
Using AOP to Monitor and Administer Software for
Grid Computing Environments

Mark Grechanik, Dewayne E. Perry, and Don Batory

The Product-Line Architecture Research Group
University of Texas at Austin

Austin, Texas 78712

{gmark, batory}@cs.utexas.edu, perry@ece.utexas.edu
Abstract. Monitoring is a task of collecting measurements
that reflect the state of a system. Administration is a collec-
tion of tasks for control and manipulation of computer sys-
tems. Monitoring and Administering computer ResourceS
(MARS) in a distributed grid computing environment (i.e. a
distributed environment for coordinated resource sharing
and problem solving in dynamic, multi-institutional virtual
organizations) is an important, expensive, and critical task.
We present a novel solution based on applying crosscuts
using binary rewriters and an event-based model that allows
developers to create non-trivial MARS programs easily and
uniformly.

Our approach converts low-level API resource calls into sys-
tem-wide events that MARS programs can monitor. This is
accomplished by introducing advice that contains event-gen-
erating code at join points in programs that represent com-
puter resources. We categorize low-level resource APIs by
imposing a transactional metaphor to simplify the complex-
ity of interactions between resources and to enable reasoning
about MARS programs. We report both a case study and
simulation that supports the viability of our approach.

1 Introduction

Modern business enterprises have hundreds or thousands of
computers running different operating systems and applica-
tions that use various resources. The task of collecting mea-
surements that reflect the state of a system is called
monitoring. The task of administration is to use the results of
monitoring to effectively control and manipulate these sys-
tems. The cost of manual monitoring and administration of
enterprise-level computing systems is very high and is
exceedingly difficult to scale due to the extensive laborious
procedures that require frequent hands-on interventions by
system administrators.

Computational grids are distributed environments for coordi-
nated resource sharing and problem solving in dynamic,
multi-institutional virtual organizations [1]. To view com-

puter hardware and software as resources creates significant
challenges with their fine-grained control and allocation in a
grid environment. Specifically, users attempt to gain access
to different resources whose owners should be able to exer-
cise a fine-grained control of such access while ensuring that
the overall security and computational integrity of the sys-
tem is not compromised. This problem is exacerbated in cor-
porate environments where a slight breach in security may
lead to disastrous consequences.

Existing grid solutions are typically based on user-level pro-
grams called agents running under minimum-security privi-
leges. These agents can only accomplish parallel data
processing tasks (e.g. solving partial differential equations or
computing some numerical algorithms), and fall short of
enabling fine-grained access to selected resources [2][3][4].
Moreover, many agents rely on a polling mechanism that
wakes them up at predefined time intervals to run some tasks
and then puts these agents back to sleep [2][3][4]. Polling
agents often miss events that occur in the middle of a polling
interval, and waste computational resources when awakened
at times when their services are not needed.

Monitoring and Administering computer ResourceS (MARS)
in a distributed grid computing environment is an important,
expensive, and critical task. MARS programs should be easy
to develop. Unfortunately, the opposite is true. MARS is
complicated by the sheer multiplicity of computer resources
and technologies. For example, Microsoft Windows offers
more than a hundred software development libraries to pro-
gram various resources like file storage and domain name
systems. Most applications created using these libraries do
not have programming interfaces for their monitoring and
administration. Operating systems and computer resources
are not developed for easy administration and monitoring. In
order to administer different computer resources, MARS
programs must access memory regions and execute com-
mands that are protected or privileged in modern operating
systems. For example, a process cannot access the region of
memory occupied by some other process unless it uses an
1

interprocess communication mechanism to accept commands
and data in a predefined format. Otherwise, the space of each
process is protected by the operating system and cannot be
intruded on. Existing MARS solutions are ineffective since
they either target the source code of applications and operat-
ing system kernels or rely upon using specific vendor-depen-
dent library APIs to write MARS programs that target specific
resources. Therefore a fundamental problem of MARS is how
to dynamically administer and monitor computer resources in
a grid computing environment both automatically and uni-
formly.

We introduce a novel approach that allows developers to write
MARS programs uniformly. Our approach converts low-level
API resource calls into system-wide events that MARS pro-
grams can monitor by registering their listeners with special
services. This is accomplished by introducing advice that con-
tains event-generating code at join points in programs that
represent computer resources. Advice is applied by instru-
menting low-level API calls to produce desired notifications.
By imposing a transactional metaphor on MARS systems, we
simplify the event delivery mechanism reducing tens of thou-
sands of different events to only five event categories. We
report both a case study and simulation that supports the
validity of our approach.

2 The MARS Model

A computer resource changes its state after a client program
executes some API that modifies values of some internal vari-
ables of this resource. This is a fundamental property upon
which any administrating and monitoring solution is based.
Suppose we have an observer who “lives” inside a CPU,
“watches” internal variables of computer resources, and noti-
fies us when their values change. If this observer can also
modify the values of these variables on our behalf, then we
can call him/her a MARS observer and manipulator.

The behavior of the MARS observer/manipulator can be
explained using aspect-oriented programming (AOP) con-
cepts. The observer can be viewed as a MARS aspect that is
applied to computer resources. Different APIs that are located
in different libraries and programs that manipulate the same
resource represent a crosscut. A MARS aspect introduces a
set of standard advice to resource crosscuts. For example,
handling notifications about changes in the state of monitored
resources is accomplished by applying before advice to
APIs that manipulate these resources.

We categorize APIs that change the state of computer
resources. Some APIs initialize or open a resource, some
APIs perform read from or write to a resource, and others
close resources. By creating such categories we enable the
MARS observer to notify us that some resource has just been

written to by some process rather than to produce a cryptic
message stating that some API has been executed with a list
of its parameters.

A high-level logical view of the MARS model is shown in
Figure 1. At the top level a MARS observer and manipulator
detects changes in states of computer resources as well as
manipulate their behavior. This observer and manipulator
accomplishes work using event and AOP models that are
based on binary rewriting mechanisms. Binary rewriters are a
part of low-level implementation of our MARS approach and
are described in the next section.

Figure 1: Logical view of the MARS model.

3 The Supporting Models

3.1 Event Model

An event model is a mechanism for delivering asynchronous
data elements called events from sources to destinations
called sinks as shown in Figure 2 [5]. A source is a program
that generates an event and asks an event delivery mechanism
either to deliver it to a sink or to put it into an event queue
until some sink program requests it. The sink program
invokes a callback function in response to the delivered
events. Various architecture and object-oriented design pat-
terns have been built around this event model (X-Windows,
COM/DCOM, MS Windows). All are based on the assump-
tion that programmers can modify the source code of sources
and sinks in order to add events and their callbacks to the
existing architecture.

