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Abstract 

 

Paan: A Tool for Back-Propagating Changes to Projected Documents 

 

 

 

 

Jongwook Kim, M.S.C.S. 

The University of Texas at Austin, 2011 

 

Supervisor:  Don Batory 

 

 

Research in Software Product Line Engineering (SPLE) traditionally focuses on 

product derivation. Prior work has explored the automated derivation of products by 

module composition. However, it has so far neglected propagating changes (edits) in a 

product back to the product line definition. A domain-specific product should be possible 

to update its features locally, and later these changes should be propagated back to the 

product line definition automatically. Otherwise, the entire product line has to be revised 

manually in order to make the changes permanent. Although this is the current state, it is 

a very error-prone process. To address these issues, we present a tool called Paan to 

create product lines of MS Word documents with back-propagation support. It is a diff-

based tool that ignores unchanged fragments and reveals fragments that are changed, 

added or deleted. Paan takes a document with variation points (VPs) as input, and shreds 
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it into building blocks called tiles. Only those tiles that are new or have changed must be 

updated in the tile repository. In this way, changes in composed documents can be back-

propagated to their original feature module definitions. A document is synthesized by 

retrieving the appropriate tiles and composing them.  
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Chapter 1:  Introduction 

Feature Oriented Software Development (FOSD) is the study of feature 

modularization and composition for program synthesis in Software Product Lines (SPLs), 

where a feature is an increment in program development or functionality [2]. In FOSD, a 

feature module encapsulates changes that are made to a program in order to add a 

feature‟s capability or functionality. Starting with an empty program, adding (or 

composing on) such modules synthesizes a distinct program in an SPL. Each program in 

an SPL has a unique feature composition [4, 11, 34].  

A hallmark of FOSD is that it takes a compositional approach to program 

synthesis. Recent progress in FOSD tooling has taken a projectional approach, which is 

particularly well-suited for decomposing legacy applications into feature modules. The 

idea is to color or paint a program. All code that belongs to the Yellow feature is 

painted yellow; all code that belongs to the Red feature is painted red. If the Yellow 

feature is required, and Red is not, Red is projected from the program. Painting is a 

reincarnation of “sysgen” – the use of preprocessors to eliminate unneeded code. The 

difference is that painting works with abstract syntax tree representations, so that the 

legality of the projected program‟s structure can be guaranteed. Stated differently, 

painting is a disciplined use of #def and #ifdef-#endif concepts. 

Painting also goes further in that it gives a visual way to understand feature 

interactions [31]. When yellow code is nested inside red code, we see the interaction of 

the Yellow and Red features. In this case, how Yellow changes the code of Red. Of 

course, there is symmetry: red code that is nested inside yellow shows how the Red 

feature changes the code of Yellow. These are examples of two-way interactions. Color 

nesting n-levels deep represents an n-way feature interaction. The benefit here is that the 
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relationship between features and feature interactions is not well-understood, and 

painting provides an attractive way to improve this situation. 

Against this backdrop, this thesis takes painting in several new directions. First, 

we apply the ideas to MS Word documents. We have created a tool, called Paan (which 

is Korean for „version‟), that allows Word documents to be painted. We leverage existing 

MS Word annotation capabilities to designate (nested) regions of color. Second, painting 

is presently understood as nested #ifdef-#endif regions. Paan not only supports this 

painting, but also another that arises in programming – wrapping (as in method 

wrapping). Oddly, wrapping is difficult to express using #ifdef-#endif because the 

changes to the region of code that is to be made is outside, rather than inside, that region. 

(Wrapping envelopes a code region, rather than modifying its internals). Paan supports 

wrapping natively. Third, Paan implements an algebra (called a Tile Algebra) that 

represents a formal model of painting. And it was through this algebra that the following 

scenario was envisioned. Suppose a Word document is painted. This document has 

sensitive data, so only projections (which are themselves Word documents) can be given 

to others. Now, recipients will want to make changes to their copy. A facility is needed to 

automatically back-propagate changes made in projected documents to the original 

painted document. This ability is the key novelty of Paan. 

