

Copyright

by

Jongwook Kim

2011

The Thesis Committee for Jongwook Kim

Certifies that this is the approved version of the following thesis:

Paan: A Tool for Back-Propagating Changes to Projected Documents

APPROVED BY

SUPERVISING COMMITTEE:

Don S. Batory

Dewayne E. Perry

Supervisor:

Paan: A Tool for Back-Propagating Changes to Projected Documents

by

Jongwook Kim, B.E.

Thesis

Presented to the Faculty of the Graduate School of

The University of Texas at Austin

in Partial Fulfillment

of the Requirements

for the Degree of

Master of Science in Computer Science

The University of Texas at Austin

May 2011

Dedication

This thesis is dedicated to my trusted friend, Jungsub Lee.

 v

Acknowledgements

It is my privilege to have Professor Don Batory as my advisor for my graduate

work. Without his generous support, guidance, and patience, this work would not have

been possible.

I would also like to thank Professor Dewayne Perry for his valuable instructions

and comments.

Last but not least, I thank my parents. This thesis is a product of their

unconditional love, support, and encouragement throughout the years. Words alone

cannot convey my appreciation and love for them.

May 2011

 vi

Abstract

Paan: A Tool for Back-Propagating Changes to Projected Documents

Jongwook Kim, M.S.C.S.

The University of Texas at Austin, 2011

Supervisor: Don Batory

Research in Software Product Line Engineering (SPLE) traditionally focuses on

product derivation. Prior work has explored the automated derivation of products by

module composition. However, it has so far neglected propagating changes (edits) in a

product back to the product line definition. A domain-specific product should be possible

to update its features locally, and later these changes should be propagated back to the

product line definition automatically. Otherwise, the entire product line has to be revised

manually in order to make the changes permanent. Although this is the current state, it is

a very error-prone process. To address these issues, we present a tool called Paan to

create product lines of MS Word documents with back-propagation support. It is a diff-

based tool that ignores unchanged fragments and reveals fragments that are changed,

added or deleted. Paan takes a document with variation points (VPs) as input, and shreds

 vii

it into building blocks called tiles. Only those tiles that are new or have changed must be

updated in the tile repository. In this way, changes in composed documents can be back-

propagated to their original feature module definitions. A document is synthesized by

retrieving the appropriate tiles and composing them.

 viii

Table of Contents

List of Tables ... ix

List of Figures ..x

Chapter 1: Introduction ...1

1.1 Painting Programs ..3

1.2 Tiles and Projection ...4

1.3 Tile Implementations and Variation Points ...4

1.4 Back-Propagation of Changes..6

Chapter 2: Design ...7

2.1 Office Open XML ..7

2.2 Tagging Features ..7

2.3 Nested Preprocessor Semantics ...8

2.4 Wrapping and Wrappers ..9

2.5 N-Way Interactions ..11

2.6 Projection ...14

2.6.1 File Projection ..14

2.6.2 Tag Projection ..14

2.7 Back-Propagation ...16

2.8 Merging Tiles ...17

Chapter 3: Evaluation ...21

3.1 Experience..21

3.2 Experiment ...25

Chapter 4: Related Work ..34

Chapter 5: Conclusion...37

Bibliography ..39

Vita ...43

 ix

List of Tables

Table 2.1: Tile Mergence Rules ...18

Table 3.1: Notepad Results ..26

Table 3.2: Feature Definition in GPL ..31

Table 3.3: GPL Document Results...32

 x

List of Figures

Figure 1.1: The Counted Stack ..3

Figure 1.2: The Counted Stack with Variation Points ...5

Figure 2.1: MS Word Custom Markup Tags and its XML8

Figure 2.2: Nesting and Projection of Tags ...9

Figure 2.3: Variants of Wrappers ..10

Figure 2.4: Wrappers ...11

Figure 2.5: Non-Wrapper Interaction and Predicate ...12

Figure 2.6: Wrapper Interaction and Predicate ..12

Figure 2.7: Tile Interaction and Predicate ...13

Figure 2.8: Projecting Wrappers..15

Figure 2.9: Multiple Variation Points of Single Wrapper16

Figure 2.10: Tile Merging ...18

Figure 2.11: Tile Mergence for Inner Non-Wrappers ...19

Figure 2.12: Tile Mergence of Wrappers ..19

Figure 2.13: Invalid Tile Mergence ...20

Figure 3.1: Back-Propagation Error ..21

Figure 3.2: Block-Level Structures in XML Codes ..22

Figure 3.3: Block-Level Error Correction ...23

Figure 3.4: Projection Error ...23

Figure 3.5: XML codes of a Projected Table ..24

Figure 3.6: A Feature Model of Notepad ..25

Figure 3.7: Wrappers vs. Non-Wrappers ...26

Figure 3.8: Main Class of Notepad..28

 xi

Figure 3.9: Notepad Variations ...29

Figure 3.10: A Feature Model of GPL ..30

Figure 3.11: Implementation Notes of a GPL Document......................................32

Figure 3.12: A Projected GPL Document ...33

Figure 4.1: Selected FJ Definitions with GFJ Changes36

 1

Chapter 1: Introduction

Feature Oriented Software Development (FOSD) is the study of feature

modularization and composition for program synthesis in Software Product Lines (SPLs),

where a feature is an increment in program development or functionality [2]. In FOSD, a

feature module encapsulates changes that are made to a program in order to add a

feature‟s capability or functionality. Starting with an empty program, adding (or

composing on) such modules synthesizes a distinct program in an SPL. Each program in

an SPL has a unique feature composition [4, 11, 34].