Figure 2: Event model.

Source Sink

Event Delivery
Mechanism

Event Storage
2

We extend this event model to create a useful abstraction for
MARS programs. A resource to be monitored is represented
by the source and a MARS program is the sink. The event
delivery mechanism is supplied by underlying MARS ser-
vices. When a low-level API call is made by some application
that accesses a resource then an event is generated and deliv-
ered to the MARS sink program. For example, when we need
to monitor when a file is opened by some application, we can
instrument a system service fopen to generate an event
every time it is called. It is clear how to use event models
when a programmer needs to generate and receive events
using some event API. However, the problem is how to enable
the generation of events without available program source
code. We address this issue in the following sections.

3.2 Binary Rewriting Model

The majority of software resources in modern operating sys-
tems are implemented as shared libraries, dynamic-link librar-
ies, and executable programs. Programs are linked to libraries
and call their functions that in turn trap to the operating sys-
tem when a system service call is made. We need to determine
the joint points in the program at which we need to generate
events or take some actions.

Join points are well-defined points in the execution flow of a
program [6]. In our approach, join points serve as placehold-
ers for MARS crosscuts that refine program functionality to
enable monitoring and administrating tasks. Advice is
inserted in the executable program code at join points using
special tools described in Section 7.1.

Before advice is invoked when a function call is made but
before the function code is executed. The typical purpose of
this advice is to replace values of certain function parameters
on the stack. For example, consider an application that calls
the function OpenFile that opens the file “myfile.txt”.
The name of the file is passed as a character string parameter
to the function OpenFile. Suppose that every time this
function is called with its file name parameter pointing to
“myfile.txt” we want to change it to “other.dat”
instead. This administration task is very common, and nor-
mally it requires changes in the application source code and
therefore is laborious and difficult. AOP advice makes this
conceptually easier to realize.

After advice is executed when a function call is executed
but before the return instruction gives the control back to the
caller. It could be used to notify a MARS program about com-
pletion of a task. Finally, around advice enables a call to a
replacement function rather than the intended callee function.

Figure 3: Categorization of fax service, simple network
management protocol (SNMP), and file I/O Windows

library APIs using our transactional metaphor.

3.3 Event Categorization

Advice communicates with MARS programs by sending
events. Having each API method send a unique event to
MARS programs is impractical since a computer has tens of
thousands of different methods for which event objects/types
would need to be defined. We solve this problem by imposing
a transactional metaphor by viewing a computer as a database
whose tables are resources we need to monitor. The properties
of these resources are the attributes of tables in our abstrac-
tion. The APIs that manipulates resources become transac-
tions that we execute on this resource database.

Consider Windows library APIs for fax service, simple net-
work management protocol (SNMP), and file I/O as shown in
Figure 3. Each library contains various functions that manipu-
late some resources. The fax service library contains func-
tions that allow users to write software that sends and receives
faxes from computers connected to phone lines via modems.
The SNMP library allows system administrators to configure
remote devices, monitor network performance, audit network
usage, and detect network faults or inappropriate access.
Finally, file I/O is the most used library in Windows API since
almost every program uses it to gain access to file systems.

Windows APIs contains over 13,500 calls [7]. When studied
carefully, Windows APIs can be grouped into separate catego-
ries. We identify these groups as transaction types. The first
group contains functions that open and initialize resources.
For example, despite different names and signatures functions
FaxDevStartJob, SnmpStartup, and CreateFile
have the same semantics — they initialize and return a pointer
or handler to a resource. The second group contains functions
that perform operations on resources. The third group con-
tains functions that commit or rollback transactions executed
on resources. The fourth group contains functions that termi-
nate the activity performed on resources and release handlers
3

that points to them. Finally, the fifth group contains functions
that return status information on resources, for example, the
size of a file or the error of the previously executed function.
This grouping allows us to reduce the number of possible
types of events from tens of thousands to only five. Each
event instance contains fields that designate its category type,
resource, and other resource specific information. An exam-
ple of resource specific information is a message that an
application attempts to write data into a smart card that is
missing from its reader. The other resource specific informa-
tion includes data specific to a given resource, for example,
file attributes if the resource is a file.

4 A MARS Implementation

Unlike common AOP implementations based on compile-
time or link-time weavings that apply aspects using compile-
time weaving (e.g. AspectJ and AspectC++), MARS aspects
are impractical or impossible to apply to source code of pro-
grams that represent computer resources. Source code for
many commercial resources are not available to their users, or
resources are required to run in reactive mode (e.g. 24x7) so
that to stop a resource and recompile its code with MARS
aspects applied cannot be done.

We implement MARS aspects via load-time and run-time
weavings using binary rewriters that are tools used to change
the structure of in-memory binary code representations. Inter-
estingly, binary rewriters are used mainly in profilers and pro-
gram optimizers. Using rewriters for instrumenting large
software projects (e.g. [23]) is a relatively new field of study,
and we extend its horizons in this paper.

4.1 Monitoring Resources

We break the task of monitoring computer resources into two
subtasks: the instrumentation of API calls to insert event-gen-
erating code and the delivery of generated events to MARS
programs. This approach solves MARS problems since the
administration and monitoring tasks can be added as new fea-
tures to existing functions that manipulate computer
resources.

The implementation of the monitoring part of our solution
consists of rewriting a binary application in three steps. First,
we determine the APIs that must be monitored, their locations
and signatures. Second, we build a library exporting advice
which are overloaded functions with signatures that match the
signatures of the APIs to be instrumented. Third, we instru-
ment the programs by applying advice.

4.2 Administering Resources

4.2.1 The Problem

The task of administering computer resources is more com-
plex than monitoring. When monitoring, event notifications
flow from resources via the APIs that manipulate them to
MARS programs. Administration tasks require changes to be
made to operations and resources in order to achieve certain
goals. In order to accomplish an administration task by creat-
ing and delivering administrative commands we need to
enable a program that represents a resource to receive these
commands, execute them, and desirably send the confirma-
tion back to MARS programs. However, the majority of these
programs are developed without special interfaces that enable
their administration. They execute in the protected memory
and cannot be easily tampered with. Thus, in order for
resources to be administered we need to add special interfaces
to programs that represent these resources that enable them to
communicate with MARS programs and execute administra-
tion commands.