In the following sections, we give a more detailed overview of Paan, this area of 

research, and the problems to be addressed in this thesis. We start by illustrating the 

concept of painting. 
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1.1  PAINTING PROGRAMS 

Consider a counted stack [27], where characters are pushed and popped from a 

String and the number of elements on the stack is counted. Such a stack has three 

features: Base, Stack, and Counter (Figure 1.1). The Base feature is painted with a 

clear color and represents an empty stack class. The Stack feature is painted green and 

contains the standard push, pop, empty, and top methods, along with a String that 

encodes the character stack. The Counter feature is blue and contains an integer 

counter and size method. Stack and Counter interactions are blue inside green, which 

reset, increment, and decrement the counter variable. 

 

 

Figure 1.1: The Counted Stack 
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1.2  TILES AND PROJECTION 

The structure of a painted document can be understood in terms of tiles. The 

BASE tile represents the code of the Base feature. The blue-inside-clear (and clear-

inside-blue, which in this example doesn‟t exist) region represents the interaction of 

Base and Stack features. This region is labeled BASE#STACK (the order of features 

in a #-expression does not matter: BASE#STACK = STACK#BASE). There are other 

tiles in our example, namely BASE#COUNT and BASE#STACK#COUNT (blue-inside-

green-inside-clear above). The entire document (Doc) is produced by composing these 

tiles: 

Doc = BASE#STACK#COUNT∙BASE#COUNT∙BASE#STACK∙BASE 

 

A projection of this document that eliminates, say the Counter feature, removes 

tiles whose name includes COUNT. So a projection of Doc without the Counter feature 

yields DocNoC: 

DocNoC = BASE#STACK∙BASE 

 

1.3  TILE IMPLEMENTATIONS AND VARIATION POINTS 

Internally, here is how a program (or Word document) is structured. A program 

can have any number of labeled VPs, i.e. points at which a code fragment can be inserted. 

A tile can contain fragments that are to be inserted at VPs. Figure 1.2 shows the counted 

stack and its five VPs indicated by stars. Each VP is associated with precisely one 

fragment, which is installed or uninstalled depending on the tiles that are composed. The 

Base feature has a single tile with two variation points VP1 and VP2. The blue tile 

inside clear contains the fragment that is installed at VP1. The green tile inside clear 

contains the fragment that is installed at VP2. This fragment has three variation points 
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VP3, VP4, and VP5. The blue tile inside green contains the three fragments that are 

installed at these points. 

 

 

Figure 1.2: The Counted Stack with Variation Points 

 

VPs and fragments are always in one-to-one correspondence [6]. It is not possible 

for multiple fragments to be installed at the same VP. However, it is possible for some 

fragments of a tile to remain uninstalled after composition, as they are installed later 

when another tile adds the required VPs. 

In the following chapters, we explore in greater detail these ideas. 
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1.4  BACK-PROPAGATION OF CHANGES 

We assume that a programmer would see markers in a program for existing VPs, 

and would add new markers and their fragments to add new VPs. Further, a programmer 

would be at liberty to change any fragment present in the program. If the program source 

in a SPL is revised to fix bugs locally, updating of the product line based on the local 

changes should be automatic. Otherwise, the entire product line has to be corrected 

manually in order to make the fix permanent. As mentioned earlier, is may be undesirable 

to allow the access to the entire SPL that can contain proprietary data exposed only to 

certain communities.  

In [9], a Tile Algebra suggested a solution. A programmer requests program P = 

T1∙…∙Tn, where P is a composition of tiles. The programmer manually modifies P to 

produce program Q = T0∙T
′
1∙…∙Tn. When the client submits the updated program Q, a 

tool can solve for the changes ∆P. The way this is accomplished is to use a special 

property of tiles called involution: a tile is the inverse of itself (T∙T = 1). Thus: 

                    

                     

                      

                      
′                 

                      
      

// given 

// compose P to both sides 

// involution 

// substitution 

// involution 

 

This is essentially program (or document) differencing. Paan takes a MS Word document 

with VPs as input and shreds it into tiles. Only those tiles that are new or have changed 

are updated in the tile repository. Therefore, changes in composed documents can be 

back-propagated to their original feature module definitions.  
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Chapter 2:  Design 

2.1  OFFICE OPEN XML 

Office Open XML is an open standard of XML schemas adopted by Microsoft 

Office for its default file format [17, 38]. It specifies a compressed, XML-based encoding 

of Microsoft Office 2007 and 2010 documents, where different XML formats are used for 

