
Abstract 1

Many software libraries (e.g., the Booch C++ Components,
libg++, NIHCL, COOL) provide components (classes) that imple-
ment data structures. Each component is written by hand and rep-
resents a unique combination of features (e.g. concurrency, data
structure, memory allocation algorithms) that distinguishes it from
other components.

We argue that this way of building data structure component librar-
ies is inherently unscalable. Libraries should not enumerate com-
plex components with numerous features; rather, libraries should
take a minimalist approach: they should provide only primitive
building blocks and be accompanied by generators that can com-
bine these blocks to yield complex custom data structures.

In this paper, we describe a prototype data structure generator and
the building blocks that populate its library. We also present pre-
liminary experimental results which suggest that this approach
does not compromise programmer productivity nor the run-time
performance of generated data structures.

1 Introduction

Software libraries are a popular means of boosting programmer
productivity and reducing software development time and cost.
The Booch C++ Components [Boo87], libg++ [Lea88], NIHCL
[Gor90], and COOL [Fon90] are examples. These libraries provide
C++ classes that implement a wide variety of common data struc-
ture, string, complex number, and graph classes that programmers
can instantiate.

1. This research was supported in part by Applied Research Labo-
ratories at The University of Texas, Schlumberger, and Digital
Equipment Corporation.

Most of these libraries include components that implement com-
mon data structures. The Booch C++ Components, for example,
implements over 400 distinct data structures such as stacks, lists,
hash tables, queues, and trees. The large number of components
arises from feature combinatorics; components are differentiated
according to their support for concurrency (e.g., sequential,
guarded, concurrent, multiple), basic data structures (list, queues,
stacks, etc.), space management (bounded vs. unbounded, man-
aged vs. unmanaged), and features offered (iterator vs. noniterator,
balking vs. nonbalking, etc.). Every legal combination of features
yields a distinct data structure. Because there are many possible
combinations, it is not surprising that this library is indeed large.
Feature combinatorics are inherent to all libraries [Kru92]. More-
over, all library components are written by hand, with occasional
use of inheritance to minimize gross code replication.

We claim that today’s method of constructing libraries is inher-
ently unscalable. Every time a new feature is added — such as
choosing between persistent data structures and nonpersistent data
structures — the number of components in the library doubles. The
number of features that are represented in contemporary libraries is
just a small fraction of those that are actually needed. In fact, most
data structures in database systems, operating systems, and com-
pilers are far more complicated than those offered in today’s librar-
ies. No library constructed by the current means could ever
possibly hope to encompass the enormous spectrum of data struc-
tures that arise in practice. Clearly, a new strategy for building data
structure libraries is needed.

To be scalable, libraries must offer much more primitive building
blocks and be accompanied by generators that compose blocks to
yield the data structures needed by application programmers. In
this paper, we propose a generative means for realizing scalable
data structure libraries. The composition techniques that we pro-
pose are based on the GenVoca model [Bat92b], a model for con-
structing hierarchical software systems from reusable components.
The techniques that we use do not rely on inheritance as offered by
contemporary object-oriented languages. Instead, GenVoca models
system implementations as combinations of layered software com-
ponents.

We begin by examining the designs of two component libraries
and identifying their limitations and weaknesses. We then explain
our generative approach that relies on a layered composition of

Scalable Software Libraries1

Don Batory, Vivek Singhal, Marty Sirkin, and Jeff Thomas
Department of Computer Sciences
The University of Texas at Austin

Austin, Texas 78712-1188
{batory, singhal, marty, jthomas}@cs.utexas.edu

1

To appear in Proceedings of ACM SIGSOFT ’93: Symposium on
the Foundations of Software Engineering, Los Angeles,
California, 7-10 December, 1993.

dsb
Text Box
SIGSOFT 1993

building blocks and describe a prototype system which is based on
these ideas. Finally, we give preliminary experimental results
which suggest that our approach significantly improves the reus-
ability of library components without compromising performance
or programmer productivity.

2 Current Library Construction Methods

A component library consists of a number of related data structure
families. A family consists of several variations of a basic data
structure, where each variation provides a slightly different combi-
nation of features.

