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Abstract

We present results on re-engineering a highly-tuned, hand-coded memory simulator using the

P2 container data structure generator. This application was chosen because synthesizing the

simulator's data structures would not exploit P2's primary advantage of automatically applying

sophisticated code optimization techniques. Thus, we initially believed that using P2 would be

an overkill and that P2-generated code would provide no performance advantages over hand-

coding. On the contrary, we found that P2 produced more e�cient code and that it o�ered

signi�cant advantages to software development that we had had not previously realized.

1 Introduction

Software generators will become invaluable tools for producing high-performance domain-speci�c

software. Conventional monolithic generators, such as lex and yacc, are very good at producing

sophisticated code, but the domains for which they work are very restricted. More powerful gen-

erators are extensible and can produce high-performance code for very complex domains. The

central feature of such generators are open-ended libraries of reusable components. Application

software that is to be generated is de�ned as a composition of components. Because a small

number of components can be composed in many di�erent ways, generator libraries are actually

compact representations of vast domain-speci�c application libraries. Thus, selecting (i.e., generat-

ing) a high-performance implementation for an application is often straightforward. Another major

advantage of generators is application evolvability: it is easy to evolve an application merely by

rede�ning its composition of components and regenerating.

Although software generators are very promising, understanding their capabilities and limitations is

still in its infancy. We strongly believe that practical knowledge about generators must be collected

through experimentation | speci�cally by reengineering complex, hand-coded applications using

generators | to fully appreciate the tradeo�s that are involved.

�This research was supported in part by the Applied Research Laboratories at the University of Texas and Microsoft

Research. Guillermo Jim�enez was supported by the Instituto Tecnol�ogico y de Estudios Superiores de Monterrey,
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Biggersta� and Richter [Big87] observed that there are two rather di�erent kinds of generator

technologies: compositional and transformational. Both compose components in similar ways, but

the nature of their components are quite di�erent. Compositional components encapsulate the

code that applications execute at run-time. Transformational components encapsulate algorithms

that generate the code that applications execute at run-time. The advantage of transformational

technologies is that domain-speci�c optimizations can be an integral part of software generation;

such optimizations are performed at application generation-time, yielding e�cient source code.

Compositional technologies generally don't perform domain-speci�c optimizations (or if they do,

the optimizations are performed at application run-time, with a concomitant and sizable run-time

overhead). Compositional technologies may be preferred over transformational technologies in

domains where domain-speci�c optimizations play a minimal role in application performance or in

domains where components must be composable at application run-time and cannot be limited to

static compile-time compositions.

Domain modeling for transformational generators (e.g. DRACO [Nei91] and KIDS [Smi90]) can

be quite di�erent than that used for compositional generators (e.g. frameworks [Joh88]). However,

the GenVoca design paradigm [Bat92] uni�es important aspects of both compositional and trans-

formational approaches by treating them as alternative ways of implementing GenVoca domain

models. This is possible because GenVoca components represent stereotypical re�nements that

occur in a domain. Such re�nements can be implemented as \stupid" components (i.e., those that

do not encapsulate domain-speci�c optimizations) of compositional generators, or as \intelligent"

components (that do encapsulate such optimizations) of transformational generators.1 Having a

single modeling methodology that decomposes domains into reusable components without a pri-

ori commitments to a compositional or transformational implementation, makes GenVoca a very

powerful domain modeling methodology.

This paper presents results of reengineering a hand-coded application using the GenVoca data

structures generator P2 [Bat93a, Bat94, Tho95], and explores the advantages and disadvantages

of using generators over hand-coding. But more importantly, our experiments shed light on the

tradeo�s of choosing a compositional implementation over a transformational implementation of

a domain model. Our target application is a C++ memory management simulator. The unusual

feature of this application is that synthesizing its data structures does not require the sophisticated

domain-speci�c optimizations (e.g., query optimizations) that have previously distinguished the use

of P2. Thus, the use of a transformational generator for such an application would seem to be an

overkill, or at least put it on a disadvantaged basis for comparison with compositional generators.

For this reason, we expected that P2 would produce code that was about 10-15% slower than

code that which is written and optimized by a domain expert. In this paper we present results

that show the opposite: that P2 produced code that is almost 10% faster than hand-optimized

and we explain the reasons why this is so. Further, we believe that the same performance would

have been achieved through the use of compositional generators, so an important result of our

work suggests that performance may not be a critical factor in choosing between compositional

and transformational implementation approaches; other factors (e.g., dynamic compositions) may

be much more important.