Word, Visio, Excel, and InfoPath. In transition from binary file formats to XML-based 

representations, MS Office documents are universally accessible across disparate systems 

by supporting openly available technologies – XML and ZIP compression. The XML 

schema for MS Word is standardized in ECMA-376 and ISO/IEC 29500, and is available 

under a royalty-free license [41]. Also, ZIP archives use an industry-standard 

compression format to allow non-Microsoft products to extract and manipulate MS 

Office documents [38]. By changing a .docx file to .zip, the contents of an MS Word 

document (consisting of multiple XML files and directories) become visible. Above all, 

Office Open XML is suited for projectional approaches in SPLs, which necessitate 

mechanisms to explicitly define VPs in a document. We use MS Word‟s Custom Markup 

facility to allow users to color Word documents. 

 

2.2  TAGGING FEATURES 

We created a tool, called Paan – Korean for „version‟, that enables us to explore a 

new implementation of coloring, based on the Tile Algebra as the foundation for its 

design. Specifically Paan works with MS Word documents and relies on the Custom 

XML Markup facility of MS Word to define nested regions of color and VPs. A markup 

tag is used to assign a feature name to a fragment of a Word document. A fragment is 
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identified by enclosing start and end tags. In Figure 2.1a, a pair of tags named blue 

surrounds a “Hello World” fragment. Its XML representation is given in Figure 2.1b. 

 

 

Figure 2.1: MS Word Custom Markup Tags and its XML 

 

2.3  NESTED PREPROCESSOR SEMANTICS 

In Paan, tags are nested like preprocessor #ifdef-#endif declarations. 

Projection works in an obvious manner. An inner tag can appear only if all of its 

enclosing tags (features) have been selected. In Figure 2.2a, red tags wrap vowels. 

Being surrounded by a blue tag, they can appear only when both the blue and red 

features are selected. Figure 2.2b is a projection where the blue feature was not 
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selected. A VP is marked by a special tag named _reserved_, and assigned a unique 

number for identification. A VP‟s ID number is stored as the tag‟s property. Figure 2.2c 

shows another projection where blue, but not red, was selected. 

 

 

Figure 2.2: Nesting and Projection of Tags 

 

Admittedly, Word‟s Custom Markup Facility does not have the prettiest or the 

most compact esthetics. We discuss later our experiences in using this facility. 

 

2.4  WRAPPING AND WRAPPERS 

Paan extends the coloring technique described above to also support wrapping. A 

wrapper is a fragment that surrounds another fragment. Wrappers occur in AHEAD and 

FeatureHouse as the way features extend methods [4, 7], in object-orientation where 

subclasses extend methods of a superclass by wrapping, and in AOP as around advise of 

execution pointcuts of individual methods [26]. Figure 2.3a shows a base method m(). 

Figure 2.3b shows a refinement of m() in AHEAD syntax that wraps m(). Figure 2.3c 

shows the identical refinement of m() in AspectJ syntax. Figure 2.3d is the result of 

composing the base method with this refinement. 
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Figure 2.3: Variants of Wrappers 

 

 Wrapping is hard to express in preprocessor semantics as it has exactly the 

opposite semantics of nesting. Let B be a base fragment and W be a wrapper of B. If B and 

W are also the names of their respective features, B belongs to the B tile and wrapper W 

belongs to the interaction tile W#B. Unlike nesting, where an interaction tile T#B that 

modifies B is fully enclosed by B, wrapping reverses the roles where the wrapped tile B is 

fully inside the interaction tile W#B. Figure 2.4a shows how a base-wrapper (BASE) and 

refinement-wrapper (RED) are colored in Paan. Wrapper tags, BASE and RED, are in 

upper-case whereas non-wrapper tags are in lower-case. Figure 2.4b is a projection where 

BASE, but not RED, was selected. (Note that BASE belongs to the BASE tile; RED 

belongs to the interaction tile RED#BASE). Figure 2.4c is a projection where the BASE 

feature was not selected. (The same result would be produced whether or not the RED 

feature was selected, as both BASE and BASE#RED are projected).  
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Figure 2.4: Wrappers 

 

2.5  N-WAY INTERACTIONS 

Paan offers a visually simple way to recognize n-way interactions by the nesting 

of n tags. So an interaction module f#g#h would be the set of all fragments that are 

nested 3-deep using any permutation of features f, g, and h. In practice, 2-way 

interactions are common, but 3-way interactions arise occasionally. 4-way or higher-

order interactions seem rare. Figure 2.5a is a 4-deep interaction of non-wrappers, and 