Consider libg++. This library offers several implementations of
bags, including unordered XPlexes (a dynamically resizeable
array), ordered XPlexes, unordered linked lists, ordered linked
lists, unordered hash tables, and chained hash tables. Similarly,
libg++ has multiple implementations of sets, including unordered
XPlexes, ordered XPlexes, etc. (i.e., the same variations as bags).
Although these implementations are remarkably similar, libg++
does not use inheritance (or any other software organization tech-
nique) to capture the common algorithms.

We see a similar situation in the Booch C++ Components. This
library offers 18 varieties of deques: a deque may be either sequen-
tial, guarded, or synchronized (concurrency control algorithms);
bounded, unbounded, or dynamic (memory allocation algorithms);
and ordered or unordered (ordering algorithms). Because the
library provides a different deque implementation for every per-
mutation of features, the result is 18 variations of the same basic
data structure (i.e. 3 × 3 × 2 = 18).

Although the Booch library does use inheritance, inheritance is
unable to consolidate most of the common algorithms of similar
data structures. For example, even though guarded_bounde-
d_ordered_deque has the same concurrency control algorithm
as guarded_unbounded_unordered_queue, both classes
share only one superclass, deque. The component writer must
repeat the code for the guarded algorithm in both classes. Multiple
inheritance would not help because what is needed is a careful
integration of the deque and guarded algorithms; multiple inherit-
ance is not effective for integrating the algorithms of superclasses.
As a consequence, code repetition is rampant in existing libraries.

To resolve these issues, we advocate a generative method for con-
structing library components.

3 A Generative Approach to Data Structures

Our approach to generating complex data structures from primitive
components requires the interplay of three fundamental and inde-
pendent ideas: high-level, standardized, and layered abstractions:

• High-level abstractions. It is well-known that using high-level
abstractions makes programs easier to write and debug. It is
essential for component interfaces to hide the complex details
of their encapsulated data structures; not doing so would make
components difficult to use and virtually impossible to
combine.

• Standardized abstractions. Component interchangeability
requires standardized abstractions. A key feature of software
component / software generator technologies is the ability to
swap different data structure implementations to address appli-
cation performance requirements without affecting program
correctness. We note that standardized data structure abstrac-
tions are already present in existing component libraries (e.g.,
Booch C++ Components, libg++, and COOL). Moreover, most
basic data structures (lists, trees, arrays, etc.) can even be
viewed as different implementations of the container abstrac-
tion, i.e., a collection of objects.

• Layered abstractions. Experience has shown that many soft-
ware systems have hierarchical designs; the layering of abstrac-
tions (and their implementations) provides a powerful way to
design, build, and understand complex software. Layering is an
important form of encapsulation; by partitioning complexity
into layers, system design is greatly simplified. Though it may
not be immediately obvious, even simple data structures can be
decomposed into many layers.

Although each is an important design technique in its own right,
the combination of high-level, standardized, and layered abstrac-
tions provides a particularly powerful paradigm that can serve as
the basis for scalable data structure libraries. We show in the fol-
lowing subsections how a typical data structure can be decom-
posed into the composition of primitive layers, where each layer
exports a standardized, high-level interface. We use an example
from the Booch C++ Components [Boo87].

3.1 An Example of Data Structure Decomposition

A deque is a queue from which objects can be added and removed
at either end. It is unbounded if there is no fixed limit to the num-
ber of objects that it can contain. It is synchronized if all operations
on the deque are atomic. It is managed if freed objects are stored
on a free-list for possible use later.

Consider an unbounded, synchronized, managed deque. The
classes available to the programmer are deque (the queue itself)
and element (the objects linked by the queue). We will refer to
these classes as the DEQ interface. Objects from the DEQ interface
are shown in Figure 1. A programmer interacts with a deque
object by invoking its methods (e.g., create_deque(),
add_front(), pop(), is_empty(), etc.). In the following
paragraphs, we will decompose an unbounded, synchronized,
managed deque into six independently defined layers.

The deque_sync layer. If all operations on a deque are to be exe-
cuted atomically, it is a simple matter to surround the body of each
deque operation with a wait(sem) and signal(sem) pair,
where sem is the semaphore that is associated with each deque
object. This is accomplished by a layer/mapping (or a view
[Nov92]). We denote this layer by deq_sync[x:DEQ]:DEQ.2

2. We use the notation in [Bat92a]. The notation d:Y means layer
d exports interface Y; e[x:Y] means layer e imports interface Y.
deque_sync[x:DEQ]:DEQ both imports and exports the DEQ
interface.

