incrementally differs from the

previous exploration state. For example, when running the test from Figure 4.2,

SPLat asks the feature model if MTW = −1− is satisfiable (line 30 of the SPLat

algorithm) after the assignment MTW = −0−. The feature model replies true

as it can find a configuration with the feature TOOLBAR set to true. Then when

WORDCOUNT is encountered while TOOLBAR=true, SPLat asks the feature model

53

if the assignment MTW = −10 (TOOLBAR=true and WORDCOUNT=false) is sat-

isfiable (line 43 of the SPLat algorithm). Note that the feature model is not aware

of the similarity between the consecutive calls for MTW = −1− and MTW = −10.

But if it were, it would only have to check the satisfiability of WORDCOUNT=false.

The change to the algorithm to enable this synchronization between the

exploration state and the feature model is simple: every time a feature variable is

pushed on the stack, constrain the feature model with the feature’s value, and

every time a feature variable is popped off the stack, remove the corresponding

feature assignment from the feature model. A feature model that can be updated

implies that it should support incremental solving, i.e. a feature model should not

have to always be solved in its entirety. Our current SPLat tool for Java does not

exploit incremental solving, meaning that the tool has not reached the limits of the

underlying technique and can be made even faster.

4.4.6 Implementation

Darko Marinov and I implemented SPLat for Java and Darko Marinov implemented

it for Ruby on Rails. We selected these two languages motivated by the subject

programs used in our experiments (Section 4.5).

For Java, we implemented SPLat on top of the publicly available Korat

solver for imperative predicates [64]. Korat already provides code instrumenta-

tion (based on the BCEL library for Java bytecode manipulation) to monitor field

accesses, and provides basic backtracking over the accessed fields. The feature vari-

ables in our Java subjects were already represented as fields. The main extension

for SPLat was to integrate Korat with a SAT solver for checking satisfiability of

partial assignments with respect to feature models. As mentioned earlier, we used

SAT4J [86].

For Ruby on Rails, we have an even simpler implementation that only mon-

54

itors accesses to feature variables. We did not integrate a SAT solver, because the

subject code did not have a formal feature model and thus we treated all combina-

tions of feature variables as valid.

4.5 Evaluation

Our evaluation addresses the following research questions:

RQ1 How does SPLat’s efficiency compare with alternative techniques for analyz-

ing SPL tests?

RQ2 What is the overhead of SPLat?

RQ3 Does SPLat scale to real code?

In Section 4.5.1, we compare SPLat with related techniques using 10 SPLs. In

Section 4.5.2, we report on the evaluation of SPLat using an industrial configurable

system implemented in Ruby on Rails.

4.5.1 Software Product Lines

We evaluate our approach with 10 SPLs listed in Table 4.1.2 Note that most of

these subjects are configurable programs that have been converted into SPLs. A

brief description for each is below:

• 101Companies [45] is a human-resource management system. Features in-

clude various forms to calculate salary and to give access to the users.

• Email [40] is an email application. Features include message encryption,

automatic forwarding, and use of message signatures.
2All subjects except 101Companies have been used in previous studies on testing/analyzing

SPLs, including GPL by [4, 20], Elevator, Email, MinePump by [4], JTopas by [21], Notepad by
[59, 58], XStream by [30, 88] Prevayler by [95, 3], and Sudoku by [3].

55

• Elevator [78] is an application to control an elevator. Features include pre-

vention of the elevator from moving when it is empty and a priority service to

the executive floor.

• GPL [72] is a product line of graph algorithms that can be applied to a graph.

• JTopas [47] is a text tokenizer. Features include support for particular lan-

guages such as Java and the ability to encode additional information in a

token.

• MinePump [65] simulates an application to control water pumps used in

a mining operation. Features include sensors for detecting varying levels of

water.

• Notepad [59] is a GUI application based on Java Swing that provides different

combinations of end-user features, such as windows for saving/opening/print-

ing files, menu and tool bars, etc. It was developed for a graduate-level course

on software product lines.

• Prevayler [70] is a library for object persistence. Features include the ability

to take snapshots of data, to compress data, and to replicate stored data.

• Sudoku [81] is a traditional puzzle game. Features include a logical solver

and a configuration generator.

• XStream [71] is a library for (de)serializing objects to XML (and from it).

Features include the ability to omit selected fields and to produce concise

XML.

Table 4.1 shows the number of optional features (we do not count the manda-

tory features because they have constant values), the number of valid configurations,

and the code size for each subject SPL. More details of the subjects and results are

available at our website [61].

56

Table 4.1: Subject SPLs
SPL Features Confs LOC

101Companies 11 192 2,059
Elevator 5 20 1,046
Email 8 40 1,233
GPL 14 73 1,713

JTopas 5 32 2,031
MinePump 6 64 580

Notepad 23 144 2.074
Prevayler 5 32 2,844
Sudoku 6 20 853

XStream 7 128 14,480

Tests

We prepared three different tests for each subject SPL. The first test, referred as

LOW, represents an optimistic scenario where the test needs to be run only on a

small number of configurations. The second test, referred as MED (for MEDIUM),

represents the average scenario, where the test needs to be run on some configura-

tions. The third test, referred as HIGH, represents a pessimistic scenario, where the

test needs to be run on most configurations.

To prepare the LOW, MED, and HIGH tests, we modified existing tests,

when available, or wrote new tests because we could not easily find tests that could

be used without modification. Because some subjects were too simple, tests would

finish too quickly for meaningful time measurement if test code only had one se-

quence of method calls. Therefore, we used loops to increase running times when

necessary. Each test fixes all inputs except the feature variables. The tool, test

suites and subjects are available on the project website [61].

Comparable Techniques

We compared SPLat with different approaches for test execution. We considered

two näıve approaches that run tests against all valid configurations: NewJVM and

57

ReuseJVM. The NewJVM approach spawns a new JVM for each distinct test

run. Each test run executes only one valid configuration of the SPL. It is impor-

tant to note that the cost of this approach includes the cost of spawning a new

JVM. The ReuseJVM approach uses the same JVM across several test runs, thus

avoiding the overhead of repeatedly spawning JVMs for each different test and con-

figuration. This approach requires the tester to explicitly provide a reset function

(Section 4.4.4). Because the tester likely has to write a reset function anyway, we

conjecture that this approach is a viable alternative to save runtime cost. For ex-

ample, the tester may already need to restore parts of the state stored outside the

JVM such as files or database.

We also compared SPLat with a simplified version of a previously proposed

static analysis [58] for pruning configurations. Whereas [58] performs reachabil-

ity analysis, control-flow and data-flow analyses, the simplified version, which we

call SRA (Static Reachability Analysis), only performs the reachability analysis

to determine which configurations are reachable from a given test and thus can be

seen as the static analysis counterpart to SPLat. SRA builds a call graph using

inter-procedural, context-insensitive, flow-insensitive, and path-insensitive points-to

analysis and collects the features syntactically present in the methods of the call

graph. Only the valid combinations of these reachable features from a test need to

be run for that test.

Finally, we compared SPLat with an artificial technique that has zero cost

to compute the set of configurations on which each test need to run. More precisely,

we use a technique that gives the same results as SPLat but only counts the cost

of executing tests for these configurations, not the cost of computing these config-

urations. We call this technique Ideal. The overhead of SPLat is the difference

between the overall cost of SPLat explorations and the cost of executing tests for

Ideal.

58

Table 4.2: Experimental Results for Various Techniques
All Valid SPLat Static Reachability (SRA)

Test NewJVM ReuseJVM Confs SPLatTime IdealTime Overhead Confs Overhead Time
101Companies (192 configs)

LOW 35.46 2.13 (6%) 32 (16%) 1.64 (77%) 0.72 0.92 (127%) 96 84.04 1.28
MED 49.37 3.90 (7%) 160 (83%) 6.84 (175%) 3.58 3.26 (91%) 192 82.54 3.99
HIGH 283.69 45.26 (15%) 176 (91%) 47.6 (105%) 41.59 6.01 (14%) 192 81.93 45.16

Elevator (20 configs)
LOW 10.74 5.17 (48%) 2 (10%) 1.33 (25%) 0.71 0.62 (87%) 2 23.29 0.76
MED 50.97 46.65 (91%) 10 (50%) 23.62 (50%) 23.14 0.48 (2%) 20 23.74 46.17
HIGH 62.57 59.48 (95%) 20 (100%) 60.71 (102%) 59.28 1.43 (2%) 20 24.38 60.43

Email (40 configs)
LOW 40.63 10.74 (26%) 1 (2%) 1.00 (9%) 0.87 0.13 (14%) 1 23.62 0.87
MED 57.56 48.87 (84%) 30 (75%) 36.99 (75%) 37.14 -0.15 (0%) 40 22.81 49.02
HIGH 58.02 48.93 (84%) 40 (100%) 48.96 (100%) 49.26 -0.31 (0%) 40 23.84 49.16

GPL (73 configs)
LOW 19.21 2.23 (11%) 6 (8%) 0.79 (35%) 0.29 0.49 (168%) 6 104.97 0.30
MED 190.53 171.62 (90%) 55 (75%) 130.87 (76%) 128.52 2.35 (1%) 55 99.41 128.69
HIGH 314.20 285.89 (90%) 70 (95%) 278.77 (97%) 277.48 1.29 (0%) 73 103.52 286.28

JTopas (32 configs)
LOW 26.59 16.83 (63%) 8 (25%) 6.29 (37%) 4.49 1.80 (40%) 32 86.87 16.44
MED 29.04 18.55 (63%) 16 (50%) 13.16 (70%) 9.71 3.46 (35%) 32 86.87 18.70
HIGH 28.92 18.93 (65%) 32 (100%) 25.31 (133%) 18.43 6.88 (37%) 32 86.87 18.48

MinePump (64 configs)
LOW 23.71 7.53 (31%) 9 (14%) 3.65 (48%) 1.90 1.75 (91%) 64 22.69 7.49
MED 59.72 14.78 (24%) 24 (37%) 10.43 (70%) 6.26 4.17 (66%) 64 22.38 15.35
HIGH 13.72 5.75 (41%) 48 (75%) 37.80 (657%) 4.81 32.99 (685%) 64 22.18 5.77

Notepad (144 configs)
LOW 398.22 135.60 (34%) 2 (1%) 3.06 (2%) 2.45 0.61 (24%) 144 80.40 135.47
MED 418.23 156.27 (37%) 96 (66%) 104.95 (67%) 104.91 0.04 (0%) 144 80.62 156.35
HIGH 419.99 153.39 (36%) 144 (100%) 153.11 (99%) 152.16 0.94 (0%) 144 81.29 151.94

Prevayler (32 configs)
LOW 65.34 40.23 (61%) 12 (37%) 22.49 (55%) 22.8 -0.31 (-1%) 32 205.54 45.39
MED 121.38 96.50 (79%) 24 (75%) 102.49 (106%) 105.86 -3.37 (-3%) 32 214.67 111.37
HIGH 149.08 120.7 (80%) 32 (100%) 127.17 (105%) 131.37 -4.20 (-3%) 32 290.66 135.61

Sudoku (20 configs)
LOW 51.11 48.10 (94%) 4 (20%) 42.72 (88%) 24.12 18.6 (77%) 10 31.87 24.28
MED 118.14 105.67 (89%) 10 (50%) 58.31 (55%) 54.16 4.15 (7%) 10 31.75 53.67
HIGH 489.60 334.82 (68%) 20 (100%) 316.47 (94%) 332.36 -15.89 (-4%) 20 31.74 338.48

Xstream (128 configs)
LOW 111.26 30.04 (27%) 2 (1%) 1.57 (5%) 1.08 0.49 (45%) 2 106.50 1.06
MED 105.10 9.04 (8%) 64 (50%) 5.77 (63%) 5.26 0.51 (9%) 64 109.22 5.14
HIGH 101.66 8.68 (8%) 128 (100%) 9.16 (105%) 8.59 0.57 (6%) 128 105.68 8.74

59

Results

Table 4.2 shows our results. We performed the experiments on a machine with

X86 64 architecture, Ubuntu operating system, 240696 MIPS, 8 cores, with each

core having an Intel Xeon CPU E3-1270 V2 at 3.50GHz processor, and 16 GB

memory. All times are listed in seconds. Our feature model implementation solves

the feature model upfront to obtain all valid configurations; because this solving

needs to be done for every feature model (regardless of using SPLat or otherwise),

and because it takes a fraction of test execution time, we do not include it.

Here is a description of each column in Table 4.2:

• Test refers to one of the three categories of tests described earlier.

• All Valid identifies the techniques that run the test against all valid con-

figurations, namely NewJVM and ReuseJVM. ReuseJVM shows time

absolutely and as a percentage of NewJVM duration.

• Columns under SPLat details information for SPLat:

– Confs shows the number of configurations that SPLat runs for a partic-

ular test.

– SPLatTime shows the time it takes to run a test using SPLat. SPLat

reuses the same JVM for different executions, like ReuseJVM. The time is

shown absolutely and as a percentage of ReuseJVM (not NewJVM).

– IdealTime shows the time in seconds for running SPLat without con-

sidering the cost to determine which configurations to run for the test;

therefore, this number excludes instrumentation, monitoring, and con-

straint solving.

– Overhead shows the overhead of SPLat, calculated by subtracting Ide-

alTime from SPLatTime, and dividing it by IdealTime.

• Columns under Static Reachability (SRA) show results for our static anal-

ysis:

60

– Confs shows the number of configurations reachable with such analysis,

– Overhead shows the time taken to perform the static reachability anal-

ysis, and

– Time shows the time taken to run the configurations determined by this

analysis.

Efficiency. The ReuseJVM column shows that reusing JVM saves a con-

siderable amount of time compared to spawning a new JVM for each test run. For

example, for half of the tests, reusing JVM saves over 50% of the time, because

running these tests does not take much longer than starting up the JVM. For tests

that take considerably longer than starting up the JVM, such saving is not possible.

SPLat further reduces the execution time over ReuseJVM by determining

the reachable configurations. For example, for the LOW test for Notepad, reusing

the JVM takes 34% of the time to run with a new JVM, and with SPLat, it takes

just 2% of the already reduced time. In fact, the table shows that in most cases,

as long as SPLat can reduce the number of configurations to test (i.e. Confs is

lower than the total number of configurations), it runs faster than running each

configuration (i.e. less than 100% of ReuseJVM).

Comparison with Static Reachability Analysis. The static reachability

analysis yields less precise results compared to SPLat: the number of configurations

in the column Confs is larger than the number of configurations in the corresponding

column for SPLat. In fact, for JTopas, Notepad and MinePump, the SRA reports

all features as being accessed from the call graph, and therefore reports that all

valid configurations have to be tested. For example, for JTopas, this is due to

its tests invoking the main method of the SPL, from which all feature variable

accesses may be reached using different input values, which the analysis is insensitive

to. For Notepad, this is due to the the use of the FEST automated GUI testing

61

framework, which relies heavily on reflection. Because the method being invoked

through reflection cannot necessarily be determined statically, the analysis yields

a conservative result. For MinePump, each test happens to exercise a sequence of

methods that together reach all feature variable accesses.

Note that the SRA approach first statically determines the configurations

to run (which takes the time in column SRA Overhead) and afterwards dynam-

ically runs them one by one (which takes the time in column SRA Time). Com-

paring just the static analysis time (SRA Overhead) with the SPLat overhead

(SPLat Overhead) shows that SRA has a considerably larger overhead, in some

cases two orders of magnitude larger. Although the static analysis overhead can

be offset by (re)using the reachable configurations it determines against tests that

have the same code base but have different inputs, in general, it would require a

very large number of such tests for the approach to have a smaller overhead than

SPLat. Moreover, comparing just the time to execute the configurations computed

by SRA (column SRA Time with the time to execute the configurations computed

by SPLat (column IdealTime) shows that SRA again takes longer because SRA

computes a higher number of configurations than SPLat due to the conservative

nature of static analysis.

RQ1. Based on the comparison with NewJVM, ReuseJVM, and SRA,

we conclude the following:

SPLat is more efficient than the techniques that run all valid config-

urations for tests of SPLs or prune reachable configurations using

static analysis. Moreover, compared with static analysis, SPLat

not only gives results faster but also gives more precise results.

Overhead. Table 4.2 also shows the overhead that SPLat has over the Ideal

technique (column SPLat Overhead). The overhead is generally small, except for

the LOW tests and tests for several subjects (eg JTopas and Mine). The overhead is

62

high for the LOW tests because these tests finish quickly (under 7 seconds, often under

1 second), meaning that instrumentation, monitoring and feature model interaction

take a larger fraction of time than they would for a longer executing test. The

overhead is high for JTopas because the feature variables are accessed many times

because they are accessed within the tokenizing loop. The overhead is high for

MinePump because feature accesses and their instrumentation take relatively longer

to execute for this particular test as the subject is very small.

SPLat, due to its cost in monitoring feature variables, should not execute

a test faster than knowing the reachable configurations upfront and running the

test only on those configurations. Thus, the occasional small negative overheads

for Email, Prevayler, Sudoku are due to the experimental noise and/or the

occasionally observed effect where an instrumented program runs faster than the

non-instrumented program. It is important to note that efficiency and overhead are

orthogonal. As long as the reduction in time due to the reduction in configurations

is larger than the overhead, SPLat saves the overall time. To illustrate, the GPL’s

LOW test incurs over 168% overhead, but the reduction in configurations outweighs

the overhead, and SPLat takes only 35% of running all valid configurations with

the same JVM.

RQ2. Based on the discussion about overhead, we conclude the following:

SPLat can have a large relative overhead for short-running tests,

but the overhead is small for long-running tests.

4.5.2 Configurable Systems

Groupon. Groupon is a company that “features a daily deal on the best stuff

to do, see, eat, and buy in 48 countries” (http://www.groupon.com/about).

63

Groupon PWA is name of the codebase that powers the main groupon.com website.

It has been developed for over 4.5 years with contributions from over 250 engineers.

The server side is written in Ruby on Rails and has over 171K lines of Ruby code.

Groupon PWA code is highly configurable with over 170 (boolean) feature

variables. In theory, there are over 2170 different configurations for the code. In

practice, only a small number of these configurations are ever used in production,

and there is one default configuration for the values of all feature variables.

Groupon PWA has an extensive regression testing infrastructure with several

frameworks including Rspec, Cucumber, Selenium, and Jasmine. The test code itself

has over 231K lines of Ruby code and additional code in other languages. (It is not

uncommon for the test code to be larger than the code under test [96].)

Groupon PWA has over 19K Rspec (unit and integration) tests. A vast

majority of these tests run the code only for the default configuration. A few tests

run the code for a non-default configuration, typically changing the value for only

one feature variable from the default value. Running all the Rspec tests on a cluster

of 4 computers with 24 cores each takes under 10 minutes.

SPLat Application. Darko Marinov implemented SPLat for Ruby on Rails

and applied it to Groupon PWA. He did not have to implement the reset function

because it was already implemented by Groupon testers to make test execution

feasible (due to the high cost of re-starting the system). Moreover, no explicit

feature model was present, so feature model constraints did not need to be solved.

We set out to evaluate how many configurations each test could cover if we

allow varying the values of all feature variables encountered during the test run.

We expected that the number of configurations could get extremely high for some

tests to be able to enumerate all the configurations. Therefore, we set the limit on

the number of configurations to no more than 16, so that the experiments finished

in a reasonable time. This limit was reached by 2,695 tests. For the remaining

64

Table 4.3: Reachable Configurations
Configs Tests Configs Tests

1 11,711 2 1,757
3 332 4 882
5 413 6 113
7 19 8 902
9 207 10 120

11 29 12 126
13 6 14 32
15 10 16 349
17 2,695 - -

17,008 tests, Table 4.3 shows the breakdown of how many tests reached a given

number of configurations. We can see that the most common cases are the number

of configurations being powers of two, effectively indicating that many features are

encountered independently rather than nested (as in Figure 4.2 where the read of

WORDCOUNT is nested within the block controlled by the read of TOOLBAR).

We also evaluated the number of features encountered. It ranges from 1 up

to 43. We found 43 is a high number in the absolute sense (indicating that a test

may potentially cover 243 different configurations), 43 is also a relatively low number

in the relative sense compared to the total of over 170 features. Table 4.4 shows the

breakdown of how many tests reached a given number of feature variables. Note

that the numbers of configurations and feature variables may seem inconsistent at

a glance, eg the number of tests that have 1 configuration is larger than the number

of tests than have 0 feature variables. The reason is that some tests force certain

values for feature variables such that setting the configuration gets overwritten by

the forced value.