A hallmark of FOSD is that it takes a compositional approach to program

synthesis. Recent progress in FOSD tooling has taken a projectional approach, which is

particularly well-suited for decomposing legacy applications into feature modules. The

idea is to color or paint a program. All code that belongs to the Yellow feature is

painted yellow; all code that belongs to the Red feature is painted red. If the Yellow

feature is required, and Red is not, Red is projected from the program. Painting is a

reincarnation of “sysgen” – the use of preprocessors to eliminate unneeded code. The

difference is that painting works with abstract syntax tree representations, so that the

legality of the projected program‟s structure can be guaranteed. Stated differently,

painting is a disciplined use of #def and #ifdef-#endif concepts.

Painting also goes further in that it gives a visual way to understand feature

interactions [31]. When yellow code is nested inside red code, we see the interaction of

the Yellow and Red features. In this case, how Yellow changes the code of Red. Of

course, there is symmetry: red code that is nested inside yellow shows how the Red

feature changes the code of Yellow. These are examples of two-way interactions. Color

nesting n-levels deep represents an n-way feature interaction. The benefit here is that the

 2

relationship between features and feature interactions is not well-understood, and

painting provides an attractive way to improve this situation.

Against this backdrop, this thesis takes painting in several new directions. First,

we apply the ideas to MS Word documents. We have created a tool, called Paan (which

is Korean for „version‟), that allows Word documents to be painted. We leverage existing

MS Word annotation capabilities to designate (nested) regions of color. Second, painting

is presently understood as nested #ifdef-#endif regions. Paan not only supports this

painting, but also another that arises in programming – wrapping (as in method

wrapping). Oddly, wrapping is difficult to express using #ifdef-#endif because the

changes to the region of code that is to be made is outside, rather than inside, that region.

(Wrapping envelopes a code region, rather than modifying its internals). Paan supports

wrapping natively. Third, Paan implements an algebra (called a Tile Algebra) that

represents a formal model of painting. And it was through this algebra that the following

scenario was envisioned. Suppose a Word document is painted. This document has

sensitive data, so only projections (which are themselves Word documents) can be given

to others. Now, recipients will want to make changes to their copy. A facility is needed to

automatically back-propagate changes made in projected documents to the original

painted document. This ability is the key novelty of Paan.

In the following sections, we give a more detailed overview of Paan, this area of

research, and the problems to be addressed in this thesis. We start by illustrating the

concept of painting.

 3

1.1 PAINTING PROGRAMS

Consider a counted stack [27], where characters are pushed and popped from a

String and the number of elements on the stack is counted. Such a stack has three

features: Base, Stack, and Counter (Figure 1.1). The Base feature is painted with a

clear color and represents an empty stack class. The Stack feature is painted green and

contains the standard push, pop, empty, and top methods, along with a String that

encodes the character stack. The Counter feature is blue and contains an integer

counter and size method. Stack and Counter interactions are blue inside green, which

reset, increment, and decrement the counter variable.

Figure 1.1: The Counted Stack

 4

1.2 TILES AND PROJECTION

The structure of a painted document can be understood in terms of tiles. The

BASE tile represents the code of the Base feature. The blue-inside-clear (and clear-

inside-blue, which in this example doesn‟t exist) region represents the interaction of

Base and Stack features. This region is labeled BASE#STACK (the order of features

in a #-expression does not matter: BASE#STACK = STACK#BASE). There are other

tiles in our example, namely BASE#COUNT and BASE#STACK#COUNT (blue-inside-

green-inside-clear above). The entire document (Doc) is produced by composing these

tiles:

Doc = BASE#STACK#COUNT∙BASE#COUNT∙BASE#STACK∙BASE

A projection of this document that eliminates, say the Counter feature, removes

tiles whose name includes COUNT. So a projection of Doc without the Counter feature

yields DocNoC:

DocNoC = BASE#STACK∙BASE

1.3 TILE IMPLEMENTATIONS AND VARIATION POINTS

Internally, here is how a program (or Word document) is structured. A program

can have any number of labeled VPs, i.e. points at which a code fragment can be inserted.

A tile can contain fragments that are to be inserted at VPs. Figure 1.2 shows the counted

stack and its five VPs indicated by stars. Each VP is associated with precisely one

fragment, which is installed or uninstalled depending on the tiles that are composed. The

Base feature has a single tile with two variation points VP1 and VP2. The blue tile

inside clear contains the fragment that is installed at VP1. The green tile inside clear

contains the fragment that is installed at VP2. This fragment has three variation points

 5

VP3, VP4, and VP5. The blue tile inside green contains the three fragments that are

installed at these points.

Figure 1.2: The Counted Stack with Variation Points

VPs and fragments are always in one-to-one correspondence [6]. It is not possible

for multiple fragments to be installed at the same VP. However, it is possible for some

fragments of a tile to remain uninstalled after composition, as they are installed later

when another tile adds the required VPs.

In the following chapters, we explore in greater detail these ideas.

 6

1.4 BACK-PROPAGATION OF CHANGES

We assume that a programmer would see markers in a program for existing VPs,

and would add new markers and their fragments to add new VPs. Further, a programmer

would be at liberty to change any fragment present in the program. If the program source

in a SPL is revised to fix bugs locally, updating of the product line based on the local

changes should be automatic. Otherwise, the entire product line has to be corrected

manually in order to make the fix permanent. As mentioned earlier, is may be undesirable

to allow the access to the entire SPL that can contain proprietary data exposed only to

certain communities.