Figure 2.5b is list of their user-assigned predicates. In predicate expression of feature 

interactions, # is mapped to ˄-operation in conjunctive normal form (CNF). 
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Figure 2.5: Non-Wrapper Interaction and Predicate 

 

 

Figure 2.6: Wrapper Interaction and Predicate 
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Paan also enables higher-order wrappers by allowing users to define a predicate 

and hence the tile-interaction expression of a wrapper, so that all interaction tiles 

permitted by the Tile Algebra can be expressed. Figure 2.6a is an interaction of wrappers. 

Base-wrappers are always the inner-most fragments. Others interact only with the base-

wrapper, and need, at least, one base-wrapper to appear. Accordingly, in Figure 2.6b, the 

predicates are totally different from those of non-wrappers in Figure 2.5b. 

 

  

Figure 2.7: Tile Interaction and Predicate 
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 Paan allows a mixture of non-wrapped and wrapped regions. Figure 2.7a 

illustrates a mixture of regions, and Figure 2.7b lists their predicates. Here is the rule that 

we use (and that we determined makes the most sense) regarding how to interpret an 

interaction of region: Wrappers take precedent. Once a wrapper region is determined, this 

region can be further subdivided by non-wrappers. Non-wrappers extend only to the 

boarder of its wrapper, but no further. In Figure 2.7a, non-wrapper, c subdivides wrapper 

B. Non-wrapper e subdivides wrapper D. And non-wrapper g subdivides wrapper A.  

 

2.6  PROJECTION 

2.6.1  File Projection 

Paan represents all subdirectories and files in an internal repository, and allows 

users to create projections by selecting desired features [21]. Starting from the root 

directory in a repository, predicates of subdirectories are evaluated by traversing the 

directory tree in in-order (parent-to-children). Projection empties directories that have a 

false predicate, and sets them to be invisible and empty. For the files whose predicate is 

false, projection changes them to be and empty hidden file. Only for MS Word 

documents with a true predicate is projection on inner tags is performed and (a typically) 

non-empty file is produced. 

 

2.6.2  Tag Projection 

Projection on nested tags works like #ifdef-#endif in preprocessors. An 

inner tag can appear only if all of its enclosing tags have been selected. Projection of 

wrappers is accomplished in a slightly different way. Paan traverses the Word document 

W in its repository in its entirety. Let p denote the set of features that were selected, 
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meaning that their fragments are to remain after projection. A traversal of W encounters a 

sequence of fragments. Let T be a fragment and T(x) be its propositional formula. If 

T(p) is true, T is present in Wp. Otherwise, T is not included, but the traversal of T to the 

next fragment continues. This is different than a document with only nested colors, as 

once a fragment is eliminated, there is no need to search inside the fragment. The need to 

continue searching further is required as outer wrappers may not appear, but inner 

wrappers may appear in a projection. Not surprisingly, wrappers increase slightly the 

complexity of the projection algorithm.  

To illustrate, Figure 2.8a shows a base fragment wrapped by a blue and 

green fragment. Figure 2.8b shows the projection of the base feature. Figure 2.8c 

shows the projection of the base and green features, and Figure 2.8d the projection of 

base and blue features. 

 

 

Figure 2.8: Projecting Wrappers 
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2.7  BACK-PROPAGATION 

The key novelty of Paan is that it allows users to edit a projected document, and 

then merge its changes with the version in the repository. Back-propagation restores the 

contents of projected VPs by restoring directories, files, and Word fragments. The 

projected directory or file is simply replaced with the original. Inside a document, VPs 

indicated by the _reserve_ tag have their projected contents restored. However, once a 

VP is deleted by users, installation for that VP is not possible. Moreover, in case that a 

single wrapper has multiple VPs, one lost VP invalidates all others. In Figure 2.9a, a RED 

fragment is wrapped by a BLUE fragment. Figure 2.9b shows a projection where the RED 

feature was not selected. The only condition to restore two VPs of the BLUE wrapper is 

existence of both.  

