
Rosetta: A Generator of Data Language Compilers�

E. E. Villarreal

Computer Science Department

Cal Poly State University

San Luis Obispo, CA 93407

Don Batory

Department of Computer Sciences

The University of Texas at Austin

Austin, TX 78712

April 4, 1996

Abstract

A data language is a declarative language that enables database users to access and

manipulate data. There are families of related data languages; each family member

is targeted for a particular application. Unfortunately, building compilers for such

languages is largely an ad hoc process; there are no tools and design methods that

allow programmers to leverage the design and code of compilers for similar languages,

or to simplify the evolution of existing languages to include more features.

Rosetta is a generator of relational data language compilers that demonstrates prac-

tical solutions to these problems. We explain how domain analysis identi�es primitive

building blocks of these compilers, and how grammar-based de�nitions (�a la GenVoca)

of the legal compositions of these blocks yields compact and easily-evolvable speci�-

cations of data languages. Rosetta automatically transforms such speci�cations into

compilers. Experiences with Rosetta are discussed.

1 Introduction

Families of functionally and syntactically similar languages are prevalent today because

languages have a history of development. The family or domain of non-object-oriented

imperative programming languages (e.g., Pascal [JW78], Algol [ISO72], C [KR78], etc.) is

one example; the domain of relational data languages (e.g., SQL [vdL89], Quel [Dat87],

TQuel [Sno87]) is another.

Clearly, there will always be families of related languages, if only because no single language

suits all situations. This is particularly evident in contemporary database research. To

�This work was supported in part by Texas Instruments, The University of Texas Applied Research Labs,

Schlumberger, and Microsoft Research.

1

dsb
Text Box
1997 Symposium on Software Reuse (SSR), 146-156

meet the demanding needs of geographic and temporal databases, for example, new data

languages are frequently proposed. Few are wholly new: most extend common languages

such as SQL or Quel. Fewer still are implemented. Database practitioners demand that

researchers go beyond the proposal stage to have hands-on experience evaluating their lan-

guages. Tools and methodologies that enable building language families (or evolving existing

languages) inexpensively and quickly are nonexistent and are sorely needed [Sal95]. Our sys-

tem, Rosetta, is a generator of data language compilers that addresses precisely these needs

of database researchers. In this paper, we explain the two software engineering concepts on

which Rosetta is based.

First, there is a backplane or virtual machine of operators on relations (e.g., tuple selection,

modi�cation, deletion, etc.) that underlies the domain of data languages. Backplane oper-

ators are primitive units of computation that are shared by many or all languages in the

domain. A well-designed backplane insulates operator implementation details from its client

data languages. Thus, a variety of di�erent implementations of operators can be explored

without sacri�cing the ability of the backplane to support families of diverse data languages.

Second, there exist primitive building-blocks for language construction. From our analysis,

we have identi�ed three classes of building-blocks: one class maps language syntax to back-

plane operators; another builds internal representations of backplane operator trees; and a

third manages contextual information.

Rosetta exploits these two concepts to deliver data language extensibility through software

building blocks. Rosetta is a GenVoca generator [BO92]; it relies on a grammar-based

speci�cation to de�ne the legal combinations of building blocks. The syntax that is used

to invoke a particular combination (and thus de�ne the actions of a speci�c data language

statement) is speci�ed by instantiating parameters of these blocks. Rosetta generates a

compiler for a target language from such speci�cations.

Although we believe the concepts of language extensibility on which Rosetta is based are

domain-independent (and hence may lead to compiler generators for languages in other

domains, such as the domain of object-oriented programming languages), in this paper we

focus only on their applicability to relational data languages. We begin with a brief overview

of the domain of relational data languages, and then progressively develop our model of

Rosetta.

2 Overview of Relational Data Languages

A data language of a database management system (DBMS) is a declarative language that

enables database users to access and manipulate data. Although early DBMSs featured

proprietary data languages, most DBMSs today o�er a dialect of SQL or Quel.

Contemporary data languages share much functionality. All provide ways for users to re-

trieve, update, insert, and delete tuples, but the manner in which these statements are

2

expressed can di�er markedly. The most obvious di�erences are syntactic. For example,

to print the tuples of a relation R(a,b,c), only one SQL statement is needed, whereas Quel

requires two. The SQL and Quel statements in Table 1a display all attributes of tuples that

satisfy the predicate R:a > R:b. As another example, the SQL and Quel statements in

Table 1b replace the original value of attribute R:a with R.a*10 for tuples that satisfy the

predicate R:a > R:b.

SELECT * RANGE OF S IS R UPDATE R RANGE OF S IS R

FROM R SET R.a = R.a * 10

WHERE R.a > R.b RETRIEVE S.a, S.b, S.c WHERE R.a > R.b REPLACE S (S.a = S.a * 10)

WHERE S.a > S.b WHERE S.a > S.b

(a) access in SQL and Quel (b) update in SQL and Quel

Table 1: Data Manipulation Statements in SQL vs. Quel

Nontrivial semantic di�erences also exist. For example, SQL and Quel di�er in the options

in pre-processing the inputs for aggregation operators (such as avg(), max(), etc.). The

SQL SELECT statement may invoke multiple aggregations but all operate on the same set

of tuples, possibly grouped on some set of attributes. Quel aggregation is more general:

di�erent aggregations operate on the same tuples, but each may specify its own grouping.