2

sem

head

tail

free_list

D1

prev next

next_free

prev next

next_free

prev next

next_free

E1 E2 E3

prev next

next_free

E4

container elements

insert_front (d, e)
{

element *g;
g = allocate (sizeof (e));
g->data = e;
return (g);

}

a1: a2: a3: a4:a0:

sem

head

tail

free_list

D1

prev next

next_free

prev next

next_free

prev next

next_free

E1 E2 E3

prev next

next_free

E4

container elements

insert_front (d, e)
{

element *g;
if (d.free_list)
{
g = d.free_list;
d.free_list = g->next_free;
g->data = e;

}
else
g = x::insert_front (d, e);

return (g);
}

sem

head

tail

D1

prev next prev next prev next

E1 E2 E3

container elements

insert_front (d, e)
{

element *g;
g = x::insert_front (d, e);
g->prev = NULL;
if ((g->next = d.head) != NULL)
g->next->prev = g;

if (d.head == NULL)
d.tail = g;

d.head = g;
return (g);

}

sem

D1 E1 E2 E3

container elements

add_front (d, e)
{

x::insert_front (d, e);
}

sem

D1 E1 E2 E3

deque elements

add_front (deque d, element e)
{

wait (d.sem);
x::add_front (d, e);
signal (d.sem);

}

D1 E1 E2 E3

deque elements

Figure 1: The abstract objects of the DEQ interface.

Figure 2a and 2b: The deq_sync[x:DEQ]:DEQ mapping.

Figure 3a and 3b: The deque2c[x:CONT]:DEQ mapping.

Figure 4a and 4b: The dlist[x:CONT]:CONT mapping.

Figure 5a and 5b: The avail[x:CONT]:CONT mapping.

Figure 6a and 6b: The heap[x:MEM]:CONT mapping.

3

Figure 2a shows the result of mapping the deque and element
objects of Figure 1; the definition of the deque class is augmented
with the sem variable, but the definition of the element class is
not modified. Figure 2b shows the mapping of the add_front()
operation. Note that x::add_front() denotes a call to the add
operation of the less abstract deque class.3

The deque2c layer. A deque can be modelled as a container of
elements. One can easily define a layer (deque2c or “deque to
container”) which translates deque operations into container
operations. As shown in Figure 3a, there is an identity mapping of
a deque and its elements to the container and its
elements. Figure 3b shows the mapping of the deque opera-
tion add_front() to the container operation
x::insert_front(). Other deque operations are mapped in
a similar manner.

The dlist layer. The elements of an unbounded deque are repre-
sented as members of a doubly-linked list. The layer
dlist[x:CONT]:CONT adds a pair of pointers (prev, next)
to the definition of element, and adds another pair of pointers
(head, tail) to the definition of container. Figure 4a shows
the transformed objects of Figure 3a, and Figure 4b shows the
mapping of the insert_front() operation.

The avail layer. A container is managed if its elements are placed
on a free list when no longer needed. The
avail[x:CONT]:CONT layer accomplishes this mapping. It
adds a free_list field to container (to point to the free ele-
ments list) and a next_free pointer to element (to point to the
next unused element). Figure 5a shows how objects of Figure 4a
are transformed. This figure also shows one previously deleted
object on the free list; this object is not visible to higher layers.
Figure 5b shows the mapping of the insert_front() opera-
tion.

The heap layer. The heap[x:MEM]:CONT layer allocates
blocks of heap storage for element objects. Figure 6a shows the
mapping of objects (which assigns physical (heap) addresses to
each element), and Figure 6b shows the mapping of the
insert_front() operation. Note that heap translates con-
tainer operations and objects into memory allocation operations
and objects, which we informally define as the MEM interface.
Memory objects are simply a contiguous string of bytes; the mem-
ory operations are allocate() and deallocate().

The transient layer. The transient:MEM layer is a terminal
layer; it does not depend on other layers for services. transient
just manages pages of transient memory for use by other data
structures (e.g., a heap). A mapping of the allocate() opera-
tion is:

allocate (int i)
{ return (malloc (i)); }

3. The code examples in Figures 2b-6b are written using a C++-
like syntax; although this syntax differs somewhat from P2’s syn-
tax (described in Section 4), we used it in these examples to avoid
some of the complexities of P2’s syntax.