 

  

Figure 2.9: Multiple Variation Points of Single Wrapper 

 

Let W be a tagged MS Word document and let Wp be a projection of W, where p is 

a set of features. Therefore, Wp eliminates all fragments from W whose set of colors do not 

belong to p. A user can now modify Wp at will, adding new VPs that are instantiated 

with their text, modifying visible fragments, and deleting existing VPs including VPs 

whose text has been projected. 

To back-propagate the changes in Wp to W, Paan maintains a copy of W in its 

repository that existed prior to projection. It then traverses Wp to locate VPs whose 
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fragments have been projected. For each such VP i, it finds fragment i in W and restores 

that fragment in Wp. At the end, all projected fragments in Wp have been restored with 

their original contents. Paan then discards the original copy W and replaces it with Wp. 

And the projection-back-propagate cycle continues. Here, the restoration of projected 

VPs can be accomplished in linear time, since a single pass through W is enough to find 

all (VP, fragment) pairs and a single pass through Wp can restore projected VPs.  

Paan's back-propagation algorithm is slightly different than that given in Section 

1.4. Paan simply assumes that all fragments in Wp have been modied, and proceeds to 

update its repository copy on this conservative basis simply because it is faster. However, 

it does use the diffing idea of Section 1.4. A Paan repository can consist of multiple Word 

documents and directories. If a Word document has not been changed, Paan does not 

update the repository's copy. Paan infers this information by examining a Word 

document's revision number and comparing it to the revision number in the repository. If 

they are the same, the document has not been modified. 

 

2.8  MERGING TILES 

Paan supports #-involution (R#R=1) in the Tile Algebra. When Paan sees 

replicated features in region names, it merges regions. For example, when Paan 

recognizes a region whose #-expression is R#B#R (red-inside-blue-inside-red) as in 

Figure 2.10a, Paan merges R#B#R into B#R in Figure 2.10b. 
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Figure 2.10: Tile Merging 

 

During projection, redundant tags are removed since their predicates are always 

true. Tile merging is applied to wrappers as well in the following rules: 

 
Inner 

Non-Wrapper Wrapper 

Outer 
Non-Wrapper 

Implicative 
(Unavailable) 

Wrapper Equivalent 

Table 2.1: Tile Mergence Rules 

 

An inner non-wrapper is merged with its adjacently outer fragment (any of 

wrapper or non-wrapper) if the predicate of the outer fragment implies that of the inner 

one. This follows in that an inner non-wrapper can display only if the outer appears, since 

their predicates are equivalent by #-involution as shown in Figure 2.11. 

In case of two adjacent wrappers, they should have equivalent predicates to be 

merged. That is because wrappers are independent each other but share all or some base-

wrappers. Once two adjacent wrappers have the same combination of base-wrappers, 

they are identical in terms of predicates. In Figure 2.12a, two RED wrappers cannot be 

merged due to different base wrappers. Unlike non-wrappers, the predicates of adjacent 

wrappers are possibly different although their features are identical as RED in Figure 

2.12b. 
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Figure 2.11: Tile Mergence for Inner Non-Wrappers 

 

  

Figure 2.12: Tile Mergence of Wrappers 

 

 Exceptionally, it is not allowed to merge an outer non-wrapper with its adjacent 

inner wrapper. In Figure 2.13a, the outer non-wrapper red implies the inner wrapper 
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RED but merging both tiles is not possible. The red belongs to its wrapper GREEN, and 

has no interaction with the wrapper RED as predicates listed in Figure 2.13b. 

 

  

Figure 2.13: Invalid Tile Mergence 
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Chapter 3:  Evaluation 

3.1  EXPERIENCE 

An Office Open XML document is composed of a series of parts and 

relationships between the parts that are stored in a container called a package. For 

instance, a document of pictures roughly consists of two parts: one part of an XML 

markup to represent the document and another part to provide the pictures.  

A MS Word‟s Main Document part is encapsulated by a body element that 

contains a collection of block-level structures: paragraph, run, and text. The body 

consists of a sequence of paragraphs. Also, a paragraph contains one or more 

runs, where a run is a container for one or more pieces of text. Therefore, there exist 

hierarchical constraints in that text must be contained within one or more runs, and a 

run must be contained within a paragraph. Unfortunately, these syntactic structures 

can be broken by back-propagation.  

 

  

Figure 3.1: Back-Propagation Error 

 

In Figure 3.1a, a pair of tags named blue surrounds a “Hello world” fragment. 