Non-traditional data languages are SQL and Quel with application-speci�c extensions. For

example, the temporal data languages TQuel[Sno87] and TSQL2[Sno94] share several tem-

poral data types such as events (points in time) and time intervals. There are functionalities

that TQuel has that TSQL2 doesn't have (e.g., the coalescing of tuples with overlapping

time intervals), and vice versa.

Data languages are often built from scratch. There are no tools or design methods that

allow programmers to leverage previous designs and implementations. As a consequence,

data language design and construction is ad hoc, often involving rote coding exercises that

reinvent many basic concepts and functionalities. In the next section, we outline the Rosetta

model which o�ers a fundamentally di�erent approach to the construction of compilers for

data languages.

3 The Rosetta Model

Generators of relational data language compilers are based on domain models. A domain
model is the product of analyzing many languages to identify the fundamental data types and

operators that underlie their implementation. By de�ning a backplane or virtual machine to

consist of these types and operators, it is possible to largely separate the problems of back-

plane implementation from data language implementations (i.e., data language compilers)

that instantiate backplane types and that invoke backplane operators)[BBG+88].

3

Our backplane is based on relational algebra. There are the usual selection and projection

operators, but there are many others as well. Examples include operators on a wide range

of primitive data types. Also, there are operators for tuple insertion, deletion, modi�cation,

and aggregation that re
ect the state-based world of database updates.

Compilers for data languages are themselves generators. Each data language statement is

transformed by a data language compiler into a program that performs the intended actions

of that statement. Backplane operators are the basic units of language computation. A

program that implements a data language statement is de�ned by an operator tree, i.e., a

composition of backplane operators. To model all possible programs (and hence the actions

of all possible data language statements) in terms of these operators, we create a grammar

G that de�nes all syntactically correct operator trees.

G consists of a small number of compound productions called catalogs. A catalog T is the

set of all backplane operators that produce a result of type T . Catalog T is written as

a production T ! f1() j f2() j : : : ; (see Table 2). That is, T is both a data type and a

production name, operator fi() (which returns results of type T) is its ith rewrite rule, and

every operator parameter � :S is a reference to the nonterminal whose production is de�ned

by the catalog S. All type-correct operator trees that can be constructed from backplane

operators are de�ned by G; the start symbol of G is the �rst catalog that is listed.

Not all operator trees (sentences) of G are meaningful or can be expressed by a data language.

To model a particular data language L, two re�nements are needed. First, a subgrammar GL
of G must be formed so that each statement in L corresponds to precisely one operator tree

in GL, and every operator tree of GL corresponds to at least one statement in L (i.e., it is legal

for multiple statements of L to generate the same operator tree).1 Second, the syntax of L

is \grafted" onto GL to indicate when particular operator trees should be invoked. Thus, the

speci�cation GL of L de�nes the set of operator trees that can be expressed by the language

and the syntax that invokes speci�c trees.

Our approach to specifying languages is di�erent than that of typical syntax-directed com-

piler tools, such as lex/yacc [Joh86] and
ex/bison [DS91]. Our approach is semantics-

directed: we de�ne the language's semantics (i.e., operator trees that can be produced) �rst

and specify syntax last, rather than the reverse. The next section illustrates these ideas

on the domain of elementary calculator languages. Later, we introduce additional Rosetta

concepts for dealing with more complex languages.

3.1 Calculator Data Languages

Consider the domain of calculators that perform basic integer arithmetic and that can store

results in named variables. Such calculators de�ne elementary data languages. This domain

can be modeled by a backplane (see Table 2a) that utilizes four data types: Int (integers),

1Data language compilers translate each statement s into a single operator tree t. Query optimizers can

then rearrange and replace the operators of t to optimize t. However, the mapping from s to t must be

unambiguous.

4

Var (variable references), String, and Void. The calculator backplane of Table 2a is arranged

in Table 2b as a grammar G with three catalogs: Void, Int, and Var (no operators compute

a result of type String, so there are only three catalogs).

assign(v:Var, y:Int):Void assign value y to variable v Void ! assign Var Int

clear():Void discard active variables j clear

list():Void list active variables and their values j list

defn var(v:Var, i:Int):Void de�ne variable v with initial value i j defn var Var Int

print(x:Int):Void print the input value j print Int

;

add(x:Int, y:Int):Int compute the sum x + y Int ! add Int Int

sub(x:Int, y:Int):Int compute the di�erence x - y j sub Int Int

eval(x:Int):Int return the value of x j eval Int

refvar(v:Var):Int return the value stored in variable v j refvar Var

str2int(s:String):Int convert string s to an Int j str2int String

varcnt():Int count the de�ned variables j varcnt

;

str2var(s:String):Var interpret s as a variable Var ! str2var String

;

(a) backplane functions (b) grammar G

Table 2: Calculator Backplane Functions

To customize grammar G to obtain the grammar of a speci�c calculator, we must eliminate

unwanted or meaningless operator trees. To do this, we create subsets of catalogs, called

subcatalogs. For example, the subcatalog S0 ! f0() j f1(); contains the operators f0() and
f1(), while subcatalog S1 ! S0 j f2(); contains operators f0(), f1(), and f2(). By introducing

subcatalogs and by specializing operator parameters from � : T to � : S� , where S� is a

subcatalog of T , unwanted operator trees are eliminated.