In [9], a Tile Algebra suggested a solution. A programmer requests program P =

T1∙…∙Tn, where P is a composition of tiles. The programmer manually modifies P to

produce program Q = T0∙T
′
1∙…∙Tn. When the client submits the updated program Q, a

tool can solve for the changes ∆P. The way this is accomplished is to use a special

property of tiles called involution: a tile is the inverse of itself (T∙T = 1). Thus:

′

// given

// compose P to both sides

// involution

// substitution

// involution

This is essentially program (or document) differencing. Paan takes a MS Word document

with VPs as input and shreds it into tiles. Only those tiles that are new or have changed

are updated in the tile repository. Therefore, changes in composed documents can be

back-propagated to their original feature module definitions.

 7

Chapter 2: Design

2.1 OFFICE OPEN XML

Office Open XML is an open standard of XML schemas adopted by Microsoft

Office for its default file format [17, 38]. It specifies a compressed, XML-based encoding

of Microsoft Office 2007 and 2010 documents, where different XML formats are used for

Word, Visio, Excel, and InfoPath. In transition from binary file formats to XML-based

representations, MS Office documents are universally accessible across disparate systems

by supporting openly available technologies – XML and ZIP compression. The XML

schema for MS Word is standardized in ECMA-376 and ISO/IEC 29500, and is available

under a royalty-free license [41]. Also, ZIP archives use an industry-standard

compression format to allow non-Microsoft products to extract and manipulate MS

Office documents [38]. By changing a .docx file to .zip, the contents of an MS Word

document (consisting of multiple XML files and directories) become visible. Above all,

Office Open XML is suited for projectional approaches in SPLs, which necessitate

mechanisms to explicitly define VPs in a document. We use MS Word‟s Custom Markup

facility to allow users to color Word documents.

2.2 TAGGING FEATURES

We created a tool, called Paan – Korean for „version‟, that enables us to explore a

new implementation of coloring, based on the Tile Algebra as the foundation for its

design. Specifically Paan works with MS Word documents and relies on the Custom

XML Markup facility of MS Word to define nested regions of color and VPs. A markup

tag is used to assign a feature name to a fragment of a Word document. A fragment is

 8

identified by enclosing start and end tags. In Figure 2.1a, a pair of tags named blue

surrounds a “Hello World” fragment. Its XML representation is given in Figure 2.1b.

Figure 2.1: MS Word Custom Markup Tags and its XML

2.3 NESTED PREPROCESSOR SEMANTICS

In Paan, tags are nested like preprocessor #ifdef-#endif declarations.

Projection works in an obvious manner. An inner tag can appear only if all of its

enclosing tags (features) have been selected. In Figure 2.2a, red tags wrap vowels.

Being surrounded by a blue tag, they can appear only when both the blue and red

features are selected. Figure 2.2b is a projection where the blue feature was not

 9

selected. A VP is marked by a special tag named _reserved_, and assigned a unique

number for identification. A VP‟s ID number is stored as the tag‟s property. Figure 2.2c

shows another projection where blue, but not red, was selected.

Figure 2.2: Nesting and Projection of Tags

Admittedly, Word‟s Custom Markup Facility does not have the prettiest or the

most compact esthetics. We discuss later our experiences in using this facility.

2.4 WRAPPING AND WRAPPERS

Paan extends the coloring technique described above to also support wrapping. A

wrapper is a fragment that surrounds another fragment. Wrappers occur in AHEAD and

FeatureHouse as the way features extend methods [4, 7], in object-orientation where

subclasses extend methods of a superclass by wrapping, and in AOP as around advise of

execution pointcuts of individual methods [26]. Figure 2.3a shows a base method m().

Figure 2.3b shows a refinement of m() in AHEAD syntax that wraps m(). Figure 2.3c

shows the identical refinement of m() in AspectJ syntax. Figure 2.3d is the result of

composing the base method with this refinement.

 10

Figure 2.3: Variants of Wrappers

 Wrapping is hard to express in preprocessor semantics as it has exactly the

opposite semantics of nesting. Let B be a base fragment and W be a wrapper of B. If B and

W are also the names of their respective features, B belongs to the B tile and wrapper W

belongs to the interaction tile W#B. Unlike nesting, where an interaction tile T#B that

modifies B is fully enclosed by B, wrapping reverses the roles where the wrapped tile B is

fully inside the interaction tile W#B. Figure 2.4a shows how a base-wrapper (BASE) and

refinement-wrapper (RED) are colored in Paan. Wrapper tags, BASE and RED, are in

upper-case whereas non-wrapper tags are in lower-case. Figure 2.4b is a projection where

BASE, but not RED, was selected. (Note that BASE belongs to the BASE tile; RED

belongs to the interaction tile RED#BASE). Figure 2.4c is a projection where the BASE

feature was not selected. (The same result would be produced whether or not the RED

feature was selected, as both BASE and BASE#RED are projected).

 11

Figure 2.4: Wrappers

2.5 N-WAY INTERACTIONS

Paan offers a visually simple way to recognize n-way interactions by the nesting

of n tags. So an interaction module f#g#h would be the set of all fragments that are

nested 3-deep using any permutation of features f, g, and h. In practice, 2-way

interactions are common, but 3-way interactions arise occasionally. 4-way or higher-

order interactions seem rare. Figure 2.5a is a 4-deep interaction of non-wrappers, and

Figure 2.5b is list of their user-assigned predicates. In predicate expression of feature

interactions, # is mapped to ˄-operation in conjunctive normal form (CNF).