1We have implemented the GenVoca domain model of container data structures both transformationally (e.g., the

P2 generator) and compositionally (the P++ library [Sin96]).
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2 The P2 Container Data Structures Generator

P2 is a GenVoca generator of container data structures [Bat93a, Bat94, Tho95]. A container is

a collection of elements that are instances of a single data type. Cursors reference and update

elements of a container. Common data structures | arrays, binary trees, ordered lists, etc. |

are implementations of containers. Every P2 component implements a speci�c container data

structure or a data structure feature (e.g., memory management, persistent storage, encryption).

Thus, compositions of P2 components can de�ne complex data structures with rich sets of features.

Examples will be given shortly.

The goal of P2 is to simplify the programming of container data structures. P2 separates the

speci�cation of container implementations (e.g., as compositions of P2 components) from programs

that access containers. To accomplish this, P2 provides a superset of the C language that adds

cursor and container data types, along with operations on these types, as primitives to C. P2

users code their programs in terms of these implementation-independent types. Compositions of

P2 components are used to de�ne implementations of container data types and their corresponding

cursor types. The advantage of this organization is data structure evolvability: by altering only the

composition of components and regenerating (i.e., the P2 program itself is otherwise unchanged),

it is easy to explore di�erent implementations of P2 containers. 2

To illustrate the simplicity of coding data structure applications in P2, consider an application that

deals with the simulation of page references in memory. PAGE TYPE is a C struct that de�nes an

ordered pair of unsigned long integers (pageno, touches) that indicate the frequency with which a

particular page is referenced during a program execution. A large number of instances of this type

will need to be maintained by a simulator. An abbreviated declaration of a P2 container page cont

to hold instances of PAGE TYPE is shown below.

typedef struct { // C struct declaration

unsigned long pageno;

unsigned long touches;

} PAGE_TYPE;

container <PAGE_TYPE> page_cont; // abbreviated declaration of a

// container of PAGE_TYPE instances

To retrieve elements (i.e., PAGE TYPE instances) of container page cont, two cursors are used

(see below). One (all pages) references all elements of the container, while a second cursor

(selected page) references only elements that satisfy the predicate (touches > 20). 3

cursor <page_cont> all_pages; // P2 declaration of a cursor that

// ranges over all elements of page_cont

2A similar approach using C++ templates is presented in [Sit96]. There component compositions are made through

parameterization; plugging and unplugging is done by parameter substitution.
3Note that predicates in P2 are expressed by strings: attribute A of the element referenced by a cursor is denoted

$.A. The $ denotes to P2 the name of the cursor.
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cursor <page_cont> // declaration of a cursor that ranges over

where "$.touches > 20" // only those elements of page_cont that

selected_page; // have been touched more than 20 times

In general, P2 cursors and containers are parameterized data types. Containers are parameterized

by the type of element that is to be stored; cursors are parameterized by the container to be

traversed and optionally by a selection predicate and sort criterion. Cursor and container types are

�rst-class; they can be used like any C data type.

P2 o�ers an (extensible) set of operations on cursors and containers. The code fragment below

illustrates the P2 foreach construct, which is used to iterate over elements of a container. Once a

cursor is positioned, the referenced element can be examined, updated, or deleted.

foreach( selected_page ) // for each selected page

{

printf("touches: %d \n", selected_page.touches); // print number of touches

if (selected_page.touches < 100) ; // examine touches

delete( selected_page ); // delete page

}

As mentioned earlier, a P2 program is abstract (and hence not executable) because the cursor and

container data types have no implementation. P2 components are primitive \building blocks" of

their implementation. Consider the following sets DS and MEM of parameterized P2 components:

DS = { avl[ DS ], // avl tree

splay[ DS ], // splay tree

dlist[ DS ], // doubly-linked list

odlist[ DS ], // ordered doubly-linked list

sequential[ MEM ], // sequential storage

heap[ MEM ], // heap storage

avail[ DS ], // avail-list memory management

... }

MEM = { transient, // transient memory

persistent, // persistent memory

... }

Each P2 component implements some data structure (e.g., avl, splay) or data structure feature

(e.g., sequential, heap, avail). A composition of P2 components, called a type equation, de�nes

a particular implementation of cursor and container data types from a large family of possible

implementations. Consider the following type equations and the implementations they de�ne:

typex { simple = avl[ heap[ transient ]];

complex = splay[ odlist[ array[ persistent ]]];

}
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simple is a composition of three components. The avl component generates code that stores

elements of a container in an avl-tree, heap allocates space for elements from a heap, and transient

stores elements in transient memory. Thus, simple de�nes a container implementation that stores

elements in an avl tree, whose nodes are allocated from a heap in transient memory.4

Similarly, complex de�nes a container implementation that stores elements in a splay tree where

splay-tree nodes are linked together in an ordered linked list and the resulting nodes are stored

sequentially in persistent memory. As these examples suggest, with a very small number of com-

ponents, very large and complex families of data structure implementations can be speci�ed.