4.2.2 Connection and Agent Threads

The resource program should maintain a connection with a
MARS program and respond to commands it receives. Since
this functionality is not a part of processes that represent
resources, we need to enable it. A kernel thread that is run as a
child of a resource process and dedicated to establishing con-
nections with MARS programs and receiving and processing
administrative commands is called a Connection Thread (CT).
The other thread that is responsible for communications with
instrumented event generation code is called an Agent Thread
(AT). These threads are not created as a result of code native
to programs that represent administered resources and there-
fore, they must be injected into resource processes. There are
several injection techniques [8][9] of which the main idea is
to create a kernel thread executing some functions and attach
it to a process by using binary rewriting mechanisms. This
injected thread acts like an agent with respect to the process in
which this thread is injected because this process is not aware
of the presence of the thread. Often binary rewriters that inject
CTs and ATs should have some control over the protected
space of the process that is the subject of the thread injection.
This control is necessary to write certain control structures in
the process space that enable agent threads to act as native to
the process. One way to do it is to enable a binary rewriter to
act as a debugger to the resource process. In this role it can
suspend the execution of the target process and write into its
process space.

However, this approach requires every process to be started
by a binary rewriter. Another way is to tap into operating sys-
tems services that govern the start and termination of pro-
4

cesses. Commodity operating systems use special functions
exported from a system library to instantiate any process.
CreateProcess is an example of such a call in Windows.
The algorithm of this call is rather complicated and described
in detail in [10]. The important thing is that processes no mat-
ter how they are started, cannot bypass this call. By statically
instrumenting CreateProcess we enable it to act as an
injector of agent threads into the created process.

4.2.3 Solution

Figure 4 illustrates the administrative part of the MARS solu-
tion. A MARS program MP communicates via an interpro-
cess connection C with the connection thread CT injected in
process P that represents an administered resource. Both
threads CT and AT execute a loop whose exit condition is
triggered either by a command from MP or by terminating the
process P. The CT receives commands from MP and AT
receives events from native threads of P designated Tk. Recall
that when we enable monitoring of resources we instrument
certain APIs by embedding event-generating code. Rather
than using an interprocess communication mechanism to
deliver these events to MARS programs, the instrumented
code sends events to the AT that executes within the same
process P. This is indicated by the dashed arrow A→B. The
cost of intraprocess communication among threads is cheaper
than interprocess communication among threads. The event-
generating function makes a blocking call to the AT and waits
for instructions. The CT and subsequently the AT can be
updated with these instructions on the fly. This is extremely
important in an enterprise environment where software may
run 24x7 and tasks may be updated hourly. The AT deter-
mines whether this call is monitoring in which case it returns
the control to the calling thread immediately. Otherwise, if
this is an API that requires an administrative action then the
AT executes an appropriate function.

Figure 4: A schema of our MARS solution.

Suppose an administrator needs to propagate a task that can
be described in English this way: “When program A opens
file “myfile.txt” then it should be redirected to the file
“other.dat” and security access privileges should be
granted for the duration of the access”. The administrator cre-
ates a command that specifies that if the first parameter of
function OpenFile has value “myfile.txt” then it
should be replaced with the value “other.dat”. The other
command instructs the AT to execute a function that grants
administrative privileges at the beginning of OpenFile API.
When a thread Tk of the process P calls the OpenFile func-
tion, it executes the event-generating code that sends an event
describing this action to the agent thread. The AT invokes the
function that replaces the parameter “myfile.txt” to the
OpenFile function with “other.dat” value, and then
executes a function grants administrative privileges to P. CT
manages the table of functions that AT invokes. The thread Tk

is suspended for the duration of A→E shown as a dashed
arrow in Figure 4. When AT returns the control back to Tk via
D→E then Tk finishes the execution of OpenFile with the
replaced parameter.

Timet1 t2 t3

As
1 Ae

1 As
2 Ae

2

Bs Be

Figure 5: Process B executing concurrently with
instances of the process A.

There are many ways to improve the performance of this
MARS solution. MARS tasks can be stored in lookup tables
managed by the CT. These tasks can be loaded into the table
when a process is created and the CT is injected. These and
other similar improvements are beyond the scope of this paper
and are the subject of future work.

5 Case Study

Many grid tasks require that certain applications should exe-
cute and need to ensure that other grid programs do not
“steal” resources from it. Consider a situation shown in
Figure 5 when process A executes starting at time As

1 and fin-
ishing at time Ae

1. Process A should be given the highest pri-
ority, and the task of a grid administrator is to suspend other
processes that try to run simultaneously with A. Suppose that
the grid administrator is an agent that polls at times t1 and t2
to monitor the computer state. Between the t1 and t2 the pro-
cess B starts at time Bs and finishes at time Be. Thus, the pro-
5

cess B is not detected by the grid agents, and it may interfere
with the execution of the process A.

Suppose that process A terminated at time Ae
1 and its new

instance started at time As
2. The polling agent detects this

instance at time t3, however, it is unable to tell whether it is a
new instance. The process identifier may be reused by the
operating system (OS) and assigned to the new instance of A.
Existing grid solutions provide real-time detection of events
associated with the asynchronous start and termination of pro-
grams either by involving OS kernel modifications that makes
them difficult and impractical [11] or by using polling mecha-
nisms that inherently misses important events [2][3][4]. Our
solution avoids these problems.

We implemented a system that serves as a proof of concept.
We used the Detours library [12] that is a dynamic code splic-
ing tool developed for x86 platform by a Microsoft research
group, to instrument programs and solve the problem outlined
above in a real-world enterprise environment described
below.

Consider a semiconductor fabrication facility (fab) that has a
number of tools used in manufacturing microprocessors based
on silicon wafers. In general, one or more tools are controlled
by programs running on a general-purpose computer. These
programs receive real-time data, analyze it, and make deci-
sions that result in sending control signals to the tools. If for
some reason a system misbehaves or some rogue program
interferes with some important application that is processing
real-time data, then the fab stops resulting in the loss of mil-
lions of dollars. While it is important to share computational
resources in enterprise environments, it is essential to have
software that monitors and controls computers in this and the
other similar situations to execute a special procedure auto-
matically to stop rogue applications from interfering with crit-
ical programs.

One of the authors (Grechanik) applied our approach to a real-
time component-based semiconductor overlay analysis and
control system. The Archer Analyzer is a software package
geared for Archer 10 optical overlay metrology systems man-
ufactured by the California-based KLA-Tencor Corporation
[13][14]. It operates in a grid computing environment where
resource sharing may lead to significant problems that require
immediate solutions in dynamic and complex organizations
such as semiconductor facilities.