 12

Figure 2.5: Non-Wrapper Interaction and Predicate

Figure 2.6: Wrapper Interaction and Predicate

 13

Paan also enables higher-order wrappers by allowing users to define a predicate

and hence the tile-interaction expression of a wrapper, so that all interaction tiles

permitted by the Tile Algebra can be expressed. Figure 2.6a is an interaction of wrappers.

Base-wrappers are always the inner-most fragments. Others interact only with the base-

wrapper, and need, at least, one base-wrapper to appear. Accordingly, in Figure 2.6b, the

predicates are totally different from those of non-wrappers in Figure 2.5b.

Figure 2.7: Tile Interaction and Predicate

 14

 Paan allows a mixture of non-wrapped and wrapped regions. Figure 2.7a

illustrates a mixture of regions, and Figure 2.7b lists their predicates. Here is the rule that

we use (and that we determined makes the most sense) regarding how to interpret an

interaction of region: Wrappers take precedent. Once a wrapper region is determined, this

region can be further subdivided by non-wrappers. Non-wrappers extend only to the

boarder of its wrapper, but no further. In Figure 2.7a, non-wrapper, c subdivides wrapper

B. Non-wrapper e subdivides wrapper D. And non-wrapper g subdivides wrapper A.

2.6 PROJECTION

2.6.1 File Projection

Paan represents all subdirectories and files in an internal repository, and allows

users to create projections by selecting desired features [21]. Starting from the root

directory in a repository, predicates of subdirectories are evaluated by traversing the

directory tree in in-order (parent-to-children). Projection empties directories that have a

false predicate, and sets them to be invisible and empty. For the files whose predicate is

false, projection changes them to be and empty hidden file. Only for MS Word

documents with a true predicate is projection on inner tags is performed and (a typically)

non-empty file is produced.

2.6.2 Tag Projection

Projection on nested tags works like #ifdef-#endif in preprocessors. An

inner tag can appear only if all of its enclosing tags have been selected. Projection of

wrappers is accomplished in a slightly different way. Paan traverses the Word document

W in its repository in its entirety. Let p denote the set of features that were selected,

 15

meaning that their fragments are to remain after projection. A traversal of W encounters a

sequence of fragments. Let T be a fragment and T(x) be its propositional formula. If

T(p) is true, T is present in Wp. Otherwise, T is not included, but the traversal of T to the

next fragment continues. This is different than a document with only nested colors, as

once a fragment is eliminated, there is no need to search inside the fragment. The need to

continue searching further is required as outer wrappers may not appear, but inner

wrappers may appear in a projection. Not surprisingly, wrappers increase slightly the

complexity of the projection algorithm.

To illustrate, Figure 2.8a shows a base fragment wrapped by a blue and

green fragment. Figure 2.8b shows the projection of the base feature. Figure 2.8c

shows the projection of the base and green features, and Figure 2.8d the projection of

base and blue features.

Figure 2.8: Projecting Wrappers

 16

2.7 BACK-PROPAGATION

The key novelty of Paan is that it allows users to edit a projected document, and

then merge its changes with the version in the repository. Back-propagation restores the

contents of projected VPs by restoring directories, files, and Word fragments. The

projected directory or file is simply replaced with the original. Inside a document, VPs

indicated by the _reserve_ tag have their projected contents restored. However, once a

VP is deleted by users, installation for that VP is not possible. Moreover, in case that a

single wrapper has multiple VPs, one lost VP invalidates all others. In Figure 2.9a, a RED

fragment is wrapped by a BLUE fragment. Figure 2.9b shows a projection where the RED

feature was not selected. The only condition to restore two VPs of the BLUE wrapper is

existence of both.

Figure 2.9: Multiple Variation Points of Single Wrapper

Let W be a tagged MS Word document and let Wp be a projection of W, where p is

a set of features. Therefore, Wp eliminates all fragments from W whose set of colors do not

belong to p. A user can now modify Wp at will, adding new VPs that are instantiated

with their text, modifying visible fragments, and deleting existing VPs including VPs

whose text has been projected.

To back-propagate the changes in Wp to W, Paan maintains a copy of W in its

repository that existed prior to projection. It then traverses Wp to locate VPs whose

 17

fragments have been projected. For each such VP i, it finds fragment i in W and restores

that fragment in Wp. At the end, all projected fragments in Wp have been restored with

their original contents. Paan then discards the original copy W and replaces it with Wp.

And the projection-back-propagate cycle continues. Here, the restoration of projected

VPs can be accomplished in linear time, since a single pass through W is enough to find

all (VP, fragment) pairs and a single pass through Wp can restore projected VPs.

Paan's back-propagation algorithm is slightly different than that given in Section

1.4. Paan simply assumes that all fragments in Wp have been modied, and proceeds to

update its repository copy on this conservative basis simply because it is faster. However,

it does use the diffing idea of Section 1.4. A Paan repository can consist of multiple Word

documents and directories. If a Word document has not been changed, Paan does not

update the repository's copy. Paan infers this information by examining a Word

document's revision number and comparing it to the revision number in the repository. If

they are the same, the document has not been modified.