For example, the Int catalog of the calculator backplane includes arithmetic operators and

an administrative operator, varcnt(), which returns the number of variables that have been

de�ned. It is meaningless to include varcnt() in any arithmetic computation (e.g., there is no

signi�cance to the computation 3*(varcnt()+1)), so operator trees for arithmetic expressions

should not contain varcnt(). This is easily accomplished by de�ning the int1 subcatalog (see

Table 3) which de�nes legal arithmetic expressions to be type-correct compositions of the

add, sub, eval, refvar, and str2int operators. On the other hand, we would like to

print both the results of arithmetic expressions and values returned by varcnt(). The int

subcatalog accomplishes this. By using int as the type of the formal parameter for the

print() operator, any integer can be printed but only the operators included in the int1

subcatalog can appear in arithmetic computations. The re�ned grammar Gcalculator is shown

in Table 3.

5

void=assign(v:Var, x:int1)

j clear()

j list()

j defn var(v:Var,i:int1)

j print(x:int)

int1 =add(x:int1, y:int1)

j sub(x:int1, y:int1)

j eval(x:int1)

j refvar(v:Var)

j str2int(s:String)

int =varcnt()

j int1

Var =str2var(s:String)

Table 3: Subcatalog Re�nement of Calculator Grammar

The last step in de�ning a data language in Rosetta is specifying a customized syntax for

each operator, called a syntax signature. The general form of a syntax signature is:

f [<invoking condition>, p1:�1, p2:�2, : : :]

where f() names the backplane operator to be invoked, the <invoking condition> speci�es

a condition which must hold in order to invoke the backplane operator f(), and the p1:�1,

p2:�2, : : : , are the formal parameters of f(). There are three kinds of syntax signatures, each

having a di�erent invoking condition. Below we discuss the two signatures that consume

lexical input, the third (and most complicated as it does not consume lexical input) is

discussed in Section 3.2.

Parameterized signatures associate backplane operators with a speci�c syntax. A syntax

speci�cation is a sequence of keywords and parameters surrounded by quotes. (Parameters

are di�erentiated from keywords by an underscore pre�x). For example, suppose assignment

statements for our calculator language are to have the syntactic form ``let v = x;''.

The keyword symbols are let, =, and ;, while v and x are parameters2. When this syntax

is recognized during the parse of a calculator statement, an operator tree is created with the

assign() operator as the root. The arguments of assign() are the subtrees that evaluate the

parameters x (the value to be assigned) and v (the variable to be assigned the value). The

trees for x and v are derived from the var and int1 subcatalogs, respectively. This entire

speci�cation is declared by a single parameterized signature: assign[``let v = x;'',

v:var, x:int1].

Conversion signatures are used exclusivelywith conversion operators, i.e., string-to-backplane-

object mappings. The invoking condition is a regular expression enclosed in single quotes.

For example, the syntax ``let myvar = 1304;'' assigns variable myvar the number 1304.

2Blanks, tabs, etc. are treated by Rosetta as white space.

6

To parse the character string \1304" into an integer (which will then be value argument

to the assign() operator) requires that we supply a regular expression that de�nes integer

syntax and converts character strings matching this syntax into integer objects by the oper-

ator str2int(). This is accomplished by the syntax signature str2int[`[1-9][0-9]*'].

Notice that the String type has now disappeared completely; no operators compute a result

of type String and all String parameters have been replaced by speci�c string constants.3

A Rosetta language speci�cation is a �le containing a set of subcatalogs whose constituent

elements are syntax- and subcatalog-customized signatures. Tables 4 and 5 show de�nitions

for two integer calculators, one in-�x and the other post-�x, which, despite di�erent syntax,

generate precisely the same set of operator trees.

action=print[\ x ", x:int]

j assign[\ let v = x ",v:var,x:int1]

j assign[\ v = x ", v:var, x:int1]

j defn var[\ de�ne v = x ",

v:var, x:int1]

j list[\ list "]

j clear[\ reset "]

int1 =add [\ x + y ", x:int1, y:int1]

j sub [\ x - y ", x:int1, y:int1]

j eval[\ (x) ", x:int1]

j str2int [` [0-9]+ ']

j refvar[\ v ", v:var]

int =varcnt[\ count variables "]

j int1

var =str2var[`[a-z][a-z0-9]*']

Table 4: In-Fix Calculator De�ni-

tion

action=print[\ x ", x:int]

j assign[\ v x = ",v:var,x:int1]

j defn var[\ v x de�ne ",

v:var, x:int1]

j list[\ showvar "]

j clear[\ reset "]

int1 =add [\ x y + ", x:int1, y:int1]

j sub [\ x y - ", x:int1, y:int1]

j str2int [` [0-9]+ ']

j refvar[\ v ", v:var]

int =varcnt[\ nvars "]

j int1

var =str2var[`[a-z][a-z0-9]*']

Table 5: Post-Fix Calculator De�ni-

tion

3.2 Further Extensions of Rosetta

The central reason why Rosetta speci�cations for calculator data languages are so simple is

that there is no distinction between syntax trees (operator trees that are produced directly

by parsing) and semantic trees (operator trees that are to be executed). This fortuitous

coincidence arises in elementary languages, but less often in complex languages. Rosetta

provides additional features to support syntax-tree-to-semantic-tree mappings: directives,

cycle signatures, and context variables.