A type equation is a declarative speci�cation of the implementation of cursors and containers.

Minor changes to a type expression can generate substantially di�erent code. Usually, a P2 program

includes only a few type equations and each equation is at most a few lines long. Thus, tuning and

maintaining a P2 program is often a matter of changing a few lines and regenerating [Bat93a, Bat94].

3 Locality of Reference Studies

The Object-Oriented Programming Systems (OOPS) Research Group at The University of Texas

at Austin is studying di�erent aspects of memory management in operating systems [Wil95]. One

project is to analyze the locality of references in memory hierarchies. The goal is to show that

locality of references is a consequence of regularities in both the structure of programs and in how

memory allocators map program objects onto virtual address spaces [Wil96].

OOPS research is experimentally driven: references of actual program executions are studied, rather

than using randomly generated memory references. (The belief is that randomly generated memory

references do not reect the true usage of memory in real programs). A simulator was written to

support the actions of an OS memory manager using an LRU | Least Recently Used | page

eviction policy. This simulator, called LRUsim, takes as input a trace �le, which contains a sequence

of trace records that indicate the order in which memory references occur. A trace record is the

pair <operation, address>, where an operation can be a data load, data store, or instruction fetch,

and an address refers to a memory location. (This distinction among operations allows di�erent

analyses for program instruction references from data references).

Translating word references to page references using a page size parameter, LRUsim maintains an

LRU ordering of pages. Every time a page is touched, its position (from the head of the queue)

is recorded and the page is moved to the front of the queue. The output of the simulator is a

sequence of pairs < p, c >, where p is the position of a page (from the front of the queue) and

c is a count of the number of times that a page in that position has been referenced. This count

reects patterns to repeated references to LRU queue positions, independent of which pages are

actually referenced. Such output is important as it reects the locality characteristics of a program

in a way that is independent of any particular memory size, but which can be interpreted with

respect to any memory size of interest. For example, for a memory size of m pages, references to

queue positions 1 through m represent hits, and references to m and above represent misses. This

information is also useful in analyzing memory hierarchies. Assuming that a level in a hierarchy

4An avl tree, like ordered lists and splay trees, has an additional parameter | the key �eld. Key �elds are expressed

as annotations to a container declaration. These annotations are not shown in our declaration of page cont above,

but are discussed in [Bat93a].
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has n pages, the level below it has k pages, etc., we can see how hits and misses behave in the

memory hierarchy by seeing how page hits or misses concentrate between pages 1 and n, pages

n + 1 to n + k, etc. Histograms of LRUsim's output reveals if page hits (or misses) concentrate in

particular levels of the memory hierarchy.

Several analyses can be performed on the output generated by LRUsim, the most common is graphing

the behavior of memory references using di�erent page sizes, di�erent queue sizes, di�erent memory

sizes, etc. This allows the OOPS group to obtain a better understanding of locality for di�erent

OS memory management design parameters and page eviction policies.

Trace �les of programs are generated using special tools, such as Shade [Cme93], an instruction-set

simulator and custom trace generator. Because trace �les can be quite large (e.g., several gigabytes

in size) and simulation run times can be long (e.g., days), it is vital that the simulator itself be

modularized so that di�erent implementations of the queue data structure and its supporting data

structures be tried to improve performance. In the next section, we examine the container data

structures the OOPS group has chosen to use in LRUsim to maximize its e�ciency.

4 Data Structures of the Simulator

LRUsim has had a long design history. It's most recent incarnation is a set of C++ modules, where

each module deals with a particular task in the simulation. E�ciency has been a major concern

since the simulator has been known to run for several days for large trace �les. Thus, optimizations

have been carefully introduced to enhance the simulator's performance. For example, generic

algorithms are avoided if performance is compromised. Rather than de�ning a general class and

then subclassing to implement similar, yet di�erent, functionalities, code is replicated (with slight

changes) to deal with particular needs. This has the advantage that customized algorithms are

always used and performance degradation resulting from inheritance (i.e., virtual dispatching) is

not introduced.