The purpose of optical overlay measurements is to detect and
fix misalignments between layers of semiconductor chips that
were put on a silicon wafer using microlithography processes.
Overlay or misregistration is a vector quantity defined at
every point on the wafer. Ideally, the value of overlay should
be zero. When nonzero overlay is detected the tool is stopped
and the error is corrected as soon as possible.

We applied our MARS solution on Windows NT by instru-
menting CreateProcess to enable it to act as an injector
of agent threads into the created process. Once we detected
that a new process interferes with resources used by the
Archer Analyzer, we suspended the meddling process and
resumed it again after the system became idle.

It was interesting to observe the reaction of company’s man-
agement to our solution. As soon as they realized that we
instrumented OS services, they demanded that solutions be
removed from the computer. They perceived the modification
of a fundamental layer (i.e. OS) upon which other software
runs as a threat to the safety of the general system. Clearly, it
will take some time until instrumentation of low-level ser-
vices will be accepted by general software practitioners.

6 Performance Study

For the performance study we implemented a simple system
based on the Detours library. When process P opens a file
myfile.txt then the event generating function with which
we instrumented Windows file I/O APIs produces event noti-
fications that are delivered to a MARS program.

6.1 Experimental Setup

Efficient implementation of event storage is important for the
overall performance of MARS. Since allocation and destruc-
tion of event structures in memory is expensive, we imple-
ment an event pool that is allocated at MARS initialization
stage. The size of the event pool is fixed. When the adminis-
tration thread receives an event notification from one of pro-
gram’s threads it locates an unused event object in the pool.
Each event structure has a bit flag that is set when a structure
is filled with event information and cleared when the event is
delivered to the MARS program (MP). Delivering events to
MPs is done via the interthread connectors and a semaphore
that is set when a new event is inserted in the pool. The sema-
phore wakes up a delivery mechanism thread in MP that reads
the event and clears the bit flag.

Our experiments consist of simulating different event genera-
tion rates and event storage pool sizes. We varied the event
generation rate and measured CPU utilization (also called
CPU load) by event generation and delivery mechanisms, and
the average waiting time that events spend in storage plus the
time they wait to be put in the storage until they are picked up
by the destination process.

The main purpose of our experiments is to show that within
reasonable limits of event generation rates, the CPU load is
small enough, and it does not affect the overall performance
of the system. We deliberately ignore user-defined load (e.g.
administration tasks) that may be associated with events since
6

it is the prerogative of an administrator to design and run such
tasks. It is unlikely that a MARS user associates a time-con-
suming administrative task with a frequently called API.
Often, it makes little sense to produce event notifications
when some API is invoked frequently. For example, being
notified about the change of color of every pixel carries little
practical information and creates a significant load on a CPU.
Our experiments provide guidance for MARS users as to what
event generation rates and event pool sizes are acceptable to
achieve good overall performance.

We carried out our experiments using MS Windows 2000 that
ran on Intel Pentium III 850MHz CPU and 768MB of RAM.
We instrumented our event simulator with performance moni-
toring (PerfMon) API [25] that is distributed with Windows
platform software development kit. PerfMon API provides
programming access to various counters that enable monitor-
ing the use of CPU and memory by any application.

6.2 Detour Performance Characteristics

Detours library [12] is a dynamic code splicing tool devel-
oped for x86 platform by a Microsoft research group. Since
we use it extensively in this paper we report its performance
characteristics. Interception times are measured on our exper-
imental platform as defined in Section 6.1. The average time
to invoke different empty functions without interception is
0.043µs, and with interception using the Detours library it is
0.057µs. The overhead of the Detours library is small and
within the range of 200ns. Common interception mechanisms,
like breakpoint trapping, have surprisingly larger overheads
(at 218µs) [12]. Thus the overhead of the Detours library is
comparatively small.

6.3 Results

Our first metric of performance of MARS is the CPU utiliza-
tion caused by the event generation code and our event deliv-
ery mechanism. The graph of CPU utilization is shown in
Figure 6. The CPU load grows linearly with the event genera-
tion rate. We noticed that the overall performance starts
degrading when the CPU utilization by the event simulator
exceeds 10% that corresponds to the event generation rate
above 600 events/sec. If we draw an analogy between events
and requests to web servers, then the rate of 600 events/sec
corresponds to over 50,000,000 requests to a web server per
day. Since this rate is excessive for the sheer majority of
MARS tasks, we can conclude that our system behaves rea-
sonably well under standard loads. Of course, as soon as a
load is associated with event delivery, this rate will drop. The
point of the experiment is to show the efficiency of underly-
ing event delivery framework.

Figure 6: A graph of CPU utilization dependent on
the event generation rate for event pool size equal

to 1,000 events.

0

2

4

6

8

10

12

0 100 200 300 400 500 600

Eve nt ge ne ra tion ra te , Eve nts/Se c

C
PU

 L
oa

d,
 %

A graph showing the dependency of an average waiting time
for a generated event to be put in the container pool from the
event generation rate for different preallocated container pool
sizes is shown in Figure 7. The graph shows that for suffi-
ciently large pool size, an average waiting time is small, how-
ever, with the increase of the event generation rate the waiting
time grows nonlinearly. We conclude that it is better to have a
large container pool for the worst event generation rate case to
avoid a significant increase of the waiting time.

Figure 7: A graph of waiting times dependent on
event generation rates for different event pool sizes.

0
2
4
6
8

10
12
14
16
18
20

0 200 400 600

Event Rate, Events/Sec

W
ai

tin
g

Ti
m

e,
 S

ec

Event pool = 50
Event pool = 100
Event pool = 200

The shape of graphs shown in Figure 7 can be explained using
analytical results and fundamental laws of queueing theory
[16]. In the best possible case the arrival rate of events is less
or equal to the event processing rate of the MP, and the aver-
age waiting time for events is close to zero as it is shown in
Figure 7 with the graphs being flat until the event arrival rate
exceeds the event processing rate of the MP. The larger the
event pool the longer the flat region of the graph. Then a
backlog of unprocessed events grows continually as the event
generator keeps producing events. Late events experience
larger response times. As the number of events increases,
more events are waiting increasingly long times. Thus, for
any pessimistic bound on the MP response time it is possible
7

to pick an event generation rate sufficiently large that the
bound is exceeded.

The waiting time of MP (a response time of a service termi-
nal) with respect to the increasing number of events is
expressed with the following formula
R N 1–()Dmax() 1 Z N D⋅()⁄()+()⁄= ,

where R is the waiting time, N is the number of events, D is
the total time to process all events, Dmax is the largest time it
takes to process an event, and Z is the average time required
to process an event. This formula shows that the waiting time
increases linearly with the number of events waiting for ser-
vice. So the question that we ask is whether graphs showing
the increasing response time in Figure 7 are linear after the
breaking point is reached between their flat and growing
parts. This breaking point symbolizes that the event genera-
tion rate sufficiently exceeded the event processing rate of the
MP.

