
Abstract 1

P2 is a scalable compiler for collection data structures. High-level
abstractions insulate P2 users from data structure implementation
details. By specifying a target data structure as a composition of
components from a reuse library, the P2 compiler replaces abstract
operations with their concrete implementations.

LEAPS is a production system compiler that produces the fastest
sequential executables of OPS5 rule sets. LEAPS is a hand-writ-
ten, highly-tuned, performance-driven application that relies on
complex data structures. Reengineering LEAPS using P2 was an
acid test to evaluate P2’s scalability, productivity benefits, and
generated code performance.

In this paper, we present some of our experimental results and
experiences in this reengineering exercise. We show that P2 scaled
to this complex application, substantially increased productivity,
and provided unexpected performance gains.

1  Introduction

Programming and debugging data structures consumes a dispro-
portional amount of resources in the construction of software. Col-
lection data structures (e.g., arrays, lists, trees) are well-
understood, but general-purpose tools to reduce the burden of
implementing them have yielded mixed results. High-level lan-
guages, such as SETL, have demonstrated the usefulness of simple
and powerful data structure abstractions; unfortunately, questions
about the performance of these languages and their incompatibility
with mainstream languages (e.g., C and C++) have constrained
their popularity.
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The emergence of software libraries (e.g., the Booch C++ Compo-
nents, libg++, NIHCL) has lessened the burden of data structure
programming for applications with simple needs. Unfortunately,
applications that require specialized data structures benefit margin-
ally from libraries; consequently, specialized data structures are
still coded by hand. Adding more components to contemporary
libraries is not the answer. It has been observed that no finite
library of conventionally-designed components could ever encom-
pass the enormous spectrum of data structures that arise in prac-
tice. In short, conventional libraries are inherently unscalable
[Bat93, Big94].

Scalable libraries will offer primitive building blocks and will be
accompied by a compiler that generates target data structures from
specified compositions of blocks. Although building block librar-
ies grow at the rate at which new blocks are added, there is a com-
binatorial number of ways in which blocks can be composed. Thus
the domain of data structures that can be generated grows geomet-
rically as each new block is added. It is this scalable approach to
data structure construction that we have taken in developing the P2
data structure compiler [Sir93].

More specifically, the P2 compiler is based on GenVoca, a model
of scalable software construction [Bat92, Bat94b]. The GenVoca
approach standardizes fundamental abstractions of a domain; Gen-
Voca components implement standardized interfaces and thus are
plug-compatible, interchangeable, and interoperable. GenVoca has
been applied to independently built generators for the domains of
databases (Genesis [Bat88]), communication networks (Avoca/x-
kernel [Hut91]), distributed file systems (Ficus [Hei93]), and avi-
onics software (ADAGE [Cog93]). Our work on P2 extends the
diverse list of disparate domains for which GenVoca generators
have been constructed.

The key to the success of P2 will be determined primarily on its
ability to scale to a variety of applications, deliver increased pro-
grammer productivity, and make minimal concessions to run-time
efficiency. In [Bat93] we described the GenVoca model, how P2
implements the model, and presented some experimental results
for a simple application. As our next attempt to evaluate P2, we
felt that a complicated, hand-coded data structure application had
to be reengineered using P2. The application that we chose was
LEAPS.
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LEAPS is a production system compiler that produces the fastest
sequential executables of OPS5 rule sets [Mir90, Mir91]. LEAPS
is a hand-written, highly-tuned, performance-driven application
that heavily relies on complex and unusual collection data struc-
tures, none of which are found in conventional libraries. Because
LEAPS was developed locally at the University of Texas (and that
expertise on its construction was readily available), reengineering
LEAPS using P2 was a logical choice for an acid test to evaluate
the potential of P2’s scalability, productivity gains, and the perfor-
mance of its generated code.