Recap. We have expressed the implementation of unbounded, syn-
chronized, managed deques (deque_usm) as the hierarchical
composition of plug-compatible layers:

deque_usm = deq_sync[deque2c[dlist
[avail[heap[transient]]]]]

Note that these layers have the following important properties:

• Each layer is independently defined. That is, a layer’s field
additions and rewrite operations do not depend on the specific
algorithms of other layers.

• A component from a conventional library (e.g., Booch, libg++)
is really a composition of many primitive layers. The result of
an obvious inline expansion of the add_front() operation
through these layers is shown in Figure 7. Note that this is the
code that one might have written in a monolithic implementa-
tion of this component. In principle, the same strategy holds for
other deque operations.

3.2 Scalability

As mentioned earlier, hierarchical decompositions and high-level
standardized interfaces are key to scalable libraries. We explain the
scalability of our approach through a series of examples.

Example 1. Consider the implementation of a managed,
unbounded (non-synchronized) deque, deque_um. The algo-
rithms for (a) mapping deque operations to containers, (b) imple-
menting containers as lists, (c) managing unused nodes through
“avail” lists, and (d) allocating nodes dynamically in a transient
heap would indeed be the same as those for deque_usm. We
would express this implementation simply by dropping the
deq_sync[] layer from the deque_usm expression:

deque_um = deque2c[dlist[avail
heap[transient]]]]

The effect of dropping deq_sync would be to omit the
wait(sem) and signal(sem) operations that surround each
deque operation.

Example 2. Consider how to implement persistent deques. Rather
than allocating memory from transient storage, one could use a
persistent:MEM component that exports allocate() and
deallocate() functions which allocate space from persistent
memory. Creating an unbounded, synchronized, managed, persis-
tent deque (deque_usmp) would require substituting the
transient layer with the persistent layer:

deque_usmp = deq_sync[deque2c[dlist
[avail[heap[persistent]]]]]

Example 3. A priority deque orders its elements according to the
value of a field. An implementation of this data structure could use
an ordered list layer (odlist[x:CONT]:CONT), almost identi-
cal to dlist[] except for the mapping/implementation of
insert_front(). A priority, unbounded, synchronized, man-
aged deque (deque_pusm) could be built from deque_usm by
swapping the dlist[] layer with the odlist[] layer:

4

deque_pusm = deq_sync[deque2c[odlist
[avail[heap[transient]]]]]

Example 4. Suppose objects of a container need to be retrieved in
several different orders, based on the values of different fields. One
way to accomplish this would be to retrieve the objects (in any
order) and then sort them. A more efficient alternative would be to
link objects of a container onto multiple ordered lists, where each
list maintains a different sort order. To implement a data structure
(o2list) that maintains two orders (and stores its elements in a
managed transient heap), we would use two instances of the
odlist layer, one for each sort order:4

o2list = odlist[odlist[avail
[heap[transient]]]]

It should be clear from these examples how a small set of layers
can be composed in different ways to yield the various data struc-
tures provided by contemporary software libraries. For example,
we estimate that only 20 to 30 primitive layers underlie all of the
400+ Booch data structure components; the actual count depends
upon subjective implementation preferences. (In any case, all of
the layers define rather simple mappings). The size of the Booch
library simply reflects the combinatorics of how layers can be
composed. Not only is there a big win in terms of easing mainte-
nance and reducing library complexity, but for a given set of layers
it is possible to generate many specialized data structures that are
indeed useful but are unlikely to ever find their way into contem-
porary libraries.

4. In Section 4.1, we show how numerical tags are used to differ-
entiate between the two instances of odlist.

In principle, the technique of building complex data structures
from layer combinations is simple; however, certain subtle design
issues must be addressed to ensure that layer combinations always
produce valid data structure implementations. Experience has
shown that some syntactically legal layer combinations actually
yield invalid data structures. For example, suppose we were to
switch the dlist and avail layers in the deque_usm example
(Section 3.1). The resulting deque implementation would not work
correctly, because objects that are recycled by the avail layer
would never be added to the linked list by the dlist layer.

This example demonstrates that the interface of a layer is not suffi-
cient to specify semantically correct composition orderings with
other layers. Additional information is needed to capture the
assumptions of a layer’s implementation and to ensure that these
conditions are not violated by layers beneath it.