Directives. Syntax trees can be transformed into semantic trees through the use of directive

operators, distinct from backplane operators, which manipulate syntax trees. The distinction

3This example points out the optimization possibilities in constructing operator trees: the str2int

operator could be applied directly to the input character string and the resulting integer could then replace

the str2int operator in the tree.

7

between directive and backplane operators is that directive operators are used solely in

syntactic modeling of languages whereas the backplane operators are applied only in the

semantic modeling of languages; there is no overlap between the two.4 Because new language

requirements may outstrip any set of �xed capabilities, Rosetta allows the addition of new

directive operators as well as new backplane operators.

To manipulate syntax trees, directive operators are grouped into directive sections which are
sequences of directive operations delimited by curly braces, `f' and `g'. Two directive sections

are added to signatures|a pre-action, placed before the signature, and a post-action, placed

after the signature.

f pre-action directive0; pre-action directive1; : : :g

f [< invoking condition >, p1:T1, p2:T2, : : :]

f post-action directive0; post-action directive1; : : :g

At data language statement compile time, the pre-action directives are evaluated sequentially,

then the syntax pattern is matched, and �nally the post-action directives are evaluated. Note

that these are directives to the data language compiler, and need not introduce additional

operators in an operator tree. The only requirement that is imposed on a directive function

is that it must not cause type violations. In particular, an operator tree must compute a

result of the same type before and after modi�cation; e.g., an operator subtree that outputs

strings cannot be replaced with an operator tree that outputs integers.

Cycle Signatures. The cycle signature is a variant of the syntax signature in which the

invoking condition is a boolean expression. Unlike other signatures, cycle signatures do

not consume additional syntactic input but instead re-process previously parsed input to

conditionally introduce additional operators into an operator tree or to rearrange existing

operators.

An example is converting syntax trees of the computational formula for variance, 1

n

P
x2
i
� x2,

into (semantic) operator trees. The syntax tree for a variance expression is shown in Fig-

ure 1a. However, the backplane operators that evaluate this formula are based on processing

streams of tuples: compute() and aggregate(). compute() performs simple arithmetic opera-

tions on one or more attributes of all tuples of an input stream of tuples. aggregate() maps

a stream of tuples to a single tuple by aggregating (e.g., counting, �nding the maximum,

average, etc.) speci�c attribute values of each tuple of the tuple stream. Thus, to produce

the corresponding (semantic) operator tree for Figure 1a requires nested calls to compute()

and aggregate(): compute() evaluates x2
i
, aggregate() performs summation, count, and av-

erage aggregations on speci�c attributes of the tuples of the resulting stream, and �nally

compute() arithmetically combines the values of the tuple output by aggregate() into a single

value (the variance). Figure 1b shows the desired operator tree.

To convert such syntax trees into their corresponding operator trees, we introduced the

rewrite() directive, which makes node rearrangement explicit, and used it within a catalog

4
Syntactic modeling is building a model that correctly parses the syntax of the target language. Semantic

modeling de�nes what correct syntax means - i.e., what actions are to be taken in response to a legal syntactic

phrase.

8

−

/

sum count

*

avg avg

*

compute

aggregate

compute

[#1/#2−#3*#4]

[sum(#1),
 count(#2),
 avg(#3),
 avg(#4)]

[#1*#2,
 #3, #4,
 #5]

(a) original operator tree (b) desired operator tree

attribute of a tuple in the input stream.)

(The notation "#i" refers to the ith

xxxxx

<input stream>
 [x,x,x,x,x]

Figure 1: Computing variance: Original and Desired Operator Trees

of cycle signatures. Generally, cycle signatures are included in recursive subcatalogs (e.g., T

! f1(� :T) j : : : ;) which perform sophisticated conversions of syntax trees to operator trees.

A full discussion of the rewrite() directive and cycle subcatalogs appears in [Vil94].

Context Variables. Often, values for operator parameters can be precisely determined

from information that has already been parsed. Rather than redundantly specifying such

information in data language statements, previously collected information can be placed in

a named, global storage area called a context. Context variables store information that is

globally needed in instantiating parameters of backplane operators.

Context de�nitions appear at the head of a Rosetta �le and are delimited by BEGIN CONTEXT

and END CONTEXT keywords (see Table 6). The operator new context() allocates space for a
context and makes it active (pushes it on top of the context stack). When the subcatalog

that created that context is satis�ed, that context is made inactive (it is popped o� the

context stack). However, the memory that was allocated to the deactivated context is not

immediately garbage-collected. Because a context variable's value may be accumulated over

the actions of multiple subcatalogs, references to it may be placed in the operator tree before

the value is completely known; therefore, a copy of the value cannot always be made and

memory reclamation could destroy values needed later, during query evaluation.

Consider the Quel RANGE OF statement: RANGE OF T IS R. Once this statement has been

processed, the alias T is e�ective until it is rede�ned in another RANGE OF statement. Aliases

must be maintained independently of other Quel statements; we use a context variable for

this. The decl subcatalog of Table 6 processes the Quel RANGE OF statement. This example

is interesting because the operator tree that is generated consists of a single operator, noop().

Thus, no computations on relations takes place. However, the parsing of the RANGE OF state-

ment does update a context variable maintained by the Quel data language compiler. The

identi�er a (called an alias) is paired with the speci�ed relation r and is added to an existing

9

list (rel list) of relation-alias pairs by the directive new alias(rel list,[(a,r)]). References to

the alias a in subsequent Quel statements will be translated into references to relation r.