2.8 MERGING TILES

Paan supports #-involution (R#R=1) in the Tile Algebra. When Paan sees

replicated features in region names, it merges regions. For example, when Paan

recognizes a region whose #-expression is R#B#R (red-inside-blue-inside-red) as in

Figure 2.10a, Paan merges R#B#R into B#R in Figure 2.10b.

 18

Figure 2.10: Tile Merging

During projection, redundant tags are removed since their predicates are always

true. Tile merging is applied to wrappers as well in the following rules:

Inner

Non-Wrapper Wrapper

Outer
Non-Wrapper

Implicative
(Unavailable)

Wrapper Equivalent

Table 2.1: Tile Mergence Rules

An inner non-wrapper is merged with its adjacently outer fragment (any of

wrapper or non-wrapper) if the predicate of the outer fragment implies that of the inner

one. This follows in that an inner non-wrapper can display only if the outer appears, since

their predicates are equivalent by #-involution as shown in Figure 2.11.

In case of two adjacent wrappers, they should have equivalent predicates to be

merged. That is because wrappers are independent each other but share all or some base-

wrappers. Once two adjacent wrappers have the same combination of base-wrappers,

they are identical in terms of predicates. In Figure 2.12a, two RED wrappers cannot be

merged due to different base wrappers. Unlike non-wrappers, the predicates of adjacent

wrappers are possibly different although their features are identical as RED in Figure

2.12b.

 19

Figure 2.11: Tile Mergence for Inner Non-Wrappers

Figure 2.12: Tile Mergence of Wrappers

 Exceptionally, it is not allowed to merge an outer non-wrapper with its adjacent

inner wrapper. In Figure 2.13a, the outer non-wrapper red implies the inner wrapper

 20

RED but merging both tiles is not possible. The red belongs to its wrapper GREEN, and

has no interaction with the wrapper RED as predicates listed in Figure 2.13b.

Figure 2.13: Invalid Tile Mergence

 21

Chapter 3: Evaluation

3.1 EXPERIENCE

An Office Open XML document is composed of a series of parts and

relationships between the parts that are stored in a container called a package. For

instance, a document of pictures roughly consists of two parts: one part of an XML

markup to represent the document and another part to provide the pictures.

A MS Word‟s Main Document part is encapsulated by a body element that

contains a collection of block-level structures: paragraph, run, and text. The body

consists of a sequence of paragraphs. Also, a paragraph contains one or more

runs, where a run is a container for one or more pieces of text. Therefore, there exist

hierarchical constraints in that text must be contained within one or more runs, and a

run must be contained within a paragraph. Unfortunately, these syntactic structures

can be broken by back-propagation.

Figure 3.1: Back-Propagation Error

In Figure 3.1a, a pair of tags named blue surrounds a “Hello world” fragment.

Figure 3.1b is a projection where the blue feature was not selected. An arbitrary string

“abc” is appended before the VP in Figure 3.1c. We expect that back-propagation

 22

restores the “Hello world” fragment at the VP and produces Figure 3.1d. Unfortunately,

the resulting Word file invalidates schema conformity.

The XML representation of Figure 3.1a is given in Figure 3.2a. A paragraph

contains a run, and the run surrounds a text “Hello world”. In Figure 3.2b, this

paragraph is replaced with the corresponding VP by projection. In Figure 3.2c,

concatenating “abc” makes a new paragraph to surround the string followed by the

VP. Then, back-propagation results in reiterated paragraphs: a paragraph is in

another paragraph. This violates the element structure, and MS Word creates an

error message about syntactically incorrect XML codes.

Figure 3.2: Block-Level Structures in XML Codes

 23

Figure 3.3: Block-Level Error Correction

In Figure 3.3, Paan recovers those errors which break the block-level structures

among body, paragraph, run, and text, so that the behavior is exactly what users

would expect (as in Figure 3.1d). However, a body element can contain other block-

level contents such as tables, section properties, comments, revision

markers, range permission markers, alternate format chunks,

custom XML, structured document tags as well as paragraphs. It took

time to understand how to fix (repair) paragraph structures w.r.t. variation points. All of

these other structures would require repairs too if they were colored.

Figure 3.4: Projection Error

 24

Figure 3.4a shows a 3×3 table whose mid-most cell is wrapped by blue. We

expect Figure 3.4b as a projection where the blue feature was not selected, but the table

that is produced is the ugly version in Figure 3.4c. Figure 3.5 shows the XML codes

corresponding to Figure 3.4a. Codes inside the square say that Custom Markup tags wrap

an entire cell, not the text of it. Accordingly, projection replaces the mid-most cell

fragment with a VP, and the table loses one cell as a result.

Figure 3.5: XML codes of a Projected Table

Herein lies a difficulty in leveraging MS tagging for coloring. The semantics of

tagging are not necessarily the same as those of coloring. It is not easy to understand how

to repair XML code in all cases. Paan does not have a complete set of solutions, and

limits coloring to paragraph tagging. This raises a more basic issue: coloring is a

 25

functionality that should be part of the design of any tool like MS Word: it should not be

an after-thought, or be implemented as an after-thought (as we have done).

3.2 EXPERIMENT

We evaluated Paan on two product lines: a Notepad application written in Java

and a Graph Product Line (GPL) document about implementation of different graph

algorithms [15]. Paan was used to pull apart Notepad to create variations arising from

different combinations of functionalities such as „Find‟, „Print‟, „Select‟, etc. Figure 3.6

shows a feature diagram of the Notepad product line: Base is a mandatory feature, and

the remaining features are optional. Each feature displays an associated toolbar and

menubar buttons in user interface. We found that we could color Notepad using only

non-wrappers or only wrappers.