In this paper, we present some of our experimental results and
experiences in this reengineering exercise. We will show that P2
scaled to this complex application, substantially increased produc-
tivity, and provided significant performance improvements. We
begin by presenting features of P2 that are relevant to LEAPS.

2  The Domain Model of the P2 Compiler

The P2 model of the collection data structures domain identifies
cursors, containers, and composite cursors as fundamental data
structure programming abstractions. P2 components offer different
implementations of these abstractions. In the following sections,
we explain the features of P2 that were used in the reengineering
of LEAPS. Readers may recognize the influence of database
abstractions on the P2 domain model [ACM91].

2.1  Cursors and Containers

Collection data structures—arrays, binary trees, ordered lists—
implement the container abstraction. A container is a sequence of
elements, where all the elements are instances of a single data
type. Elements can be referenced and updated only by a run-time
object called a cursor (see Figure 1).

The P2 programming language is a superset of C. P2 introduces
statements for cursor and container declarations, along with spe-
cial operations on cursors and containers. An abbreviated declara-
tion of a container of EMPLOYEE_TYPE instances is shown
below, along with declarations of a cursor (all_employees)

a1

a2

a3 b1
b2

b3

c1
c2c3

c4

A B C

Figure 2. A Multicontainer Relationship

cursor

container

elements

Figure 1. Basic P2 Abstractions

that references all elements of this container and another cursor
(selected_employees) that references only those elements
whose deptno field has the value 10:

// Declaration of the employee container.
container <EMPLOYEE_TYPE> employee;

// Cursor that references all elements in
// the employee container.
cursor <employee> all_employees;

// Cursor that references selected
// elements of employee container.
cursor <employee> where “$.deptno == 10”

selected_employees;

P2 offers an (extensible) set of container and cursor operations.
For example, the foreach construct is used to iterate over quali-
fied elements of a container. The foreach loop below prints the
names of selected employees:

// For each element whose deptno field
// has the value 10.
foreach( selected_employees )
{
// Print the employee name.
printf( “%s\n”, selected_employees.name);

}

2.2  Composite Cursors

Complex data structures consist of multiple containers whose ele-
ments are interconnected by pointers. A relationship among con-
tainers C1, C2, ..., Cn is a set of n-tuples <e1, e2, …, en> where
element ei is a member of container Ci. Figure 2 depicts a relation-
ship for containers A, B, and C whose 3-tuples are:

{ (a3,b1,c1), (a3,b1,c3), (a1,b2,c4),
(a2,b3,c2), (a2,b3,c4) }

A composite cursor enumerates the n-tuples of a relationship.
More specifically, a composite cursor k is an n-tuple of cursors,
one cursor per container of a relationship. A particular n-tuple <e1,
e2, ..., en> of a relationship is encoded by having the ith cursor of k
positioned on element ei. By advancing k, successive n-tuples of a
relationship are retrieved.

As an example, a composite cursor c that joins elements of the
department and employee containers that share the same
value of the deptno field is specified in P2 as:2

compcurs < d department, e employee >
where “$d.deptno == $e.deptno” c;

d and e are aliases for container names. (As we will see in Section
3.2, aliases are useful for expressing the joins of containers with

2.  Note that predicates in P2 are expressed by strings. Field F of
the element referenced by a cursor is denoted “$.F”. A cursor
over container with alias x is denoted “$x”.



themselves in an unambiguous way). The foreach loop below
prints pairs of names of related department and employee
elements. Readers may recognize this loop as a natural join
between department and employee containers:

foreach( c )
{

printf (“(%s,%s)\n”,c.d.name,c.e.name);
}

Occasionally, it is useful to retrieve only n-tuples of a relationship
that involve specific objects. Suppose we are interested only in the
3-tuples of Figure 2 that involve element b3 of container B (i.e.,
tuples (a2,b3,c2) and (a2,b3,c4)). Such a retrieval is
called seeding a relationship with b3. Seedings are expressed in
P2 by augmenting the compcurs declaration with a given
clause (which lists aliases of all containers that are to be seeded).
Prior to a foreach, the given cursors must be positioned on the
seeding elements. The above example with b3 would be expressed
by the following compcurs declaration and foreach code frag-
ment:

// Declare seeded_composite_cursor seeded
// by b.
compcurs < a A, b B, c C > given < b >

seeded_composite_cursor;

// Position seeded_composite_cursor.b
position( seeded_composite_cursor.b, &b3 );

// Iterate over seeded tuples.
foreach( seeded_composite_cursor )
{ ... }

Updating elements within a foreach loop is possible. Such
updates may affect the n-tuples that are subsequently retrieved by
a composite cursor. For example, after we delete an element of an
n-tuple, we do not want to retrieve another n-tuple that contains
this deleted element. Recall composite cursor c which returns
pairs of related department and employee elements. The
foreach loop of Figure 3a prints each retrieved ordered pair and
then deletes the department element of that pair.

foreach(c)
{

printf(“(%s, %s)\n”,
c.d.name, c.e.name);

delete(c.d);
}
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Figure 3. Updating elements within a foreach loop.
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The “blind” join of Figure 3b and the “valid” join of Figure 3c
illustrate two possible semantics for the foreach loop of Figure 3a.
A blind retrieval ignores updates (e.g., deletions) to a container
which are made while the container is being traversed. A valid
retrieval, on the other hand, reflects these updates by performing a
test (e.g., checking to see if the department element of a pair is
deleted) prior to each cursor advancement, in order to make sure
that the next n-tuple is meaningful (e.g., it is meaningless to per-
form printf or delete on a deleted element).

In this example, after deleting the element d1, the blind join still
retrieves the pairs (d1, e2) and (d1, e3), even though they
involve the deleted element d1. Similarly, after deleting the ele-
ment d2, the blind join retrieves the pair (d2, e5). The valid
join, on the other hand, skips over pairs that contain a deleted ele-
ment.

P2 supports validation of n-tuples using the valid clause of a
composite cursor declaration. The following declaration and code
fragment eliminates the problems of a blind retrieval of
(department, employee) pairs by returning only pairs of
undeleted elements:

compcurs < d department, e employee >
where “$d.deptno == $e.deptno”
valid “!deleted($d)”
valid_composite_cursor;

// Skips pairs with deleted elements.
foreach( valid_composite_cursor )
{

delete( valid_composite_cursor.d );
}

Note that tuple validation is more general than merely testing for
tuple deletion. P2 permits any predicate to be used for element val-
idation. For example, the deptno field of a department ele-
ment might be updated within a foreach loop. In this case, the
department element has not been deleted, but its modification
may affect the sequence of (valid) tuples that can be produced.
Tuple validation is a general-purpose feature that is useful in graph
traversal and garbage collection algorithms, where cursors may be
positioned over elements that are suddenly deleted and cursor vali-
dation is needed to ensure correct executions.

2.3  Customizing Data Structure Specifications

P2 programs are written in terms of cursor, composite cursor, and
container abstractions without regard to how these abstractions are
implemented. The P2 compiler automatically translates P2 decla-
rations and operations into C code. In order for P2 to accomplish
this, P2 users must specify an implementation of these abstractions
by composing building-blocks from the P2 library. Such a compo-
sition is declared in a typex (type expression) declaration:

typex { simple_typex =
top2ds[qualify[dlist[

malloc[transient]]]];
}



simple_typex is a composition of five P2 components, where
each component encapsulates a consistent data and operation
refinement of the cursor-container abstraction and is responsible
for generating the code for this refinement [Sir93]. The top2ds
layer, for example, translates foreach statements into primitive
cursor operations (reset, advance, end_of_container);
qualify translates qualified advance operations into if tests
and unqualified advance operations; dlist connects all ele-
ments of a container onto a doubly-linked list; malloc allocates
space for elements from a heap; and transient allocates heap
space from transient memory. P2 code generation relies on sophis-
ticated macro expansion and partial evaluation techniques [Bat93].