To show that the waiting time increases in a linear fashion we
estimate the correlation between samples of the graph by
computing the Pearson product moment correlation coeffi-
cient [17] as

r nΣ XY() ΣX() ΣY()–

nΣY2 ΣY()2– nΣX2 ΣX()2–
--=

Let variables X and Y stand for the event generation rates and
the event waiting times respectively. The values of r for the
data shown in Figure 7 are 0.93, 0.97, and 0.96 for event
pool sizes of 50, 100, and 200 respectively. These values of r
suggest a strong tendency the average waiting time to increase
linearly as the event generation rate increases, and it serves as
a good indicator that we are in the agreement with the queuing
theory that governs the behavior of our system.

7 Related Work

There are two categories of related work. The first includes
different tools and techniques that enable instrumentation of
binary code. The other describes existing monitoring and
administering solutions, their benefits and limitations.

7.1 Machine Code Splicing Solutions

There are two types of machine code splicing: static and
dynamic. Static splicing is a technique for rewriting machine
code with the subsequent storing it on some persistent stor-
age. In contrast, dynamic splicing enables rewriting the
machine code when it is loaded in the memory for executing
within a process. When static splicing is applied to a program
or a library then its image is overwritten and the refined code
is stored on a hard drive. From this moment on this refined

program code is loaded in memory to execute. Dynamic splic-
ing requires a special program to load the program to be
refined in memory with the purpose of gaining read and write
access to its process image. Then the loading program applies
splicing to the loaded process and allows it to run. This opera-
tion should be performed every time when a desired program
is to be run.

Both approaches have been implemented and tested on a vari-
ety of platform. Etch [18] is a static and Detours [12] is a
dynamic code splicing tool developed for x86 platform. Dyn-
inst [19] provides a C++ class library for dynamic code splic-
ing that covers a range of platforms such as IRIX (MIPS),
AIX (Power), Solaris (Sparc), Windows NT (x86), and Linux
(x86). EEL (Executable Editing Library) [20] is also a C++
library that hides the complexity and platform-dependent
detail of editing executables. EEL provides abstractions that
allow a code splicing tool to analyze and modify executable
programs without being concerned with particular instruction
sets, executable file formats, or consequences of deleting
existing code and adding refinement feature code. EEL sim-
plifies the construction of program measurement, protection,
translation, and debugging tools. EEL also can edit fully-
linked executables, not just object files, and it is portable
across a wide range of systems. ATOM [21] is a single frame-
work for static and dynamic code splicing that enables build-
ing a wide range of customized program analysis tools. It
provides a powerful interface for navigating through the code
of an existing application and dropping instrumentation code
at join points. FX!32 developed by Digital [22] combines an
emulator and translator that takes x86 code and dynamically
convert it into Alpha-based instructions. Mediators [23] is a
technology for instrumenting all shared library calls, monitor
their behavior, integrate legacy components together, or
encapsulate potentially harmful or unreliable components.
They can be dynamically installed and removed during execu-
tion or installed before execution begins. Mediators are based
on the Detours library.

It seems that the static code splicing approach can do every-
thing that the dynamic approach does and more since it needs
to be applied only once to splice the target code. However, the
combination of static and dynamic approaches is preferable
for our solution. Since static code splicing can be applied only
when a program is not executing then this approach is not
good for long-running processes because it requires processes
to stop, apply a splicer, and restart processes. The other draw-
back of this approach is its legality. Many commercial soft-
ware packages are sold with licenses that govern their use. A
standard clause in such licenses states that no programs in
these packages can be modified for any purpose. However,
this clause does not apply when programs are executing in
memory. Thus, this plays significant role when MARS is
applied to commercially licensed software. We also consider
8

dynamic code splicing of commodity operating system ker-
nels. Recent paper on this topic [24] proved that dynamic
code splicing of commodity operating system kernels is possi-
ble with an instruction-level precision.

7.2 Monitoring and Administering Solutions

Existing MARS solutions can be roughly divided into four
groups. The first includes the software that provides remote
access to the managed computers. PC Anywhere and Citrix
terminal server [26][27] are examples of these approach. This
solution is not scalable as it only removes the need for an
administrator to be physically present at a computer. It is net-
work intensive since it is based on screen pixel transfer
between computers.

The second group includes specialized or modified OS ker-
nels of distributed operating systems that enable administra-
tion of distributed computers with automation of some tasks.
An example of this approach is the TACOMA OS [28] that
implements several distributed management policies. The
drawbacks of this approach are performance penalty resulting
from a “heavy” kernel and impracticality of modifying exist-
ing operating systems to incorporate this strategy.

Another approach is to run an agent at the managed computer
that collects information and may control some resources, but
has limited capabilities to affect operating system settings and
other running applications. The problem with this approach is
that the agent can be killed leaving the computer unmanage-
able. In addition, polling agents are created using platform-
dependent API, and they cannot penetrate interprocess mem-
ory to administer arbitrary applications. Monitoring and
administrative agents work in polling mode, sleeping for
some time and waking up to collect information and execute
some administration tasks. The problem with this approach is
that polling agents are often invoked when their services are
not needed, and they consume computer resources to gather
information about their behavior without producing any use-
ful actions.

Finally, the trace collection approach is based on parsing text
data that applications write in their log files. It also uses OS-
dependent API, for example, performance monitoring API on
Windows 2000 or SNMP traces in order to extract semanti-
cally relevant information that is of interest to users. This
approach is extremely laborious and limited in scope, how-
ever, it is the simplest to implement considering the alterna-
tives. BMC is one of the major MARS product companies has
two solutions called GuardianAngel and SiteAngel that are
based on the trace collection approach. IBM’s Tivoli Enter-
prise Console (TEC) is another example of commercial moni-
toring and administering software that requires each
controlled application to incorporate in its source code special

API designed by Tivoli engineers that sends monitoring mes-
sages and accepts control requests from MARS programs [2].
HP AdminCenter [29] explains the cause of various failures in
systems. While the AdminCenter uses a rule based system to
show dependencies among different resources, TEC requires
the monitored program source code to be modified to include
diagnostic messages that have predefined format. Dolphin
gathers information via SNMP or RPC. The information is
stored in a proprietary internal format that can be accessed
through the provided GUI.