In summary, these results show that the existing tests for Groupon PWA can

already achieve a high coverage of configurations, but running all the configurations

for all the tests can be prohibitively expensive. We leave it as a future work to

explore a good strategy to sample from these configurations [26, 27, 74].

65

Table 4.4: Accessed Features
Vars Tests Vars Tests Vars Tests

0 11,711 1 1,757 2 1,148
3 1,383 4 705 5 389
6 466 7 323 8 425
9 266 10 140 11 86

12 80 13 34 14 28
15 54 16 62 17 1
19 14 20 260 21 109
22 45 23 19 24 22
25 9 26 2 27 14
28 17 29 6 30 8
31 24 32 6 33 14
34 31 35 11 36 15
37 8 38 2 39 2
40 3 42 2 43 2

RQ3. Moreover, based on the fact that we could run SPLat on the codebase

as large as Groupon PWA, we conclude the following:

SPLat scales to real, large industrial code. The implementation

effort for SPLat is relatively low and the number of configurations

covered by many real tests is relatively low.

4.5.3 Threats to Validity

The main threat is to external validity: we cannot generalize our timing results to all

SPLs and configurable systems because our case studies may not be representative

of all programs, and our tests may be covering an unusual number of configurations.

To reduce this threat, we used multiple Java SPLs and one real, large industrial

codebase. For SPLs, we designed tests that cover a spectrum of cases from LOW to

MED(IUM) to HIGH number of configurations. For the Groupon codebase, we find

that most real tests indeed cover a small number of configurations. Our study has

the usual internal and construct threats to validity.

66

We believe that SPLat is a helpful technique that can be used in practice to

improve SPL testing. An important threat to this conclusion is that our results do

not take into account the cost of writing a reset function. Although other techniques

that use stateless exploration also require reset functions (eg VeriSoft [37]), the cost

of developing such functions could affect practicality. NewJVM, ReuseJVM, and

SPLat all require the state outside of the JVM to be explicitly reset, but only

NewJVM automatically resets JVM-specific state by spawning a new JVM for each

test run.

4.6 Related Work

4.6.1 Dynamic Analysis

Korat. SPLat was inspired by Korat [18], a test-input generation technique based

on Java predicates. Korat instruments accesses to object fields used in the predi-

cate, monitors the accesses to prune the input space of the predicate, and enumerates

those inputs for which the predicate returns true. Directly applying Korat to the

problem of reducing the combinatorics in testing configurable systems is not feasi-

ble because the feature model encodes a precondition for running the configurable

system, which must be accounted for. In theory, one could automatically trans-

late a (declarative) feature model into an imperative constraint and then execute

it before the code under test, but it could lead Korat to explore the entire space

of feature combinations (up to 2N combinations for N features) before every test

execution. In contrast, SPLat exploits feature models while retaining the effective-

ness of execution-driven pruning by applying it with SAT in tandem. Additionally,

SPLat can change the configuration being run during the test execution (line 44 in

Figure 4.4), which Korat did not do for data structures.

Shared execution. Starting from the work of d’Amorim et al. [29], there

67

has been considerable ongoing research on saving testing time by sharing compu-

tations across similar test executions [4, 5, 24, 29, 43, 51, 60, 63, 82, 97]. The key

observation is that repeated executions of a test have much computation in common.

For example, Shared Execution [60] runs a test simultaneously against several SPL

configurations. It uses a set of configurations to support test execution, and splits

and merges this set according to the different decisions in control-flow made along

execution. The execution-sharing techniques for testing SPLs differ from SPLat

in that they use stateful exploration; they require a dedicated runtime for saving

and restoring program state and only work on programs with such runtime sup-

port. Consequently, they have high runtime overhead not because of engineering

issues but because of fundamental challenges in splitting and merging state sets at

proper locations. In contrast, SPLat uses stateless exploration [37] and never merges

control-flow of different executions. Although SPLat cannot share computations be-

tween executions, it requires minimal runtime support and can be implemented very

easily and quickly against almost any runtime system that allows feature variables

to be read and set during execution.

Sampling. Sampling exploits domain knowledge to select configurations to

test. A tester may choose features for which all combinations must be examined,

while for other features, only t-way (most commonly 2-way) interactions are tested

[26, 27, 74]. Our dynamic program analysis safely prunes feature combinations,

while sampling approaches can miss problematic configurations [4].

Spectrum of SPL testing techniques. Kästner et al. [51] define a spec-

trum of SPL testing techniques based on the amount of changes required to support

testing. On the one end are black-box techniques that use a conventional runtime

system to run the test for each configuration; NewJVM is such a technique. On the

other end are white-box techniques that extensively change a runtime system to

make it SPL-aware; shared execution is such a technique. SPLat, which only re-

68

quires runtime support for reading and writing to feature variables, is a lightweight

white-box technique that still provides an optimal reduction in the number of con-

figurations to consider.

4.6.2 Static Analysis

Chapter 3 presented a static analysis that performs reachability, data-flow and

control-flow checks to determine which features are relevant to the outcome of a

test. The analysis enables one to run a test only on (all valid) combinations of

these relevant features that satisfy the feature model. SPLat is only concerned

with reachability, so even if it encounters a feature whose code has no effect, it

will still execute the test both with and without the feature. But a large portion

of the reduction in configurations in running a test is simply due to the idea that

many of the features are not even reachable. Indeed, as Section 4.5 shows, SPLat

determines reachable configurations with much greater precision and is likely to be

considerably faster than the static analysis because SPLat discovers the reachable

configurations during execution. Static analysis may be faster if its cost can be offset

against many tests (because it needs only be run once for one test code that allows

different inputs), and if a test run takes a very long time to execute (eg requiring

user interaction). But such situations do not seem to arise often, especially for tests

that exercise a small subset of the codebase.

4.7 Summary

SPLat is a new technique for reducing the combinatorics in testing configurable

systems. SPLat dynamically prunes the space of configurations that each test must

be run against. SPLat achieves an optimal reduction in the number of configu-

rations and does so in a lightweight way compared to previous approaches based

on static analysis and heavyweight dynamic execution. Experimental results on 10

69

software product lines written in Java show that SPLat substantially reduces the

total test execution time in most cases. Moreover, our application of SPLat on a

large industrial code written in Ruby on Rails shows its scalability.

70

Chapter 5

Statically Reducing

Configurations to Monitor in a

Software Product Line

The contents of this chapter appeared in the 2010 Conference on Runtime Verifica-

tion (RV 2010) [59]. 1

5.1 Introduction

In this chapter, we consider the problem of runtime-monitoring SPLs for safety

property [87] violation, i.e. dynamically observing program behavior to check con-

formance to expected properties. Our technique statically identifies feature combi-

nations (i.e., programs) that provably can never violate the stated property. Thus,

these programs do not need to be monitored. Achieving this reduction is beneficial

1 Chang Hwan Peter Kim, Eric Bodden, Don S. Batory, and Sarfraz Khurshid. Reducing
Configurations to Monitor in a Software Product Line. In Runtime Verification (RV), 2010. The
paper extends my individual project work for a Computer Security course at UT-Austin. Eric
assisted with implementation and paper writing. Don and Sarfraz helped with paper writing.

71

in two settings under which monitors are used. First, it can significantly speed up

the testing process as these programs do not need to be run to see if the property

can be violated. Second, if the monitor is used in production, it can speed up these

programs because they are not monitored unnecessarily.

We accomplish this goal by starting with analyses that evaluate runtime

monitors at compile time for single programs [14, 32, 15]. Our work extends these

analyses by lifting them to understand features, making them aware of possible fea-

ture combinations. A programmer applies our analysis to an SPL once at each SPL

release. The output is a bi-partitioning of feature combinations: (1) configurations

that need to be monitored because violations may occur and (2) configurations for

which no violation can happen.

To validate our work, we analyze two different Java-based SPLs. Experiments

show we can statically rule out over half of the configurations for these case studies.

Further, analyzing an entire SPL is not much more expensive than applying the

earlier analyses to a single program.

To summarize, the contributions of this chapter are:

• Technique. A novel static analysis to determine, for a given SPL and runtime-

monitor specification, the feature combinations (programs) that require mon-

itoring,

• Implementation. An implementation of this analysis within the Clara

framework for hybrid typestate analysis [12], as an extension to Bodden et

al.’s earlier whole-program analysis [32], and

• Evaluation. Experiments that show that our analysis noticeably reduces

the number of configurations that require runtime-monitoring and thus saves

testing time and program execution time for the programs studied.

72

Figure 5.1: Example Product Line

5.2 Motivating Example

Figure 5.1 shows a simple example SPL, whose programs fetch and print data.2

Local data is fetched if the Local feature is selected (blue code), local data from

a file is fetched if File is selected (yellow code) and internal contents of data are

printed if Inside is selected (green code). Each member (class, field, or method)

is annotated with a feature. In this example, every member is annotated with Base

feature, meaning that it will be present in a program only if the Base feature is

selected.

The feature model for our SPL is shown in Figure 5.2. Base is a required

feature. Inside, File, and Local are optional features. The model further

requires at least one of the optional features to be selected (second line). In total, the

2For presentation, we omit the class of field references in feature-conditionals and capitalize
feature identifiers.

73

feature model allows seven distinct programs (eight variations from three optional

features then remove the case without any optional feature).

Example :: [Inside] [File] [Local] Base;
Inside or File or Local;

Figure 5.2: Example Feature Model

5.2.1 Example Monitor Specifications: ReadPrint and HasNext

Researchers have developed a multitude of specification formalisms for defining run-

time monitors. As our approach extends the Clara framework, it can generally

apply to any runtime-monitoring approach that uses AspectJ aspects for monitor-

ing. This includes popular systems such as JavaMOP [22] and tracematches [2]. For

the remainder of this chapter, we use the tracematch notation because it can express

monitors concisely. Figure 5.3(a) shows a simple example. ReadPrint prevents a

print event after a read event is witnessed. In line 3 of Figure 5.3(a), a read

symbol captures all those events in the program execution, known as joinpoints in

AspectJ terminology, that are immediately before calls to Util.read*(..). Sim-

ilarly, the symbol print captures joinpoints occurring immediately before calls to

Util.print*(..). Line 6 carries the simple regular expression “read+ print”,

specifying that code body in lines 6–8 should execute whenever a print event fol-

lows one or more read events on the program’s execution. Figure 5.3(b) shows a

finite-state machine for this tracematch, where symbols represent transitions.

Figure 5.4 shows another safety property, HasNext [32], which checks for it-

erators if next() is called twice without calling hasNext() in between. Note

that this tracematch only matches if the two next() calls bind to the same

Iterator object i, as shown in Figure 5.4(a), lines 2–4. When the trace-

match encounters an event matched by a declared symbol that is not part of the

regular expression, such as hasNext, the tracematch discards its partial match.

74

aspect ReadPrint {
tracematch() {

sym read before: call(* Util.read*(..));
sym print before: call(* Util.print*(..));

read+ print {
throw new RuntimeException(‘‘ReadPrint violation!’’);

}
}

}

(a) ReadPrint Tracematch

0start 1 2
read

read

print

(b) Finite-State Machine

Figure 5.3: ReadPrint Safety Property

Therefore, the tracematch would match a trace “next(i1) next(i1)” but not

“next(i1) hasNext(i1) next(i1)”, which is exactly what we seek to express.

A naive approach to runtime-monitoring would insert runtime monitors like

ReadPrint and HasNext into every program of a product line. However, as we

mentioned, it is often unnecessary to insert runtime monitors into some programs

because these programs provably cannot trigger the runtime monitor.

5.2.2 Analysis by Example

Our goal is to statically determine the feature configurations to monitor, or con-

versely the configurations that cannot trigger the monitor. For our running example,

let us first deduce these configurations by hand. For ReadPrint, both read and

print symbols have to match, meaning that File (which calls read(..) in line

17) and Base (which calls print*(..) in lines 29 and 30) have to be present for

the monitor to trigger. Also, Local needs to be present because it enables File’s

code to be reached. Therefore, the ReadPrint monitor has to be inserted if and

75

aspect HasNext {
tracematch(Iterator i) {

sym next before: call(* Iterator.next()) && target(i);
sym hasNext before: call(* Iterator.hasNext()) && target(i);

next next {
throw new RuntimeException(‘‘HasNext violation!’’);

}
}

}

(a) HasNext Tracematch

0start 1 2

next

hasNext

next

(b) Finite-state machine

Figure 5.4: HasNext Safety Property [32]

only if these three features are present, which only holds for two out of the seven

original configurations.

We represent the condition under which a monitor has to be inserted by treat-

ing a monitor, e.g. ReadPrint, as a feature itself and constructing its presence con-

dition: ReadPrint iff (File and Local and Base). Similarly, the moni-

tor for HasNext only has to be inserted iff Iterator.next() can be called, i.e.,

on the four configurations with Inside and Base present. The presence condition

for HasNext is HasNext iff (Inside and Base). The goal of our technique

is to extend the original feature model so that tracematch monitors are now features

and the tracematch presence conditions are part of the revised feature model (the

extension is shown in italics):

76

// ReadPrint and HasNext are now features themselves

Example :: [ReadPrint] [HasNext] [Inside] [File] [Local] Base;

Inside or File or Local;

// Tracematch presence conditions

ReadPrint iff (File and Local and Base);

HasNext iff (Inside and Base);

Note that, although a tracematch is itself a feature which can be selected or

not, it is different from other features in that its selection status is determined not

by the user, but instead by the presence or absence of other features.

5.2.3 The Need for a Dedicated Static Analysis for Product Lines

As mentioned earlier, there exist static analyses that improve the runtime perfor-

mance of a monitor by reducing its instrumentation of a single program [14, 32, 15].

We will refer to these analyses as traditional program analyses (TPA). There are

two ways to apply such analyses to product lines. One way is inefficient, the other

way imprecise. Running TPA against each instantiated program will be very inef-

ficient because it will have to inspect every program of the product line separately.

The other way is to run TPA against the product line itself. This is possible be-

cause a product line in a SysGen program representation can be treated as an

ordinary program (recall that a SysGen program uses ordinary program constructs

like if-conditionals, rather than pre-processor constructs like #ifdefs, to represent

variability). However, this second way will be imprecise. For example, suppose we

apply TPA on the ReadPrint and HasNext tracematches for our example Sys-

Gen program: both tracematches may match in the case in which all features are

enabled. Being oblivious to the notion of features, the analysis will therefore report

that the tracematches have to be present for every program of the product line.

This shows that a static analysis, to be both efficient and effective on an SPL, has

to be aware of the SPL’s features.

77

Figure 5.5: Overview of Our Technique

5.3 Product Line Aware Static Analysis

Figure 5.5 displays an overview of our approach. First, for a tracematch, our analysis

determines the symbols required for the tracematch to trigger (“Determine Required

Symbols”). For each of these symbols, we use the aspect weaver to identify the

statements that are matched (“Determine Symbol-To-Shadows”). We elaborate on

these two steps in Section 5.3.1. Then, for each of the matched statements, we

determine the feature combinations that allow the statement to be reachable from

the program’s main() method. This results in a set of presence conditions. We

combine all these conditions to form the presence condition of the tracematch. We

repeat the process for each tracematch (“Determine Presence Conditions”) and add

the tracematches and their presence conditions to the original feature model (“+”).

We explain these steps in Section 5.3.2.

5.3.1 Required Symbols and Shadows

A safety property must be monitored for a feature configuration c if the code in

c may drive the finite-state monitor from its initial state to its final (error) state.

In earlier work [32], Bodden et al. described three different algorithms that try

to determine, with increasing levels of detail, whether a single program can drive

78

a monitor into an error state, and using which transition statements. The first,

called Quick Check , rules out a tracematch if the program does not contain tran-

sition statements required to reach the final automaton state. The second, called

Consistent-Variables Analysis, performs a similar check on every consistent variable-

to-object binding. The third, called Active-Shadows Analysis, is flow-sensitive and

rules out a tracematch if the program cannot execute its transition statements in a

property-violating order.

In this chapter, we limit ourselves to extending the Quick Check to SPLs.

The Quick Check has the advantage that, as the name suggests, it executes quickly.

Nevertheless, our results show that even this relatively pragmatic analysis approach

can noticeably reduce the number of configurations that require monitoring. It

should be possible to extend our work to the other analyses that Bodden et al.

proposed, but doing so would not fundamentally alter our technique.

Required Symbols

A symbol represents a set of transition statements with the same label. Given a

tracematch, we determine the required symbols, i.e., the symbols required to reach

the error state, by fixing one symbol s at a time and checking whether removing

all automaton edges labeled with s prevents the final state from being reached. For

any given program p, if there exists a required symbol s for which p contains no

s-transition, then p does not have to be monitored. For the ReadPrint property,

the symbols read and print are required because without one of these, the final

state in Figure 5.3(b) cannot be reached. For the HasNext property, only the

symbol next is required. This is because one can reach the final state without

seeing a hasNext-transition. If a tracematch has no required symbol, e.g. a|b

(either symbol will trigger the monitor, meaning that neither is required), it has to

79

be inserted in all programs of the product line.3

Symbol-to-Shadows

For each required symbol, we determine its joinpoint shadows (shadows for short),

i.e., all program statements that may cause events that the symbol matches. We

implemented our analysis as an extension of the Clara framework. Clara executes

all analyses right after the advice-matching and weaving process has completed.

Executing the analysis after weaving has the advantage that the analysis can take

the effects of all aspects into account. This allows us to even handle cases correctly

in which a monitoring aspect itself would accidentally trigger a property violation. A

re-weaving analysis has access to the weaver, which in turn gives detailed information

about all joinpoint shadows.

In the ReadPrint tracematch, the read symbol’s only shadow is the read-

("secret.txt") call in line 17 of Figure 5.1 and the print symbol’s shadows

are the calls printHeader() in line 29 and print(p.data) call in line 30. For

the HasNext tracematch, the next symbol’s shadows are the next() calls in lines

50 and 51, and the hasNext symbol’s only shadow is the hasNext() call in line

49.

5.3.2 Presence Conditions

A tracematch monitor must be inserted into a configuration when each of the trace-

match’s required symbols is present in the configuration. The presence condition

(PC) of a tracematch is thus the conjunction of the presence condition of each of its

required symbols. In turn, a symbol is present if any one of its shadows is present.

Thus, the PC of a symbol is the disjunction of the PC of each of its shadows. The

3In practice, such a tracematch will be rare because the regular expression is generally used to
express a sequence of events (meaning one of the symbols will be required), rather than a disjunction
of events, which is typically expressed through a pointcut.

80

ReadPrint iff (pc(read) and pc(print))
ReadPrint iff ((pc(line17)) and (pc(line29) or pc(line30)))
ReadPrint iff (([File and Base]) and ([Base] or [Base]))
ReadPrint iff (File and Base)

Figure 5.6: Computing ReadPrint’s Presence Condition

PC of a shadow is the conjunction of features that are needed for that shadow to

appear in an SPL program. A first attempt to compute the PC of a tracematch is

therefore:

tracematch iff (pc(reqdSymbol_1) and ... and pc(reqdSymbol_n))

pc(symbol_i) = pc(shadow_i1) or ... or pc(shadow_im)

pc(shadow_j) = feature_j1 and ... and feature_jk

For example, Figure 5.6 shows how we determine the PC of the ReadPrint

tracematch. The required symbols of this tracematch are read and print. read

has one shadow in line 17 of Figure 5.1 and print has two shadows in lines 29 and

30. For the shadow in line 17 to be syntactically present in a program, the if(FILE)

conditional in line 16 must be true and the fetchLocal() method definition

(annotated with BASE in line 14) must be present. That is, pc(line17) = [File

and Base]. Similarly, pc(line29) and pc(line30) are each expanded into

[Base] because each of the shadows just requires BASE, which introduces the

Program class and its main-method definition.

The solution in Figure 5.6 is imprecise in that it allows configurations

where a shadow is syntactically present, but not necessarily reachable from the

main method. For example, according to the algorithm, the read(..) shadow

(line 17) is “present” in configurations {Base=true, Local=false, File=true,

Inside=DONT CARE} even though it is not reachable from main due to Local

being turned off. Based on this observation, the algorithm that we implemented

can take into account the shadow’s callers in addition to its syntactic containers.