BEGIN CONTEXT C

rel list : List[relation alias] { relations which may be accessed and their aliases.

proj list : List[Attribute] { attributes to be retrieved.

xpr : List[expression] { expressions to be computed and displayed.

END CONTEXT C

decl = noop[\ RANGE OF a IS r ", NULL]

f a:identi�er;

r:relation;

new alias(rel list,[(r,a)]);

g

;

Table 6: Partial Speci�cation of Quel RANGE Statement

In addition to global variables, Rosetta supports a form of local variables. Like backplane

parameter types, variable types are subcatalog names. Local variables are declared at the

top of a directive section, e.g.,

f �0 :�0; �1 :�1; : : :

directive0; directive1; : : :

g.

The scope of a local variable is limited to only its associated signature and the directive

section where it is declared. Thus, a local variable de�ned in a pre-action can be referenced

in the pre-action and the signature but not in the post-action; similarly for local variables

declared in the post-action. Local variables are assigned values only by operators or as

a result of parsing; there is no direct assignment operator. For example, the following

fragment of the SQL speci�cation parses the FROM clause5. The post-action local variable

r is assigned its value during the parsing of the retrieve syntax ``FROM r y'' and is not

available in the pre-action.

f ret = f is attr list(xpr); g

retrieve[`` FROM r y '', rel list, xpr, y:where,NULL]

f r:relation list;

mergerelation(r,rel list);

g

;

5
xpr and rel list are context variables

10

data
language

specification

flex

bison

data
language
statement

customized
data language

compiler

operator
tree

Rosetta

definitions
function

backplane

query
evaluator

implementation)

(includes backplanecompiler
utilities

Figure 2: Architecture of Rosetta

4 The Rosetta Prototype

The Rosetta prototype (see Figure 2) was implemented in a mix of bison,
ex, C, and

Prolog. The input to Rosetta is a Rosetta language speci�cation and de�nitions of all

backplane operators. The generator type-checks the speci�cation using these de�nitions and

generates bison and
ex �les, which de�ne the lexical analyzer and parser for the customized

data language. When these �les are compiled and linked with modules that include data

structures and utilities that are common to all compilers produced by Rosetta, a compiler

for the target data language is created. Input to the generated compiler is a statement of

the data language; the compiler maps the statement to an operator tree which is executed

by the query evaluator (written in Prolog).

The
ex �le that is produced by Rosetta is derived directly from the keywords of parameter-

ized signatures and the regular expressions of conversion signatures of a Rosetta speci�cation.

They de�ne the patterns of the
ex rules and the tokens of the language.

Generating the bison �le is more complicated. A bison rule consists of a name and a se-

quence of options; a bison rule option consists of a sequence of pattern elements6 optionally

interspersed with blocks of C code. Each Rosetta subcatalog maps to a bison rule with the

same name, and each of its signatures maps to a bison rule option (see Figure 3).

Each Rosetta signature has a unique translation. Conversion signatures are the simplest.

As the invoking syntax of a conversion signature is a regular expression, the unique token

identi�er generated to represent it in the
ex �le becomes the sole element of the pattern

for the rule option. Code to add the associated backplane operation to the operator tree is

generated after the pattern.

Mapping a parameterized signature to a bison rule option is more complicated. First, a

block of C code consisting of calls to the directives in the pre-action is generated. Next, the

invoking syntax is mapped: the keywords are translated to lexical tokens and the parameters

are translated to subcatalog names (which also refer to bison rules). For example, the

6A bison rule pattern element may be either a reference to another bison rule or a token symbol returned

from the lexical analyzer.

11

(b) generated bison code

$$ = alloc_node(FUNCTION,NULL);
$$−>u.fn−>fncode = str2FUNC("union");

$$−>u.fn−>argl = (node **) calloc(2,sizeof(node *));
$$−>u.fn−>argl[0] = $1;
$$−>u.fn−>argl[1] = $3;

}

{

}
$$ = $1;

;

|

%type <nodeptr> display

%%

// allocate a node for a function
// initialize function code
// initialize number of parameters
// allocate array for parameters
// initialize 1rst parameter to display
// initialize 2nd parameter to display2

$$−>u.fn−>argc = 2;

display: display UNION_RL display2
{

;

(a) Rosetta specification

|

display = union[" _x UNION _y ", x:display, y:display2]

. . .

| select
. . .

| select
. . .

Figure 3: Mapping a Rosetta Rule to a Bison Rule

parameters of the signature in Figure 3a are mapped to display and display2. Following the

pattern elements, a �nal block of code is generated which performs three tasks: managing

references to local and context variables; evaluating the post-action directives; and creating

a node in the operator tree for the associated backplane operation. The code generated after

the pattern assigns to local and context variables the values matched in the pattern. Post-

action directive calls are then copied into the rule. Finally, code is added to allocate a node

of the operator tree and to initialize it with the code number of the backplane operation to

be called, the number of its parameters, and pointers to its parameters. Furthermore, every

reference to a variable is resolved to a pointer and maintained in the local symbol table of

the bison rule option.

Unlike the other subcatalogs, cycle subcatalogs do not consume additional input; instead, the

signatures of a cycle subcatalog test condition operators. In the generated bison rule, these

condition operators are mapped into a nested if statement and their post-actions become

the conditional statements. Thus, the post-action of the �rst condition that is satis�ed is

evaluated. If the signature of that condition is recursive, condition testing begins anew with

the �rst condition; otherwise, cycling terminates. Implementation of the cycle catalog is

quite complex; for a full discussion, see [Vil94].