C++ templates were used as the means by which LRUsim data structures were modularized. The

goal was to de�ne a common interface for a set of di�erent container data structures. This would

enable experimentation with di�erent structures | a limited version of that o�ered by P2 |

simply by swapping one data structure template for another. Templates have the advantage that

they don't compromise run-time e�ciency, while permitting genericity [Str91]. In the following

paragraphs, we explain the LRUsim data structures and their interrelationships.

The core of LRUsim is the module that implements the LRU mechanism, called LRU mech. LRU mech

maintains the LRU ordering of memory page references (touches). Figure 1 shows the three basic

container data structures that are used. One structure, called the Queue, stores page numbers in

LRU order. A second structure, called the Index, provides a fast way of locating a page in the

Queue given its page number. The Index is a composite data structure consisting of a hash table

and a set of avl trees, one tree per hash bucket. A third structure, called the Count, maintains

<position, count> statistics, and is implemented much like the Index. 5

5The OOPs group calls the Queue structure the \Position Manipulation Mechanism", the Index is the \Page

Manipulation Mechanism", and the Count is the \Counting Mechanism". We've chosen di�erent names to make
their design easier to understand.
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Figure 1: Data structures in the original implementation.

The Queue maintains pages in LRU order using a modi�ed avl-tree. This tree does not use a key for

insertions. Rather, every new node becomes the left-most leaf of the tree (i.e., it is being inserted

at the front of the queue). When a page is referenced, it is unlinked from its current position and

relinked at the head of the queue. Thus, unlike traditional queues where node deletions occur at

the ends of a queue, node deletions can occur anywhere.

Using an avl-tree to represent a queue has advantages over single or double-linked lists. The main

advantage is that the relative position of a node in the queue can be obtained in O(logn) time,

instead of O(n) time. To accomplish this, every node maintains the size of its left sub-tree. The

numbers between parentheses in Figure 1 are the left sub-tree sizes for each node. Given these

sizes, it is easy to obtain the position of a node n from the front of the queue by traversing the tree

from n to the root. For example, the position of node G in Figure 1 is (0+1)+(1+1)+(3+1) = 7.

The modi�ed avl tree, henceforth called a position avl tree, associates positions with each node.

Since it does not use keys for insertion, there needs to be another mechanism for �nding a particular

page (avl-node) quickly given its page number. The Index (see Figure 1) is used for this purpose.

The Index is a two-level data structure. The �rst level is a hash table, and the second level is a set

of avl trees, one avl tree for each hash bucket (Figure 1). Unlike position avl trees, these avl-trees

are \normal". Each avl-tree node has a page number and a pointer to the Queue node that de�nes

that page. The page number is the key of the node. (Note that decreasing the number of buckets

would increase the size of the avl trees, since more collisions would occur).

To determine if a page is in memory, the page number is hashed to a bucket. The avl-tree associated

with that bucket is searched for the node of that given page number. If the node is found, the

pointer to the page in the Queue is followed and the Queue's node is moved to the front of the

Queue. If the node is not found, a new node is added to the front of the Queue, and another node

is inserted into the appropriate bucket/avl-tree (with a pointer to its corresponding Queue node).

The third data structure, the Count, (also shown in Figure 1), maintains the reference of touches

to speci�c positions in the LRU queue. It is similar to the Index, but does not require pointers

to Queue nodes. (Position references are hashed to a bucket, and the bucket of <position,count>

pairs is searched, and the count is incremented). Note that a �xed-size array is another possible

implementation for Count. The reason why an avl-tree implementation is used is because the

maximum size of the array (i.e., the maximum value of position) is generally not known. In
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general, the output of LRUsim is a dump of the Count data structure.

5 Simulator Implementation in P2

Approximately 60 percent of the code in LRUsim deals with data structures; the remaining deals

with I/O and data type conversion. Due to the modularization of LRUsim, and the fact that it was

written in C++, it was unnecessary for us to re-write the whole application in P2: few (if any)

advantages would have been gained. Instead, we used P2 to generate the LRUsim data structures

in C (in the module LRU mech.h) and then we linked these structures directly to LRUsim. In this

section, we show that implementing these data structures was straightforward and present our

benchmarking results.

P2 provides a standard, high-level interface to all container data structures. Initially we thought

that LRU mech would require customized operations to the Queue, Index, and Count data structures

because of their specialized semantics. However, we discovered that any operation that we needed

could be expressed easily as calls to P2 container and cursor operations.