The algorithm therefore conjoins a shadow’s imprecise PC with the disjunction of

precise PC of each of its callers, recursively. For the line 17 shadow, which is called

81

by line 10, which is in turn called by line 28, this precise algorithm would return:

pc(line17) = [enclosingFeatures and (pc(caller1) or ... or pc(caller_m))]

= [enclosingFeatures and (pc(line10))]

= [enclosingFeatures and

(enclosingFeaturesLine10 and (pc(line28)))]

= [File and Base and (Local and Base and (Base))]

= File and Local and Base

Substituting this in Figure 5.6, we get ReadPrint iff (File and

Local and Base), which is optimal for our example and, as mentioned in Sec-

tion 5.2.2, is what we set out to construct. Similarly, HasNext’s presence condition

is:

HasNext iff (pc(next))

HasNext iff (pc(line50) or pc(line51))

HasNext iff ([Inside and Base and (Base)] or [Inside and Base and (Base)])

HasNext iff (Inside and Base)

Note that, even though HasNext is more localized than ReadPrint, i.e.,

in one optional feature (Inside) as opposed to two optional features (File and

Local), it is required in more configurations (4 out of 7) than ReadPrint (2 out

of 7).4 This is because the feature model allows fewer configurations with both

Local=true and File=true than configurations with just Inside=true.

There may be shadows that can only be reached through a cyclic edge in

a call-graph. Rather than including the features controlling the cyclic edge in the

presence condition of such a shadow, for simplicity, we ignore the cyclic edge. This is

not optimally precise but sound. For example, Util.read(..) call in Figure 5.7

is actually only present in an execution if the execution traverses the cyclic edge from

c() to a(), which is possible only if X=true. Instead of adding this constraint on

X to the presence condition of Util.read(..), we simply insert the monitor for

both values of X.

4Base is a required feature according to the feature model.

82

Figure 5.7: Example of Computing a Presence Condition with Cycles in the Call-
Graph

5.3.3 Precision on a Pay-As-You-Go Basis

While considering the callers of a shadow makes its presence condition more precise,

doing so is entirely optional for the following reason: without considering the callers,

a shadow will simply be considered to exist both when a caller is present and when a

caller is not present, which will insert a monitor even if a required symbol’s shadow

cannot be reached. For example, it would be sound, although not optimally precise,

to return the imprecise presence condition of the shadow at line 17. But users of

our approach can even go beyond that. Our analysis is pessimistic, i.e., starts from

a sound but imprecise answer that ignores the call graph and then gradually refines

the answer by inspecting the call graph. Therefore, our analysis can report a sound

intermediate result at any time and after a certain number of call sites have been

considered, we can simply stop going farther in the call-graph, trading precision for

less computation time and resources. Being able to choose the degree of precision is

useful especially because the call graph can be very large, which can make computing

the presence condition expensive both time-wise and memory-wise. Our technique

works with any kind of call graph. In our evaluation, we found that even simple

context-insensitive call graphs constructed from Spark [67] are sufficient.

83

5.4 Evaluation

We implemented our analysis as an extension of the Clara framework for hy-

brid typestate analysis [12] and evaluated it on the following SPLs: Graph Product

Line (GPL), a set of programs that implement different graph algorithms [72] and

Notepad , a Java Swing application with functionality similar to Windows Notepad.

We considered three safety properties for each SPL. For each property, we report

the number of configurations on which the property has to be monitored and the

time taken (duration) to derive the tracematch presence condition. We ran our tool

on a Windows 7 machine with Intel Core2 Duo CPU with 2.2 GHz and 1024 MB as

the maximum heap size.

Note that, although the product lines were created in-house, they were cre-

ated long before this chapter’s technique was conceived (GPL over 5 years ago and

Notepad 2 years ago). Our tool, the examined product lines and monitors, as well

as the detailed evaluation results are available for download [55].

84

Table 5.1: Graph Product Line (GPL) Results
Lines of code 1713

No. of features 17
No. of configurations 156

DisplayCheck
No. of configurations 55 (35%)

Duration 69.4 sec. (1.2 min.)
SearchCheck

No. of configurations 46 (29%)
Duration 110.2 sec. (1.8 min.)

KruskalCheck
No. of configurations 13 (8%)

Duration 69.8 sec. (1.2 min.)

5.4.1 Case Studies

Graph Product Line (GPL)

Table 5.1 shows the results for GPL, which has 1713 LOC with 17 features and

156 configurations. The features vary algorithms and structures of the graph (e.g.

directed/undirected and weighted/unweighted).

The DisplayCheck safety property checks if the method for displaying a

vertex is called outside of the control flow of the method for displaying a graph: a

behavioral API violation. Instead of monitoring all 156 configurations, our analysis

reveals that only 55 configurations, or 35% of 156, need monitoring. The analysis

took 1.2 minutes to complete. The tracematch presence condition that represents

these configurations is available on our website [55].

SearchCheck checks if the search method is called without first calling

the initialize method on a vertex, which would make the search erroneous.

Our analysis shows that only 29% of the 156 configurations need monitoring. The

analysis took 1.8 minutes to complete.

KruskalCheck checks if the method that runs the Kruskal’s algorithm re-

turns an object that was not created in the control-flow of the method, which would

mean that the algorithm is not functioning correctly. In 1.2 minutes, our analysis

showed that only 8% of the GPL product line needs monitoring.

85

Table 5.2: Notepad Results
Lines of code 2074

No. of features 25
No. of configurations 144

PersistenceCheck
No. of configurations 72 (50%)

Duration 296.3 sec. (4.9 min.)
CopyPasteCheck

No. of configurations 64 (44%)
Duration 259.9 sec. (4.3 min.)

UndoRedoCheck
No. of configurations 32 (22%)

Duration 279.8 sec. (4.7 min.)

Notepad

Table 5.2 shows the results for Notepad, which has 2074 LOC with 25 features

and 144 configurations. Variations arise from permuting end-user features, such as

saving/opening files, printing, and user interface support (e.g. menu bar or tool

bar). The analysis, for all safety properties, takes notably longer than that for

GPL because Notepad uses the Java Swing framework, which heavily uses call-back

methods that increase by large amounts the size of the call graph that our analysis

needs to construct and to consider.

PersistenceCheck checks if java.io.File* objects are created outside

of persistence-related functions, which should not happen. Our analysis completes

in 4.9 minutes, reducing the configurations to monitor by 50%.

CopyPasteCheck checks if a paste can be performed without first perform-

ing a copy, an obvious error with the product line. The analysis completes in 4.3

minutes, reducing the configurations to monitor to 44% of the original number.

UndoRedoCheck checks if a redo can be performed without first performing

an undo. The analysis takes 4.7 minutes and reduces the configurations to 22%.

86

5.4.2 Discussion

Limitations

Because this chapter’s technique allows declarations to be annotated like the tech-

nique for statically pruning configurations to test (Chapter 3), it also does not handle

conditional method overriding and field hiding (Section 3.7.1, last bullet). Condi-

tional method overriding and field hiding were not encountered in the evaluation of

this chapter’s technique.

Cost-Benefit Analysis.

As the Duration row for each product-line/tracematch pair shows, our analysis

introduces a small cost. Most of the duration is from the weaving that is required

to determine the required shadows and from constructing the inter-procedural call-

graph that we then traverse to determine the presence conditions. Usually, monitors

are used in testing. Then, the one-time cost of our analysis is worth incurring if it is

less than the time it takes to test-run each saved configuration with complete path

coverage (complete path coverage is required to see if a monitor can be triggered).

Consider Notepad and PersistenceCheck pair, for which our technique is least

effective as it takes the longest time, 4.1 seconds, per saved configuration (144-

72=72 configurations are saved in 296.3 seconds of analysis time). The only way

our technique would not be worth employing is if one could test-run a configuration

of Notepad with complete path coverage in less than 4.1 seconds. Executing such

a test-run within this time frame is unrealistic, especially in a UI-driven application

like Notepad.

In another scenario where a monitor is used in production, our analysis allows

developers to shift runtime-overhead that would incur on deployed systems to a

development-time overhead that incurs through our static analysis.

87

Ideal (Product Line, Tracematch) Pairs.

Our technique works best for pairs where the tracematch can only be triggered on

few configurations of the product line. Ideally, a tracematch would crosscut many

optional features or touch one feature that is present in very few configurations.

This is evident in the running example, where the saving for ReadPrint, which

requires two optional features, is greater than that for HasNext, which requires one

optional feature. It is also evident in the case studies, where KruskalCheck and

UndoRedoCheck, which are localized in a small number of features but requires

other features due to the feature model, see better saving than their counterparts.

Without any constraint, a tracematch requiring x optional features needs to be in-

serted on 1/(2x) of the configurations (PersistenceCheck requires one optional

feature, hence the 50% reduction). A general safety property, such as one involving

library data structures and algorithms, is likely to be applicable to many configura-

tions of a product line (if a required feature uses it, then it must be inserted in all

configurations) and thus may not enable our technique to eliminate many configu-

rations. On the other hand, a safety property crosscutting many optional features

makes an ideal candidate.

5.5 Related Work

Statically Evaluating Monitors. There exist static analyses that improve the

runtime performance of a monitor by reducing its instrumentation of a single pro-

gram [14, 32, 15]. We will refer to these analyses as traditional program analyses

(TPA). There are two ways to apply such analyses to product lines. One way is in-

efficient, the other way imprecise. Running TPA against each instantiated program

will be very inefficient because it will have to inspect every program of the product

line separately. The other way is to run TPA against the product line itself. This

88

is possible because a product line in our technique is represented as an ordinary

program. However, this second way will be imprecise. For example, suppose we

apply TPA on the ReadPrint tracematch for our example: the tracematch may

match in the case in which all features are enabled. Being oblivious to the notion of

features, the analysis will therefore report that the tracematches have to be present

for every program of the product line. This shows that a static analysis, to be both

efficient and effective on an SPL, has to be aware of the SPL’s features. Focused

proerty monitoring modifies TPA to understand product lines.

Testing Product Lines. The idea of reducing configurations for product

line monitoring originated from our work on product line testing [58], which finds

“sandboxed” features, i.e. features that do not modify other features’ control-flow or

data-flow, and treats such features as don’t-cares to determine configurations that

are identical from the test’s perspective. But the two works are different both in

setting and technique. In setting, in [58], only one of the identical configurations

needs to be tested. With this chapter’s technique, even if a hundred configurations

are identical in the way they trigger a monitor (e.g. through the same feature), all

hundred configurations need to be monitored because all hundred can be used by

the end-user. In testing mode, it would be possible to run just one of the hundred

configurations if our technique could determine that the configurations are identical

in the way they trigger the monitor. However, this would require a considerably

more sophisticated analysis and is beyond the scope of this chapter’s technique. In

technique, the static analysis employed in [58] is not suitable for our work because a

sandboxed feature can still violate safety properties and cause a monitor to trigger.

Thus the two works are complementary.

Model-Checking Product Lines. Works in model-checking product lines

[24, 39] are similar in intent to ours: programmers can apply model checking to a

product line as a whole, instead of applying it to each program of the product line. In

89

the common case, these approaches yield a far smaller complexity and therefore have

the potential for speeding up the model-checking process. However, these approaches

do not model-check concrete product lines. Instead, they assume a given abstraction,

such as a transition system, of a product line. Because our technique works on

SysGen and Java, we need to consider issues specific to Java such as the identification

of relevant events, the weaving of the runtime monitor and the static computation

of points-to information. Also, model-checking answers a different question than

our analysis: model-checking a product line can only report the configurations that

may violate the given temporal property. Our analysis further reports a subset of

instrumentation points (joinpoint shadows) that can, in combination, lead up to such

a violation. As we showed in previous work [11], identifying such shadows requires

more sophisticated algorithms than those that only focus on violation detection.

Safe Composition. [95, 50] collect implementation constraints in a product

line that ensure that every feature combination is compilable or type-safe. Our

work can be seen as a variant of safe composition, where a tracematch is treated

as a feature itself that “references” its shadows in the product line and requires

features that allow those shadows to be reached. However, our analysis checks a

much stronger property, i.e. reachability to the shadows, than syntactic presence

checked by the existing safe composition techniques. Also, collecting the referential

dependencies is much more involved in our technique because it requires evaluating

pointcuts that can have wildcards and control-flow constraints.

Relying on Domain Knowledge. Finally, rather than relying on static

analysis, users can come up with a tracematch’s presence condition themselves if

they are confident about their understanding of the product line and the tracematch

pair. However, this approach is highly error-prone as even a slight mistake in the

presence condition can cause configurations that must be monitored to end up not

being monitored. Also, our approach promotes separation of concerns by allowing

90

a safety property to be specified independently of the product line variability.

5.6 Summary

A product line enables the systematic development of a large number of related

programs. It also introduces the challenge of analyzing families of related programs,

whose cardinality can be exponential in the number of features. For safety prop-

erties that are enforced through an execution monitor, conventional wisdom tells

us that every configuration must be monitored. In this chapter, we presented a

static analysis that minimizes the configurations on which an execution monitor

must be inserted. The analysis determines the required instrumentation points and

determines the feature combinations that allow those points to be reachable. The

execution monitor is inserted only on such feature combinations. Experiments show

that our analysis is effective (often eliminating over one half of all possible configu-

rations) and that it incurs a small overhead.

91

Chapter 6

Shared Execution for Efficiently

Testing Product Lines

The contents of this chapter appeared in the 2012 International Symposium on

Software Reliability Engineering (ISSRE 2012) [60]. 1

6.1 Introduction

Chapters 3 - 5 presented ways to prune configurations in the context of checking

properties using testing and runtime monitoring. Unfortunately, some properties

may necessitate checking against every configuration, either by design (e.g. because

each program has a unique behavior that must be checked) or due to inability of

analysis techniques to prune configurations. This chapter considers the problem of

reducing the cost of running tests when configurations cannot be pruned a priori.

Specifically, we aim to optimize testing of product lines by reducing the cost of

executing each test. Since programs in an SPL are likely to be syntactically similar

1 Chang Hwan Peter Kim, Safraz Khurshid, and Don S. Batory. Shared Execution for Efficiently
Testing Product Lines. In ISSRE (International Symposium on Software Reliability Engineering),
2012. The paper was developed jointly with my co-authors, who are my supervisor and my co-
supervisor. Implementation and evaluation were done by me.

92

(i.e. share common code) by design, they likely have semantic (i.e. run-time)

commonality as well. Namely, it is likely that many bytecode instructions executed

across the test-and-program combinations will have identical behavior.

This chapter presents the idea of shared execution, which essentially product

lines the execution itself by executing common instructions once, rather than multi-

ple times, to eliminate redundancy and reduce execution time. Conceptually, shared

execution runs an instruction that is common to multiple program executions just

once by using a single call stack and memory that keeps track of each program’s

data. We make the following contributions:

• Technique. We define shared execution as a bytecode level algorithm that

can be implemented on top of any virtual machine (VM).

• Implementation. We implement shared execution on top of Java PathFinder

(JPF)[83], a model checker for Java that can also function as an easy-to-

extend, off-the-shelf VM. We use only the VM portion of JPF.

• Evaluation. We show, using non-trivial subjects used in prior publications

of other research groups, that shared execution, despite its overhead, can run

a product line test case up to 50% faster than the conventional way of running

the test case for each configuration from start to finish.

6.2 Shared Execution: Basic Technique

Figure 6.1(a) shows the skeleton of a typical SPL that has six fragments of code

labeled as comments, whose numbers indicate the order in which the fragments

are executed. Note that a program with a feature included can behave differently

from a program without that feature. For example, x could have two different

values in executions of fragment 5 and subsequently two different program behaviors,

depending on whether feature A is selected or not. More generally, in a product line

93

(a) Sample SPL (b) Con-
ventional
execution

(c) Shared execution

Figure 6.1: Shared Execution on Sample SPL

with N optional features, fragment 5 could yield (2N) different values of x and

trigger as many different program behaviors.

Conventionally, different program behaviors are produced by running each

configuration from start to finish. Figure 6.1(b) shows this process for the example.

Note the similarities between the execution traces produced: the only differences

are that the A=1 configuration executes fragment 2 while A=0 does not and that

fragment 5 behaves differently due to the configurations having different values of x.

Note that the majority of computations are repeated across both traces. Although

a computation can only be repeated once in this example, it can be repeated in

general up to 2N -1 times since up to 2N traces can be produced.

Instead of running each configuration separately, our idea is to execute all the

configurations together, executing a computation just once for the configuration(s)

for which it is shared. Figure 6.1(c) shows the resulting trace, which is essentially a

superimposition of all the traces produced in conventional execution in Figure 6.1(b).

94

Note how fragments 1, 3, 4 and 6 are executed once, rather than twice. Fragments

in branches, such as the empty fragment and fragment 2, are not shared by all the

configurations and each branch is executed one after another before shared execution

resumes.

We now present the basic ideas behind our approach.

6.2.1 Bookkeeping

Since each variable can have as many different values as there are configurations,

memory M must be able to map a variable v and a configuration c to a value o.

Namely, M : V × C → O. Variable refers to any data storage that can be accessed

by a programmer-defined symbol, i.e. fields (including array elements) and local

variables. Conceptually, memory can be thought of as an array of length 2N with

one array element holding the memory of one product line configuration. Section 6.4

will present a more efficient representation.

We define shared execution as executing instructions for a set of configura-

tions using a common call stack , which stores information including active method

calls, program counter of the current method call, and instruction operands to repre-

sent a point in program execution or execution point . Note that since we are treating

local variables as part of memory, a stack frame of the call stack only includes the

stack operands and associated attributes (e.g. which operands are references). Be-

fore (or after) each instruction execution, there exists a state S with configuration

set Sconfigs and the call stack Scallstack in use. At the beginning of shared execution,

Sconfigs has all configurations of the product line and Scallstack just has the main

function’s stack frame whose PC is set to the first instruction.

95

6.2.2 Splitting

Since the idea of shared execution is to use one call stack for multiple configurations,

instructions execute as they would for conventional programs except that loads and

stores must now access memory from a configuration set. Storing value o to a

variable v in state S simply means that ∀c ∈ Sconfigs,M(v, c) = o. Loading is

a bit trickier. If M(v, c) returns the same o for every c in set Sconfigs, shared

execution continues with the read value o. But if M(v, c) returns multiple values,

shared execution cannot continue since we can only push one unique value on the

call stack. So shared execution splits such that there will be as many call stacks as

there are unique values. Namely, the current state S’s children states, Schildren, are

created such that:

• The union of every child state’s configuration set equals the parent configura-

tion set, Sconfigs.

• Each configuration in a child state’s configuration set holds the same value of

v.

• Each child state’s call stack is set to a clone of Scallstack.

We say that S is split into children states with respect to v. Each child state, which

is ready to have a unique value of v pushed onto its call stack, is set as the current

state and executed from where the splitting occurred. As execution proceeds, if a

load of another variable y yields multiple values, the executing state will be split in

a similar way.

In Figure 6.1(c), right before A is read, S has Sconfigs equal to A = ∗ (the

wildcard, which represents all possible values, is used to represent multiple configu-

rations concisely. So A = ∗ represents {A = 0, A = 1}). When the read occurs, S is

split (dashed lines outwards) into SA =0 and SA =1 since A has different values:

96

0 in A=0 and 1 in A=1.2 The first child state (circle labeled A=0) runs and then

execution backtracks to load the call stack of the second child state (circle labeled

A=1) for it to run.

6.2.3 Merging

We could execute each child state until the end of the program, but doing so, we

would miss out on opportunities to share execution after splitting. For optimal

shared execution, we should wait until all children states come to a common ex-

ecution point, i.e. where their call stacks are equivalent, and then resume shared

execution with the same call stack.

There are two issues to consider for finding a common execution point. First,

the children states could have considerably different paths of execution. Second,

finding a common execution point close to the splitting point allows sharing to

resume earlier, but it may require more checks, each of which comes with the cost

of comparing potentially up to 2N call stacks, where N is the number of features.

Conservative Merging

A reasonable compromise that addresses both issues, which we call conservative

merging , is to wait until each child state’s execution reaches the end of the method

(just before a return statement) of where splitting occurred since each child is guar-

anteed to reach this execution point.3

Although a return value is in practice written and read off the call stack, for

uniformity in explanation, we treat a return value as a variable (written and read

off of memory) throughout the chapter. This means that even with different return

2Thus, a feature variable is treated like an ordinary variable in shared execution.
3 A child state’s execution may not reach the end of the method due to abnormal program

execution (e.g. exception or system exit), in which case the child state can be simply executed until
the end of the program and shared execution resumes with the remaining children. However, our
implementation currently does not handle abnormal program execution.

97

values, the children states would have the identical call stack at the function return,

allowing shared execution to resume. Then splitting would occur when the return

value is read after the function returns.

For example, in Figure 6.1(a), when the state executing fragment 1 splits,

A=0 and A=1 children states would execute until the end of fragment 3 and then

merge, allowing fragment 4 to be shared. Then fragment 5 would cause the state to

split again and merge at the end of fragment 5, allowing fragment 6 to be shared.

But note that the proposed solution is not as optimal as Figure 6.1(c) in that the

former does not allow fragment 3, or any instruction executed between the splitting

point and the end of the method, to be shared.