Figure 3.1b is a projection where the blue feature was not selected. An arbitrary string 

“abc” is appended before the VP in Figure 3.1c. We expect that back-propagation 
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restores the “Hello world” fragment at the VP and produces Figure 3.1d. Unfortunately, 

the resulting Word file invalidates schema conformity.  

The XML representation of Figure 3.1a is given in Figure 3.2a. A paragraph 

contains a run, and the run surrounds a text “Hello world”. In Figure 3.2b, this 

paragraph is replaced with the corresponding VP by projection. In Figure 3.2c, 

concatenating “abc” makes a new paragraph to surround the string followed by the 

VP. Then, back-propagation results in reiterated paragraphs: a paragraph is in 

another paragraph. This violates the element structure, and MS Word creates an 

error message about syntactically incorrect XML codes. 

 

  

Figure 3.2: Block-Level Structures in XML Codes 
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Figure 3.3: Block-Level Error Correction 

 

In Figure 3.3, Paan recovers those errors which break the block-level structures 

among body, paragraph, run, and text, so that the behavior is exactly what users 

would expect (as in Figure 3.1d). However, a body element can contain other block-

level contents such as tables, section properties, comments, revision 

markers, range permission markers, alternate format chunks, 

custom XML, structured document tags as well as paragraphs. It took 

time to understand how to fix (repair) paragraph structures w.r.t. variation points. All of 

these other structures would require repairs too if they were colored.  

 

  

Figure 3.4: Projection Error 
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Figure 3.4a shows a 3×3 table whose mid-most cell is wrapped by blue. We 

expect Figure 3.4b as a projection where the blue feature was not selected, but the table 

that is produced is the ugly version in Figure 3.4c. Figure 3.5 shows the XML codes 

corresponding to Figure 3.4a. Codes inside the square say that Custom Markup tags wrap 

an entire cell, not the text of it. Accordingly, projection replaces the mid-most cell 

fragment with a VP, and the table loses one cell as a result.  

 

  

Figure 3.5: XML codes of a Projected Table 

 

Herein lies a difficulty in leveraging MS tagging for coloring. The semantics of 

tagging are not necessarily the same as those of coloring. It is not easy to understand how 

to repair XML code in all cases. Paan does not have a complete set of solutions, and 

limits coloring to paragraph tagging. This raises a more basic issue: coloring is a 
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functionality that should be part of the design of any tool like MS Word: it should not be 

an after-thought, or be implemented as an after-thought (as we have done). 

 

3.2  EXPERIMENT 

We evaluated Paan on two product lines: a Notepad application written in Java 

and a Graph Product Line (GPL) document about implementation of different graph 

algorithms [15]. Paan was used to pull apart Notepad to create variations arising from 

different combinations of functionalities such as „Find‟, „Print‟, „Select‟, etc. Figure 3.6 

shows a feature diagram of the Notepad product line: Base is a mandatory feature, and 

the remaining features are optional. Each feature displays an associated toolbar and 

menubar buttons in user interface. We found that we could color Notepad using only 

non-wrappers or only wrappers.  

 

  

Figure 3.6: A Feature Model of Notepad 

 

Figure 3.7a shows a declaration of JButton classes using non-wrappers. Optional 

features (print and find) are tagged. In Figure 3.7b, wrappers have no difference 

from non-wrappers as long as features do not interact. Figure 3.7c shows use of wrapper 

interactions. The inner-most BASE must exist to show optional features (FIND or 

PRINT). 
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Figure 3.7: Wrappers vs. Non-Wrappers 

 

  
Non-Wrappers/Wrappers & No 

Interactions 

Wrappers & 

Interactions 

Lines of Code 2074 

Available Features 25 

Possible 

Configurations 
7056 

Tags 56 58 

Depth 
MAX 1 6 

AVG 1 1.51 

Interactions 0 10 

Table 3.1: Notepad Results 

 

Table 3.1 makes it clear that wrappers in Figure 3.7c apparently lead to more and 

higher-degree feature interactions, which we found surprising. (It was our initial thought 
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that features and feature interactions would be fundamental to a design, irrespective to 

whether wrappers or non-wrappers are used. Evidently, this is not the case. This raises an 

interesting question for future researchers: why is this so?) In any case, variations of 

Notepad can be developed incrementally by progressively exposing optional features. 