Other commercial companies addressed this problem but with
little success. For example, Microsoft’s Zero Administration
Kit [30] was dependent on Windows NT for clients and serv-
ers. The major part of this kit was a system policy editor with
some templates. Other commercial implementations, for
example, Network Computer Viewpoint Administrator by
Boundless Technologies [3], which one of the authors (Gre-
chanik) of this paper developed in 1998 is complex and
requires operating system drivers while providing limited
functionality to administrators.

Extensive analysis of system administration tasks such as
monitoring, diagnosing, and repairing (MDR) was done in
[31][32]. The proposed MDR system used information gath-
ered and stored from enterprise distributed system with the
purpose of statistical analysis. The statistics in the MDR sys-
tem have to be analyzed to determine expected values and dis-
persions. If a problem, for example, a device failure or a CPU
overload happens then administrators, users, or managers can
be notified of the problem. Some problems can be automati-
cally fixed, and for other problems the administrator can spec-
ify repairs. Administrators and users are enabled to visualize
the statistics and information.

A number of systems [33][34][35][36][37][4][38][39][40]
concentrate of collecting monitoring information using poll-
ing agent approach and then calculate statistical parameters.
Some have very complex subsystems for monitoring com-
puter resources using polling agent and harvesting measure-
ment data. In most cases they differ on whether the gathering
happens from a single node, or happens on remote nodes and
is sent to a single node. None of these systems address the
issue of writing monitoring and administration software. In
fact, most do not provide any administration capabilities. Very
few of them provide any form of notification more advanced
then simple screen eyeballing.

8 Discussion and Future Work

An accepted paradigm in the design of MARS software is
based on using conventional object-oriented programming
techniques that conflicts with the underlying mechanisms of
resource monitoring and administration. These mechanisms
9

are based on viewing resources as programming objects with-
out strict physical boundaries that exist outside the scope of
MARS software and their methods are spread across different
libraries. All attempts to apply conventional techniques led to
ineffective MARS programs that were complex to write and
hard to maintain.

MARS research is interdisciplinary. Our approach to build
MARS programs is synthesized from a variety of techniques
and ideas developed in operating systems, software engineer-
ing, and programming language research. It is noteworthy that
binary rewriters that constitute the basis for our solution are
not widely accepted in software engineering due to a common
belief that it is not easy to integrate them in software develop-
ment processes. Our research shows that not only binary
rewriters can be easily integrated in software development
and also it is difficult to solve the MARS problem if they did
not exist.

We believe that our approach has potential. Not only can it be
used for creation of MARS programs but also for application
integration and collaborative computing. Its key advantage is
that all these uses involve minimal development efforts.
Architects will not disrupt their organizations by recoding
existing applications in order to add new MARS functionality.
It offers, for example, an attractive alternative to the way
computer resources are currently administered and monitored,
and it abolishes the need for any programming changes to
them.

Of course, there are limitations. It is not clear how our ideas
apply to real-time systems. If an application has intensive
graphic front end (e.g., a game), then our approach may not be
able to offer the best performance when critical resource func-
tions are monitored and administered. Further, the libraries
containing functions that constitute some resources change
over time. These changes can impact a MARS application
created with our technology, requiring changes to be propa-
gated to MARS programs. For operating system modifica-
tions of system services tend to be rare, whereas for custom
libraries, changes occur more often.

9 Conclusions

The administration and monitoring of computer resources
especially when their source code is not available is both a
difficult and fundamental problem of MARS. We have shown
that a viable solution is interdisciplinary and lies in refining
executable code that represent computer resources. We use
the principles of binary rewriting in order to refine functions
that constitute the resource interfaces. The proposed MARS
aspect-oriented approach hides the complexity of the low-
level code instrumentation and presents interfaces that allow
programmers to write MARS programs uniformly and with

minimal complexity. Our solution reduces the significant
complexity associated with development of MARS software
by enabling a simple and powerful event model for the moni-
toring task. We enable programmers to operate on resources
as if they were first-class objects thereby presenting a uniform
way to write MARS programs. By imposing a transactional
metaphor on MARS systems we simplified the event delivery
mechanism reducing tens of thousands of different events to
only five event classes. We showed that our approach can
solve monitoring and administration problems without incur-
ring the complexity of existing monitoring and administering
technologies. We applied our MARS implementation to a
nontrivial commercial system operating in a grid computing
environment where resource sharing may lead to significant
problems and it demonstrated the viability of our approach
and successfully tested its critical functionality.

Acknowledgments. We warmly thank James C. Browne
and Michael D. Dahlin for reading this paper and providing
useful comments and suggestions.

10 References
[1] I.Foster and C.Kesselman, The Grid: Blueprint for a New

Computing Infrastructure, 2nd edition, Morgan-Kaufmann,
2004.

[2] Private conversations with Tivoli engineers.
[3] Boundless Technologies, “Viewpoint Administrator”. http://

www.internetwk.com/story/INW19990901S0011.
[4] BMC Software Corp. Guardian Angel. http://www.bmc.com/

products/proddocview/
0,2832,19052_19444_29401_9118,00.html

[5] D. Luckham, “The Power of Events: An Introduction to
Complex Event Processing in Distributed Enterprise Systems”.
Addison-Wesley, 2002.

[6] G. Kiczales, J. Lamping, A. Menhdekar, C. Maeda, C. Lopez, J.
Loingties, and J. Irwin, “Aspect-Oriented Programming”. In M.
Aksit and S. Matsuoka, editors, ECOOP, vol. 1241 of Lecture
Notes in Computer Science, Springer, 1997.

[7] D. Spinellis, “A critique of the Windows application
programming interface”. Computer Standards and Interfaces,
20:1-8, 1998.

[8] M. Grechanik, D. Batory, and D. Perry, “Integrating and Reusing
GUI-Driven Applications”. International Conference on
Software Reuse, Austin, Texas, Apr 2002.

[9] Matt Pietrek. “Learn System-level Win32 Coding Techniques By
Writing an API Spy Program”. Microsoft Systems Journal, vol.
9, no. 12, 1994, pp. 17-44.

[10]D. Solomon and M. Russinovich, Inside Microsoft Windows
2000, Microsoft Press, 2000.

[11]Sun Microsystems, N1 Grid: n Computers Operating as 1. http://
wwws.sun.com/software/solutions/n1

[12]G. Hunt, “Detours: Binary Interception of Win32 Functions”.
Proc. 3rd USENIX Windows NT Symposium, Seattle, WA, July
1999.
10

[13]Semiconductor Business News, http://
www.siliconstrategies.com/story/OEG20020708S0052.