Predictive Merging

Predictive merging improves on conservative merging by using what we call a merge

point . When splitting occurs, we determine an optimistic merge point, i.e. an

execution point before the end of the method that each child state is likely, but

not guaranteed, to reach. We then execute each child state until it reaches this

optimistic merge point or the pessimistic merge point, i.e. the end of the method

where splitting occurred. If the children have all stopped at the same execution

point, i.e. all at optimistic or all at pessimistic merge point, we resume shared

execution with the parent state. Otherwise, we execute each child stopped at the

optimistic merge point until the pessimistic, but guaranteed to be common, merge

point and then resume shared execution.

In Section 6.4.2, we discuss in detail how optimistic merge points are deter-

mined. For now, it suffices to know that when splitting is due to a read of a boolean

variable that is followed by an if-statement, such as if(A), the optimistic merge

point is determined to be the end of the if-statement since programs are typically

written such that both true and false branches will end up at this point. If the

98

true branch executes a control-flow breaking instruction such as a return, shared

execution will resume at the pessimistic merge point.4

For example, in Figure 6.1(a), when the state executing fragment 1 splits, the

optimistic merge point is set to the end of the if(A) block. The children states

would execute until the beginning of fragment 3 and then merge, allowing fragment

3 and 4 to be shared as Figure 6.1(c) shows. But if there is a return within the

if-condition, merging would not be possible the first time around since A=1 state

would end up at the end of the method while A=0 ends up at the beginning of

fragment 3. Then state A=0 would be executed from the beginning of fragment 3

until the end of the method before merging with state A=1.

6.2.4 Putting Ideas Together

The ideas of bookkeeping, splitting, and merging can be summarized in an algo-

rithm that intercepts every bytecode instruction, as shown in Figure 6.2. As shared

execution works with call stacks, the algorithm must be written in terms of bytecode

instructions.

Initialization.

S, which represents the state before the currently executing instruction, is initialized

so that Sconfigs is set to all product line configurations and Scallstack is identical to

the VM call stack (line 2). Memory M requires all configurations of the product

line for initialization (line 3) to explicitly map feature variables to values across

configurations since feature variables can only be read from but not written to. For

example, for feature variable A , configuration A=1 maps to the value 1 and A=0

to the value 0.

4Any previously stopped executions at the optimistic point are run to the pessimistic merge
point.

99

1 class SharedExecution extends VMListener {
2 State s = new State(allConfigs, VM.getCallstack());
3 SPLMemory m = new SPLMemory(allConfigs);
4

5 void beforeInstruction(Instruction insn) {
6 if(s.isAtMergePoint())
7 tryMerge();
8 else if(isLoad(insn)) {
9 s.children = split(s, getVariable());

10 if(s.children != null) {
11 s.mergePoints = getMergePoints();
12 loadState(s.children.get(0));
13 }
14 else
15 VM.load(getVariable(), m.values
16 (getVariable(), s.configs).first());
17 }
18 else if(isStore(insn))
19 m.set(getVariable(), s.configs, VM.getTopValue());
20 }
21

22 void tryMerge() {
23 if(s.isLastRemainingChild()) {
24 if(atSameExecPoint(s.parent.children) {
25 s.parent.callstack = s.parent.children.
26 get(0).callstack;
27 loadState(s.parent);
28 }
29 else {
30 s.parent.setMergePoint(RETURN_MERGE_POINT);
31 loadState(s.parent.nextRemainingChild());
32 }
33 }
34 else
35 loadState(s.parent.nextRemainingChild());
36 }
37

38 void loadState(State t) {
39 s = t;
40 VM.changeCallstack(s.callStack);
41 }
42 }

Figure 6.2: Shared Execution Algorithm

100

Loads and Stores.

If a load returns multiple values for a variable, the state is split into children such

that each child has configurations that map to the same variable value and a clone

of the executing call stack. The parent state keeps track of both optimistic and

pessimistic merge points where all of its children will stop their execution (line 11).

Then the first child state is set as the current state and the executing (VM’s) call

stack is changed to the current state’s call stack (lines 12, 39 and 40). On the other

hand, if the load returns one value of the variable, the value is simply pushed on

the stack as it would be in conventional execution (line 15). Note that the load

of a feature variable, whose values across configurations have been explicitly stored

during initialization, will be what first triggers splitting.

A store just sets the variable value for each configuration of the current state

(lines 18-19).

Merge.

Following a split, we check if the current state is at a merge point, i.e. its call stack

is at a return instruction (or an earlier instruction for an optimistic merge point)

and the stack’s depth is equal to that of where splitting occurred (line 6). 5 If the

state is at a merge point, we backtrack execution to the next child state (line 35),

allow it to execute until a merge point, and repeat the process until the last child

comes to a merge point (line 23). Then, if the children’s call stacks are not identical,

children are executed up to the pessimistic merge point, i.e. the end of the method

(lines 24, 30, 31). At this point, the parent state’s call stack takes a child’s call stack

and is set as the current state (lines 26 and 27), completing the merge.6

5Note that we use the stack depth because comparing method signatures alone will not suffice
due to recursion.

6 Note that the merge attempt is the first step in beforeInstruction() because processing
a load instruction before merging can end up splitting the current state without taking its siblings
into account, which can reduce the configuration set corresponding to a unique value of a variable,

101

6.3 Example

We demonstrate shared execution on the example SPL in Figure 6.3(a) (line num-

bers in this section refer to this figure). Features A and B are simply boolean

variables that are assigned concrete values for a particular program. Although a

product line can be written in any way with these feature variables, there typically

exists code for a feature and the code is placed in the true branch of the corre-

sponding boolean variable, as shown. An SPL test case is simply an execution of

the main method with all variables, except the feature variables, assigned concrete

values. The test case must be run on all 4 combinations of the feature variables.

6.3.1 Splitting and Merging

We demonstrate shared execution on the example using Figure 6.3(b), which shows

how states split and merge throughout execution. Splitting first occurs in line 13

because A has multiple values, i.e. 1 (true) for the configurations AB=1* and 0

(false) for the configurations AB=0*. Therefore, as the top of Figure 6.3(b) shows,

the state with configurations AB=** is split into two children. The optimistic merge

point is set to the end of the if-statement (line 15). The 0* state does nothing

ends up on line 15. Then the 1* state appends 2 and ends up on line 15. The two

states merge because their call stacks are equivalent on line 15. Figure 6.4 shows

the memory snapshot at line 17. Note that line 16 computation is shared by all

configurations.

Appending 3 causes a split because line 18 leads to line 29, where reading

count for increment yields multiple values (1 for configurations 0* and 2 for con-

figurations 1*). The split states merge in line 30. Then, when line 20 causes a

split due to reading B , optimistic merge point is set to line 23, the end of the if

condition. Although the state *0 hits this merge point, the state *1 returns and

which in turn reduces sharing.

102

(a) Product Line Test (b) Split Merge Diagram

Figure 6.3: Example Product Line

Figure 6.4: Memory snapshots

103

misses it, causing merge at the conservative merge point (line 25). Figure 6.4 shows

the memory snapshot at the end of the test case (line 25). Note that although each

configuration produces a distinct row or test case output, each computation was

shared by at least 2 configurations.

6.4 Shared Execution: Optimizations

For shared execution to be practical, we need an efficient memory representation

and an optimistic merging strategy. Also, garbage collection needs to be modified

to support shared execution. In this section, we discuss these optimization related

issues.

6.4.1 Memory

As mentioned in Section 6.2.1, to access a variable value, memory must now be

addressed by both the variable and a configuration. The easiest way to structure

memory would be to allocate a value slot for each configuration and variable pair.

However, this would be wasteful for the following reasons.

Ownership.

A variable can only exist in the configurations that created it. Suppose that a

method bar() is called in a state with configurations where A = 1, as shown in

Figure 6.5. The local variables allocated for that method call, such as b, cannot exist

in configurations where the feature is absent and therefore do not even need to have

storage for these configurations. Similarly, an object and its fields cannot exist in a

configuration that is not a part of the state that created the object. Thus, it would

be impossible to access object 2 and its fields in a configuration with A = false,

while object 1 and its fields can be accessed in any configuration (since the object

is owned by all configurations). We say that a variable’s owner is the configuration

104

1 class Program {
2 Obj x = new Obj(); // 1
3

4 void foo(){
5 if(A) {
6 bar();
7 x = new Obj(); // 2
8 }
9 m(x);

10 ...
11 }
12

13 voix bar(){
14 int b = 5;
15 ...
16 }
17 }

Figure 6.5: Memory Example

set that created it either through a method call (for local variables) or through an

object creation (for instance fields). For a variable, only as many value slots as there

are owner configurations are allocated.

Small number of unique values.

A variable owned by M configurations could have M unique values, but chances are

that there will be far fewer number of values. The reason is as follows: a variable is

owned by configurations with the creating feature present. For the variable to have

as many values as there are owner configurations, the creating feature must interact

with all the other features, which is possible but less likely than interacting with

just some of the other features. Moreover, there will be variables used only by the

creating feature, i.e. by the owner configurations, to achieve computations relevant

only to it.

Dual Memory.

We exploit the notion of ownership and small number of unique values in the fol-

lowing way. Since a variable having one value across its owner configurations is no

105

different than a variable in conventional execution, we partition memory into two

storages: 1) conventional storage, i.e. memory created by VM that maps a variable

to a value (M1 : V → O) and 2) multivalued storage, i.e. memory created by our

technique that maps a variable and a configuration to a value (M2 : V × C → O)

and is used to store variables with multiple values. This representation, called dual

memory , exposes how loads and stores work in Figure 6.2:

• Loads. If a variable exists in multivalued storage, a load is performed for each

configuration of the current state and splitting occurs if there is more than

one unique value. If the variable doesn’t exist in multivalued storage, then the

variable is loaded from the conventional storage.

• Stores. A write could occur with the current state’s configurations Sconfigs

spanning either 1) owner configurations or 2) a subset of the owner config-

urations. In scenario 1), the variable will have the same value across owner

configurations after the write. Therefore, the write is performed just once

for the conventional storage and the variable is removed from the multivalued

storage since it no longer has multiple values. In scenario 2), Sconfigs will

take on the new value in multivalued storage. If the variable is managed by

the conventional storage, its value is transferred to multivalued storage (to

the complement of Sconfigs with respect to the owner configurations) and the

variable now becomes managed by multivalued storage.

For example, in line 16 of Figure 6.3, x is read from and written to conventional

storage, but in line 24, x is transferred to multivalued storage. In line 11, count

and array[1] are in conventional storage, but by line 15, they are in multivalued

storage. array, array[0], array[3] and array[4] remain in conventional

storage throughout the test case.

106

6.4.2 Optimistic Merging

As mentioned in Section 6.2.3, when splitting occurs, we want to merge before the

end of the method to potentially share the remaining instructions of the method.

Although we could execute each child one instruction at a time and check if their

call stacks are equivalent, this would perform checks too often. Thus, we use merge

points, which are candidate execution points for merging, to minimize the number

of call stack comparisons and maximize the likelihood of a comparison succeeding.

Note that because children will merge within the same function of where splitting oc-

curred (modulo abnormal program execution discussed earlier), only the top frames

of the children’s call stacks need to be checked for equivalence, meaning the cost of

comparison boils down largely to the number of children, i.e. the number of unique

values of the variable whose load caused the split.

If the variable load causing the split is followed by a conditional instruction,

the merge point is set to the instruction that the last instruction of the true block

of statements jumps to. This is because we assume that the conditional instruction

is part of an if-else statement and both true and false branches are likely

to end up there. If the variable load is not followed by a conditional instruction,

an instruction following a store instruction or a method invocation is treated as a

merge point. This is because a variable is likely to be loaded for computing a value

to write to another variable or for invoking a method with the value as one of its

arguments. Also, if the children all come to the same instruction following the same

store instruction or the same method invocation, call stack comparison is likely to

succeed since the different values have already been popped off the call stack. So

these merge points are ideal places to compare call stacks. If the comparison fails,

the children are executed from where they are until the end of the method is reached

(i.e. the conservative merge point), where the call stacks will be equivalent.

For example, in Figure 6.5, loading x as an argument for method invocation

107

m() will cause a split since x will point to object 1 in configurations without A and

to object 2 in configurations with A. The end of the method invocation, i.e. right

before line 10, will be set as the optimistic merge point.

6.4.3 Garbage Collection

As shared execution requires more memory than running each configuration sepa-

rately, garbage collection is especially important for optimal performance. Unfor-

tunately, we cannot use the VM’s garbage collection as-is since it is not aware of

product lines. For example, it will collect objects that are still alive for some con-

figurations. Another reason why we need modify the conventional garbage collector

(GC) is to clean up our own multivalued storage.

In Figure 6.5, foo() is executed up to line 9 once with A = true and once

with A = false. At this point, as far as the conventional GC can tell, x can point to

either object 1 or object 2 but not both, meaning one of the objects will be garbage

collected, which is clearly erroneous since m() must be invoked with each object as

its argument.

Shared execution GC is a simple modification of conventional GC such that

objects are marked starting from the call stacks of leaf states of the hierarchy of

states, rather than just from the executing call stack. Note that only the leaf

states have call stacks and the non-leaf states exist for splitting/merging purposes.

Also, the marking phase is changed such that if a variable has multiple values

across its owner configurations, multiple references will be marked as being alive.

Finally, when an object is garbage collected, shared execution GC removes variables

corresponding to its fields from the multivalued memory. Note that nothing needs

to be done with the object itself as an object is not a variable that can have different

values across configurations.

108

6.5 Evaluation

Our technique can be implemented on top of any virtual machine, such as Jikes

RVM [48] or Java PathFinder (JPF) [83]. Although JPF is typically used as a

model checker rather than as a VM, we chose it as our platform because of its

extensibility and our familiarity with it. As a VM, JPF is considerably slower than

an ordinary VM, but since we are running both shared execution and conventional

approach using JPF, using it should not affect our results. We evaluated shared

execution on 3 subjects: Graph Product Line (GPL) (originally appeared in [72]),

JTopas [47], and XStream [71], that have also been used for evaluating testing

techniques by other groups (GPL by [20], JTopas by [21] and XStream by [30][88]).

Shared execution implementation, subjects, and results can be downloaded from our

website [56].

6.5.1 Graph Product Line (GPL)

GPL encodes programs that implement different graph algorithms. The product

line, with 1713 LOC, 14 features and 146 configurations, was developed in our re-

search group, but long before this chapter’s technique was developed [72]. Note that

there are only 146 configurations despite 14 features due to constraints. The features

vary algorithms and structures of the graph (e.g. directed/undirected and weight-

ed/unweighted). Due to lack of tests for this product line, we generated graphs

and ran the main method on each graph against all the configurations. Although

many algorithms are independent, some features do interact to produce different

outcomes. For example, DIRECTED will change the outcome of CYCLEDETECTION

and combinations of BFS (Breadth First Search) and DIRECTED may change the

outcome of NUMBERING (how nodes are numbered).

Table 6.1 shows the results for GPL. As the headers show, three types of

graphs were generated: 1) sequence of neural networks (each with one input node

109

Table 6.1: GPL Results
Conventional Shared Execution Factor/Saving (%)

Network 1: 45 nodes, 80 edges
No. of test case insns 76702636 4024943 19:1

Duration (sec.) 25 19 24
Network 2: 221 nodes, 400 edges

No. of test case insns 2951629460 146355025 20:1
Duration (sec.) 503 277 45

Tree 1: 85 nodes, 84 edges
No. of test case insns 234426320 11907505 20:1

Duration (sec.) 51 36 29
Tree 2: 341 nodes, 340 edges

No. of test case insns 9318420952 448314944 21:1
Duration (sec.) 1619 756 53

Random 1: 101 nodes, 374 edges
No. of test case insns 450951320 23119790 20:1

Duration (sec.) 101 66 35
Random 2: 101 nodes, 381 edges

No. of test case insns 431427468 22113491 20:1
Duration (sec.) 95 61 36

Random 3: 101 nodes, 372 edges
No. of test case insns 449992982 23077201 19:1

Duration (sec.) 98 65 34
Random 4: 101 nodes, 362 edges

No. of test case insns 429500846 22067178 19:1
Duration (sec.) 94 61 35

Random 5: 101 nodes, 336 edges
No. of test case insns 431307370 22318788 19:1

Duration (sec.) 93 62 33

and one output node), 2) tree with a fixed degree, and 3) a random graph with

a fixed number of nodes and an average degree generated using an off-the-shelf

random graph generator [38]. No. of test case insns only includes the bytecode

instructions executed by the test case, and does not include instructions from the

shared execution implementation. The table shows that shared execution executes

about 1/20th bytecode instructions of the test case and saves between 24% and 53%

of execution time over the conventional approach of running the test case against

each configuration from start to finish. Note that the time saving is considerably

larger for the larger network and tree. Time saving stays consistent across the

random graphs, whose numbers of nodes and edges are nearly the same, suggesting

that the results are probably representative of other graphs with similar numbers of

nodes and edges.

110

6.5.2 JTopas

JTopas [47] is an open source Java program for parsing text that has 2031 lines of

code. We converted this conventional program into an SPL simply by converting the

following boolean configuration flags into boolean feature variables that our shared

execution tool can recognize: LINECOMMENTS, BLOCKCOMMENTS, COUNTLINES,

IMAGEPARTS, and TOKENPOSONLY. If COUNTLINES is true, each token will have

line and column information. If IMAGEPARTS gives each token’s string more struc-

ture, such as breaking it into lines. TOKENPOSONLY represents a token by its posi-

tion in the original text, rather than string. LINECOMMENTS and BLOCKCOMMENTS,

which return a single token representing a line comment or a block comment respec-

tively if the feature is on and skips the corresponding characters if the feature is

off, change the result of tokenizing an input embedded with comments significantly.

These 5 features allow 32 configurations.

We simplified an existing test called TestLargeSource, which tokenizes a

Java class with some methods, to run against the configurations. We created 9 test

cases out of this test to not only test inputs of different sizes, but also inputs that

are expected to result in different amount of instruction sharing. Since we expect

tokenization across configurations to be more different the more comments there

are, we used test cases with varying number of comments to see if shared execution

results are consistent with this expectation. The Java code input for Many test cases

is shipped with JTopas. Some and Without test cases simply remove comments

from this Java code input for their own input. The test case number N (e.g. Many

N) means the code input is tokenized N times. Table 6.2 shows that instruction

sharing, and consequently time saving, indeed does increase the fewer comments

there are. The table also shows that shared execution’s overhead outweighs the

benefit of executing 5.4 times less test code, as shared execution actually takes

longer than conventional execution in these cases.

111

Table 6.2: JTopas Results
Conventional Shared Execution Factor/Saving (%)

Many comments 1
No. of test case insns 38195022 14988848 2.5:1

Duration (sec.) 16 25 -56
Many comments 2

No. of test case insns 75706878 30919876 2.4: 1
Duration (sec.) 27 49 -81

Many comments 3
No. of test case insns 113319726 46912432 2.4:1

Duration (sec.) 39 60 -53
Some comments 1

No. of test case insns 34283622 3967675 8.6:1
Duration (sec.) 15 14 6.7

Some comments 2
No. of test case insns 67826606 12661565 5.4:1

Duration (sec.) 26 28 -7.7
Some comments 3

No. of test case insns 101424102 21416331 4.7:1
Duration (sec.) 33 39 -18

No comments 1
No. of test case insns 33245790 2421775 14:1

Duration (sec.) 14 14 0
No comments 2

No. of test case insns 65735326 4824448 14:1
Duration (sec.) 24 19 20

No comments 3
No. of test case insns 98281742 7234081 14:1

Duration (sec.) 34 26 24

112

6.5.3 XStream

XStream [71] is an open source program for serializing objects to XML and back

again that has 14,480 LOC. Like we did with JTopas, we converted this conven-

tional program into an SPL by simply converting the following boolean configuration

flags into feature variables. TREESTRUCTURE inlines references such that the pro-

duced XML is a hierarchy, not a graph. CLASSALIAS and FIELDALIAS allow class

and field names to be aliased. OMITFIELD omits specified fields when producing

XML. IMPLICITARRAY omits specified container objects to reduce XML clutter.

ATTRIBUTE places specified fields in the tag of the owner object for readability.

BOOLEANCONVERTER allows a boolean field to be represented with custom string

representation for ‘true’ and ‘false’. With these 7 features, XStream SPL encodes

128 configurations.