Figure 3.8 shows tagging features to Main class. It has a mixture of non-wrappers and 

wrappers. 
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Figure 3.8: Main Class of Notepad 

 

We used three practical configurations from Notepad: editing, publishing, and 

reading. Editing has basic features to write, delete, and modify plain text along with 
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„Find‟ and „Undo/Redo‟. Publishing includes „Print‟, „Font‟ and „Select‟. Only for 

opening Notepad to read, „Wrap‟ and „Find‟ should be enough. Figure 3.9 shows these 

variations of Notepad. Figure 3.9a has all features. Figure 3.9b, 3.9c, and 3.9d are the 

editing, publishing and reading configurations, respectively. (Note: we produced these 

versions by making Word documents out of each Java file. Projected Word files were 

then reduced to the text of Java files, which were then compiled and run. It is from these 

executions that the figures below were obtained). 

 

  

Figure 3.9: Notepad Variations 

 

GPL has 1713 LOC with 18 features and 156 configurations. Its variations 

originate from algorithms (e.g. BFS and DFS) and structures of the graph (e.g. directed, 

weighted). Figure 3.10 shows a feature diagram of the GPL product line. Table 3.2 

explains each feature briefly. 
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Figure 3.10: A Feature Model of GPL 
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Prog Creates the objects required to represent a graph, 

and calls the algorithms of the family member on 

this graph 

Benchmark Contains functions to read a graph from a file 

Vertex Numbering (Number)  Assigns a unique number to each vertex as a result 

of a graph traversal 

Connected Components 

(Connected) 

Computes the connected components of an 

undirected graph 

Transpose Graph transposition 

Strongly Connected Components 

(StronglyConnected) 

Computes the strongly connected components of a 

directed graph 

Cycle Checking (Cycle) Determines if there are cycles in a graph 

Minimum Spanning Tree (MST 

Prim, MST Kruskal) 

Computes a Minimum Spanning Tree (MST) 

Single-Source Shortest Path 

(Shortest) 

Computes the shortest path from a source vertex to 

all other vertices 

Breadth First Search (BFS) The standard breadth first search algorithm 

Depth First Search (DFS) The standard depth-first search algorithm 

Weighted/Unweighted Weighted/Unweighted graph 

Directed/Undirected 
Directed/Undirected graph 

Table 3.2: Feature Definition in GPL 

 

A GPL document in HTML format can be factored into features. It is composed of 

several sections: <header>, <list of links to algorithms>, <section on programmatic 

invocation>, <algorithm descriptions>, <implementation notes>, and <command-line 

invocation>. An algorithm feature, BFS for example, contributes a line to the <list of 

links> section and a few lines in the <algorithm description> sections. We used Paan to 

synthesize a Word document that is an instruction manual for each GPL product. Each 

data structure is described by a brief paragraph followed by a JPG image as shown in 

Figure 3.11. An instruction manual for a GPL product contains only one rectangular 

region corresponding to one of data structures: OnlyVertices, Neighbors-List, Edge-List 

 



 32 

 

Figure 3.11: Implementation Notes of a GPL Document 

 

Lines of Code 2074 

Available Features 18 

Possible Configurations 156 

Tags 15 

Depth 
MAX 2 

AVG 2 

Interactions 15 

Table 3.3: GPL Document Results 

 

Table 3.3 shows the master file with for a GPL document about eight algorithms, three 

different data structures, and a base feature, from which productions can be made. We 

used non-wrappers for tagging. All feature interactions arise between one optional feature 
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and the base. Therefore, the interaction depth is always two. Figure 3.12 shows a 

projected version of the document where the only selected is BFS. 

 

 

Figure 3.12: A Projected GPL Document 
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Chapter 4:  Related Work 

Colored IDE (CIDE) is an advance in FOSD tooling that visualizes features and 

their interactions, and supports feature splitting and merging [23]. CIDE has preprocessor 

semantics, where the code of a feature is effectively surrounded by #ifdef-#endif 

statements, although it goes beyond traditional preprocessors by using ASTs rather than 

text. Paan differs from CIDE in several respects. One, obviously, is the use of MS Word 

documents where CIDE could not be used. Further, Paan relies on MS Word custom 

markups for coloring. Paan also differs from CIDE in that it supports wrappers. 