12

5 Results and Experiences

To validate Rosetta, we modeled �ve data languages. We selected SQL and Quel because

these languages are historically signi�cant and for their continuing popularity in industry

and academia. The other three languages are derivatives of SQL and Quel which support

alternative data models: SQL/NF[RKB88] is a data language for Non First Normal Form

(:1NF) relations while TSQL2[Sno94] and TQuel[Sno87] support temporal data models.

Statistics from our experiments are summarized in Table 7. We began by de�ning a Rosetta

speci�cation for SQL, and from there we evolved speci�cations for other data languages.

The �rst row of the table shows the starting language (if any) from which we derived our

speci�cations. The size of a speci�cation (in numbers of lines) for each language is listed on

line 2. Note that Rosetta speci�cations, even for rather complex languages such as TSQL2,

are rather small.

While it is di�cult to know precisely the number of lines of
ex/bison code that would be

written by hand to produce a comparable compiler, the number of lines of
ex/bison that

Rosetta generates (line 3) provides a �rst-order approximation. The ratio of the Rosetta

speci�cation size and the lines generated (called the expansion ratio | line 4) gives a crude

estimate of the productivity gains that Rosetta o�ers. In general, we observed expansion

ratios of 1:6, which supports our experience that Rosetta saves substantial time in software

development.

SQL SQL/NF TSQL2 Quel TQuel

1 Starting Language | SQL SQL SQL Quel

2 Speci�cation Size 240 270 350 275 240

3
ex/bison �les 1400 1440 2530 1500 1425

4 Expansion Ratio 1:7 1:6 1:7 1:6 1:6

5 Development Time NA 3 wk. 3 wk. 4 wk. 1.5 wk.

6 Signature Reuse NA 60% 87% 27% 44%

Table 7: Summary of Modeled Languages

Other statistics of Table 7 underscore the value of Rosetta. The development times (row

5) for individual languages ranged from one and one half weeks to four weeks. This is the

time it took us to read and understand the literature pertaining to each language, and then

to create the speci�cation. (Rosetta was developed concurrently with the speci�cation for

SQL, so it was impossible for us to separate the language modeling time for SQL from the

implementation time for Rosetta).

13

SQL SQL/NF TSQL2 Quel TQuel cumulative
languages

1000

2000

3000

4000

5000

6000

7000

8000

By Hand (est.)

Rosetta Builder and User

Other Rosetta Users

cumulative
lines of code

Figure 4: Compiler Generation: Cumulative Lines of Code

The last row of Table 7 gives some statistics on speci�cation reuse and the similarities of

di�erent data languages. For example, what fraction of a new language is simply a direct

copy of its parent language? Row 6 measures this as signature reuse. We counted only those

signatures which were reused unchanged or with only minor modi�cations7. For example,

the TSQL2 speci�cation used 87% of the SQL speci�cation unchanged, because TSQL2 was

designed to be upward compatible with its parent language, SQL. In contrast, Quel used

only 27% of our SQL speci�cation unchanged. As these languages are quite di�erent, this

level of reuse is not unexpected. Most signature reuse comes from the primitive data types

(int,
oat, string) and their operators that shared by the two languages.

Figure 4 shows the cumulative lines of code written during the speci�cation of the �ve lan-

guages we modeled8. To model SQL using Rosetta, we wrote 6240 lines of code, comprising

the generator and the SQL speci�cation. A user building SQL without Rosetta would have

written the
ex and bison �les by hand, for a total of about 1400 LOC. Clearly, writing

Rosetta to generate only one language is not a winning proposition.

But writing a generator to generate one program is never a winning proposition. The utility

of Rosetta is to generate multiple compilers, writing only a simple speci�cation for each

language. The graph shows that the development overhead for Rosetta becomes increasingly

cost-e�ective (in terms of lines of model speci�cation) with each additional language gener-

ated, until the �fth language, when using Rosetta is preferred. Finally, the bottom line of

the graph shows the cumulative lines of code that a user who was given Rosetta would have

7Minor modi�cations include variable and subcatalog name changes and keyword changes.
8Overhead consists of lines of code for building Rosetta.

14

had to write, i.e., the cumulative count of lines in the speci�cations.

As the results in Table 7 suggest, it is not di�cult to extend data languages that have been

de�ned using Rosetta's building-blocks approach. The developer adds any backplane and

directive operators that are not present in the Rosetta library and then integrates those

operators into a Rosetta speci�cation.

Rosetta has an additional advantage which is di�cult to quantify: Rosetta's high-level speci-

�cations are fairly easy to understand and use. This enhances the ease with which a language

and its compiler can evolve. For example, a language can be partially speci�ed, generated,

evaluated, modi�ed, and then extended with additional operations as needed. Thus the

compiler developer can make use of an evolutionary series of generated partial prototypes.

Our experiments also revealed limitations in both our prototype and our domain model.

New data languages can often require generalizations of existing backplane operators (i.e.,

through the introduction of additional parameters or by requiring more general features).