A promising strategy for dealing with this caveat is to define a sep-
arate tool that recognizes and satisfies the semantic restrictions of
each layer. An example of such a tool (for the domain of database
management systems) is DaTE — which captures semantic infor-
mation about each database component to ensure that only legal
systems may be constructed [Bat91].

Note that many details about layers have not been discussed (e.g.,
how sort fields are conveyed to the appropriate layer, etc.). In the
next section, we discuss the solutions to these problems that we are
using now in a prototype data structure generator. Notice that
many data structures besides ordered linked lists could also be
used to maintain ordering: an AVL tree layer, a binary tree layer,
etc. could replace any instance of odlist in the above specifica-
tion. This is, in fact, a capability of the prototype generator
described in the next section.

add_front (d: deque, e: element)
{
element *g;
wait (d.sem); // from deq_sync
if (d.free_list) // from avail
{ // from avail
g = d.free_list; // from avail
d.free_list= g->next_free; // from avail
g->data = e; // from avail

} // from avail
else // from avail
{ // from heap
g = malloc (sizeof (e)); // from transient
g->data = e; // from heap

} // from heap
g->prev = NULL; // from dlist
if ((g->next = d.head) != NULL) // from dlist
g->next->prev = g; // from dlist

if (d.head == NULL) // from dlist
d.tail = g; // from dlist

d.head = g; // from dlist
signal (d.sem); // from deq_sync

}

Figure 7: The Composed Mapping of add_front()

5

4 The P2 Generator

The Predator project seeks to provide programming tools for
implementing and reusing software components, a la the GenVoca
model. Predator is an outgrowth of Genesis, the first extensible
DBMS that showed that customized database management sys-
tems could be assembled from prefabricated components [Bat88].
Predator differs from Genesis in that (a) the performance of Preda-
tor-generated code is highly optimized, and (b) the target domain
of Predator is data structures, rather than database systems.

Currently there are three Predator subprojects. Our first prototype
system, P1, augments a subset of ANSI C with declarations for
specifying data structure implementations; P1’s goal is to evaluate
the potential of data structure generators [Bat92b, Sir93]. P2 is
more extensible: it supports extensions to ANSI C within a more
modular and maintainable architecture. P++ introduces domain-
independent language extensions to ANSI C++ to support large-
scale reuse. Specific instances of these extensions are used by the
P1 and P2 systems; once P++ is completed, we envision that it will
be the platform for all future development of the Predator project
[Sin93]. In this section, we review the P2 prototype.

4.1 P2 Source Files

A P2 source file is an ANSI C program with P2 declarations:
typex, container, and cursor. The typex statement allows
users to define named compositions of predefined layers. For
example, the statement below defines two such compositions,
list1 and list2:

typex
{
list1 = dlist[heap[persistent]];
list2 = odlist1[odlist2[array[transient]];

}

list1 defines a doubly-linked list whose nodes are allocated
from a heap in persistent storage. list2 defines a data structure
that maintains objects on two different ordered lists, and whose
nodes are allocated sequentially from an array in transient storage.
The numerical tags that adorn odlist1 and odlist2 are used
to differentiate the two instances of the same layer, odlist.

Layers have additional parameters, called annotations, which are
not shown in typex statements. For example, odlist needs a
sort-key to define the ordering of its records, array needs to
know the size of array to allocate, and persistent needs the
name of a file in which to store objects. Annotations are specified
as part of P2’s container declaration.

As an example declaration, suppose instances of the employee
record type are stored in empno order on one list, age order on
the second list, and the resulting nodes in an array of size 100. Two
different instances of this data structure — each with their own sets
of employee objects — are e1 and e2:

struct employee
{

int empno;
char first_name[20];
char last_name[20];
int age;
int class_no;

} employee; // employee record type

container <employee> stored_as list2 with
{

odlist1 key is empno; // layer annotations
odlist2 key is age;
array size is 100;

} e1, e2; // instance declaration

Cursors are used to reference objects within a container [Kor91,
ACM91]. Here is the declaration of a cursor curs which iterates
over only those employee instances within e1 that are less than
35 years old and whose first name is “Don”:

cursor <e1> curs where age>35 &&
first_name==“Don”;

To iterate over each qualified employee and increment his/her
class_no attribute, we use a special iteration construct,
foreach:

foreach (curs)
{

curs.class_no++;
}

In general, P2 presents an interface to containers that is similar to
embedded relational languages or persistent data manipulation lan-
guages [ACM91].