Like with JTopas, we developed 3 sets of 3 test cases, with different sets

testing different levels of instruction sharing and cases within a set testing different

input sizes. It was easier to write our own classes and objects to serialize than

to reuse existing ones. The test is structured as follows: a contiguous block of

Variable objects are sandwiched between contiguous blocks of Common objects

in a list that is serialized. XML of each Variable object is different for each

configuration because each feature influences it. On the other hand, XML of each

Common object is identical for each configuration, meaning that serialization between

configurations should be shared for these objects. As Table 6.3 shows, the first 3

test cases have 0 Common object and therefore not much instruction sharing (a bit

higher than 5:1), but shared execution is still 11% - 15% faster. For the next 3 test

cases, 60% of the objects are Common, which increases sharing to 7:1 and higher

and the speedup to at least 24%. Then with 0 Variable objects, sharing increases

to around 10:1 and speedup to as high as 35%.

113

Table 6.3: XStream Results
Conventional Shared Execution Factor/Saving (%)
0 Common, 10 Variable

No. of test case insns 99814860 16308440 6.1:1
Duration (sec.) 32 27 15

0 Common, 20 Variable
No. of test case insns 174168126 31258531 5.6:1

Duration (sec.) 49 43 12
0 Common, 30 Variable

No. of test case insns 248489238 46172217 5.4:1
Duration (sec.) 67 59 11

6 Common, 4 Variable
No. of test case insns 95104366 11849715 8:1

Duration (sec.) 36 22 39
12 Common, 8 Variable

No. of test case insns 163223088 22415718 7.3:1
Duration (sec.) 46 35 24

18 Common, 12 Variable
No. of test case insns 231362556 33049336 7.0:1

Duration (sec.) 63 48 24
10 Common, 0 Variable

No. of test case insns 89531110 8351763 11:1
Duration (sec.) 28 19 32

20 Common, 0 Variable
No. of test case insns 153652858 15970598 9.6:1

Duration (sec.) 43 30 30
30 Common, 0 Variable

No. of test case insns 217951258 23623858 9.2:1
Duration (sec.) 57 37 35

114

6.6 Discussion

6.6.1 Threats to Validity

The main threat is to external validity: the timing results cannot be generalized to

all SPLs because our case studies may not be representative of all SPLs and tests.

To reduce this threat, we used multiple subjects that have also been used by other

groups for evaluating testing techniques. Also, we designed tests with varying levels

of expected amount of sharing, which represent scenarios ranging from worst-case

to best-case.

6.6.2 Correctness

Shared execution optimizes but is otherwise semantically equivalent to conventional

execution. To test that our tool implements shared execution correctly, we check

that every shared execution’s output is identical to conventional execution’s output.

For the 3 case studies, we produced a console output for each configuration, each of

which was identical to the corresponding output of conventional execution.

6.6.3 Native Code

Java VMs call native methods, which are blackbox to the VM. To handle shared

execution, native code execution can be changed to understand it or it can be

treated as an atomic operation. For our implementation, we chose the latter and we

ensure that splitting and merging occurs before and after entering a native method,

meaning that the native method never reads a variable with multiple values across

configurations. The simplest, safest but also the most expensive way to achieve this

would be to split on each configuration of the current state when a native method

is invoked. Instead, we manually analyzed frequently executed native methods to

determine under which circumstances we need to split. For example, before entering

115

System.arraycopy (native in JPF), our tool checks whether the source array

arguments are multivalued and split if they are. Because there are not many native

methods, manual analysis was not a significant issue.

6.6.4 Hybrid Approaches

Hybrid approaches would exploit shared execution but also allow conventional ex-

ecution to minimize overhead. For example, instructions could be shared only up

to the first variable load that causes a split (i.e. a feature variable load), at which

point each configuration being tested would be run to completion. This would al-

most guarantee a time saving, although it may not be much if the splitting occurs

early in the test. Another possibility is to switch to conventional execution after

a tester specified limit, such as time, memory size or number of instructions exe-

cuted. A more elaborate possibility is to split the configuration set to test at the

very beginning of the test into N configuration sets and run shared execution on

each configuration set. The split would be done in a way to maximize shared ex-

ecution’s effectiveness for each configuration set and could be performed manually

using domain knowledge or automatically using static analysis.

6.6.5 Other Benefits of Sharing Execution

Although the main benefit of shared execution is that it saves execution time, there

are other benefits. For example, it reduces the size of the execution trace for the

entire product line significantly, which can make it easier to store and analyze.

Also, it can be used to analyze behavioral properties related to product lines. For

instance, suppose that a tester knows that a block of code must be shared by all

configurations. Shared execution can be used to determine whether it is or not.

116

6.7 Related Work

6.7.1 Testing Conventional Programs

Clustered test execution [75][52] combines test cases with common initial segments

into a hierarchical structure such that tests are executed together until they differ, at

which point execution splits, much like shared execution. Unlike shared execution,

these techniques run until completion rather than merging and thus is not able

to share instructions after splitting. Also, these techniques require comparing test

cases to find commonality, whereas the commonality in SPLs exists already, provided

naturally by the way a product line is structured.

Rozzle [63] is a JavaScript multiexecution VM for exposing environment-

specific malware that, like our work, explores multiple execution paths within a

single execution path. However, our purpose is to optimize a given set of executions

by exploiting similarity between them, while their purpose is to increase the abil-

ity to find bugs. The different purposes explain the numerous technical differences.

Memory turns into an array of concrete values in our work, while memory is changed

to store symbolic values in theirs. Operations against symbolic, not concrete, values

is what saves execution in their work, while our work saves it by using a single call

stack for multiple executions. Also, their work allows infeasible paths to be exe-

cuted and symbolic values to be concretized to infeasible values as it may increase

the ability to find bugs, whereas shared execution is strictly an optimization. Since

each SPL configuration is expected to produce a unique concrete value in our set-

ting, shared execution seems to be more appropriate than a symbolic approach like

theirs because the latter would just delay the bytecode redundancy problem until

concretization of symbolic values.

117

6.7.2 Testing Product Lines

Sampling relies on domain knowledge to select combinations of features to test

[27][26][74]. It is practical but may miss problematic interactions, which our work

does not. Model checking product lines [24] [23], which builds on standard model

checking techniques, is different from shared execution in that they are not able to

share instructions after splitting.

In [58], we statically determined features irrelevant to a test (e.g. unreach-

able or does impact outcome) to reduce combinatorics. In [59], we inserted monitors

only for feature combinations that can trigger them by constructing path conditions

over the features using static analysis. Shared execution, a dynamic analysis, com-

plements these works by providing a practical reduction in a setting where the test

case must be run on every feature combination because most of the features are

relevant and interact, as far as can be determined statically.

Stricker et al. [92] compute dataflow dependencies in a product line and de-

termine dependencies that must be tested for a given configuration. Due to similar-

ities between configurations, chances are that dependencies between configurations

will overlap, which their technique ensures will not be tested redundantly. Although

both our work and theirs aim to eliminate redundancy in testing configurations, the

works are different in that [92] eliminates redundant test cases for dataflow testing,

while we eliminate redundant instructions when running a test case.

[69] proposes reusing execution traces to reduce product line testing. When

running a test case for a given configuration, every use of a module (a programming

construct with an interface) is recorded. If another configuration uses the same

module in a way that is identical to the recorded trace, then the result is retrieved

from the recorded trace without having to recompute it. Shared execution can

achieve greater reuse and save more time than reusing execution traces by working

at the finer grained, instruction level. Also, the two works are complementary since

118

a technique may incorporate both shared execution and trace reuse.

6.8 Summary

We presented shared execution, a technique for efficiently testing product lines that

allows each variable to have as many values as there are configurations but carries

out execution using a single call stack. Because there are likely to be features that

do not interact with all the other features, a variable will have a number of values

that is considerably smaller than the number of configurations being tested, meaning

that many instructions will be shared across multiple configurations. This notion,

coupled with the idea of ownership for low memory overhead, is what makes shared

execution generally faster than running each configuration from start to finish. And

while shared execution’s performance has room for improvement, which may be

filled, for example, by hybrid approaches, the benefit of shared execution may not

be limited to time saving. Shared execution effectively product lines execution,

which may allow us to systematically exploit commonalities and variabilities to

tackle problems that remain unsolved.

119

Chapter 7

Deferred Execution for

Efficiently Testing Product

Lines

7.1 Introduction

The previous chapter presented the idea of shared execution, which executes a set

of configurations together using a single call stack, executing common instructions

once, splitting execution when different values need to be loaded on to the call

stack, and merging executions when their call stacks are identical. Despite shared

execution’s overhead, the technique’s evaluation showed that it can be effective

against non-trivial configurable systems.

A basic assumption of shared execution is that the variable value placed on

the stack frame will impact the test outcome and this is why shared execution splits

as soon as the value read differs from configuration to configuration. However, even

if a variable can have different values for different configurations, the test may never

need all those different values to produce the final outcomes. In this chapter, we

120

present the idea of deferred execution, which improves shared execution by increasing

the amount of shared computations by splitting execution not when different values

are read, but when execution must branch subject to those values. This chapter

makes the following contributions:

• Technique. Deferred execution is presented as a bytecode level algorithm

that can be implemented on top of any standard virtual machine (VM). It

also introduces the idea of multiaddresses, which allows different addresses to

be treated as a single address to enable sharing of computations, which was

not supported by shared execution.

• Implementation. Deferred execution is implemented using Java PathFinder

(JPF) [83], a model checker for Java that can also function as an easy-to-

extend, off-the-shelf VM. We use only the VM portion of JPF.

• Evaluation. We show that deferred execution, despite its overhead, can be

useful in configurable systems that use design patterns and in certain cases, can

even eliminate combinatorial explosion in running time that shared execution

and conventional execution suffer from.

7.2 Multivalued Stack Operands

Deferred execution, like shared execution, intercepts bytecode instructions to opti-

mize test execution. Deferred execution’s changes to shared execution can be divided

into two categories: allowing a stack operand to carry multiple values (Section 7.2)

and enabling reads and writes against multiaddresses (Section 7.3). We discuss the

former in this section and the latter in the next section.

A memory address is an identifier for a storage in memory, which stores a

multivalue. A multivalue is a map from values to sets of configurations that has

121

Figure 7.1: Multivalued Stack Operands Example

the form {v1{C1}, ..., vN{CN}}, where a value vi corresponds to a set of configu-

rations Ci, i = 1...N , and Ci ⊂ allConfigs, where allConfigs represents all the

configurations of the product line. A memory address can be qualified by a set

of configurations to refer to the portion of the storage that spans the set of con-

figurations. Figure 7.1 shows an example where in Memory, the memory address

a stores the multivalue {a1{0}, a2{1}}. Seen another way, the memory address

a{0} stores the multivalue a1{0} and the memory address a{1} stores the multi-

value a2{1}. As shown by the top arrow in the figure, in shared execution, when a

multivalue is loaded, execution splits by value, with each execution getting its own

call stack that corresponds to a value and a set of configurations. In contrast, as

shown by the bottom arrow in the figure, in deferred execution, a stack operand can

be multivalued, which allows program execution to continue with a single call stack

and allow more sharing. To allow a stack operand to be multivalued, the stackframe

implementation and the following types of instructions had to be changed.

Reads/writes. In shared execution, a read pushed one value on the stack-

frame and a write popped one value off the stackframe. In deferred execution, a

read/write may push or pop multiple values on or from the stackframe.

122

Method calls/returns. In shared execution, a method could not be entered

with a multivalued argument, meaning a method had to be invoked against each

combination of argument values. In deferred execution, a method can be entered

with a multivalued argument, meaning code that creates a stackframe had to be

changed to push multivalued arguments on the new stackframe. In shared execution,

if a method returns multiple values, then multiple stackframes had to be created

to accomodate each return value. In deferred execution, the return instruction was

changed such that a multivalued return value is pushed on the caller stackframe.

Conditionals. In shared execution, a conditional instruction (IF*,

TABLESWITCH and LOOKUPSWITCH) was executed against a single top operand

value. In deferred execution, since the top operand can be multivalued, a condi-

tional instruction may be executed as many times as there are top operand values,

but the execution only splits into as many branches as there are unique values. This

means that for an if-instruction, at most two children states, each with a stackframe

whose program counter points to false or true branch, can be created.

Stack instructions. Stack instructions only change the stackframe, more

specifically, popping top operand(s) as inputs, performing some computations on

them, and pushing the output operand(s) on the stackframe. In shared execution,

stack instructions did not have to be modified because an input operand could not

have multiple values. In deferred execution, a stack instruction is executed for all

combinations of input operands’ values and the output operands, which may be

multivalued as well, are placed on the stackframe.

7.3 Multiaddresses

Deferred execution also differs from shared execution in how memory instructions

(loads/stores) work against multiple addresses. In Figure 7.2, arrows between

Shared Execution Memory and Stackframe show that in shared execution,

123

when a load/store is to be performed against multiple addresses placed on the stack-

frame, the values are loaded from or stored into the storage corresponding to each of

the addresses. On the other hand, in deferred execution, arrows between Deferred

Execution Memory and Stackframe show that a multiaddress, which is just a

multivalue whose values are addresses, is formed from the multiple addresses, and the

values are loaded from or stored into the corresponding storage just once, rather than

for each address. In the example (Figure 7.2), the values k{0,1} are loaded from

or stored into the multiaddress storage corresponding to the multiaddress {a1{0},

a2{1}}. Note that because a1{0} is a part of the multiaddress, a1 is left with

a1{1}, as shown in Deferred Execution Memory (since a1{0} and a1{1} to-

gether form a1{allConfigs}, which is written concisely as a1). Similarly, a2 is

left with a2{0}.

Deferred execution, shared execution and conventional execution all store

exactly the same information, although deferred execution conceptually requires

less storage space than shared execution, which conceptually requires less storage

space than conventional execution. Figure 7.2 shows that shared execution’s memory

can be converted into conventional execution’s memory by expanding an address-

to-multivalue mapping into a set of address-to-value mappings. Similarly, deferred

execution’s memory can be converted into shared execution’s memory by expanding

a multiaddress-to-multivalue mapping into a set of address-to-multivalue mappings.

7.3.1 Writes

Figure 7.3, lines 4 - 13, shows how deferred execution handles writes. a is the address

in which to store values. If a is not a multiaddress, then the values are placed into

the storage corresponding to a. On the other hand, if a is a multiaddress, the

corresponding multiaddress storage is created or retrieved and values are placed

into the storage.

124

Figure 7.2: Loads/Stores in Shared Execution vs. Deferred Execution

125

1 class DeferredExecution extends VMListener {
2 void beforeInstruction(Instruction insn) {
3 ...
4 if(isStore(insn)) {
5 Values v = stackframe.pop();
6 Address a = stackframe.pop();
7 if(!a.isMultiaddress())
8 a.getStorage().put(v);
9 else {

10 a.getMultiaddrStorage()
11 .put(v);
12 }
13 }
14 else if(isLoad(insn)) {
15 Address a = stackframe.pop();
16 Values values;
17 if(a.getStorage().exists())
18 values = a.getStorage().fetch();
19 else {
20 values =
21 a.findMatchingStorages().fetch();
22 }
23 stackframe.push(values);
24 }
25 ...
26 }
27 ...
28 }

Figure 7.3: Loads/Stores in Deferred Execution

126

For ease of implementation and quick access, an existing multiaddress stor-

age should be accessed only by the multiaddress that created it. Unfortunately,

a write to an address that is not identical to the multiaddress but overlaps with

it must be able to access the multiaddress storage as well. A (multi)address

{a11{c1}, ..., a1n{cn}}, where ci represents one configuration, overlaps with another

(multi)address {a21{c1}, ..., a2m{cm}} if and only if there exists at least one over-

lapping portion pair a1i{ci} and a2j{cj} such that a1i = a2j and ci = cj . In other

words, two addresses overlap if they both share at least one memory address for

one configuration. Figure 7.4 shows an example of an overlapping write, which adds

the last row to the memory. Note that the write’s multiaddress, {a3{0}, a2{1}},

overlaps with the existing multiaddress {a1{0}, a2{1}} since both multiaddresses

share the address a2{1}. This is problematic because we now do not know whether

to retrieve from the last row (m) or the second last row (k) when a2{1} is read

(clearly, m should be read because it was the latest value written). To prevent

overlapping storages, a storage for an address addr{config}, where config rep-

resents one configuration, can only be a part of one (multi)address storage (i.e. an

address only appear once in the address column of the memory, either on its own

row or in a multiaddress row). To satisfy this constraint, before the overlapping

write takes effect, existing multiaddress storages that overlap with the write’s ad-

dress is destroyed, i.e. for each of the existing multiaddress storages, the storage’s

contents are moved into the individual addresses of the multiaddress. Therefore, in

the example, before the write, k{0, 1} is moved into the individual addresses of

{a1{0}, a2{1}}, meaning that k{0} is moved into a1{0} and k{1} is moved into

a2{1}. Then the write is performed against the new multiaddress. The resulting

memory is the bottommost memory in Figure 7.4.

Conceptually, overlap is determined by examining each memory address and

comparing it with the write’s address to see if there is any overlapping portion. How-

127

Figure 7.4: Example of an Overlap

ever, in implementation, overlap is determined much more efficiently using trace-

ability links, as we will explain in Section 7.3.4.

7.3.2 Reads

Figure 7.3, lines 14 - 24, shows how deferred exceution handles reads. a is the address

from which to read values. As with writes, ideally, there should be just one storage

whose address is identical to a and the values should be fetched from the storage

(lines 17 - 18). Unfortunately, there may not be such a storage, in which case we

have to collect values from each storage whose address overlaps with a (lines 19 - 22)

For example, suppose that a read is done against the address {a1{0}, a2{1}} in

the bottom memory (after resolving overlap) in Figure 7.4. Since none of

the existing addresses are identical to the read’s address, values are read from a1{0,

1}, which matches the address for the portion a1{0}, and {a3{0}, a2{1}}, which

matches the address for the portion a2{1}. The values read are {k{0}, m{1}}.

128

7.3.3 Method Invocations

In shared execution, an instance method could only be entered with one receiver.

In deferred execution, an instance method invocation against multiple receivers

splits execution by method dispatch, with multiple receivers entering the same dis-

patched method together. More specifically, in an executing state S that is exe-

cuting the configurations Sconfigs together, a method x() is invoked against the

receivers a = {a1{C1}, ..., aN{CN}}, where Ci represents a set of configurations

and
⋃N

i=1Ci = Sconfigs. Then the method invocation dispatches to one or more

methods {Class1.x(), ..., ClassK .x()}, where K ≤ N , with one or more receivers

aj = {aj1{Cj1}, ..., ajM{CjM}} dispatching to (entering) a method Classj .x() to-

gether, such that
⋃K

j=1 aj = a. Also, if there is more than one dispatch (i.e. K > 1),

the executing state S is split into children states {S1, ..., SK}, where a child state

Sj , which has its own call stack, corresponds to a method dispatch Classj .x() and

its receivers aj . For a method dispatch, fields can be shared between the multiple

receivers via multiaddress storages discussed earlier. Also, instructions pertaining

to locals, not only of the dispatched method but also of methods transitively called

from the dispatched method, will be shared between multiple receivers for the given

method dispatch.

If there is a chain of instance method invocations with multiple receivers,

combinatorial explosion of method dispatches can be eliminated through deferred

execution. This situation can arise in object-oriented design patterns [35], such as

Visitor, Chain of Responsibility and Decorator. For example, Figure 7.5 shows a

product line of hierarchies of objects being visited. Each of the two parents can be

linked to each of the two children, which allows four possible hierarchies. However,

note that there is commonality between the hierarchies: each parent is linked to the

same two children. In shared execution, accept() must be called against each of

the two parents (line 15) and in turn, it must be called against each of the two chil-

129

dren under each parent (line 25), meaning the method is called a number of times

that is exponential in the number of features. However, in deferred execution, when

the method is called against the two parents, because both invocations dispatch

to the same method, the method is entered together by the two parents, mean-

ing this within the method will be a multiaddress representing the two parents.1

Similarly, the two children dispatch to the same accept() method and enter the

method together. Thus, deferred execution eliminates the combinatorial explosion

of accept() method invocations suffered by shared execution in this example.

7.3.4 Implementing Multiaddresses

Address Representation

The idea of multiaddresses is not dependent on any particular address represen-

tation, but to understand how multiaddresses are actually formed, Namely, for

a Java Virtual Machine (JVM), which executes Java bytecode, an address for a

store/load instruction consists of base (for local instructions, there is no base)

and offset. A multiaddress can be formed due to an address’s base, offset or

both being multivalued on the stackframe, meaning that there are four possibilities

(neither being multivalued, just base being multivalued, just offset being multi-

valued, and both being multivalued). Figure 7.6 shows an example for each of

the three possibilities where base and/or offset is multivalued. Note that offset

can only be multivalued with arrays because a field instruction’s field index can-

not be passed around as values. For example, in Figure 7.6(a), 100 is placed in

the multiaddress storage for the multiaddress {obj1{A}, obj2{!A}}.f, mean-

ing the field f is shared between the two objects. In Figure 7.6(c), 100 is placed

in the multiaddress storage for the multiaddress {base={addrOfArray100{A},
1Note that each parent must be checked separately to check for null-pointer exception and to see

if they dispatch to the same method and this is why execution splits in the diagram before entering
the accept() method.