Some changes to P2 were needed, however. There was no P2 component that implemented the

position avl tree algorithm, and hence we had to write this component (denoted position avl).

We adapted the avl-tree algorithm from HPUX6 to conform to the interface and protocol standards

of P2 components; this took approximately three weeks to write and debug.7 We feel that if we

were not constrained by the requirements imposed by P2 in writing components, it would have

simpli�ed our task slightly (e.g., by a few days). So the e�ort needed to extend P2 was not great.

From P2's point of view, there are three types of container data structures in LRU mech: Queue,

Hash, and Bucket. (The Index and Count data structures each are composites of Hash and Bucket).

Specifying these containers in P2 was straightforward. Consider the declaration of the Queue

container:

typedef struct {

unsigned long page; // page number

} Queue_Element;

typex Queue_eq = position_avl[avail[heap[transient]]];

container <Queue_Element, Queue_eq> Queue; // container declaration

Queue Element is a C struct that declares the type of element to be stored in a container. (It

consists of a single page number). The type equation Queue eq de�nes a container that stores

elements in a position avl tree, where nodes of this tree are memory managed (i.e., they are

not physically deleted, but are recycled upon deletion), and when physically allocated are drawn

from a heap in transient memory. The Queue container, Queue, is de�ned in a line that unites

6AVLTree V2.0, 22-January-1993 is available in http://hpux.ask.uni-karlsruhe.de/hpux/Languages/avl-2.0.html
7The three weeks included testing, recognizing that an available avl tree component in P2 had bugs and had to

be scrapped, etc. So the development time for position avl was intertwined with many activities.
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Queue Element and Queue eq together. Similarly simple declarations were needed for the Hash

and Bucket containers. 8 9

Once the P2 containers were declared, the next step was to implement simulator actions in terms

of operations on P2 containers, and then to link the P2-generated code (the P2LRU mech.h module)

to the C++ LRUsim source. The original hand-crafted containers of LRU mech were implemented as

classes, whereas P2 generated code was expressed in C functions. Thus, some simple modi�cations

to LRUsim were required: C++ member function calls were replaced by their corresponding C

function calls.

The diagram in Figure 2 shows the steps necessary to generate a P2LRU mech.h module (the P2-

generated module implementing the LRU policy). P2 generates the desired C source from a P2

program (LRU mech.p2). The resulting P2LRU mech.c code is then modi�ed slightly via a sed script

so that it can be compiled with C++ and linked with LRUsim and other C++ modules.

generator
P2LRU_mech.p2 P2LRU_mech.c sed

script P2LRU_mech.h

Figure 2: Generating an LRU mechanism module.

5.1 Run-Time Comparisons

One of the reasons why we chose LRUsim over other possible applications is that the LRUsim data

structures were rather simple. One of the great advantages that we have observed for transfor-

mational generators is their ability to perform sophisticated domain-speci�c optimizations and

customizations automatically. The data structures and search algorithms of LRUsim were not com-

plicated enough to invoke such optimizations (e.g., query optimizations) and thus, we expected the

code generated by P2 to be slower than that of the hand-crafted and hand-tuned code for the data

structures in LRUsim. To our surprise, P2 code executed faster.

To evaluate the performance of P2 generated code, we were given trace �les by the OOPS group

that they used previously in their performance studies. Our �rst benchmarks were the trace �les,

tex, cc1, and spice, that are commonly used to analyze di�erent aspects related to memory usage

[Hen90]. These �les are relatively small compared to more \industrial strength" trace �les p2c,

expresso, and ghostscript, which are two orders of magnitude larger [Wil95, Wil96]. Running

times for both the original C++ and P2 versions of LRUsim are shown in Table 1.

Although the original LRUsim C++ code had undergone several revisions and signi�cant manual

tunings, our �rst version using P2 ran a surprising 30 percent faster on all benchmarks. Upon

pro�ling both implementations, we observed that the C++ Count data structure was cleaned each

8The type equations for the Hash and Bucket containers are: Hash eq = hash[heap[transient]] and Bucket eq

= avl[heap[transient]], respectively.
9The need for memory management (i.e., garbage collection) in Queue eq stems from the fact that P2 containers

do not support element unlink and relink operations. (Recall that when a page is touched in the Queue, it is removed

(unlinked) from its current position and relinked at the head of the Queue). Relinking and unlinking were emulated

using existing P2 operations by deleting the element and then reinserting. The avail layer improved the performance
of this operation sequence by never physically discarding the element slot thereby avoiding the overhead of heap

allocation and heap deallocation. This particular problem did not arise in the Index and Count data structures.
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Number of Instructions Running Time

FILE Load Store P2 C++ %Speedup

tex 130K 104K 100 130 30

spice 150K 66K 115 153 33

cc1 159K 83K 124 163 31

p2c 59.8M 16.4M 51.7K 68.4K 32

ghostscript 75.7M 37M 64K 84.2K 31

espresso 414M 132M 378K 482K 27

NOTE: K = thousand, M = million.