[14]KLA-Tencor, "Archer Analyzer Automated, Real-Time Overlay
Metrology Analysis," Technical Fact Sheet,

[15]http://www.kla-tencor.com/products/archer10/
archer_analyzer_tech_factsheet.html

[16]E. Lazowska, J. Zahorjan, G. Graham, and K. Sevcik,
Quantitative System Performance. Prentice Hall, 1984.

[17]G. Box, W. Hunter, and J. Hunter, “Statistics For
Expirementers”. John Wiley and Sons, 1978.

[18]T. Romer, G. Voelker, D. Lee, A. Wolman, W. Wong, H. Levy,
and B. Bershad, “Instrumentation and Optimization of Win32/
Intel Executables Using Etch”. USENIX Windows NT
Workshop, Seattle, WA, Aug 11-13, 1997.

[19]B. Buck and J. Hollingsworth, "An API for Runtime Code
Patching". International Journal of High Performance
Computing Applications, 2000.

[20]J. Larus and E. Schnarr, "EEL: Machine-Independent Executable
Editing". SIGPLAN Conference on Programming Language
Design and Implementation (PLDI), June 1995.

[21]A. Srivastava and A. Eustace, “ATOM: A system for building
customized program analysis tools”. Proceedings of the
SIGPLAN '94 Conference on Programming Language Design
and Implementation, 196-205, June 1994.

[22]A. Chernoff and R. Hookway, “DIGITAL FX!32 - Running 32-
Bit x86 Applications on Alpha NT”. USENIX Windows NT
Workshop, Seattle, WA, August, 1997.

[23]R. Balzer and N. Goldman, "Mediating Connectors". Proc. 19th
IEEE International Conference on Distributed Computing
Systems Workshop, 73-77, Austin, TX, June 1999.

[24]A. Tamches and B. Miller, "Fine-Grained Dynamic
Instrumentation of Commodity Operating System Kernels".
Proceedings of the 3rd Symposium on Operating Systems
Design and Implementation, New Orleans, LA, February 1999.

[25]S. Pratschner, “Instrumenting Windows NT Applications with
Performance Monitor“. http://msdn.microsoft.com/library/
default.asp?url=/library/en-us/dnperfmo/html/perfmon.asp

[26]S. Kaplan, M. Mangus, "Citrix Metaframe for Windows
Terminal Services: The Official Guide". McGraw Hill, 2000.

[27]Symantec Corp. PC Anywhere. http://www.symantec.com/
pcanywhere/

[28]R. van Renesse and F. Schneider, “An introduction to the
Tacoma distributed system, version 1.0”. Technical Report 95-
23, University of Tromso, Norway, June 1995.

[29]HP AdminCenter. http://www.networkcomputing.com/613/
613f1b.html.

[30]C. Zacker, Zero Administration for Windows. O'Reilly, 1999.
[31]E. Anderson and D. Patterson, "Extensible, Scalable Monitoring

for Clusters of Computers". Proceedings of 11th Systems
Administration Conference, 1997.

[32]E. Anderson, "System Administration: Monitoring, Diagnosing,
and Repairing". Ph.D. Qualifying Proposal, April 1997.

[33]J. Sedayao and K. Akita, “LACHESIS: A Tool for
Benchmarking Internet Service Providers”. Proceedings of the
LISA IX Conference, 1995.

[34]C. Shipley and C. Wang, “Monitoring Activity on a Large Unix
Network with perl and Syslogd”. Proceedings of the LISA V
Conference, 1991.

[35]R. Finkel, “Pulsar: An Extensible Tool for Monitoring Large
Unix Sites”. Software - Practice and Experience(SPE), Vol 27,
No 10, 1163-1176, 1997.

[36]Sun Microsystems. SOLSTICE System Management. http://
wwws.sun.com/software/solstice/system.mgmt.html

[37]D. Hardy and H. Morreale, "buzzerd: Automated Systems
Monitoring with Notification in a Network Environment".
Proceedings of the LISA VI Conference, 1992.

[38]B. Hill, "Priv: Secure and Flexible Privileged Access
Dissemination". Proceedings of the LISA X Conference, 1996.

[39]C. Pierce, “The Igor System Administration Tool”. Proceedings
of the LISA X Conference, 1996.

[40]K. Ramm and M. Grubb, "Exu: A System for Secure Delegation
of Authority on an Insecure Network". Proceedings of the LISA
IX Conference, 1995.
11

	Using AOP to Monitor and Administer Software for Grid Computing Environments
	Mark Grechanik, Dewayne E. Perry, and Don Batory
	The Product-Line Architecture Research Group University of Texas at Austin Austin, Texas 78712
	{gmark, batory}@cs.utexas.edu, perry@ece.utexas.edu
	1 Introduction
	2 The MARS Model
	Figure 1: Logical view of the MARS model.

	3 The Supporting Models
	3.1 Event Model
	Figure 2: Event model.

	3.2 Binary Rewriting Model
	Figure 3: Categorization of fax service, simple network management protocol (SNMP), and file I/O Windows library APIs using our transactional metaphor.

	3.3 Event Categorization

	4 A MARS Implementation
	4.1 Monitoring Resources
	4.2 Administering Resources
	4.2.1 The Problem
	4.2.2 Connection and Agent Threads
	4.2.3 Solution
	Figure 4: A schema of our MARS solution.
	Figure 5: Process B executing concurrently with instances of the process A.

	5 Case Study
	6 Performance Study
	6.1 Experimental Setup
	6.2 Detour Performance Characteristics
	6.3 Results
	Figure 6: A graph of CPU utilization dependent on the event generation rate for event pool size equal to 1,000 events.
	Figure 7: A graph of waiting times dependent on event generation rates for different event pool sizes.

