
 Refinements and Separation of Concerns

Don Batory
Dept. Computer Sciences

University of Texas at Austin
Austin, Texas 78712

1-512-471-9713
batory@cs.utexas.edu
ABSTRACT
Today’s notions of encapsulation are very restricted — a
module or component contains only source code. What we
really need is for modules or component to encapsulate not
only source code that will be installed when the component
is used, but also encapsulate corresponding changes to
documentation, formal properties, and performance
properties — i.e., changes to the central concerns of software
development. The general abstraction that encompasses this
broad notion of encapsulation is called a “refinement”.

Keywords
Refinements, components.

1 INTRODUCTION
The history of planetary astronomy offers an interesting
lesson in the progression scientific understanding. Planetary
motion was not well-understood in the 1500s. In particular,
retrograde motion — where planet traversals across the
celestial sphere have loops — was very difficult to explain
and predict. A progression of complex models of spheres
inside spheres were proposed, but none really worked that
well. The core problem, as we eventually learned, was that
the Sun, not the Earth, was at the center of the solar system.
The mathematics of a heliocentric theory are both simple and
elegant. The mathematics of a geocentric theory (which is
obtained by coordinate transformations of heliocentric
mathematics) shows the difficulty of developing a correct
model of planetary motion from purely a geocentric
perspective: totally unnecessary and complicating
mathematics are introduced simply because the “wrong”
perspective (i.e., coordinate system) was chosen. A generic
lesson to be learned is that selecting the “right” perspective
not only simplifies core problems, it provides a gateway to
the understanding of much more complex phenomena. 

Software design has strong similarities to theories of
planetary motion. As a general rule, we don’t know how to
design software very well. Software design remains a very
difficult problem. It is a massive exercise of information
organization: how can one coherently and cleanly organize
enormously complex and diverse details so that resulting

computations can be performed correctly and efficiently?
What a software architect does is to impose his “perspective”
on this mass of details to give an application its
“organization” or “modularization”. Often, the contents of a
module is chosen by convenience or that it adheres to some
conception of the application based on the architect’s
“perspective” (e.g., functional v.s. object-oriented
decomposition). Of course, different architects have unique
perspectives, so if the same design problem were given to
multiple architects, no two solutions/designs/
modularizations would be the same. The resulting designs
aren’t completely arbitrary, but almost always the solutions
are different enough so that modules from one project cannot
be easily interchanged with modules from another,
equivalent, project.

I argue that we teach software design from a geocentric
viewpoint. Some of the critical issues that we want to
express — evolvability, maintainability, simplicity,
performance, etc. — are not captured in our designs. And
consequently, dealing with these omitted issues is hard. To
paraphrase an old refrain of Parnas, making conceptually
simple changes to a software artifact is often out of
proportion to the effort needed to make those changes. This
is a classical symptom of geocentric designs. Geocentric
designs are largely one-of-a-kind; they tend to be monolithic,
hard to change, and hard to understand. Introducing new
features, for example, or viewing the design from a different
perspective tends to be excruciatingly difficult.

2 REFINEMENTS
I argue that there is a “heliocentric” perspective to software
development that can simplify software design and related
concerns for families of similar applications (a.k.a. product-
lines). The unifying concept is the old and largely abandoned
notion of step-wise refinement — i.e., the ability to create
complex programs by progressively introducing
implementation details into simpler programs [7]. The
reason why practitioners have ignored it (although new
efforts are on the horizon to revive it [3, 9]) is the scale of
refinements. Classical refinements work on microscopic
code fragments using program rewrite rules (e.g., x + 0 =>
x). The problem is that one must apply hundreds to hundreds
of thousands of such rewrites in order to transform a
compact specification into an admittedly small program. 

Step-wise refinement is now being rediscovered under many
different names and guises: the new twist is the scale.

Don
Second Workshop on Multi-Dimensional Separation of Concerns, International Conference on Software Engineering, Limerick, Ireland, 2000.



Namely, a single refinement that is now the subject of
discourse modifies multiple classes simultaneously and
consistently. Such a refinement encapsulates the
implementation (which could be arbitrarily complicated) of a
“feature” that can be shared by a family of related programs.
The benefit of this approach is that composing a few of these
“large” refinements produces complex and sizable programs
(e.g., a composition of 25 refinements yields a program of
10K lines to 70K lines of code). Names given to such
refinements are (in historical order) layers, protocols,
features, collaboration-based designs, subjects, and aspects
[1, 6, 5, 4]. The technical details of their associated research
programs is, to be certain, quite different and so too are their
agendas. But still, there is a common and underlying theme.
For example, an aspect language in aspect-oriented
programming defines a refinement to be made, an aspect
compiler is a function that takes an existing program and
aspect specification as input and produces a refined program
as output. The output program is a weaving the aspect into
the original source code [5]. A layer in GenVoca is similar: a
layer refines a given abstract interface by introducing
implementation details of the feature represented by that
layer. Like aspect compilers, a layer is a function that maps
an input program (that does not have that particular feature)
to an output program (that does have that feature) [1]. There
are many other examples that fit this “scaled” refinement
paradigm.

3 SEPARATION OF CONCERNS
How do refinements address the problem of “separation of
concerns” or providing alternative perspectives of a software
artifact? Why should refinements be more important than,
say, OO classes? There are two answers. 