130

(a) Code (b) Execution

Figure 7.5: Visitor Example

131

(a) Multiple Bases (b) Multiple Offsets (c) Multiple Bases and Offsets

Figure 7.6: Different Ways of Forming a Multiaddress

addrOfArray50{!A}}, offset={0{B},1{!B}}}, which represents the four ar-

ray locations due to combinations of the two arrays and two offsets. Figure 7.6(b)

is similar to Figure 7.6(c), but the base is not multivalued.

Memory Structure

Shared execution’s memory, described in Section 6.4.1, is extended to allow multi-

addresses. There exists a separate memory for multiaddress storages, meaning that

if there is no load/store that accesses a multiaddress, this separate memory is not

needed and memory access is no different than as was in shared execution.

To efficiently determine overlap for reads and writes, when a multiaddress

storage is created due to a write to a = {a1{c1}, ..., an{cn}}, where ci represents one

configuration, each address/configuration pair ai{ci} is linked to a. Thus, the next

time a read/write is done against a (multi)address b = {b1{c1}, ..., bm{bm}}, rather

than having to search the memory for overlapping storages, we can simply enumerate

each address of the (multi)address and see if it is linked to a multiaddress storage. If

there is at least one address that is linked to a multiaddress storage, b is overlapping.

For example, in Figure 7.7, the write in line 12 creates a multiaddress storage for

132

Figure 7.7: Traceability Links

obj1’s field1 (for A) and obj2’s field1 (for !A) and places the value 10 in the storage.

Note that each object’s field is bidirectionally linked to the multiaddress storage.

Then line 18 writes 20 to {obj3{A}, obj2{!A}}.f1 and if we did not handle overlap,

the memory in the right middle diagram would result, with obj2’s f1 erroneously

having two values, 10 and 20. We handle the overlap by enumerating the write’s

multiaddress into individual addresses obj3{A} and obj2{!A} and checking to see

if each is linked to a multiaddress storage. Since obj2{!A} is linked to the existing

multiaddress storage for {obj1{A}, obj2{!A}}.f1, the existing multiaddress storage

is destroyed (its content 10 is moved into the individual storages). Then the write

proceeds, creating a multiaddress storage for {obj3{A}, obj2{!A}}.f1 and placing

the value 20 in there. Therefore, the write yields the memory shown in the right

bottom diagram in Figure 7.7.

133

7.4 Evaluation

Deferred execution was implemented on top of Java PathFinder (JPF) [83], but can

also be implemented on top of any standard virtual machine (VM), such as Jikes

RVM [48]. JPF is typically used as a model checker rather than as a VM, but

we use it as a VM because of its extensibility and our familiarity with it. JPF is

considerably slower than a standard VM, but since our comparisons are relative to

related implementations also in JPF, using JPF should not affect our results.

We evaluated our technique against scenarios where there are known oppor-

tunities for our technique to be effective. Table 7.1 shows the results, where all

nmeric entries except Configs are in seconds. As discussed in Section 7.3, deferred

execution can be particularly effective for chains of polymorphic method invocations,

where each polymorphic method invocation can be against a different receiver for a

different configuration. Therefore, we selected 3 SourceForge open-source programs

that use the following Gang of Four (GoF) design patterns [35] that rely on a chain

of polymorphic method invocations: Decorator (used by FitNesse [34]), Chain of

Responsibility (used by [93]), and Visitor (used by [44]).

There are three tests for each subject, each of which corresponds to the

expected level of saving achieved by deferred execution: High, Medium and Low.

Each test exercises a fixed length of chain of method invocations. There are three

test cases for a test, each of which introduces a number of variation points in the

chain, thereby creating a “product-lined” version of a design pattern (the support

for the design pattern was already in place in each subject). Namely, at each method

invocation in the chain of method invocations, variability can be introduced such

that the invocation’s receiver is determined by an if-else of a feature as shown

in Figure 7.5. Effectively, what was just one input to the test case, a chain of

objects, now becomes multiple inputs or multiple chains of objects and therefore the

test case must be run against each input. The three test cases encode a numbers

134

of configurations between 4 (2 method invocations or features) to 16 (4 method

invocations or features), as shown in the column Configs. The test cases serve to

show that deferred execution can scale as the number of configurations increases.

Each row of the table corresponds to a test case. Each test case was executed

using five different techniques: Deferred, No-Multiaddress, Conventional, ISSRE12-

Shared, and ISSRE12-Conventional. Deferred is the technique presented in this

chapter. No-Multiaddress is the technique presented in this chapter, but with the

multiaddress functionality (described in Section 7.3) turned off to see how much

difference the key contribution of this chapter’s technique (multiaddresses) makes.

Conventional runs each configuration from start to finish. ISSRE12-Shared is shared

execution, which was published in [60] and is a technique that deferred execution

improves on. ISSRE12-Conventional runs each configuration from start to finish,

but is different from Conventional in that the former shares code base with ISSRE12-

Shared and uses a slightly different native code implementation for strings. However,

for the subjects studied, the entries in ISSRE12-Conventional are nearly identical

to Conventional, so the former can be ignored.

Deferred execution implementation, subjects, and results can be downloaded

from our website [57].

7.4.1 FitNesse

FitNesse is an acceptance testing framework that allows, among other function-

alities, a table that holds test data to be manipulated through GoF decorators of

operations over columns [34]. Decorators, which are objects that have the same

interface as the object they are decorating, are connected through a chain (nesting)

of method invocations, i.e. one decorator adds some functionality to an existing dec-

orator, which adds to an existing decorator, and so on. The chain is product-lined

such that each method invocation is conditionalized by a feature as was done in Fig-

135

Table 7.1: Evaluation
Subject Test Configs Deferred No- Conventional ISSRE12- ISSRE12-

(sec.) Multiaddress (sec.) Shared Conventional
(sec.) (sec.) (sec.)

FitNesse HIGH 4 8 16 5 11 5
FitNesse HIGH 8 8+ 29 9 28 8
FitNesse HIGH 16 8+ 54 16 85 15
FitNesse MEDIUM 4 7 16 5 11 5
FitNesse MEDIUM 8 8+ 29 9 28 8
FitNesse MEDIUM 16 8+ 52 16 85 15
FitNesse LOW 4 7 16 5 11 5
FitNesse LOW 8 8+ 28 9 28 8
FitNesse LOW 16 8+ 53 17 86 15

SuperCSV HIGH 4 12 21 10 19 10
SuperCSV HIGH 8 13+ 40 19 36 19
SuperCSV HIGH 16 13+ 80 36 69 36
SuperCSV MEDIUM 4 19 20 10 19 10
SuperCSV MEDIUM 8 20 40 18 35 18
SuperCSV MEDIUM 16 20+ 78 35 68 36
SuperCSV LOW 4 29- 28 14 27 14
SuperCSV LOW 8 77- 57 27 57 27
SuperCSV LOW 16 131- 112 52 113 52

HTMLCleaner HIGH 4 8 16 5 11 5
HTMLCleaner HIGH 8 8+ 27 10 18 10
HTMLCleaner HIGH 16 8+ 42 19 29 19
HTMLCleaner MEDIUM 4 13 18 6 12 6
HTMLCleaner MEDIUM 8 16 29 11 20 11
HTMLCleaner MEDIUM 16 18+ 44 20 31 21
HTMLCleaner LOW 4 33 67 18 47 18
HTMLCleaner LOW 8 40 121 34 92 34
HTMLCleaner LOW 16 50+ 210 67 151 66

136

ure 7.5, meaning that the method invocation will be against one decorator (which

increments a cell value) or another (which decrements a cell value) depending on

whether the feature is present or not. Note that the two decorators are instances

of two different classes with a common parent class and they dispatch the method

invocation to the same method implementation (otherwise, deferred execution is

guaranteed to not be effective). For HIGH test cases, each decorator is designed to

work against a unique column, meaning that each decorator operates on indepen-

dent data from one another and the running time should be linear in the number

of decorators (which is twice the number of features). For MEDIUM test cases, dif-

ferent method invocations work against different columns, but the two decorators

for one method invocation work against the same column, meaning that the second

decorator for a method invocation has to do twice as much work, once against the

column unaffected by the first decorator and once against the column affected by

the first decorator. For LOW test cases, all the decorators work against the same

column, meaning that the last decorator in the chain must perform the same work

a number of times that is combinatorial in the number of features.

Let us examine the results for High test cases. Using the conventional ap-

proach (ISSRE12-Conventional and Conventional columns), as the number

of configurations doubles (column Configs) , the running time approximately dou-

bles as well. Shared execution actually performs even worse due to its overhead for

these particular test cases (column ISSRE12-Shared). Deferred execution with-

out multiaddress (column No-Multiaddress) performs better than shared execu-

tion, but still suffers from a nearly doubling growth and performs worse than the

conventional approach. However, deferred execution with multiaddresses (column

Deferred) outperforms the other techniques except for running 4 configurations

using the conventional approach. Most importantly, deferred execution’s running

times do not double and in fact, it remains largely unaffected by the doubling of

137

configurations as expected. In fact, the running times remain nearly constant be-

cause it seems that the time it takes for decorators to do actual work (incrementing

or decrementing integer cell values, which is not very expensive) is dominated by

the time it takes to setup decorators through reflection. This means that as long as

the decorators do not have to be setup a combinatorial number of times as with de-

ferred execution, adding variability makes little difference. The results for MEDIUM

and LOW test cases are very similar to those for HIGH, despite the expectation for

deferred execution to not be as effective. We believe that the reason for this is again

because the setup time is dominant, meaning that relatively, the time it takes to

perform the decorator operations a number of times that is combinatorial in the

number of features has little impact on the overall running time.

7.4.2 SuperCSV

SuperCSV is a software package for handling files in Comma Separated Values

(CSV) format and uses GoF Chain of Responsiblity design pattern for allowing

users to define a chain of operations called Cell Processors (such as constraint

checks) against a CSV value represented as a cell in a table [93]. A cell processor

(a processing object in GoF terminology) can handle the CSV value (the command

object in GoF terminology) and/or pass it to the next cell processor in the chain.

As with decorators, we product-lined the chain of cell processors such that each

method invocation is conditionalized by a feature and called against one of two re-

lated cell processors that dispatch the invocation to the same method. Results show

for all tests that for conventional execution, the running times approximately double

as the number of configurations doubles, as expected. Shared execution performs

considerably worse than conventional execution and the former also approximately

doubles in execution time as the number of configurations doubles, for all tests.

No-Multiaddress does not do any better than shared execution and in fact per-

138

forms slightly worse. However, for HIGH and MEDIUM, deferred execution largely

outperforms the other techniques and most importantly, keeps the running time

almost constant despite the increase in the number of configurations. The reason

for this saving is that the two cell processors in one level are independent from the

two cell processors from the next level, i.e. do not operate against the same data.

However, for LOW test cases, where all the different levels of cell processors work on

the same data, even though multiple objects can enter a method together, within

the method, splitting will occur and at the end of the chain, a computation has to be

performed for all combinations of the features. Indeed, the corresponding results are

considerably worse than those for MEDIUM and HIGH and in fact, show that deferred

execution performs the worst of all techniques because of the overhead associated

with managing multiaddresses.

7.4.3 HTMLCleaner

HTMLCleaner is an open-source HTML parser written in Java that provides a GoF

Visitor class to the user to perform operations against a hierarchy of HTML tags.

The user creates an instance of the visitor, calls the root tag’s accept() method

with the visitor as an argument, which in turn calls back visitor’s visit() method

as the root tag as an argument and goes through the root tag’s children to make

them accept the visitor. We product-lined the chain of accept() method invo-

cations such that at a method invocation, one of two possible tags can be chosen

depending on the feature selection. Results show that conventional execution dou-

bles as the number of configurations doubles, as expected, and shared execution and

No-Multiaddress do a similarly poor job (the latter actually performing a poorer

job), performing worse than conventional execution. However, deferred execution

remains largely unaffected by the doubling of the number of configurations, exhibit-

ing only constant increases for MEDIUM and LOW, and outperforms other techniques

139

for test cases with 16 configurations.

7.4.4 Overall Results

To summarize the performance of deferred execution, the table identifies the best

and worst cases for deferred execution for the subject tests. For each row, we

identify values in the Deferred column, which are the best (lowest times, which

are marked ‘+’) or the worst (highest times, which are marked ‘-’) among all the

techniques for that row. All the worst times are for SuperCSV’s LOW test cases and

this is likely due to the subject SPL and the test itself rather than the corresponding

design pattern, Chain of Responsibility, since all three design patterns evaluated are

structurally similar (they all allow a chain of polymorphic method calls) from the

perpsective of deferred execution. The fact that deferred execution can perform the

worst shows that there must be a sufficient number of opportunies for exploiting

multiaddresses that can offset the overhead. Despite these negative results, deferred

execution outperforms the alternatives in 13 (marked +) out of 27 (48%) test cases.

More importantly, as discussed, it is able to limit and even prevent the growth in

the running time despite the growth in the number of configurations.

7.4.5 Threats to Validity

The subjects were selected specifically to demonstrate deferred execution’s ability to

reduce combinatorial explosion in the number of polymorphic method invocations

for a chain of such method invocations. Therefore, the results cannot be generalized

to settings where such a chain of method invocations do not occur. Also, we cannot

generalize our results to all configurable systems that exhibit such a chain of method

invocations because our subjects may not be representative of such configurable

systems. To reduce this threat, we designed the experiment in the following ways.

We used multiple Java programs from SourceForge, which are more realistic than

140

programs developed in-house. We used programs that use design patterns, where

chains of method invocations occur naturally. Although we could not find tests

that explicitly test a chain of method invocations and had to construct the tests

ourselves, the tests were constructed to cover a range of configurations and a range

of degrees of expected effectiveness.

7.5 Related Work

The key contribution of deferred execution is the idea of using multiaddresses to

maximize sharing computations between executions. We are not aware of any work

with this contribution, but there are related works.

Parallelization. Because each configuration corresponds to a separate exe-

cution, from parallel programing’s perspective, the configurations are embarassingly

parallel. Therefore, the easiest, but the most resource-intensive, alternative to de-

ferred execution would be to execute each configuration using a dedicated processor.

A more practical approach is to assume that the number of dedicated processors will

be smaller than the number of configurations and to test as many configurations as

there are number of processors in parallel at a time. A more sophisticated technique

can make the most use of parallelization to speed up execution of multiple configu-

rations. Deferred execution is fundamentally more economical than parallelization

in that the former aims to use all the computing power that is available in a single

processor. However, if the additional hardware resources are available, one could

imagine combining deferred execution with parallelization. We are not aware of ex-

isting works that use parallelization to speedup execution of configurable systems.

However, parallelization has been used to execute two versions of a software, one

before a patch and another after, simultaenously and to execute the more reliable

version when their executions differ [77].

Symbolic Execution for Multiexecution. Rozzle [63] is a JavaScript

141

multiexecution VM for exposing environment-specific malware that, like our work,

explores multiple execution paths within a single execution. However, our purpose

is to optimize a given set of executions by exploiting similarity between them, while

their purpose is to find bugs. Our technique preserves the given set of executions and

uses only concrete values, whereas their technique uses a form of symbolic execution

(that does not use concrete values and does not execute all iterations of a loop) that

allows infeasible and unsound executions (i.e. executes both paths of a branch even

if only one of the paths may be satisfiable). Also, note that any form of symbolic

execution is fundamentally different than our technique as the former explores the

execution space with symbolic values for increased coverage, whereas our technique

explores the execution space with a grouping of concrete values for increased speed.

Shared Execution. Deferred execution improves shared execution [60] by

delaying splitting as late as possible, i.e. splitting on branches rather than on values,

to maximize sharing between executions and introduces the idea of multiaddresses

to enable this. Detailed technical differences were discussed throughout the chapter.

Variability-Aware Interpreters. [51] proposes the idea of variability-

aware interpreters for executing multiple configurations in a single execution, like

shared/deferred execution. However, their work does not merge paths, meaning that

once execution splits due to different values from different configurations leading to

different branches, the executions can never be merged to resume sharing. Also,

their work is implemented on programs written in the WHILE toy language, while

our work is implemented on programs written in Java.

Delta execution for online patch validation. In [97], for online path

validation, a program and its patched version is run as a single program until the

patch is encountered, which splits execution using a system fork with copy-on-write

sharing of pages. Merging is attempted where processor states are likely to be

identical, i.e. at a function return or earlier and execution splits again when a

142

page modified by the patched execution is accessed. The general ideas of running

multiple executions using a single execution state (i.e. processor state in theirs

call stack in ours), splitting due to accessing different memories, and merging at

execution points with the same execution states are the same between our work

and their work. However, their work is tailored to two nearly identical executions

(what they call multiple almost redundant executions). On the other hand, our

work is tailored to finding redundancy across many different executions induced by

a family of programs with different functionalities. Because their executions are

highly similar by definition, their focus is more on reducing overhead rather than

finding fine-grained similarity across many, potentially very different, executions,

which is our focus. Therefore, instead of monitoring memory access and splitting

on variable values like we do, they monitor page access and split on page content,

which is cheaper but can miss instruction-level similarity that our technique is able

to detect.

Delta execution for explicit-state model checking. In [29], multi-

ple states are explored in a single execution to eliminate redundancy in explicit-

state model checking. When model-checking a single program, entire program

states/heaps may be similar or even identical and their technique is focused on

eliminating redundant operations against program states/heaps. In our work, be-

cause the programs represent different combinations of features and therefore can

run considerably differently, we have to find as much commonality as possible, which

is why our technique is focused on much finer-grained redundancy, i.e. bytecode in-

structions against the same input operands. This difference in setting explains why

their merging process is more expensive than ours: they examine the different ex-

ecutions using a standard model checking optimization called linearization to see

which have identical heaps and thus can be treated as a single execution. In our set-

ting, linearization is not effective because the likelihood of the different executions,

143

which represent different feature combinations or functionalities, having identical

heaps is unlikely. And it is probably because merging is expensive that they re-

quire merge points to be syntactically specified, whereas our work tries to merge

where call stacks are likely to be the same. However, although their merging cost is

high, their technique does not need to split/merge as often as our shared execution

technique because they allow input stack operands to be multivalued, which means

splitting is triggered only by a branch point, like in our deferred execution. But

their technique is not able to share instructions against different memory locations

(i.e. reads/writes must be repeated for different memory locations and the same

method must be invoked against each receiver), which is the key contribution be-

hind deferred execution. Also, their technique differs from both shared and deferred

execution in that they require source code instrumentation, although they suggest

the idea of an interpreter-based approach like ours.

Thin slicing. In [91], the definition of a program slice is refined to include

only the statements that produce the value of a variable (i.e. local, field, array

element) at a statement, ignoring statements that affect container or base pointer of

the variable (i.e. objects and arrays) based on the notion that the latter statements

do not help with program understanding. For example, suppose that slicing is

performed against an element in a Java List at a statement (e.g. list.get(i)).

The slice would not include statements affecting the list itself, such as those that

add new elements to the list. This idea of thin slicing is similar to our work in that

both works abstract base pointers away (they ignore them and we treat multiple

base pointers as a single multiaddress) to reduce the analysis result (slice in theirs

and execution traces in ours). However, the idea of deferring execution to speed up

execution of multiple programs is different from the idea of reducing program slices

to improve program understanding.

144

7.6 Summary

We presented deferred execution, a technique that executes multiple configurations

of a configurable system in a single execution so that a bytecode instruction common

to the different configurations is executed just once. The technique can allow more

bytecode instructions to be shared than the predecessor technique of shared execu-

tion by deferring splitting as late as possible, namely, splitting on branches rather

than on variable values. To enabling deferring, the technique uses 1) a specialized

stackframe in which an operand can carry different values for different configurations

and 2) multiaddresses, each of which represents a group of memory locations that

can be treated as a single location. Deferred execution is useful for programs that

use arrays and especially for object-oriented programs, where multiple receivers can

enter a method together. Deferred execution was evaluated on three open-source

subjects that use well-known design patterns and results showed that in certain cases

where running times for shared and conventional executions increase proportionately

to the increase in the number of configurations, deferred execution’s running times

only increase by a constant factor and can even remain constant.