Figure 3.6: A Feature Model of Notepad

Figure 3.7a shows a declaration of JButton classes using non-wrappers. Optional

features (print and find) are tagged. In Figure 3.7b, wrappers have no difference

from non-wrappers as long as features do not interact. Figure 3.7c shows use of wrapper

interactions. The inner-most BASE must exist to show optional features (FIND or

PRINT).

 26

Figure 3.7: Wrappers vs. Non-Wrappers

Non-Wrappers/Wrappers & No

Interactions

Wrappers &

Interactions

Lines of Code 2074

Available Features 25

Possible

Configurations
7056

Tags 56 58

Depth
MAX 1 6

AVG 1 1.51

Interactions 0 10

Table 3.1: Notepad Results

Table 3.1 makes it clear that wrappers in Figure 3.7c apparently lead to more and

higher-degree feature interactions, which we found surprising. (It was our initial thought

 27

that features and feature interactions would be fundamental to a design, irrespective to

whether wrappers or non-wrappers are used. Evidently, this is not the case. This raises an

interesting question for future researchers: why is this so?) In any case, variations of

Notepad can be developed incrementally by progressively exposing optional features.

Figure 3.8 shows tagging features to Main class. It has a mixture of non-wrappers and

wrappers.

 28

Figure 3.8: Main Class of Notepad

We used three practical configurations from Notepad: editing, publishing, and

reading. Editing has basic features to write, delete, and modify plain text along with

 29

„Find‟ and „Undo/Redo‟. Publishing includes „Print‟, „Font‟ and „Select‟. Only for

opening Notepad to read, „Wrap‟ and „Find‟ should be enough. Figure 3.9 shows these

variations of Notepad. Figure 3.9a has all features. Figure 3.9b, 3.9c, and 3.9d are the

editing, publishing and reading configurations, respectively. (Note: we produced these

versions by making Word documents out of each Java file. Projected Word files were

then reduced to the text of Java files, which were then compiled and run. It is from these

executions that the figures below were obtained).

Figure 3.9: Notepad Variations

GPL has 1713 LOC with 18 features and 156 configurations. Its variations

originate from algorithms (e.g. BFS and DFS) and structures of the graph (e.g. directed,

weighted). Figure 3.10 shows a feature diagram of the GPL product line. Table 3.2

explains each feature briefly.

 30

Figure 3.10: A Feature Model of GPL

 31

Prog Creates the objects required to represent a graph,

and calls the algorithms of the family member on

this graph

Benchmark Contains functions to read a graph from a file

Vertex Numbering (Number) Assigns a unique number to each vertex as a result

of a graph traversal

Connected Components

(Connected)

Computes the connected components of an

undirected graph

Transpose Graph transposition

Strongly Connected Components

(StronglyConnected)

Computes the strongly connected components of a

directed graph

Cycle Checking (Cycle) Determines if there are cycles in a graph

Minimum Spanning Tree (MST

Prim, MST Kruskal)

Computes a Minimum Spanning Tree (MST)

Single-Source Shortest Path

(Shortest)

Computes the shortest path from a source vertex to

all other vertices

Breadth First Search (BFS) The standard breadth first search algorithm

Depth First Search (DFS) The standard depth-first search algorithm

Weighted/Unweighted Weighted/Unweighted graph

Directed/Undirected
Directed/Undirected graph

Table 3.2: Feature Definition in GPL

A GPL document in HTML format can be factored into features. It is composed of

several sections: <header>, <list of links to algorithms>, <section on programmatic

invocation>, <algorithm descriptions>, <implementation notes>, and <command-line

invocation>. An algorithm feature, BFS for example, contributes a line to the <list of

links> section and a few lines in the <algorithm description> sections. We used Paan to

synthesize a Word document that is an instruction manual for each GPL product. Each

data structure is described by a brief paragraph followed by a JPG image as shown in

Figure 3.11. An instruction manual for a GPL product contains only one rectangular

region corresponding to one of data structures: OnlyVertices, Neighbors-List, Edge-List

 32

Figure 3.11: Implementation Notes of a GPL Document

Lines of Code 2074

Available Features 18

Possible Configurations 156

Tags 15

Depth
MAX 2

AVG 2

Interactions 15

Table 3.3: GPL Document Results

Table 3.3 shows the master file with for a GPL document about eight algorithms, three

different data structures, and a base feature, from which productions can be made. We

used non-wrappers for tagging. All feature interactions arise between one optional feature

 33

and the base. Therefore, the interaction depth is always two. Figure 3.12 shows a

projected version of the document where the only selected is BFS.

Figure 3.12: A Projected GPL Document

 34

Chapter 4: Related Work

Colored IDE (CIDE) is an advance in FOSD tooling that visualizes features and

their interactions, and supports feature splitting and merging [23]. CIDE has preprocessor

semantics, where the code of a feature is effectively surrounded by #ifdef-#endif

statements, although it goes beyond traditional preprocessors by using ASTs rather than

text. Paan differs from CIDE in several respects. One, obviously, is the use of MS Word

documents where CIDE could not be used. Further, Paan relies on MS Word custom

markups for coloring. Paan also differs from CIDE in that it supports wrappers.