Table 1: Benchmark Execution Times (in seconds).

time its contents were dumped to an output �le. Cleaning is invoked when one kind of instruction is

read from the input (users can indicate if the instruction is a load, store, or fetch | our benchmarks

triggered cleanings on loads). All of our test �les were dominated by load instructions (see Table 1);

this meant that most of the time, the Count structure contained only a few records. But Count's

implementation in C++ consists of 1024 buckets, where each bucket was an avl tree. Whenever

Count was cleaned, every bucket was assumed to contain records, so expensive functions to clean

empty buckets were called unnecessarily millions of times.

We learned an important lesson from this experiment: there are di�erent ways in which data struc-

ture code (or domain-speci�c code, in general) can be optimized. Our previous experience with

transformational generators encouraged us to focus our attention on domain-speci�c optimizations

that could be performed automatically. For example, P2 performs sophisticated query optimiza-

tions that manipulate predicates and chooses the most e�cient data structure to traverse for a given

predicate. Since these optimizations were absent from LRUsim, (i.e., there was only one container

data structure in any container implementation and the selection predicates were always null),

there must have been other optimizations at work. We discovered that these optimizations were

actually coding \tricks" | also known as best-practice approaches | in the programming of data

structure algorithms. Thus the way algorithms are programmed has a signi�cant impact on perfor-

mance, and evidently the way algorithms were coded in P2 components was quite e�cient. Stated

di�erently, generators glue prewritten algorithms together. The \domain-speci�c optimizations" of

generators are simply decisions generators make to select the fastest algorithm from a competing

set of algorithms. However, if the algorithms themselves are ine�ciently programmed, generators

cannot possibly synthesize e�cient code. Thus, to generate e�cient code in general requires both

e�cient algorithm implementations and domain-speci�c optimizations.

Generator-synthesized algorithms have a higher probability of performing better than hand-coded

algorithms because the author of generator components is focussing his/her attention on the most

e�cient encoding/implementation of a highly-constrained problem (in the case of P2, a particular

data structure algorithm). Consequently, much more e�ort is focussed on optimizing what might

otherwise appear to be \minute" coding details. In contrast, when a complex data structure | that

corresponds to compositions of multiple P2 components | is coded from scratch, there are somany

implementation details to keep straight that it is utterly impractical and far too time consuming

to optimize code at the same level of detail. Programmers will attempt only a fraction of these

optimizations. For this reason, generator components (and their compositions) often out-perform

hand-written code.
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FILE P2 C++ %Speedup

tex 100 108 7.7

cc1 122 136 11.4

spice 116 124 7.5

p2c 51.7K 56.8K 9.8

ghostscript 64K 66.3K 4.0

espresso 378K 402.2K 6.4

NOTE: K = thousand.

Table 2: Revised Benchmark Execution Times (in seconds).

To con�rm this insight, we repaired the C++ implementation, and reran the C++ benchmarks

(see Table 2). Although the reparation improved the performance of the C++ version by over 20

percent, the P2 version still ran faster. (Although 5 to 10 percent improvement may not seem

signi�cant, it is still noticeable. For example, the P2 execution of the p2c benchmark completed

1.3 hours faster than the C++ version). Again, the di�erences can be attributed to more e�cient

encodings of algorithms. More speci�cally we found:

� Avl tree traversals were implemented through function recursion in C++. P2 algorithms were

iterative, and were faster by a constant factor. In hindsight, the OOPS group realized that

recursion was chosen in the C++ case for reasons of clarity and maintenance, rather than

speed. Iterative implementations were used in P2 because (a) iterative implementations were

believed to be faster and (b) iteration loops are small (because their focus is restricted to

data structure algorithms), hence code clarity and maintenance was not sacri�ced.

� many of the low-level \tricks" that are used in P2 to encode data structure algorithms ef-

�ciently (e.g., no recursion, aggressive inlining) could indeed be introduced into the C++

version of LRUsim. But the OOPS group recognized that they wouldn't attempt such a level

of optimization because the resulting code would be \horrendous to maintain and under-

stand". Moreover, they felt that it would be much too di�cult to propagate these changes in

their hand-written code.