145

Chapter 8

Discussion and Future Work

This chapter presents some practical considerations as well as future work ideas.

8.1 Threats to Validity

Our case studies suffer from external validity: we cannot generalize our results to

all SPLs because the SPLs and tests/safety properties used in our evaluation may

not be representative of all possible product lines and tests/safety properties. To

reduce this threat, for SPLs, we used multiple Java SPLs, many of which have

also been used by other research groups as noted in the previous chapters, and one

real, large industrial codebase belonging to Groupon. For tests/safety properties, we

designed tests, which simulate worst, average and best scenarios, and realistic safety

properties and we used a very large suite of existing tests for Groupon’s codebase.

8.2 Integrating the Techniques

At present, the user of our tool-set chooses which of the five techniques to use when

given a test to run or a safety property to check. For checking safety properties,

the choice is straightforward (i.e. use static pruning of configurations to monitor

146

from Chapter 5), but for running a test, the choice is not as obvious. Consider the

case when the test checks a small portion of the product line, like a unit test does.

If there exist many inputs and each test run takes a long time, choose the static

approach (Chapter 3), and otherwise, choose the dynamic approach (Chapter 4).

Alternatively, if the test checks a large portion of the product line, like a system

integration test does, then the user should choose deferred execution (Chapter 7,

which improves on Chapter 6).

To ease the requirement on the user to determine what type a test is, it may

be possible to integrate the test running techniques into a tool chain to automatically

determine which technique to use. However, the extra level of analysis required to

determine which technique to use may be end up being more expensive than obtain-

ing the information through user knowledge. One can also imagine an integration

that would allow multiple techniques to be applied for a product line test, e.g. first

apply a technique for pruning configurations and then apply a technique for pruning

bytecode instructions between the remaining configurations. However, a more so-

phisticated integration than just applying the techniques in series may be required,

since the increased saving in execution time may not always be offset by the over-

head of applying two separate techniques (especially since shared/deferred execution

already performs the reachability analysis that SPLat and its static counterpart in

Chapter 3 perform).

8.3 Improving the Techniques

The presented techniques may be improved in at least two dimensions: speed and

scalability. All the techniques 1) eliminate redundancy, be it in configurations or in

bytecode instructions, and 2) incur an overhead in doing so. This means that op-

portunities for improving speed are in identifying more redundancy and in reducing

the overhead. For example, just as deferred execution improves shared execution’s

147

speed (by identifying redundancy in memory locations), another technique may in

turn improve deferred execution’s speed. Unfortunately, it seems hard to optimize

both 1) and 2) together. Namely, the three techniques that prune configurations

(Chapter 3, Chapter 4, and Chapter 5) clearly incur lower overhead than the two

techniques that prune bytecode instructions (Chapter 6 and Chapter 7) because not

every bytecode instruction has to be intercepted and memory is not expanded to

hold memories of all possible configurations. However, the former three techniques

cannot eliminate as much redundancy as the latter two can.

A scalable technique should work against large and complex programs with-

out many limitations. Unfortunately, using a specialized VM like JPF, which re-

quires native code to be explicitly modeled and performs much slower than a stan-

dard VM, does not make the implementation of a technique very scalable. One way

to address the scalability of shared/deferred execution would be to implement them

using a standard VM; we chose JPF as the platform due to its ease of programming

and extensibility. Also, while it may not be possible to achieve both the maximal

redundancy elimination and minimal overhead, characteristics of techniques that

achieve maximal redudancy elimination, such as deferred execution, and minimal

overhead, such as SPLat, may be exploited to develop a scalable and effective tech-

nique.

8.4 New Problems and Solutions

This thesis only includes techniques for tests and safety properties, but there exist

other types of analyses for product lines as well. [16, 19] present techniques for

efficiently performing intra- and inter-procedural dataflow analyses for a product

line. [24, 23] present techniques for efficiently model-checking product lines. Addi-

tionally, there may be other types of properties that require techniques dedicated to

them. One can even imagine a product line of product line analyses problems and

148

solutions. Finally, as the product line evolves, it may be possible to converge on a

unifying or integrated solution.

8.5 Customizable Multiexecution

In this section, a future work idea that improves on shared execution and deferred

execution is presented. One problem with shared/deferred execution, which will be

referred to collectively as multiexecution, is that their applicability is limited be-

cause they enforce a strict rule for allowing computations to be shared. Namely,

they require call stacks of the different executions to be identical, even though the

only requirement for sharing a computation is that 1) the different executions are

about to execute the computation and 2) inputs to the computation are identical

(program counter is not an input). Another problem is as follows. While numerous

techniques have been developed to enable multiexecution in various research areas

[6, 63, 60, 29, 97, 77], the techniques do not seem to share any implementation

code, meaning that there is a considerable amount of redundant programming for

bookkeeping, backtracking, and equivalence checking across these techniques and

multiexecution techniques that will be developed in the future. Yet another prob-

lem with multiexecution is the user’s lack of control, which makes it difficult to

offset the overhead of multiexecution. To illustrate, suppose that there is an expen-

sive computation that the user knows can be executed identically across different

configurations, but the multiexecution implementation misses the opportunity to

execute that computation just once for the different configurations. With current

techniques, it is not possible to configure the multiexecution implementation such

that the opportunity is not missed.

We introduce the idea of customizable multiexecution, a framework for mul-

tiexecution techniques that allows the user of the framework to define where sharing

is likely to take place across different executions using unconventional aspects called

149

Figure 8.1: Tracejoin for Customizable Multiexecution

tracejoins and frees her from having to implement the bookkeeping code. Figure 8.1

illustrates the difference between a conventional aspect [53] and a tracejoin. A

conventional aspect intercepts events scattered throughout a single execution and

performs the same computation at each event. In contrast, a tracejoin intercepts

events across executions and performs the same computation just once for all the

events. While a conventional aspect aims to reduce development effort by localizing

the code for the common computation, a tracejoin aims to reduce the execution time

by executing the common computation just once.1 Appendix discusses tracejoins in

more detail.

1Technically, one could also apply a tracejoin for a single execution to execute the common
computation just once, but this will be explored in the future.

150

Chapter 9

Retrospective

In this chapter, we reflect on the dissertation work and discuss what was done

correctly (Section 9.1), difficulties encountered (Section 9.2) and what could have

been done differently (Section 9.3).

9.1 Positives

One of the merits of this dissertation is that its techniques have the common focus

of efficiently checking a property against a product line. Forming a coherent set of

techniques may not have been possible had we pursued our plan to examine other

problems of verification, such as fault localization and repair, after completing the

works on pruning configurations. By staying the course and identifying the problem

with techniques on pruning configurations, namely that the techniques are com-

pletely ineffective in cases where every configuration must be checked, we were able

to develop shared execution. Similarly, deferred execution and customizable multi-

execution were developed by examining problems with shared execution. Forming

a dissertation this way, through a progression of techniques, seems to be a good

practice.

151

9.2 Difficulties

Skills in static program analysis, dynamic program analysis and runtime monitoring

needed to be acquired in order to develop the techniques in this dissertation and the

acquisition took longer and was more difficult than had originally been anticipated.

Also, the same can be stated for using these skills to implement the tools behind

the techniques (using the Soot static analysis framework, JPF, tracematches,

and Korat). In addition, studying the vast amount of related work in verification

research took a considerable amount of effort.

Another difficulty was in finding product lines with tests and safety proper-

ties. because product line verification research is a relatively new research area. We

ended up manually constructing tests and safety properties and converting existing

open-source software into product lines. Consequently, as discussed in Section 8.1,

the product lines and tests used may not be representative of all possible prod-

uct lines and tests. The subjects that were used to evaluate our techniques have

been added to Software-artifact Infrastructure Repository (SIR) [89], a repository

for benchmarks that verification researchers can use to evaluate their techniques.

9.3 Hindsight

The problems and solutions in this dissertation were largely discovered and devel-

oped with the mindset that they are unique to product line verification. As a result,

it took a while to discover and develop the problems and solutions. It turned out

that similar problems and solutions exist for verification of conventional programs.

For example, pruning configurations is similar to pruning paths, which is used by

Korat [18] to efficiently generate test cases. Also, pruning bytecode instructions

between configurations is similar to pruning computations between paths of a model

checking search [29] and program versions [97]. So a better approach may have been

152

to examine these existing non-SPL verification problems and solutions and adapt

them to work with product lines.1 Had we taken this approach, we would have

accomplished considerably more in a shorter period of time.

Having stated the previous remark, it may be possible that there are product

line verification problems and solutions that are completely unique to product lines.

For example, the dissertation’s techniques largely treat the product line as a mono-

lithic artifact with variation points (if-conditionals) spread out through it. It may be

possible to develop more efficient and effective techniques by exploiting the notion

that features are modules just like the modules of the programming language.

1The dissertation author has realized the hypocrisy of a product line researcher not reusing
existing solutions from related research areas.

153

Chapter 10

Conclusion

An SPL represents a set of related programs, each of which is defined by a combina-

tion of features, which are user choices that enable or disable functionality. An SPL

serves a dual purpose: to reduce development effort by allowing multiple programs

with commonalities to be treated together and to reduce the time-to-market by tar-

geting multiple customers simultaneously. Checking a property against a product

line is more difficult than checking it against one program because the property

must be checked for each program in the product line, where the number of distinct

programs can be exponential in the number of features.

We presented a suite of complementary techniques based on static and dy-

namic analysis for efficiently testing product lines. The first set prunes configura-

tions and the second prunes bytecode instructions between configurations even when

configurations cannot be pruned.

In the first set, we exploit the fact that a test is likely to exercise a subset

of the product line code. Statically pruning configurations to test (Chapter 3) is

a technique that uses static analysis to identify features that are reachable from

the test and further reduces the set of features to those that can influence the test

output. The test then needs to be run only on the combinations of those features.

154

The second technique, SPLat (Chapter 4), presents a lightweight dynamic analysis

alternative, discovering the reachable features during execution using stateless ex-

ploration, which is scalable. The third technique, statically pruning configurations

to monitor (Chapter 5), statically reduces the configurations to monitor for safety

property violation by inserting the monitor only on configurations that allow the

monitor’s instrumentations to be reached.

Even when configurations cannot be pruned, a tester does not have to re-

sort to executing each configuration from start to finish by using shared execution

(Chapter 6), which executes all the configurations together to exploit the redundant

bytecode instructions between the configurations arising due to behavioral similar-

ity inherent in a product line. Deferred execution (Chapter 7) improves on shared

execution by allowing different memory locations to be treated identically, which

can considerably increase the amount of shared computations.

We discussed practical considerations and future work ideas (Chapter 8),

including integrating the techniques into a tool chain, making the techniques faster

and more scalable, and identifying new types of properties that require program

analyses techniques for efficient checking. As a more concrete future work item, we

also presented customizable multiexecution, which provides a unifying framework for

multiexecution and gives the user the ability to control where sharing takes place.

Even though reducing the execution space is not a new problem and ad-

vances to address the problem, including the presented techniques, are often not

fundamentally groundbreaking, they are nonetheless important because they save

what is arguably the world’s most important commodity: time. This importance

will only continue to grow as programs grow in complexity and size. Also, in a

world that values productivity and always demands more of it, techniques for effi-

ciently testing product lines will too be valued and more value will be demanded

from them.

155

Appendices

156

Chapter A

Tracejoins

A.1 Motivating Example

Figure A.1(a) shows an example program that calls foo() identically for different

inputs. Suppose that the test is multiexecuted for a positive input and a negative

input. Neither shared nor deferred execution can allow foo() to be executed just

once because the method is called in different branches. Also, existing multiexe-

cution techniques do not give the user the freedom to choose when multiexecution

takes place. For example, suppose that the user knows that multiexecution of foo()

is likely to be only be beneficial for large or specific string inputs. Customizable

multiexecution through tracejoins allows the user to specify multiexecution only for

these situations.

A.2 Technique

Like in shared/deferred execution, memory is essentially an array that keeps mem-

ories of the different executions arising from different configurations (inputs). Also,

like in shared/deferred execution, at each execution point (before or after a byte-

code instruction), a state keeps track of the set of configurations that are executing

157

(a) Code (b) Tracejoin

Figure A.1: Example of Customizable Multiexecution

together and a hierarchy of states is formed from splitting/merging. Initially, config-

urations execute separately with a separate call stack. The user-specified tracejoin

determines where each configuration should pause execution. Once all the configu-

rations have been paused, the program states of the configurations are compared to

see if the following instruction can be executed identically. At minimum, the con-

figurations’ call stacks must have the same program counter and the inputs to the

instruction pointed to by the program counter must be identical for the call stacks.

After the instruction is executed just once for all the configurations, the same checks

are applied and sharing continues until a check fails, at which point execution is split

by configurations and each configuration’s execution may be paused by tracejoin,

repeating the process.

Figure A.1(b) shows a tracejoin that allows foo() to be executed just once

for two test cases with a positive input and a negative input. Line 11 states that ex-

ecutions should be paused according to joinpoints() pointcut and their program

states compared according to mergepoint() function. A pointcut is an AspectJ

construct that specifies which events to intercept. In this case, the pointcut pauses

each configuration’s execution immediatey after the execution enters foo() and

158

picks out the String argument as s. Once all the configurations have been paused,

an array of String, ss, is available (note that joinpoints(ss[-]) in line 11

specifies that each element of the String array has been picked out by the join-

point). mergepoint() requires that all the array elements are identical (line 8).

If mergepoint() check passes, an additional check is performed by the underlying

customizable multiexecution implementation to see if the configurations’ call stacks

have the same program counter and the inputs to the next instruction are identi-

cal. Assuming that pushing the address of “annoying string” on the stack frame is

the first instruction of foo(), the additional check passes and line 12 is executed,

which pushes the address just once for all the configurations. Suppose that the next

instruction is to load t on the stack frame. Technically, the value of t (pointer

address) will be different from one configuration to another and therefore execu-

tion would have to split. However, because mergepoint() checked that the string

objects are deeply equal, the multiple pointer addresses can be treated as a single

address and all instructions of foo() can be shared. After foo() finishes however,

execution will have to split since each configuration’s execution must return to the

respective call site.

A.3 Next Steps for Tracejoins

Some of the next steps in customizable multiexecution research are as follows. The

technique should be fully developed, addressing efficiency (e.g. minimizing compar-

isons once shared mode has started), and allowing multiple tracejoins. The technique

should then be evaluated. A possibility is to find traces of existing test cases that are

known to have similarity at points in execution that would require the expressiveness

of tracejoins’ pointcuts to enable multiexecution. From such traces, one could also

try to automatically extract tracejoins by using aspect mining techniques across the

traces. Such automated extraction would be especially useful for regression testing,

159

since tests have to be executed multiple times and it seems possible that shareable

portions of the tests do not change over runs. Also, although tracejoins can theo-

retically serve as a unifying framework for customizable multiexecution techniques,

actually using them to (re)implement existing techniques should make a stronger

case for tracejoins.

160

Bibliography

[1] Alfred V. Aho, Monica S. Lam, Ravi Sethi, and Jeffrey D. Ullman. Compilers:

Principles, Techniques, and Tools (2nd Edition). Addison-Wesley Longman

Publishing Co., Inc., Boston, MA, USA, 2006.

[2] Chris Allan, Pavel Avgustinov, Aske Simon Christensen, Laurie J. Hendren,

Sascha Kuzins, Ondrej Lhoták, Oege de Moor, Damien Sereni, Ganesh Sit-

tampalam, and Julian Tibble. Adding trace matching with free variables to

aspectj. In OOPSLA, pages 345–364, 2005.

[3] Sven Apel and Dirk Beyer. Feature cohesion in software product lines: an

exploratory study. In Proceedings of the 33rd International Conference on

Software Engineering, ICSE ’11, pages 421–430, New York, NY, USA, 2011.

ACM.

[4] Sven Apel, Alexander von Rhein, Philipp Wendler, Armin Groblinger, and

Dirk Beyer. Strategies for Product-Line Verification: Case Studies and Ex-

periments. In ICSE, 2013.

[5] Thomas H. Austin and Cormac Flanagan. Multiple facets for dynamic in-

formation flow. In Proceedings of the 39th annual ACM SIGPLAN-SIGACT

symposium on Principles of programming languages, POPL ’12, pages 165–

178, New York, NY, USA, 2012. ACM.

161

[6] Thomas H. Austin and Cormac Flanagan. Multiple facets for dynamic infor-

mation flow. SIGPLAN Not., 47(1):165–178, January 2012.

[7] D. Batory. Feature models, grammars, and propositional formulas. Technical

Report TR-05-14, University of Texas at Austin, Texas, March 2005.

[8] Don Batory. Ahead tool suite. http://www.cs.utexas.edu/users/

schwartz/ATS.html.

[9] Don Batory, Bernie Lofaso, and Yannis Smaragdakis. Jts: Tools for imple-

menting domain-specific languages. In In Proceedings Fifth International Con-

ference on Software Reuse, pages 143–153. IEEE.

[10] Antonia Bertolino and Stefania Gnesi. Pluto: A test methodology for product

families. In Frank van der Linden, editor, PFE, volume 3014 of Lecture Notes

in Computer Science, pages 181–197. Springer, 2003.

[11] Eric Bodden. Efficient Hybrid Typestate Analysis by Determining

Continuation-Equivalent States. In ICSE 2010. ACM Press.

[12] Eric Bodden. Clara: a framework for implementing hybrid typestate analyses.

Technical Report Clara-2. Available from http://www.bodden.de/pubs/tr-

clara-2.pdf, 2009.

[13] Eric Bodden. Private and Soot newsgroup correspondence, 2010.

[14] Eric Bodden, Feng Chen, and Grigore Rosu. Dependent advice: a general

approach to optimizing history-based aspects. In AOSD 2009. ACM.

[15] Eric Bodden, Patrick Lam, and Laurie Hendren. Finding programming er-

rors earlier by evaluating runtime monitors ahead-of-time. In SIGSOFT

2008/FSE-16. ACM.

162

http://www.cs.utexas.edu/users/schwartz/ATS.html
http://www.cs.utexas.edu/users/schwartz/ATS.html

[16] Eric Bodden, Mira Mezini, Claus Brabrand, Társis Tolêdo, Márcio Ribeiro,

and Paulo Borba. SPLlift - transparent and efficient reuse of IFDS-based static

program analyses for software product lines. In ACM SIGPLAN Conference

on Programming Language Design and Implementation (PLDI 2013), June

2013. To appear.

[17] Jan Bosch and Jaejoon Lee, editors. Software Product Lines: Going Be-

yond - 14th International Conference, SPLC 2010, Jeju Island, South Korea,

September 13-17, 2010. Proceedings, volume 6287 of Lecture Notes in Com-

puter Science. Springer, 2010.

[18] Chandrasekhar Boyapati, Sarfraz Khurshid, and Darko Marinov. Korat: Au-

tomated testing based on Java predicates. In ISSTA’02, July 2002.

[19] Claus Brabrand, Márcio Ribeiro, Társis Tolêdo, and Paulo Borba. Intrapro-

cedural dataflow analysis for software product lines. In Proceedings of the

11th annual international conference on Aspect-oriented Software Develop-

ment, AOSD ’12, pages 13–24, New York, NY, USA, 2012. ACM.

[20] Isis Cabral, Myra B. Cohen, and Gregg Rothermel. Improving the testing and

testability of software product lines. In Bosch and Lee [17], pages 241–255.

[21] Satish Chandra, Emina Torlak, Shaon Barman, and Rastislav Bod́ık. Angelic

debugging. In Taylor et al. [94], pages 121–130.

[22] Feng Chen and Grigore Roşu. MOP: an efficient and generic runtime verifica-

tion framework. In OOPSLA 2007, pages 569–588. ACM Press.

[23] Andreas Classen, Patrick Heymans, Pierre-Yves Schobbens, and Axel Legay.

Symbolic model checking of software product lines. In Taylor et al. [94], pages

321–330.

163

[24] Andreas Classen, Patrick Heymans, Pierre-Yves Schobbens, Axel Legay, and

Jean-Franois Raskin. Model checking lots of systems: Efficient verification of

temporal properties in software product lines (to appear). In 32nd Interna-

tional Conference on Software Engineering, ICSE 2010, May 2-8, 2010, Cape

Town, South Africa, Proceedings. IEEE, 2010. Acceptance rate: 13.7

[25] Curtis Clifton, Gary T. Leavens, and James Noble. MAO: Ownership and

effects for more effective reasoning about aspects. In ECOOP’07.

[26] Myra B. Cohen, Matthew B. Dwyer, and Jiangfan Shi. Coverage and adequacy

in software product line testing. In ROSATEA ’06: Proceedings of the ISSTA

2006 workshop on Role of software architecture for testing and analysis. ACM,

2006.