First, a refinement is a very abstract concept. It allows us to
codify the essence of a “feature” and its impact on a software
artifact without requiring us to choose a particular
implementation technology. That is, we can encode
refinements as COM objects, or Java objects, or C++
templates, or as metaprograms (i.e., programs that generate
other programs), or as rule-sets of program transformation
systems. Refinements can be composed statically or
dynamically. Of course, to implement a refinement requires
choosing an implementation technology which imposes
limitations, i.e., COM components are binaries that are
composed only at application run-time whereas C++
templates are parameterized code fragments that are
composed only at application compile-time. However, to
understand a software domain one doesn’t necessarily have
to understand (or commit to) an implementation technology
up-front. This has the following benefit: one can understand
a domain of applications in terms of implementation-free
refinements; once this is done, one can then choose a
technology for refinement implementation as multiple
technologies might be appropriate. This flexibility is
important: choosing an implementation technology first may
force more effort be expended on minimizing the
technology’s shortcomings rather than focusing on the
general problem of application design. (This is akin to
developing geocentric motion equations directly, rather than
transforming a simple heliocentric equations into

corresponding equations for a particular coordinate system
[2]).

Second, the focus of existing refinement research today is
mostly on producing source code by composing refinements.
The refinements themselves encapsulate only changes that
are to be made to application source when that refinement is
applied. Refinements are more general than this. When a
new feature is added to a system (i.e., when a refinement is
applied to a system), not only does its source code change,
but so too does its documentation, formal properties,
performance models, and so on. These are the “concerns”
that architects have w.r.t. software design. Thus, a
“complete” implementation of a refinement will encapsulate
changes that are made to a software artifact across all
“concerns” (source code, documentation, formal properties,
etc.) that enable tools to analyze the impact of adding or
removing this feature (refinement) from a given system.1

These ideas are not far-fetched. We have had enormous
success in building product-line architectures (i.e.,
component-based architectures where large families of
applications can be synthesized solely through component
composition) in this manner. The implementation of our
refinements are called “components” (which probably is a
bad choice of names). The domains that we and other people
have been able to build using this approach include:
databases, network protocols, avionics, radio software,
extensible languages/compilers, and fire support simulators
[2]. Not only can we generate source code for these systems
(ranging from 5K lines to 70K lines of code), we can
generate customized documentation, analyze formal
properties, and generate application-specific performance
models, all because we were able to encapsulate different
concerns within the implementation of our refinements —
i.e., the changes to different aspects of software artifacts that
were of interest.

4 RECAP
It is easy to insist that one particular viewpoint of software
development is more important than another. Each viewpoint
can impose a different modularization scheme or a different
way in which to view or analyze application source. Tools
for each concern will use their own representations of a
software artifact to perform their particular analysis (e.g.,
compilation, validation checks, etc.). Insisting that one
scheme be used in favor of another may make it difficult to
address other concerns.

We believe that each concern has its own representation of a
software artifact, and the consistency of all necessary
representations must be maintained. How modularization fits
into this world-view is the challenge, because it seems
orthogonal to concerns. We argue that refinements provide
us a way to achieve fundamental modularizations and
separation of concerns simultaneously. Years of research in
different domains has taught us that the fundamental

1.Refinements are largely orthogonal to other refinements
and do have constraints on their use. We have found that
Perry’s light semantics are well suited for this task [8].



building blocks of application domain is captured by the
abstract concept of refinement. A refinement defines the
changes that are made to a software artifact when a new
detail, feature, aspect, … is added to a system. These
changes are not limited to source code, but to other
“concerns” like documentation, performance, and so on. By
encapsulating within a refinement the changes to be made to
all concerns of interest and that these changes are consistent
across concerns, we have achieved a very powerful model of
software construction that permits multiple viewpoints in a
simple and coherent manner, while at the same time allowing
us to be able to synthesize huge families of related
applications.

For examples of a “large-scale” refinement-based approach
to product-line development, we invite readers to visit our
web page: http://www.cs.utexas.edu/users/
schwartz/.

Acknowledgements. This work was supported in part by
Microsoft, Schlumberger, the University of Texas Applied
Research Labs, and the U.S. Department of Defense
Advanced Research Projects Agency in cooperation with the
U.S. Wright Laboratory Avionics Directorate under contract
F33615-91C-1788.

5 REFERENCES

[1] D. Batory and S. O’Malley, “The Design and
Implementation of Hierarchical Software Systems with
Reusable Components”, ACM TOSEM, October 1992.

[2] Don Batory, Product-Line Architectures, Smalltalk und
Java in Industrie and Ausbildung, Erfurt, Germany,
October 1998.

[3] I. Baxter, “Design Maintenance Systems”, CACM, April
1992, 73-89.

[4] S. Cohen and L. Northrop, “Object-Oriented Technology
and Domain Analysis”, 5th International Conference on
Software Reuse, Victoria, Canada, June 1998.

[5] G. Kiczales, J. Lamping, A. Mendhekar, C. Maeda, C.
Lopes, J. Loingtier, and J. Irwin, “Aspect-Oriented
Programming”, ECOOP 97, 220-242.

[6] W. Harrison and H. Ossher, “Subject-Oriented
Programming (A Critique of Pure Objects)”, OOPSLA
1993, 411-428.

[7] H. Partsch and R. Steinbruggen, “Program
Transformation Systems”, Computing Surveys, March
1983, 199-236.

[8] D.E. Perry, “The Logic of Propagation in The Inscape
Environment”, ACM SIGSOFT 1989.

[9] C. Simonyi, “The Death of Computer Languages, the
Birth of Intentional Programming”, Microsoft
Corporation, September 1995. 


	ABSTRACT
	Keywords

	1 INTRODUCTION
	2 REFINEMENTS
	3 SEPARATION OF CONCERNS
	4 RECAP
	5 REFERENCES
	Refinements and Separation of Concerns
	Don Batory
	Dept. Computer Sciences University of Texas at Austin Austin, Texas 78712

	1-512-471-9713
	batory@cs.utexas.edu