Czarnecki and Antkiewicz propose an approach to map feature models to

elements of UML activity diagrams using model templates [12]. UML elements are

annotated with presence conditions (constraints similar to predicates in Paan) which are

mapped from the original feature model. Using a tool called fmp2rsm, variants of UML

models are created by removing elements (fragments) whose conditions evaluate to false.

It is remarkable that fmp2rsm allows arbitrary propositional formulas in presence

conditions whereas Paan does not permit the NOT operation in predicates. Moreover,

fmp2rsm guarantees syntactic correctness in generating variants, since the generations

are not performed directly on the source code but on an abstract representation like the

AST used in CIDE.

Rabiser et al. suggest a tool-supported approach to generate product-specific

documents in SPLs [32]. It uses the decision-oriented DOPLER approach for resolving

variability [39]. The DOPLER tool suit adopts DocBook for variability modeling in

documents [14]. The XML schema, Document Type Definition (DTD), is extended to

define elements and attributes for implementing VPs in documents. Although the

DocBook system as of computer documentation standards is suitable for automatic

 35

document processing, it is quite challenging to convert between other types of documents

and DocBook. MS Word documents commonly-used in commercial domains should be

converted manually. It is an apparently tedious and error-prone process.

pure::variants is a commercial variant management application supporting

realization of product lines throughout the entire development phase [16]. Using Custom

XML Markup, it generates variants of a MS Word document from feature configurations.

However, unlike Paan, it does not provide any functionalities to update changes to the

original documents.

In [13], a programming language is developed incrementally through the addition

of features. In adding Generics to the calculus of Featherweight Java (FJ) to produce

the calculus of Generic Featherweight Java (GFJ), the required changes are woven

throughout the syntax and semantics of FJ. The left-hand column of Figure 4.1 presents a

subset of the syntax of FJ, the rules which formalize the subtyping relation that establish

the inheritance hierarchy, and the typing rule that ensures expressions for object creation

are well-formed. The corresponding definitions for GFJ = Generics×FJ appear in

the right-hand column where shading (similar to tagging in Paan) indicates differences.

These highlighted changes are the fragments of definitions that belong to the

Generics#FJ color. However, in this work, coloring is used as a means of

explanation, rather than as a tool to project colors thereby producing different variants.

 36

Figure 4.1: Selected FJ Definitions with GFJ Changes

 37

Chapter 5: Conclusion

The main contribution of this thesis is to extend prior work on program synthesis

in product-lines. In particular, we examined projectional approaches, called coloring,

where a complete document is partitioned into sections with distinct colors. Each feature

is associated with a distinct color, so the removal (or projection) of that feature from the

document will yield a subdocument (called a projected document) that contains only the

features that are needed. The novelty of this work shows how users can edit projected

documents, and these changes can be propagated back into the product line definition.

Our idea is inspired in part by studies on feature interactions (i.e. changes to a feature's

behavior): A document could expose only its projections due to some features

encompassing proprietary or sensitive data. Therefore, changes to a projected document

should be automatically propagated to its product-line definition file(s). By making the

feature interactions explicit, a solution was possible.

Paan is implemented as a tool to demonstrate that back-propagation is feasible.

Paan intelligently leveraged the Custom Markup to achieve coloring of MS Word

documents. Paan also natively supported wrapping, a form of coloring that has different

semantics of nested (#ifdef-#endif) preprocessor semantics. (Ultimately, Paan will

be used for experiments later to evaluate the differences between nested colors and

wrapping colors). However, the key novelty of Paan is its ability to shred a projected

document into fragments, and update only those that are new or have changed in the tile

repository, ignoring unchanged fragments.

Paan resolved some critical errors that break block-level structures inside a body

XML structure during projection and back-propagation. However, it is not sturdy against

any possible structures which are syntactically valid beyond paragraph, run, and

 38

text. Here in lies difficulties in understanding the complete standards of Office Open

XML. Moreover, MS Word rearranges tags in order to perform code optimization.

During experiments, it found to be time-consuming and tedious job to copy codes

between Word documents and other file types. We hope to improve Paan to automate

conversion of MS Word documents to text representations others as well.

 39

Bibliography

[1] A. Aho, M. S. Lam, R. Sethi, and J. D. Ullman. Compilers: Principles,

Techniques, and Tools Second Edition. Pearson Education, 2006.

[2] S. Apel and C. Kästner. An Overview of Feature-Oriented Software

Development. Journal of Object Technology (JOT), 8(5):49--84, 2009.

[3] S. Apel, C. Kästner, and D. Batory. Aspectual feature modules. In GPCE, 2008.

[4] S. Apel, C. Kästner, and C. Lengauer. Featurehouse: Language-independent,

automated software composition. In ICSE, 2009.

[5] S. Apel, W. Scholz, C. Lengauer, and C. Kästner. Detecting dependences and

interactions in feature-oriented design. In ISSRE, 2010.

[6] P. Bassett. Frame-based software engineering. IEEE Software, 4(4), 1987.

[7] D. Batory. Ahead tool suite. http://www.cs.utexas.edu/users/schwartz/ATS.html.

[8] D. Batory. Feature Models, Grammars, and Propositional Formulas. In SPLC,

Sept. 2005.

[9] D. Batory, J. Kim, and P. Höfner. Understanding Feature Interactions. 2011.

[10] D. Batory and S. O‟Malley. The Design and Implementation of Hierarchical

Software Systems with Reusable Components. ACM TOSEM, 1992.