A type expression is a high level declarative specification of the
implementation of cursors and containers. Minor changes to a type
expression can generate substantially different code. Usually, a P2
program includes only a few type expressions and each type
expression itself is at most a few lines long. Thus, tuning and
maintaining a P2 program is often a matter of changing a few lines
of type expressions.

3  Reengineering the LEAPS Algorithms

OPS5 is a forward-chaining expert system [McD78, For81].
LEAPS (Lazy Evaluation Algorithm for Production Systems) is a
compiler that translates OPS5 rule sets into C programs. LEAPS
produces the fastest sequential executables of OPS5 rule sets,
sometimes outperforming OPS5 interpreters by several orders of
magnitude [Mir90, Mir91]. Besides the expected performance
gains made by compilation, LEAPS relies on special search algo-
rithms and sophisticated data structures to make rule processing
efficient.

Figure 4 shows a relationship between LEAPS and P2. To reengi-
neer LEAPS required us to translate OPS5 rule sets into a P2 pro-
gram; this translator was called RL (Reengineered Leaps). The RL-
generated P2 program would then be translated into a C program
by the P2 compiler, thus effectively accomplishing in two transla-
tion steps what the LEAPS compiler does in one. All of the
LEAPS algorithms would be embedded in the generated P2 pro-
gram.

We faced two difficult challenges in this reengineering effort. First,
it was well-known that the LEAPS algorithms were difficult to
understand. This was due, in large part, to a lack of high level
abstractions appropriate to express the details of the algorithms.

ops5
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Figure 4. Relationship between LEAPS and RL
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Since there was no appropriate language in which to express the
algorithms, it was difficult for the LEAPS developers to explain
(or code) them. Thus, elegance of specification of LEAPS algo-
rithms (in P2) was an important goal for us. Second, even if
LEAPS algorithms had an elegant expression, the code that P2
produced would have to be very efficient to compete with LEAPS.

This section shows that LEAPS does have an elegant specification
in P2. In Section 4, we consider the performance and productivity
gains using RL/P2 generated code.

3.1  OPS5 Background

OPS5 rule sets begin with container declarations called liter-
alize statements:

(literalize rel1 val)
(literalize rel2 val)

The above statements declare containers rel1 and rel2 whose
elements have a single field called val. LEAPS dynamically
infers the data types of element fields. In RL, we chose to augment
literalize statements by statically supplying the data type for
each field.

The remainder of an OPS5 rule set is a sequence of rules of the
form:

(p print-sequence
(rel1 ^val <r>)
(rel2 ^val <s> ^val > <r>)
(rel1 ^val <t> ^val > <r> ^val > <s>)

-->
(write strictly increasing sequence

<r> <s> <t>))

The name of the above production is print-sequence. The
clauses prior to the arrow --> define the rule’s qualification; the
clauses after the arrow define the rule’s action. A rule qualification
is a conjunction of clauses called (positive) condition elements
(CEs). A CE serves two purposes: (1) to bind variables to particu-
lar fields of an element and (2) to qualify elements on the basis of
their field values. The first CE in print-sequence binds the
variable r to the val field of a rel1 element. The second CE
binds variable s to the val field of a rel2 element and requires
this field to be greater than r. The third CE binds variable t to the
val field of a rel1 element and requires this field to be greater
than both s and r. In effect, the qualification of this rule is to iden-
tify 3-tuples (rel1 element, rel2 element, rel1 element)
whose val values are in strictly increasing order. The action of
this rule is to print the val values of a 3-tuple.