5.2 Di�erent Data Structures

As an interesting secondary experiment, we explored the evolvability of P2 container implementa-

tions. Altering data structures required that we change only a couple lines of our P2 program (i.e.,

the container type equations), and then regenerate the C code. Table 3 shows running times with

di�erent implemenations of the Hash container. Note that the avl tree had the fastest execution

times for these benchmarks.

Although these experiments didn't reveal better ways to store LRUsim records, it did demonstrate

an important capability of P2. Software designs that use particular data structures have built-in

assumptions about how data is to be used and accessed. With few exceptions, once the target soft-

ware is implemented and tested on an actual work load, some of the original design decisions are

recognized to be sub-optimal. At this point, software designers face two unpleasant options: either

leave the data structures as they are, knowing that improved performance may be sacri�ced, or
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DATA FILE

STRUCTURE tex spice cc1 p2c ghostscript espresso

avl 100 115 124 62K 81K 378K

binary 107 121 132 67.4K 84.7K 417K

splay 106 123 128 64.4K 83.2K 467K

NOTE: K = thousand.

Table 3: Benchmark Execution Times for Di�erent Data Structures (in seconds).

redesign, recode, and reoptimize the data structures for yet another round of testing. P2 substan-

tially reduces the cycle time for testing new data structures. To alter a type equation and recompile

a P2 application takes minutes; to redesign, recode, and reoptimize a data structure by hand can

take weeks. Thus, to con�rm or improve design choices for using particular data structures is quite

easy with P2. 10

5.3 Introspection

Code Quality. We learned several important lessons from these experiments which we believe

apply to all GenVoca generators. GenVoca generators compose locally optimized components

(code fragments) to produce e�cient implementations for stereotypical programming problems

in a particular software domain. (P2 produces container and cursor implementations for data

structures). Although components may generate locally optimal code, code that is produced by

composing locally optimal fragments is not guaranteed to be globally optimal. Thus, it is always

possible that hand-coded applications can perform better than generated code. However, the issue

is \how much e�ort is needed to do better than generated code?". The experiments in this paper

(which in hindsight is also supported by our previous experiences [Bat93a, Bat94]) suggest that

level of e�ort to optimize code manually to achieve the performance of generated code is far greater

than any programmer would be willing to invest. Composing locally optimal components produces

very good software that for practical purposes is noticeably better on average than what can be

produced by hand.

Productivity. To place our observations on code quality in perspective, one should keep in mind

that the greatest bene�t of using generators are the gains in productivity and the reduction of

software maintenance. While it is di�cult for us to determine the exact gains (e.g., LRUsim has

a long history of development, we were unfamiliar with memory management simulators before

we began our work, etc.), it is possible to get a feeling for the productivity bene�ts of using P2

by examining the sizes of the respective source �les. The functionality of the LRU mech.p2 �le is

spread across multiple �les of the C++ LRUsim implementation. From our best estimates, the C++

implementation is approximately 6650 lines of source code, whereas the P2 version is only 2550

lines, a 60 percent reduction in code volume. A factor of 2-3 improvement in productivity appears

to be consistent with other uses of P2 [Bat94]. That generators also produce e�cient code (for the

reasons we cited earlier) makes their use that much more attractive.

Software Maintainability. Generators can substantially improve software understandability, qual-

ity, and maintainability. An algorithm is easier to understand and maintain if it has a compact

10A similar approach for component substitution was advocated in [Sit96], with emphasis on performance evolution.

12



speci�cation as a short function instead of a collection of collaborating functions. The P2 functions

that de�ne the LRU mechanism are very small. The largest has only 52 lines of code. However, this

same function is expanded to about thirteen hundred lines in the generated C code, and is equiv-

alent to many small functions in the C++ version of LRUsim. By raising the level of abstraction,

P2 substantially reduces the level of complexity in which programmers must code. This in turn

enhances program understandability and maintainability. In our post-benchmark interviews with

the OOPS group, they cited the ability to compactly write very complicated code as the major

bene�t of P2. They believed that it would allow them to revise and restructure code in ways that

would otherwise be di�cult, if not impossible.