Czarnecki and Antkiewicz propose an approach to map feature models to 

elements of UML activity diagrams using model templates [12]. UML elements are 

annotated with presence conditions (constraints similar to predicates in Paan) which are 

mapped from the original feature model. Using a tool called fmp2rsm, variants of UML 

models are created by removing elements (fragments) whose conditions evaluate to false. 

It is remarkable that fmp2rsm allows arbitrary propositional formulas in presence 

conditions whereas Paan does not permit the NOT operation in predicates. Moreover, 

fmp2rsm guarantees syntactic correctness in generating variants, since the generations 

are not performed directly on the source code but on an abstract representation like the 

AST used in CIDE. 

Rabiser et al. suggest a tool-supported approach to generate product-specific 

documents in SPLs [32]. It uses the decision-oriented DOPLER approach for resolving 

variability [39]. The DOPLER tool suit adopts DocBook for variability modeling in 

documents [14]. The XML schema, Document Type Definition (DTD), is extended to 

define elements and attributes for implementing VPs in documents. Although the 

DocBook system as of computer documentation standards is suitable for automatic 
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document processing, it is quite challenging to convert between other types of documents 

and DocBook. MS Word documents commonly-used in commercial domains should be 

converted manually. It is an apparently tedious and error-prone process.  

pure::variants is a commercial variant management application supporting 

realization of product lines throughout the entire development phase [16]. Using Custom 

XML Markup, it generates variants of a MS Word document from feature configurations. 

However, unlike Paan, it does not provide any functionalities to update changes to the 

original documents. 

In [13], a programming language is developed incrementally through the addition 

of features. In adding Generics to the calculus of Featherweight Java (FJ) to produce 

the calculus of Generic Featherweight Java (GFJ), the required changes are woven 

throughout the syntax and semantics of FJ. The left-hand column of Figure 4.1 presents a 

subset of the syntax of FJ, the rules which formalize the subtyping relation that establish 

the inheritance hierarchy, and the typing rule that ensures expressions for object creation 

are well-formed. The corresponding definitions for GFJ = Generics×FJ appear in 

the right-hand column where shading (similar to tagging in Paan) indicates differences. 

These highlighted changes are the fragments of definitions that belong to the 

Generics#FJ color. However, in this work, coloring is used as a means of 

explanation, rather than as a tool to project colors thereby producing different variants. 
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Figure 4.1: Selected FJ Definitions with GFJ Changes 
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Chapter 5:  Conclusion 

The main contribution of this thesis is to extend prior work on program synthesis 

in product-lines. In particular, we examined projectional approaches, called coloring, 

where a complete document is partitioned into sections with distinct colors. Each feature 

is associated with a distinct color, so the removal (or projection) of that feature from the 

document will yield a subdocument (called a projected document) that contains only the 

features that are needed. The novelty of this work shows how users can edit projected 

documents, and these changes can be propagated back into the product line definition. 

Our idea is inspired in part by studies on feature interactions (i.e. changes to a feature's 

behavior): A document could expose only its projections due to some features 

encompassing proprietary or sensitive data. Therefore, changes to a projected document 

should be automatically propagated to its product-line definition file(s). By making the 

feature interactions explicit, a solution was possible. 

Paan is implemented as a tool to demonstrate that back-propagation is feasible.  

Paan intelligently leveraged the Custom Markup to achieve coloring of MS Word 

documents. Paan also natively supported wrapping, a form of coloring that has different 

semantics of nested (#ifdef-#endif) preprocessor semantics. (Ultimately, Paan will 

be used for experiments later to evaluate the differences between nested colors and 

wrapping colors). However, the key novelty of Paan is its ability to shred a projected 

document into fragments, and update only those that are new or have changed in the tile 

repository, ignoring unchanged fragments. 

Paan resolved some critical errors that break block-level structures inside a body 

XML structure during projection and back-propagation. However, it is not sturdy against 

any possible structures which are syntactically valid beyond paragraph, run, and 
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text. Here in lies difficulties in understanding the complete standards of Office Open 

XML. Moreover, MS Word rearranges tags in order to perform code optimization. 

During experiments, it found to be time-consuming and tedious job to copy codes 

between Word documents and other file types. We hope to improve Paan to automate 

conversion of MS Word documents to text representations others as well. 
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