	7 Related Work
	7.1 Machine Code Splicing Solutions
	7.2 Monitoring and Administering Solutions

	8 Discussion and Future Work
	9 Conclusions
	10 References
	[1] I.Foster and C.Kesselman, The Grid: Blueprint for a New Computing Infrastructure, 2nd edition, Morgan-Kaufmann, 2004.
	[2] Private conversations with Tivoli engineers.
	[3] Boundless Technologies, “Viewpoint Administrator”. http:// www.internetwk.com/story/INW19990901S0011.
	[4] BMC Software Corp. Guardian Angel. http://www.bmc.com/ products/proddocview/ 0,2832,19052_19444_29401_9118,00.html
	[5] D. Luckham, “The Power of Events: An Introduction to Complex Event Processing in Distributed Enterprise Systems”. Addison-Wesley, 2002.
	[6] G. Kiczales, J. Lamping, A. Menhdekar, C. Maeda, C. Lopez, J. Loingties, and J. Irwin, “Aspect-Oriented Programming”. In M. Aksit and S. Matsuoka, editors, ECOOP, vol. 1241 of Lecture Notes in Computer Science, Springer, 1997.
	[7] D. Spinellis, “A critique of the Windows application programming interface”. Computer Standards and Interfaces, 20:1-8, 1998.
	[8] M. Grechanik, D. Batory, and D. Perry, “Integrating and Reusing GUI-Driven Applications”. International Conference on Software Reuse, Austin, Texas, Apr 2002.
	[9] Matt Pietrek. “Learn System-level Win32 Coding Techniques By Writing an API Spy Program”. Microsoft Systems Journal, vol. 9, no. 12, 1994, pp. 17-44.
	[10] D. Solomon and M. Russinovich, Inside Microsoft Windows 2000, Microsoft Press, 2000.
	[11] Sun Microsystems, N1 Grid: n Computers Operating as 1. http:// wwws.sun.com/software/solutions/n1
	[12] G. Hunt, “Detours: Binary Interception of Win32 Functions”. Proc. 3rd USENIX Windows NT Symposium, Seattle, WA, July 1999.
	[13] Semiconductor Business News, http:// www.siliconstrategies.com/story/OEG20020708S0052.
	[14] KLA-Tencor, "Archer Analyzer Automated, Real-Time Overlay Metrology Analysis," Technical Fact Sheet,
	[15] http://www.kla-tencor.com/products/archer10/ archer_analyzer_tech_factsheet.html
	[16] E. Lazowska, J. Zahorjan, G. Graham, and K. Sevcik, Quantitative System Performance. Prentice Hall, 1984.
	[17] G. Box, W. Hunter, and J. Hunter, “Statistics For Expirementers”. John Wiley and Sons, 1978.
	[18] T. Romer, G. Voelker, D. Lee, A. Wolman, W. Wong, H. Levy, and B. Bershad, “Instrumentation and Optimization of Win32/ Intel Executables Using Etch”. USENIX Windows NT Workshop, Seattle, WA, Aug 11-13, 1997.
	[19] B. Buck and J. Hollingsworth, "An API for Runtime Code Patching". International Journal of High Performance Computing Applications, 2000.
	[20] J. Larus and E. Schnarr, "EEL: Machine-Independent Executable Editing". SIGPLAN Conference on Programming Language Design and Implementation (PLDI), June 1995.
	[21] A. Srivastava and A. Eustace, “ATOM: A system for building customized program analysis tools”. Proceedings of the SIGPLAN '94 Conference on Programming Language Design and Implementation, 196-205, June 1994.
	[22] A. Chernoff and R. Hookway, “DIGITAL FX!32 - Running 32- Bit x86 Applications on Alpha NT”. USENIX Windows NT Workshop, Seattle, WA, August, 1997.
	[23] R. Balzer and N. Goldman, "Mediating Connectors". Proc. 19th IEEE International Conference on Distributed Computing Systems Workshop, 73-77, Austin, TX, June 1999.
	[24] A. Tamches and B. Miller, "Fine-Grained Dynamic Instrumentation of Commodity Operating System Kernels". Proceedings of the 3rd Symposium on Operating Systems Design and Implementation, New Orleans, LA, February 1999.
	[25] S. Pratschner, “Instrumenting Windows NT Applications with Performance Monitor“. http://msdn.microsoft.com/library/ default.asp?url=/library/en-us/dnperfmo/html/perfmon.asp
	[26] S. Kaplan, M. Mangus, "Citrix Metaframe for Windows Terminal Services: The Official Guide". McGraw Hill, 2000.
	[27] Symantec Corp. PC Anywhere. http://www.symantec.com/ pcanywhere/
	[28] R. van Renesse and F. Schneider, “An introduction to the Tacoma distributed system, version 1.0”. Technical Report 95- 23, University of Tromso, Norway, June 1995.
	[29] HP AdminCenter. http://www.networkcomputing.com/613/ 613f1b.html.
	[30] C. Zacker, Zero Administration for Windows. O'Reilly, 1999.
	[31] E. Anderson and D. Patterson, "Extensible, Scalable Monitoring for Clusters of Computers". Proceedings of 11th Systems Administration Conference, 1997.
	[32] E. Anderson, "System Administration: Monitoring, Diagnosing, and Repairing". Ph.D. Qualifying Proposal, April 1997.
	[33] J. Sedayao and K. Akita, “LACHESIS: A Tool for Benchmarking Internet Service Providers”. Proceedings of the LISA IX Conference, 1995.
	[34] C. Shipley and C. Wang, “Monitoring Activity on a Large Unix Network with perl and Syslogd”. Proceedings of the LISA V Conference, 1991.
	[35] R. Finkel, “Pulsar: An Extensible Tool for Monitoring Large Unix Sites”. Software - Practice and Experience(SPE), Vol 27, No 10, 1163-1176, 1997.
	[36] Sun Microsystems. SOLSTICE System Management. http:// wwws.sun.com/software/solstice/system.mgmt.html
	[37] D. Hardy and H. Morreale, "buzzerd: Automated Systems Monitoring with Notification in a Network Environment". Proceedings of the LISA VI Conference, 1992.
	[38] B. Hill, "Priv: Secure and Flexible Privileged Access Dissemination". Proceedings of the LISA X Conference, 1996.
	[39] C. Pierce, “The Igor System Administration Tool”. Proceedings of the LISA X Conference, 1996.
	[40] K. Ramm and M. Grubb, "Exu: A System for Secure Delegation of Authority on an Insecure Network". Proceedings of the LISA IX Conference, 1995.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200061006d00e9006c0069006f007200e90065002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /ENU (Use these settings to create PDF documents with higher image resolution for improved printing quality. The PDF documents can be opened with Acrobat and Reader 5.0 and later.)
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308000200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e0065002000760065007200620065007300730065007200740065002000420069006c0064007100750061006c0069007400e400740020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e0030002000650020007300750070006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e006700200066006f00720020006100740020006600e50020006200650064007200650020007500640073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f0067006500720065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000650065006e0020006200650074006500720065002000610066006400720075006b006b00770061006c00690074006500690074002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200070006100720061002000610075006d0065006e0074006100720020006c0061002000630061006c006900640061006400200061006c00200069006d007000720069006d00690072002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a00610020004100630072006f006200610074002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006200650064007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006f006300680020006400e40072006d006500640020006600e50020006200e400740074007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