For example, aggregation operations were originally designed to be evaluated in parallel by

a single controlling function, aggregate(). This was su�cient for SQL since aggregations in

a query are evaluated over the same input stream. However, a Quel aggregate may include

a nested grouping operation on its input stream, allowing the aggregated stream to di�er
for di�erent aggregations in the same query. To resolve this problem we extended each

aggregation operation with a stream parameter and re-designed the controlling function to

duplicate the input stream for each aggregation and to collect the results into one output

stream.

Error detection and recovery in Rosetta could be improved. Not all errors can be conveniently

caught during operator tree construction. For example, one might generate an operator tree

that sorts a tuple stream on a nonexistent attribute. Such errors are more easily caught by

a pre-execution analysis of the tree. Each operator (when evaluated in this pre-execution

phase) checks and outputs \metadata" that characterizes its results. Simple semantic checks

(e.g., does the sort attribute correspond to one of the input attributes of tuples?) would

then ensure that operator computations are semantically meaningful.

More work is needed on error recovery. Presently, Rosetta has no built-in error recovery

mechanisms when syntactic errors are discovered. We believe that a general-purpose mecha-

nism for error-handling can be introduced into the Rosetta framework without signi�cantly

impacting the results that we have reported in this section.

6 Related Work

Software Architectures and Software System Generators. Software architectures is

the study of large-scale system design w.r.t. its underlying components and their meth-

ods of intercommunication. Software system generators is a subdiscipline of architectures,

where components are designed to be plug-compatible and interoperable so that customized

15

software systems can be produced quickly through component composition.

Rosetta is an example of a GenVoca generator [BO92]. A GenVoca domain model is a set

of libraries (called realms) of plug-compatible components. A software system or program is

de�ned as a composition of components, called a type equation. The set of all syntactically

and semantically correct type equations (i.e., software systems that can be generated) is

expressed as an attribute grammar [BG96].

As mentioned earlier, a data language compiler is itself a generator. It translates data

language statements into programs that perform the intended actions of that statement.

Rosetta catalogs are realms, and operator trees (i.e., data language programs) are type

equations. What distinguishes Rosetta from other GenVoca generators is the manner in

which type equations are speci�ed. In other GenVoca generators, a template-like notation

for composing components is used to declare type equations (e.g., a[b[c]]). Rosetta, in

contrast, enables type equations to be expressed as declarative statements of data languages

(e.g., SQL SELECT-FROM-WHERE).

Extensible Database Systems. Extensible DBMSs o�er some support for data language

extensibility. The usual approach is to make data language parsers table-driven, thus limited

(but useful) sets of features (e.g., user-written ADTs) can be added easily (see Gral[Gut89],

Postgres[SK91], Probe[MD90], and Starburst[HFLP89]).

DBMS toolkits, such as Exodus[CDV87] and Genesis[BBG+88], are software design and

development environments for building customized DBMSs. Genesis is a GenVoca generator

that can assemble customized DBMSs from components. Among Genesis components are

those that implement di�erent data languages. However, these components (data language

compilers) must be hand-written; like Exodus, there is no speci�c tool support for building

customized data languages.

Extensible Programming Languages. Language extensibility can be achieved using

preprocessors. TXL[CHHP91] can extend any imperative language for which a compiler and

a complete syntactic description of the base language are available. TXL maps extensions

into the base language; however, it also allows extensions to reference library operators which

augment the functionality of the base language.

Eli[GHL+92] is an example of a compiler generator. It is an expert system that controls

o�-the-shelf tools like lex and yacc. Specifying a compiler to Eli consists of supplying speci�-

cation �les which contain information used for lexical analysis and parsing, semantic analysis,

and code generation. Multiple speci�cation �les are necessary, where each is written using

its own special syntax with no uniformity among them.

IP is an extensible language/compiler that is being developed at Microsoft Research [Sim95].

IP's interface is a language-neutral structure editor, which takes programmers input and

directly represents source code as semantic trees. To view a program (e.g., during editing)

an unparser converts semantic trees to text. Additional semantic nodes can be added to

IP, so language extensibility is straightforward. An intent of IP is that once programs

are represented in a semantic tree format, analyses and program transformations (e.g., lift

16

operations) can be easily accomplished. Rosetta is related to IP in that they share the idea

that a backplane of operations can support many languages.

Natural Language Processing. LIFER[Hen77] is a general package of tools which facil-

itates the rapid addition of natural language interfaces to existing software systems. The

similarity of LIFER to Rosetta is the triggering of an operator when an input text pattern

is recognized. A point of divergence is an important part of our work: the de�nition of a

standardized (but open) set of operators for a DBMS backend and our emphasis on building

blocks and their reuse.

7 Conclusions and Future Work

Achieving signi�cant increases in software productivity requires automating well-understood

(and potentially di�cult) programming tasks. Generators are designed to achieve these

goals by exploiting the similarities of software design and development in families of closely-

related applications. Generators are based on domain models that identify the basic building

blocks of these applications, and that formalize the similarities and di�erences among family

members as the presence or absence of particular blocks. In this way, generators substantially

reduce the e�ort needed in both constructing new software systems/applications and evolving

existing applications.

In this paper, we have outlined a generative approach that demonstrates how families of

relational data language compilers can be developed economically. We �rst identi�ed the

basic units of data language computation as backplane operators. The actions of speci�c data

language statements are expressed as compositions of these operators (e.g., operator trees).