[27] Myra B. Cohen, Matthew B. Dwyer, and Jiangfan Shi. Interaction testing of

highly-configurable systems in the presence of constraints. In ISSTA ’07: Pro-

ceedings of the 2007 international symposium on Software testing and analysis,

pages 129–139, New York, NY, USA, 2007. ACM.

[28] Patrick Cousot and Radhia Cousot. Modular static program analysis. In

Proceedings of Compiler Construction, pages 159–178. Springer-Verlag, 2002.

[29] Marcelo d’Amorim, Steven Lauterburg, and Darko Marinov. Delta execution

for efficient state-space exploration of object-oriented programs. In Proceedings

of the 2007 international symposium on Software testing and analysis, ISSTA

’07, pages 50–60, New York, NY, USA, 2007. ACM.

[30] Brett Daniel, Tihomir Gvero, and Darko Marinov. On test repair using sym-

bolic execution. In Paolo Tonella and Alessandro Orso, editors, ISSTA, pages

207–218. ACM, 2010.

164

[31] Daniel S. Dantas and David Walker. Harmless advice. SIGPLAN Not.,

41(1):383–396, 2006.

[32] Erik Ernst, editor. ECOOP 2007 - Object-Oriented Programming, 21st Eu-

ropean Conference, Berlin, Germany, July 30 - August 3, 2007, Proceedings,

volume 4609 of Lecture Notes in Computer Science. Springer, 2007.

[33] FEST. FEST: Fixtures for Easy Software Testing. http://fest.

easytesting.org/.

[34] FitNesse. FitNesse: The fully integrated standalone wiki and acceptance test-

ing framework. http://fitnesse.org/.

[35] Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides. Design pat-

terns: elements of reusable object-oriented software. Addison-Wesley Longman

Publishing Co., Inc., Boston, MA, USA, 1995.

[36] Dimitra Giannakopoulou, Corina S. Pasareanu, and Howard Barringer. As-

sumption generation for software component verification. In ASE’02.

[37] Patrice Godefroid. Model checking for programming languages using verisoft.

In Proceedings of the 24th ACM SIGPLAN-SIGACT symposium on Principles

of programming languages, POPL ’97, pages 174–186, New York, NY, USA,

1997. ACM.

[38] GraphStream. GraphStream: A Dynamic Graph Library. http://

graphstream-project.org/.

[39] Alexander Gruler, Martin Leucker, and Kathrin Scheidemann. Modeling and

model checking software product lines. In FMOODS 2008, pages 113–131.

Springer-Verlag.

165

http://fest.easytesting.org/
http://fest.easytesting.org/
http://fitnesse.org/
http://graphstream-project.org/
http://graphstream-project.org/

[40] Robert J. Hall. Fundamental nonmodularity in electronic mail. Autom. Softw.

Eng., 12(1):41–79, 2005.

[41] Mary Jean Harrold, James A. Jones, Tongyu Li, Donglin Liang, Alessandro

Orso, Maikel Pennings, Saurabh Sinha, S. Alexander Spoon, and Ashish Gu-

jarathi. Regression test selection for java software. In OOPSLA’01.

[42] Gerald Holzmann. The model checker SPIN. IEEE Transactions on Software

Engineering, 23(5), May 1997.

[43] Petr Hosek and Cristian Cadar. Safe Software Updates via Multi-version

Execution. In International Conference on Software Engineering (ICSE 2013),

2013.

[44] HTMLCleaner. HTMLCleaner. http://htmlcleaner.sourceforge.

net/.

[45] Human-resource management system. 101Companies. http://

101companies.org/index.php/101companies:Project.

[46] Mikolás Janota. Do sat solvers make good configurators? In Steffen Thiel

and Klaus Pohl, editors, SPLC (2), pages 191–195. Lero Int. Science Centre,

University of Limerick, Ireland, 2008.

[47] Java tokenizer and parser tools. JTopas. http://jtopas.sourceforge.

net/jtopas/index.html.

[48] Jikes RVM. Jikes research virtual machine. http://jikesrvm.org/.

[49] Kyo Kang, Sholom Cohen, James Hess, William Nowak, and Spencer Peter-

son. Feature-oriented domain analysis (FODA) feasibility study. Technical

Report CMU/SEI-90-TR-21, Software Engineering Institute, Carnegie Mellon

University, Pittsburgh, PA, November 1990.

166

http://htmlcleaner.sourceforge.net/
http://htmlcleaner.sourceforge.net/
http://101companies.org/index.php/101companies:Project
http://101companies.org/index.php/101companies:Project
http://jtopas.sourceforge.net/jtopas/index.html
http://jtopas.sourceforge.net/jtopas/index.html
http://jikesrvm.org/

[50] Christian Kästner and Sven Apel. Type-checking software product lines - a

formal approach. In Automated Software Engineering (ASE), 2008.

[51] Christian Kästner, Alexander von Rhein, Sebastian Erdweg, Jonas Pusch,

Sven Apel, Tillmann Rendel, and Klaus Ostermann. Toward variability-aware

testing. In Proceedings of the 4th International Workshop on Feature-Oriented

Software Development, FOSD ’12, pages 1–8, New York, NY, USA, 2012.

ACM.

[52] Shadi Abdul Khalek and Sarfraz Khurshid. Efficiently running test suites

using abstract undo operations. In ISSRE, 2011.

[53] Gregor Kiczales, Erik Hilsdale, Jim Hugunin, Mik Kersten, Jeffrey Palm, and

William G. Griswold. An overview of aspectj. In ECOOP’01.

[54] Chang Hwan Peter Kim. Reducing combinatorics in product line testing:

Tool and results. Available from http://userweb.cs.utexas.edu/

˜chpkim/spltesting, 2010.

[55] Chang Hwan Peter Kim. Reducing Configurations to Monitor in a Software

Product Line: Tool and Results. Available from http://userweb.cs.

utexas.edu/˜chpkim/splmonitoring, 2010.

[56] Chang Hwan Peter Kim. Shared execution for efficiently testing

product lines: Evaluation. http://www.cs.utexas.edu/˜chpkim/

sharedexecution, 2012.

[57] Chang Hwan Peter Kim. Deferred execution for efficiently testing

product lines: Evaluation. http://www.cs.utexas.edu/˜chpkim/

deferredexecution, 2013.

[58] Chang Hwan Peter Kim, Don Batory, and Sarfraz Khurshid. Re-

ducing Combinatorics in Product Line Testing. In AOSD, 2011.

167

http://userweb.cs.utexas.edu/~chpkim/spltesting
http://userweb.cs.utexas.edu/~chpkim/spltesting
http://userweb.cs.utexas.edu/~chpkim/splmonitoring
http://userweb.cs.utexas.edu/~chpkim/splmonitoring
http://www.cs.utexas.edu/~chpkim/sharedexecution
http://www.cs.utexas.edu/~chpkim/sharedexecution
http://www.cs.utexas.edu/~chpkim/deferredexecution
http://www.cs.utexas.edu/~chpkim/deferredexecution

Available from http://userweb.cs.utexas.edu/˜chpkim/

chpkim-productline-testing.pdf.

[59] Chang Hwan Peter Kim, Eric Bodden, Don S. Batory, and Sarfraz Khurshid.

Reducing configurations to monitor in a software product line. In Howard

Barringer, Yliès Falcone, Bernd Finkbeiner, Klaus Havelund, Insup Lee, Gor-

don J. Pace, Grigore Rosu, Oleg Sokolsky, and Nikolai Tillmann, editors, RV,

volume 6418 of Lecture Notes in Computer Science, pages 285–299. Springer,

2010.

[60] Chang Hwan Peter Kim, Sarfraz Khurshid, and Don S. Batory. Shared exe-

cution for efficiently testing product lines. In ISSRE, pages 221–230. IEEE,

2012.

[61] Chang Hwan Peter Kim, Darko Marinov, Sarfraz Khurshid, and Don Batory.

SPLat: Evaluation. http://www.cs.utexas.edu/˜chpkim/splat,

2013.

[62] Chang Hwan Peter Kim, Darko Marinov, Sarfraz Khurshid, Don Batory, Sab-

rina Souto, Paulo Barros, and Marcelo dAmorim. SPLat: Lightweight Dy-

namic Analysis for Reducing Combinatorics in Testing Configurable Systems.

In FSE, 2013. Available from http://www.cs.utexas.edu/˜chpkim/

chpkim-splat.pdf.

[63] Clemens Kolbitsch, Benjamin Livshits, Benjamin Zorn, and Christian Seifert.

Rozzle: De-cloaking internet malware. In Oakland, 2012.

[64] Korat home page. http://mir.cs.illinois.edu/korat/.

[65] Jeff Kramer. Conic: an integrated approach to distributed computer control

systems. Computers and Digital Techniques, IEE Proceedings E, 130(1), 1983.

168

http://userweb.cs.utexas.edu/~chpkim/chpkim-productline-testing.pdf
http://userweb.cs.utexas.edu/~chpkim/chpkim-productline-testing.pdf
http://www.cs.utexas.edu/~chpkim/splat
http://www.cs.utexas.edu/~chpkim/chpkim-splat.pdf
http://www.cs.utexas.edu/~chpkim/chpkim-splat.pdf
http://mir.cs.illinois.edu/korat/

[66] Anatole Le, Ondřej Lhoták, and Laurie Hendren. Using inter-procedural side-

effect information in jit optimizations. In Compiler Construction, volume 3443

of LNCS, 2005.

[67] Ondřej Lhoták and Laurie Hendren. Scaling Java points-to analysis using

Spark. In G. Hedin, editor, Compiler Construction, 12th International Con-

ference, volume 2622 of LNCS, pages 153–169, Warsaw, Poland, April 2003.

Springer.

[68] Harry Li, Shriram Krishnamurthi, and Kathi Fisler. Verifying cross-cutting

features as open systems. SIGSOFT Softw. Eng. Notes, 27(6):89–98, 2002.

[69] J. Jenny Li, Birgit Geppert, Frank Rößler, and David M. Weiss. Reuse exe-

cution traces to reduce testing of product lines. In SPLC (2), pages 65–72.

Kindai Kagaku Sha Co. Ltd., Tokyo, Japan, 2007.

[70] Library for object persistence. Prevayler. http://spl2go.cs.ovgu.de.

[71] Library to serialize objects to XML and back again. XStream. http://

xstream.codehaus.org/.

[72] Roberto E. Lopez-herrejon and Don Batory. A standard problem for eval-

uating product-line methodologies. In Proc. 2001 Conf. Generative and

Component-Based Software Eng, pages 10–24. Springer, 2001.

[73] Robyn Lutz. Survey of product-line verification and validation techniques.

Technical report, Jet Propulsion Laboratory, NASA, May 2007.

[74] John McGregor. Testing a Software Product Line. Technical

Report CMU/SEI-2001-TR-022, CMU/SEI, March 2001. Available

from http://www.sei.cmu.edu/pub/documents/01.reports/pdf/

01tr022.pdf.

169

http://spl2go.cs.ovgu.de
http://xstream.codehaus.org/
http://xstream.codehaus.org/
http://www.sei.cmu.edu/pub/documents/01.reports/pdf/01tr022.pdf
http://www.sei.cmu.edu/pub/documents/01.reports/pdf/01tr022.pdf

[75] Sowmiya Chocka Narayanan. Clustered test execution using java pathfinder.

In Master’s Thesis. Department of Electrical and Computer Engineering. Uni-

versity of Texas at Austin, 2010.

[76] Oracle. Java lesson: Exceptions. Document available at http://download.

oracle.com/javase/tutorial/essential/exceptions/.

[77] Cristian Cadar Petr Hosek. Safe software updates via multi-version execution.

In International Conference on Software Engineering (ICSE 2013), pages 612–

621, 5 2013.

[78] Malte Plath and Mark Ryan. Feature integration using a feature construct.

Sci. Comput. Program., 41(1):53–84, 2001.

[79] Klaus Pohl and Andreas Metzger. Software product line testing. Commun.

ACM, 49(12):78–81, 2006.

[80] Christian Prehofer. Semantic reasoning about feature composition via multiple

aspect-weavings. In GPCE’06.

[81] Puzzle game. Sudoku. https://code.launchpad.net/

˜spl-devel/spl/default-branch.

[82] Alexander Von Rhein, Sven Apel, and Franco Raimondi. Introducing Binary

Decision Diagrams in the Explicit-State Verification of Java Code. In JPF

Workshop, 2011.

[83] RIACS/NASA Ames Research Center. Java PathFinder. http://

javapathfinder.sourceforge.net/.

[84] Gregg Rothermel and Mary Jean Harrold. Analyzing regression test selection

techniques. IEEE Transactions on Software Engineering, 22, 1996.

170

http://download.oracle.com/javase/tutorial/essential/exceptions/
http://download.oracle.com/javase/tutorial/essential/exceptions/
https://code.launchpad.net/
~spl-devel/spl/default-branch
http://javapathfinder.sourceforge.net/
http://javapathfinder.sourceforge.net/

[85] Sable Group. Soot: a Java optimization framework. http://www.sable.

mcgill.ca/soot/.

[86] SAT4J. SAT4J. http://www.sat4j.org/.

[87] Fred B. Schneider. Enforceable security policies. ACM Trans. Inf. Syst. Secur.,

3(1):30–50, 2000.

[88] David Schuler, Valentin Dallmeier, and Andreas Zeller. Efficient mutation

testing by checking invariant violations. In Gregg Rothermel and Laura K.

Dillon, editors, ISSTA, pages 69–80. ACM, 2009.

[89] SIR. SIR: Software-artifact Infrastructure Repository. http://sir.unl.

edu/portal/index.php.

[90] Gregor Snelting and Frank Tip. Semantics-based composition of class hierar-

chies. In ECOOP’02.

[91] Manu Sridharan, Stephen J. Fink, and Rastislav Bod́ık. Thin slicing. In

Jeanne Ferrante and Kathryn S. McKinley, editors, PLDI, pages 112–122.

ACM, 2007.

[92] Vanessa Stricker, Andreas Metzger, and Klaus Pohl. Avoiding redundant

testing in application engineering. In Bosch and Lee [17], pages 226–240.

[93] SuperCSV. SuperCSV. http://supercsv.sourceforge.net/.

[94] Richard N. Taylor, Harald Gall, and Nenad Medvidovic, editors. Proceedings

of the 33rd International Conference on Software Engineering, ICSE 2011,

Waikiki, Honolulu , HI, USA, May 21-28, 2011. ACM, 2011.

[95] Sahil Thaker, Don S. Batory, David Kitchin, and William R. Cook. Safe

composition of product lines. In Charles Consel and Julia L. Lawall, editors,

GPCE, pages 95–104. ACM, 2007.

171

http://www.sable.mcgill.ca/soot/
http://www.sable.mcgill.ca/soot/
http://www.sat4j.org/
http://sir.unl.edu/portal/index.php
http://sir.unl.edu/portal/index.php
http://supercsv.sourceforge.net/

[96] Nikolai Tillmann and Wolfram Schulte. Unit tests reloaded: Parameterized

unit testing with symbolic execution. Technical Report MSR-TR-2005-153,

Microsoft Research, Redmond, Washington, November 2005.

[97] Joseph Tucek, Weiwei Xiong, and Yuanyuan Zhou. Efficient online valida-

tion with delta execution. In Proceedings of the 14th international conference

on Architectural support for programming languages and operating systems,

ASPLOS ’09, pages 193–204, New York, NY, USA, 2009. ACM.

[98] Engin Uzuncaova, Daniel Garcia, Sarfraz Khurshid, and Don S. Batory. Test-

ing software product lines using incremental test generation. In ISSRE’08.

[99] Willem Visser, Klaus Havelund, Guillaume Brat, and SeungJoon Park. Model

checking programs. In Proc. of the 15th Conference on Automated Software

Engineering (ASE), Grenoble, France, 2000.

[100] Mark Weiser. Program slicing. In ICSE ’81: Proceedings of the 5th inter-

national conference on Software engineering, pages 439–449, Piscataway, NJ,

USA, 1981. IEEE Press.

[101] E.J. Weyuker and T.J. Ostrand. Theories of program testing and the appli-

cation of revealing subdomains. IEEE Transactions on Software Engineering,

6(3):236–246, 1980.

[102] Tao Xie, Darko Marinov, and David Notkin. Rostra: A framework for detect-

ing redundant object-oriented unit tests. In ASE’04.

172

Vita

Chang Hwan Peter Kim earned a Bachelor of Applied Science in Computer Engi-

neering from the University of Waterloo, Canada in June 2005. He earned a Master

of Applied Science in Electrical and Computer Engineering from the same university

under the supervision of Professor Krzysztof Czarnecki in June 2006. He earned a

PhD in Computer Science from the University of Texas at Austin, USA under the

supervision of Professor Don Batory and Professor Sarfraz Khurshid (defended in

September 2013 and will have received degree in December 2013). In October 2013,

he became a postdoctoral research assistant in the Department of Computer Sci-

ence at the University of Oxford, UK under the supervision of Professor Marta

Kwiatkowska.

Permanent Address: Toronto, Ontario, Canada

This dissertation was typeset with LATEX 2ε
1 by the author.

1LATEX 2ε is an extension of LATEX. LATEX is a collection of macros for TEX. TEX is a trademark of
the American Mathematical Society. The macros used in formatting this dissertation were written
by Dinesh Das, Department of Computer Sciences, The University of Texas at Austin, and extended
by Bert Kay, James A. Bednar, and Ayman El-Khashab.

173

	Acknowledgments
	Abstract
	Chapter Introduction
	Dissertation Overview
	Contributions

	Chapter Background
	Features and Feature Model
	Mapping Features to Code
	Product Line Test

	Chapter Statically Pruning Configurations to Test
	Introduction
	Motivating Example
	Relevant Features
	Pruning Features
	Conditions for Relevance

	Static Analysis
	Introductions
	Modifications
	Indirect Effect

	Configurations to Test
	Case Studies
	Graph Product Line (GPL)
	Notepad
	jak2java

	Discussion
	Assumptions and Limitations
	Effectiveness
	Testing Missing Functionality
	Threats to Validity
	Perspective

	Related Work
	Product Line Testing and Verification
	Program Slicing
	Feature Interactions
	Compositional Analysis and Verification
	Reducing Testing Effort

	Summary

	Chapter SPLat: Lightweight Dynamic Analysis for Reducing Combinatorics in Testing Configurable Systems
	Introduction
	Introduction
	Motivating Example
	Technique
	Feature Model Interface
	Main Algorithm
	Example Run
	Reset Function
	Potential Optimization
	Implementation

	Evaluation
	Software Product Lines
	Configurable Systems
	Threats to Validity

	Related Work
	Dynamic Analysis
	Static Analysis

	Summary

	Chapter Statically Reducing Configurations to Monitor in a Software Product Line
	Introduction
	Motivating Example
	Example Monitor Specifications: ReadPrint and HasNext
	Analysis by Example
	The Need for a Dedicated Static Analysis for Product Lines

	Product Line Aware Static Analysis
	Required Symbols and Shadows
	Presence Conditions
	Precision on a Pay-As-You-Go Basis

	Evaluation
	Case Studies
	Discussion

	Related Work
	Summary

	Chapter Shared Execution for Efficiently Testing Product Lines
	Introduction
	Shared Execution: Basic Technique
	Bookkeeping
	Splitting
	Merging
	Putting Ideas Together

	Example
	Splitting and Merging

	Shared Execution: Optimizations
	Memory
	Optimistic Merging
	Garbage Collection

	Evaluation
	Graph Product Line (GPL)
	JTopas
	XStream

	Discussion
	Threats to Validity
	Correctness
	Native Code
	Hybrid Approaches
	Other Benefits of Sharing Execution

	Related Work
	Testing Conventional Programs
	Testing Product Lines

	Summary

	Chapter Deferred Execution for Efficiently Testing Product Lines
	Introduction
	Multivalued Stack Operands
	Multiaddresses
	Writes
	Reads
	Method Invocations
	Implementing Multiaddresses

	Evaluation
	FitNesse
	SuperCSV
	HTMLCleaner
	Overall Results
	Threats to Validity

	Related Work
	Summary

	Chapter Discussion and Future Work
	Threats to Validity
	Integrating the Techniques
	Improving the Techniques
	New Problems and Solutions
	Customizable Multiexecution

	Chapter Retrospective
	Positives
	Difficulties
	Hindsight

	Chapter Conclusion
	Appendices
	Chapter Tracejoins
	Motivating Example
	Technique
	Next Steps for Tracejoins

	Bibliography
	Vita