4.2 The P2 Architecture

P2 is an extensible language. Whenever a new layer is added to P2,
new lexical tokens and grammar rules may be needed to parse the
layer’s annotation. We found the grammar for ANSI C to be too
complicated to modify when new annotations were added. Instead,
we chose to organize P2 as a pipeline of precompilers. The ddl
precompiler is defined by a simple grammar that parses typex
and container declarations into an “internal” syntax that can be
easily parsed by an ANSI C grammar (the backend). If a new
layer is added to P2, the ddl precompiler is automatically regener-
ated; the backend compiler remains unchanged. The pipeline of
ddl and backend preprocessors is shown in Figure 8.

P2 employs a third precompiler (xp) for translating high-level
layer specifications into ANSI C. One of the lessons learned from
the Genesis project was that layer implementors had to know far
too many details about Genesis to write new layers. A simple spec-
ification language was needed to write the translation rules for data
types and operations; the compiler for this language would expand
these rules and mechanically generate boilerplate information
(e.g., standard type declarations, type definitions, code templates,
standard error checking) that is common to all components.

6

component
xp source

Predator
source

ddl
precompiler

backend
precompiler

xp
precompiler

component
c source

C
source

The P2 Precompiler

Figure 8: The P2 Architecture

As an example of this component specification language, consider
the upd() operation which updates field f of the object refer-
enced by cursor c with the value v. For the odlist layer, if f is
the sort field, then the object to be updated must be unlinked from
the list, updated, and then relinked into its new position. Other-
wise, the update is passed directly to the next lower layer as it
would have no effect on this list data structure. This rewrite would
be specified as:

upd (c, f, v) // abstract update
{ // if f == sort field
if (strcmp (f, %a.sort_field) == 0)
%{
unlink (c); // unlink object from list
upd (c,f,v); // update at lower levels
link (c); // now relink

%}
else
%{
upd (c,f,v); // update at lower levels

%}
}

Note that xp generates all data type declarations for this specifica-
tion. Furthermore, all text enclosed within %{...%} is a code
fragment that is to be generated; statements outside of %{...%}
are to be executed by the P2 compiler. The %a symbol refers to a C
structure that contains the information about the layer’s annota-
tions. The %a symbol is expanded by xp into the C expression that
references this structure.

P2 works by having the backend recognize an operation on a
container. P2 replaces this code fragment with the fragment that is
generated for this operation by the first layer of that container’s
typex expression. Calls to lower level operations are replaced,
recursively, with their implementing fragments until a terminal
layer is reached. Note that data structure specific optimizations in
the form of partial evaluations are part of this expansion process.
This can be seen in the upd() specification above, where depend-
ing on the field input to upd(), different code fragments are gen-
erated. Thus, embodied in layers are domain-specific optimizations
that no general-purpose compiler could offer.

P2 also has a query optimizer. Given a retrieval predicate, several
layers in a data structure could process the query; P2 determines

which layer would perform the retrieval most efficiently. P2 asso-
ciates with each layer a cost function which estimates the cost of
processing the query. P2 polls each layer and selects the layer that
returns the lowest cost estimate. In this way, the cheapest plan
(data structure traversal) for processing a query is selected. Even-
tually, P2 will support multi-container predicates and thus will
need a relational-database-style optimizer to determine the manner
in which joins are processed.

5 Performance Results

The primary motivations for programmers to use a software library
are to increase productivity (by avoiding algorithm reinvention,
coding, and debugging) and to be assured of good performance (by
using tuned algorithms). A generative approach to libraries will
succeed only if programmer productivity and performance are not
compromised.

We know of no commonly-used benchmark suites that can evalu-
ate libraries in terms of programmer productivity and performance.
As an initial step, we devised a simple benchmark that spell-
checks a document against a dictionary of 25,000 words. The main
activities were inserting randomly ordered words of the dictionary
into a container, inserting words of the target document into a sec-
ond container and eliminating duplicates, and printing those words
of the document container that do not appear in the dictionary con-
tainer. The document that we used was the Declaration of Indepen-
dence (~1600 words).