Inlining. On a related note, we noticed that there was a performance advantage in generating

large functions. For data structure applications, where functions often involve small computations,

the overhead of function calls becomes signi�cant. Because P2 aggressively inlines, most function

boundaries are eliminated. While tagging all (or most) C++ functions with the inline directive

might accomplish a similar goal, often programmers fail to make these directives explicit in their

source code. Not doing so leads to degraded performance. P2, on the other hand, automatically

inlines.

Implementation Approaches. Another lesson is that if there is a choice between a compositional and

transformational implementation of a GenVoca domain model (because domain-speci�c optimiza-

tions are not important), we know of no performance reason why a compositional implementation

should be chosen over a transformational implementation. All of the bene�ts of e�cient encodings

of algorithms can be achieved in both compositional and transformational implementations. As we

mentioned earlier, the LRUsim application was chosen speci�cally because it put transformational

generators in a negatively-biased position. Despite this, P2 still did quite well. Our experiments

suggest that reasons other than performance, such as the ability to compose components at ap-

plication run-time rather than statically at application compile-time, should be the determining

factor.

Drawbacks. While there are many important advantages to generators, there are drawbacks. At

present, transformational generators are closely integrated with speci�c programming languages.

The P2 programming language, for example, implements a superset of C. If another transforma-

tional generator, say for the domain of network protocols, were to be written and were to also

extend C, it is unclear whether a single program could reference both the cursor and container

data types of P2 and the data types of the protocol generator. Thus, applications that use both

data structures and network protocols would have to choose to code their application in P2 (thus

forcing them to hand-code protocols) or to code their application using the protocol generator (thus

forcing them to hand-code data structures). This is clearly unacceptable; we now believe that this

inability for generators like P2 to interoperate with other generators is a serious shortcoming.

A more general approach to the construction of transformational generators is as extensions to

extensible languages/compilers. A domain-speci�c generator should be encapsulated as one or

more packages that extends a speci�c language and its compiler. By linking generator packages

to the compiler, the programming language will be enhanced (i.e., new domain-speci�c data types

and programming constructs will become available). Thus, to create a programming language that

generates implementations for both data structures and network protocol abstractions, one would

need to link both a data structure generator and protocol generator to the target compiler. Thus,

as long as there are no ambiguities in the linguistic extensions that are being made, generators

for di�erent domains can be plugged and unplugged from the compiler. This advanced vision of
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software componentry is being realized by the IP project at Microsoft Research [Sim95, Sma96]

and the Jakarta project at the University of Texas at Austin.

6 Conclusions

The power, capability, and potential of software generators continues to surprise us. We selected a

data structure application | a memory simulator | for re-engineering that we expected a hand-

coded approach would produce more e�cient software. The reason for us believing so was that

our previous experience with generators suggested that the primary advantage of generators was

their ability to perform di�cult, domain-speci�c optimizations automatically. The data structures

of the memory simulator were so simple that none of these optimizations were needed. Thus, we

had no a priori reason to believe that generators could produce more e�cient code.

Our experiments demonstrated the contrary: generated code was more e�cient. The reason is

that components of generator libraries encapsulate locally-optimized algorithms, where the focus

of component writers is to optimize what would otherwise be considered \minute" coding details.

Although composing locally-optimized components does not guarantee globally optimized code, the

code that is produced is indeed very good. We observed that good programmers can only attempt

a fraction of all the optimizations that are present within components, and primarily for this

reason, generated programs perform better than hand-written programs. Thus, it would seem that

generators have a built-in advantage over programmers for software development: components can

encapsulate best-practice approaches for producing e�cient domain-speci�c software that no single

programmer (or team of programmers) will be able to duplicate with any economy. Although the

greatest bene�t of using generators is gains in productivity and a reduction of software maintenance,

that generators produce e�cient code makes their use that much more attractive.

Another important result from our work is insight in choosing between a compositional implemen-

tation of a domain model or a transformational implementation. Our results suggest that when

both compositional and transformational implementations can be considered, performance of the

generated code may not be the deciding factor. We believe that the performance we observed using

P2 (where domain-speci�c optimizations were never invoked) could be achieved by compositional

implementations. Thus, other factors | whether components need to be composed dynamically or

not | are more important. De�ning these factors more precisely is a subject of future work.

Finally, it has become evident that one of the key obstacles to the proliferation of generators like P2

is the way that they are built. Presently, they are implemented as extensions to existing program-

ming languages. This approach essentially makes them non-interoperable with other generators

(that extend a possibly di�erent language). A key problem for GenVoca generators is building

extensible programming languages that can modularly support the addition of multiple generator

technologies in a seamless fashion. This too is a subject of our future work [Sma96].
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