Next, we grafted syntax onto individual operators to indicate where these operators should

appear in an operator tree that implements a language statement. The result is a compact

speci�cation of a data language. Our prototype, called Rosetta, translates such speci�cations

into compilers. We noted that our approach to compiler construction is di�erent than typical

compiler-construction tools: that is, we de�ne the semantics of a target language �rst and

then its syntax, rather than the reverse.

We validated Rosetta by modeling �ve diverse data languages and generating compilers for

them. Enough backplane operations were implemented to enable evaluation of SQL and Quel

queries. We found that the overhead for constructing Rosetta was amortized after using it

to construct compilers for these �ve target languages; the generation of additional compilers

would have been accomplished at rather low, incremental costs. Further research is needed

to determine e�ective and compact ways of specifying and handling error recovery.

Although Rosetta is a valuable tool for prototyping data language compilers, we believe that

the true value of Rosetta lies in its potential for generating compilers for other domain-speci�c

(e.g., OO) programming languages. One of the main lessons learned from the generator and

architecture communities is that domain-speci�c languages can substantially simplify the

speci�cation of domain-speci�c applications. Thus, the need for extensible and evolvable

17

languages will become progressively more important, driving the need for tools that eco-

nomically produce compilers for these languages and that allow them to evolve easily. We

believe that a Rosetta-like approach may be the key to a practical solution to these problems.

The generalization and application of Rosetta to other language domains is the subject of

further research.

References

[BBG+88] D. Batory, J. Barnett, J. Garza, K. Smith, K. Tsukuda, B. Twichell, and T. Wise.

Genesis: An extensible database management system. IEEE Transactions on

Software Engineering, pages 1711{1730, 1988.

[BG96] D. Batory and B.J. Geraci. Validating component compositions in software sys-

tem generators. In International Conference on Software Reuse, April 1996.

[BO92] D. Batory and S. O'Malley. The design and implementation of hierarchical soft-

ware systems with reusable components. ACM Transactions on Software Engi-

neering and Methodology, 1(4):355{398, October 1992.

[CDV87] M. Carey, D. DeWitt, and S. Vandenberg. A data model and query language for

EXODUS. Technical Report CS Technical Report 734, University of Wisconsin,

December 1987.

[CHHP91] J. Cordy, C. Halpern-Hamu, and E. Promislow. TXL: A rapid prototyping system

for programming language dialects. Computer Languages, pages 97{107, January
1991.

[Dat87] C. J. Date. A Guide to Ingres, chapter 4. Addison Wesley Publishing Company,

Inc., 1987.

[DS91] C. Donnelly and R. Stallman. BISON The YACC-Compatible Parser Generator,

December 1991. on-line documentation for Bison Version 1.16.

[GHL+92] R. Gray, V. Heuring, S. Levi, A. Sloane, and W. Waite. Eli: A complete,
exi-

ble compiler construction system. Communications of the ACM, pages 121{131,

February 1992.

[Gut89] R. Guting. Gral: An extensible relational database system for geometric appli-

cations. In Proceedings of the Fifteenth International Conference on Very Large

Data Bases, pages 33{44, 1989.

[Hen77] G. Hendrix. The LIFER manual|a guide to building practical natural language

interfaces. Technical Report Technical Note 138, SRI International, Menlo Park,

CA, 1977.

18

[HFLP89] L. Haas, J. Freytag, G. Lohman, and H. Pirahesh. Extensible query processing

in Starburst. In ACM SIGMOD, pages 377{388, May 1989. also, IBM Almaden

Tech Report RJ 6610 (63921) 12/21/88.

[ISO72] ISO. ISO Recommendation R1538, Programming Language ALGOL, �rst edition,

March 1972.

[Joh86] S. Johnson. Yacc: Yet another compiler compiler. In UNIX Programmer's Man-

ual: Supplementary Documents 1. University of California, Berkeley, 1986.

[JW78] K. Jensen and N. Wirth. Pascal: User Manual and Report. Springer-Verlag,

second edition, 1978.

[KR78] B. Kernighan and D. Ritchie. The C Programming Language. Prentice-Hall Inc.,
1978.

[MD90] F. Manola and U. Dayal. PDM: An object-oriented data model. In S. Zdonik

and D. Maier, editors, Readings in Object Oriented Database Systems, chapter
3.4. Morgan Kaufman, 1990.

[RKB88] M. Roth, H. Korth, and D. Batory. SQL/NF: A query language for :1NF rela-

tional databases. Information Systems, 12(1):99{114, 1988.

[Sal95] J. Salasin. Evolutionary design of large complex software. ARPA BAA 95-40,

Advanced Research Projects Agency, 1995.

[Sim95] C. Simonyi. The death of computer languages, the birth of intentional pro-

gramming. In 28th Annual International Seminar on the Teaching of Computing
Science at University Level The Future of Software. University of Newcastle upon
Tyne, September 1995.

[SK91] M. Stonebraker and G. Kemnitz. The Postgres next-generation database man-

agement system. Communications of the ACM, pages 78{93, October 1991.

[Sno87] R. Snodgrass. The temporal query language TQuel. ACM Transactions on

Database Systems, 12(2):247{298, June 1987.

[Sno94] R. Snodgrass. TSQL2 language speci�cation. SIGMOD Record, pages 65{86,

March 1994.

[vdL89] R. van der Lans. The SQL Standard. Prentice Hall International, 1989.

[Vil94] E. E. Villarreal. Automated Compiler Generation for Extensible Data Languages.
PhD thesis, The University of Texas at Austin, 1994.

19