We used the Booch C++ Components, libg++, P1, and P2 to imple-
ment this benchmark using four different container implementa-
tions: unordered linked lists, unordered arrays, sorted arrays, and
binary trees. The benchmarks were executed on a SPARCstation
1+ with 24 MB of memory, running SunOS 4.1.2. Three observa-
tions regarding productivity were immediately apparent:

1. The size of the P1 and P2 programs were the same or smaller
than corresponding implementations for the Booch C++ Com-
ponents and libg++ (see Table 1). The reason is that both P1 and
P2 offer high-level container abstractions that make programs
compact and quicker to write. (The code size for each program
was obtained by removing comments and using the Unix wc
utility to count the words.)

7

Component library
Unordered
linked list

Unordered
array Sorted array Binary tree

Booch C++ Components 2.0-beta 320 words 360 words 398 words 481 words

libg++ 2.4 336 words 386 words 474 words 336 words

P1 281 words 281 words 287 words 285 words

P2 308 words 310 words 316 words 310 words

Table 1: Code size of dictionary benchmark programs (in words of code).

Component library
Unordered
linked list

Unordered
array Sorted array Binary tree

Booch C++ Components 2.0-beta
(compiled with Sun CC 3.0.1 -O4)

70.9 sec 54.6 sec 11.1 sec 15.4 sec

libg++ 2.4
(compiled with G++ 2.4.5 -O2)

41.9 sec 34.3 sec 5.4 sec 4.1 sec

P1
(compiled with GCC 2.4.5 -O2)

40.2 sec 33.3 sec 6.3 sec 3.0 sec

P2
(compiled with GCC 2.4.5 -O2)

40.3 sec 33.3 sec 6.2 sec 3.2 sec

Table 2: Running times of dictionary benchmark programs (combined user and system time).

2. It was trivial to alter container implementations in P1 and P2
programs. In general, only a few lines of declarations (typex
and annotations) needed to be changed; no executable lines
were modified.

3. Programs that used the Booch C++ Component and libg++
libraries required more extensive modifications when container
implementations were altered. Different data structures either
had different interfaces or different names for semantically
equivalent functions.

Table 2 lists the execution times for each program. Note that the
performance of P1 and P2 code is comparable to the performance
of the other programs.

Clearly many more experiments are needed. We have no illusions
that this simple example is sufficient in any way; our goal at this
early stage of research is to demonstrate the feasibility and plausi-
bility of a data structure generator approach. We believe that the
results presented here have indeed accomplished our initial goals.

6 Related Work

Several other research projects have provided tools that alleviate
the drudgery of writing data structure implementations. [Coh93]
describes a set of language extensions which permit the elements
of a container to be accessed via relational operations. This system
also provides a set of pre-written data structure components which
all share the same relational interface. Unlike Predator, however,

Cohen’s components are not layered, and therefore suffer the
aforementioned problems of scalability.

In Novak’s GLISP system, a data structure’s implementation is
represented as a series of view transformations [Nov92]. A view
describes the abstract interface of a container. A transformation
describes the computation steps necessary to convert from one
view to another. The Programmer’s Apprentice takes a similar
approach to generating code: data structures are implemented by
successively applying program transformations, called cliches
[Ric90]. A cliche encodes in a language independent representa-
tion the actions needed to transform a data structure from one state
to another. Although GLISP and Programmer’s Apprentice pro-
vide powerful facilities for decomposing complex components into
primitive ones, decomposition alone cannot solve the scalability
problem. Components must also be designed with high-level, stan-
dardized, and layered abstractions.

Many of the concepts and techniques used in Predator have also
appeared in other research projects. For example, the concept of
parameterization is fundamental to the design of P2 components.
Unlike components from current software libraries, P2 compo-
nents are highly parameterized. A typical P2 component is defined
in terms of the interface of its lower layer component, and it is
parameterized by the type of objects stored in the data structure.
Goguen has formalized these aspects of component design in a
model called parameterized programming [Gog86]. This model
identifies two kinds of parameters: vertical parameters (which

8

specify lower layer components) and horizontal parameters (which
correspond to type and constant values).

The concept of software templates is also related to the design of
P2 components. As described in [Vol85], a software template pro-
vides a generic representation for data types and algorithms; this
representation can be used to declare only the abstract interface of
a software component without revealing its implementation. When
the software template is instantiated, the implementation details of
the template are resolved by binding values to the parameters of
the template. Although software templates are clearly related to
Predator, software templates do not address the concept of vertical
parameters (i.e. layered components), which is an essential ingre-
dient for scalable software libraries.