[11] D. Batory, J. Sarvela, and A. Rauschmayer. Scaling Step-Wise Refinement. IEEE

TSE, June 2004.

[12] K. Czarnecki and M. Antkiewicz. Mapping Features to Models: A Template

Approach Based on Superimposed Variants. In R. Glück and M. R. Lowry,

 40

editors, GPCE, volume 3676 of Lecture Notes in Computer Science, pages 422–

437. Springer, 2005.

[13] B. Delaware, W. Cook, and D. Batory. Engineering modular metatheory.

Submitted, 2011.

[14] Dhungana, D., Rabiser, R., Grünbacher, P., Lehner, K., Federspiel, C.: DOPLER:

An Adaptable Tool Suite for Product Line Engineering. In: Proceedings of the

11th International Software Product Line Conference (SPLC 2007), Kyoto, Japan,

vol. 2, pp. 151–152. Kindai Kagaku Sha Co. Ltd. (2007).

[15] C. Ghezzi, M. Jazayeri, and D. Mandrioli. Fundamentals of Software

Engineering. Prentice Hall, 2002.

[16] Pure:systems GmbH: Automatic Generation of Word Document Variants (2010),

http://www.pure-systems.com/flash/pv-wordintegration/flash.html.

[17] ECMA International, "Office Open XML File Formats", 1st Edition, ECMA-376,

December 2006.

[18] ECMA International, "Office Open XML File Formats", 2nd Edition, ECMA-

376, December 2008.

[19] M. Jackson and P. Zave. Distributed feature composition: A virtual architecture

for telecommunications services. IEEE TSE, October 1998.

[20] K. Kang. Private Correspondence, Oct. 2003.

[21] K. Kang, S. Cohen, J. Hess, W. Novak, and A. Peterson. Feature-oriented domain

analysis (foda) feasibility study. CMU/SEI-90-TR-021, 1990.

[22] C. Kästner, S. Apel, and D. Batory. A case study implementing features using

aspect. In SPLC, 2007.

 41

[23] C. Kästner, S. Apel, and M. Kuhlemann. Granularity in software product lines. In

ICSE, 2008.

[24] C. Kästner end et al. On the impact of the optional feature problem: Analysis and

case studies. In SPLC, 2009.

[25] C. H. P. Kim, C. Kästner, and D. Batory. On the modularity of feature

interactions. In GPCE, 2008.

[26] G. Kiczales et al. Aspect-Oriented Programming. In ECOOP, 1997.

[27] J. Liu, D. Batory, and C. Lengauer. Feature Oriented Refactoring of Legacy

Applications. In ICSE, 2006.

[28] J. Liu, D. Batory, and S. Nedunuri. Modeling interactions in feature oriented

designs. In Int. Conf. on Feature Interactions, 2005.

[29] R. E. Lopez-herrejon and D. Batory. A standard problem for evaluating product-

line methodologies. In Proc. 2001 Conf. Generative and Component-Based

Software Eng, pages 10-24. Springer, 2001.

[30] C. Prehofer. Feature Oriented Programming: A Fresh Look at Objects. In

ECOOP, 1997.

[31] Feature interaction problem.

http://en.wikipedia.org/wiki/Feature_interaction_problem.

[32] R. Rabiser, W. Heider, C. Elsner, M. Lehofer, P. Gr nbacher, and C.

Schwanninger. A flexible approach for generating product-specific documents in

product lines. In Proceedings of the 14th International Software Product Line

Conference, pages 47-61, Jeju Island, South Korea, 2010. Springer-Verlag Berlin

Heidelberg.

 42

[33] D. Roundy. Darcs: Distributed version management in Haskell. In ACM

SIGPLAN Workshop on Haskell, 2005.

[34] I. Schaefer, L. Bettini, F. Damiani, and N. Tanzarella. Delta-oriented

programming of software product lines. In SPLC, 2010.

[35] S. Sobernig. Feature interaction networks. In ACM Symposium on Applied

Computing, 2010.

[36] Stayton, B.: DocBook XSL. Sagehill Enterprises (2005).

[37] International Organization for Standardization, "Information technology --

Document description and processing languages -- Office Open XML File

Formats -- Part 1: Fundamentals and Markup Language Reference -- Amendment

1", ISO/IEC 29500-1:2008/Amd.1:2010.

[38] International Organization for Standardization, "Information technology --

Document description and processing languages -- Office Open XML File

Formats -- Part 2: Open Packaging Conventions", ISO/IEC 29500-2:2008.

[39] International Organization for Standardization, "Information technology --

Document description and processing languages -- Office Open XML File

Formats -- Part 3: Markup Compatibility and Extensibility", ISO/IEC 29500-

3:2008.

[40] International Organization for Standardization, "Information technology --

Document description and processing languages -- Office Open XML File

Formats -- Part 4: Transitional Migration Features -- Amendment 1", ISO/IEC

29500-4:2008/Amd.1:2010.

[41] Office Open XML, http://en.wikipedia.org/wiki/Office_Open_XML.

 43

Vita

Jongwook Kim was born in Republic of Korea on March 27th, 1980, the son of

Yongwoon Kim and Choonja Kim. He received the degree of Bachelor of Engineering in

Computer Science and Engineering from Korea University in 2008. After the graduation,

he entered the Graduate School at the University of Texas at Austin.

Permanent address: 7600 Wood Hollow DR APT 103, Austin, TX 78731

This thesis was typed by the author.