7 Conclusions

Contemporary software (template) libraries are populated with
families of data structure components that implement the same
abstraction. Each component is unique in that it implements a dis-
tinct combination of data structure “features” (e.g., type of data
structure, storage management, concurrency). Every component is
written by hand and utilities that are shared by many components
are factored into separate modules to minimize gross code replica-
tion.

We have argued that this method of library construction is inher-
ently unscalable. Every time a new feature is added, the number of
components in the library doubles. The number of data structure
“features” that one finds in today’s libraries is woefully inadequate
to address the needs most applications; the data structures found in
operating systems, compilers, and database systems are far more
complex than those available in today’s libraries.

We believe that a generative approach, rather than an enumerative
approach, is required to address the needs of applications. Librar-
ies should offer only primitive building blocks, accompanied by
generators that can combine these blocks into complex and custom
data structures. We described a prototype, P2, that has demon-
strated great potential in realizing the generative approach. Prelim-
inary experimental evidence presented here and in [Sir93] show
that P2 does not compromise programmer productivity nor the per-
formance of generated code.

Much more work remains. We are in the process of re-engineering
the OPS5c production system compiler [Bra93], which uses
highly-customized data structures to realize a high-performance
active database application. We believe that if success can be dem-
onstrated in generating complex data structures for such sophisti-
cated applications, we will have established that the generative
approach can play an important role in the future of software com-
ponent libraries.

Acknowledgments. We are grateful to Grady Booch for making
his component library available to us.

8 References

[ACM91] ACM. Next generation database systems.
Communications of the ACM, 34(10), October 1991.

[Bat88] D. S. Batory, J. R. Barnett, J. F. Garza, K. P. Smith, K.
Tsukuda, B. C. Twichell, and T. E. Wise. GENESIS:
An extensible database management system. IEEE
Trans. on Software Engineering, November 1988.

[Bat91] D. S. Batory and J. R. Barnett. DaTE: The Genesis
DBMS software layout editor. In R. Zicari, editor,
Conceptual Modelling, Databases, and CASE.
McGraw-Hill, 1991.

[Bat92a] D. Batory, V. Singhal, and M. Sirkin. Implementing a
domain model for data structures. International
Journal of Software Engineering and Knowledge
Engineering, 2(3):375-402, September 1992.

[Bat92b] D. Batory and S. O’Malley. The design and
implementation of hierarchical software systems with
reusable components. ACM Transactions on Software
Engineering and Methodology, October 1992.

[Boo87] G. Booch. Software Components with Ada, Benjamin/
Cummings, 1987.

[Bra93] D. A. Brant and D. P. Miranker. Index support for rule
activation. In Proceedings of 1993 ACM SIGMOD,
May 1993.

[Coh93] D. Cohen and N. Campbell. Automating relational
operations on data structures. IEEE Software,
10(3):53-60, May 1993.

[Fon90] M. Fontana, L. Oren, and M. Neath. COOL — C++
object-oriented library. Texas Instruments, 1990.

[Gog86] J. Goguen. Reusing and interconnecting software
components. IEEE Computer, 19(2):16-28, February
1986.

[Gor90] K. Gorlen, S. Orlow, and P. Plexico. Data Abstraction
and Object-Oriented Programming in C++, John
Wiley, New York, 1990.

[Kor91] H. F. Korth and A. Silberschatz. Database System
Concepts, McGraw-Hill, 1991.

[Kru92] C. W. Krueger, “Software Reuse”, ACM Computing
Surveys, June 1992.

[Lea88] D. Lea. libg++, the GNU C++ library. In Proceedings
of the USENIX C++ Conference, 1988.

[Nov92] G. Novak. Software Reuse through View Type
Clusters. In Proceedings of the 7th Knowledge-Based
Software Engineering Conference (KBSE-92), 1992.

[Ric90] C. Rich and R. Waters. The Programmer’s Apprentice,
ACM Press, New York, 1990.

[Sin93] V. Singhal and D. Batory. P++: a language for large-
scale reusable software components. Department of
Computer Sciences, Univ. of Texas at Austin, April
1993.

[Sir93] M. Sirkin, D. Batory, and V. Singhal. Software
components in a data structure precompiler. In
Proceedings of the 15th International Conference on
Software Engineering, May 1993.

[Vol85] D. Volpano and R. Kieburtz. Software templates, In
Proceedings of the 8th International Conference on
Software Engineering, 1985.

9