We chose the print-sequence rule as an example because it is
simple. OPS5 rules can be more complicated when negated CEs
are included. A negated condition element is a predicate that dis-
qualifies n-tuples that satisfy the positive CEs of a rule. OPS5 rule
actions can also be more complex. Actions may specify element
creation, deletion, modification, and calls to external routines. A
more complete discussion of the capabilities of OPS5 can be found
in [McD78, For81]. We will use the print-sequence rule to



illustrate the translations performed by RL. A full explanation of
RL translation is given in [Bat94a].

Forward-chaining inference engines, including LEAPS, use a
match-select-action cycle. Rules that can be matched (i.e., tuples
found to satisfy their qualification) are determined, one n-tuple is
selected, and its corresponding action is fired. This cycle continues
until a fix-point has been reached (i.e., no more rules can be fired).
Conventional eager match algorithms are inherently slow, as they
materialize all tuples that satisfy the predicate of a rule. These
materialized tuples are stored in data structures and have a nega-
tive impact on performance because they must be updated as a
result of executing rule actions. A fundamental contribution of
LEAPS is the lazy evaluation of tuples; i.e., tuples are materialized
only when needed. This approach drastically reduces both the
space and time complexity of forward-chaining inference engines,
and provides LEAPS with its phenomenal increase in rule execu-
tion efficiency.

3.2  Rule Translation

The difficult part of converting OPS5 rules into P2 code is the
translation of rule qualification; translating rule actions is straight-
forward. There are four basic steps in rule qualification translation.
The first is to convert positive CEs to P2 predicates. Figure 5a
shows the print-sequence rule and Figure 5b shows its corre-
sponding composite cursor declaration. Note that each CE of the
rule corresponds to a container that is to be joined.

The lazy evaluation of composite cursors in LEAPS centers
around the concept of dominant object. The dominant object is the
most recently updated element that has not yet been processed.
“Processed” means that the element has not seeded and fired all of
the rules that it could. In order to support the seeding of dominant
objects, multiple copies of an OPS5 rule are spawned, one copy for
each different condition element that is being seeded. The second
step in rule translation is to replicate a composite cursor definition,
one copy for each possible seed position. Figure 6a shows the for-
mat of a cursor declaration produced in Step 1; Figure 6b shows
the replication of this rule with different seeds. Note that the effect
of this rewrite is to translate an n-way join into n (n-1)-way joins,
each simpler than the original n-way join.

(p print-sequence
(rel1 ^val <r>)
(rel2 ^val <s> ^val > <r>)
(rel1 ^val <t> ^val > <r> ^val > <s>)

-->

# define ps_query “$b.val > $a.val
&& $c.val > $b.val
&& $c.val > $a.val”

typedef compcurs < a rel1, b rel2, c rel1 >
where ps_query curs_ps;

Figure 5a-b. Rule Translation Step 1:
Conversion of Selection Predicates

(a)

(b)

OPS5 semantics impose a fairness criterion such that no n-tuple
can fire a rule more than once. Fairness is achieved in LEAPS
through the use of timestamps and temporal qualifications. Every
element has an RL-augmented timestamp field _ts that indicates
when the element was last updated. OPS5 semantics are realized
by requiring that all elements of an n-tuple have timestamps no
older than the timestamp of the dominant object that seeded the n-
tuple. Figure 7a shows a cursor definition produced in Step 2; Fig-
ure 7b shows the addition of temporal predicates to the where
clause of the cursor.

Once a rule is fired, the composite cursor is placed on a stack,
thereby suspending its execution. At some later time when the ele-
ment that seeded the composite cursor again becomes dominant,
the composite cursor is popped and advanced to the next n-tuple.
During the time the cursor was on the stack, any or all of the ele-
ments of the last n-tuple it produced could have been modified or
deleted. Consequently, advancements of composite cursors must
be validated. This is accomplished by adding a valid predicate to
each cursor declaration. Figure 8a shows a cursor definition pro-
duced in Step 3; Figure 8b shows the addition of the valid predi-
cates.

typedef compcurs < a …, b …, c … >
where ps_query curs_ps;

Figure 6a-b. Rule Translation Step 2:

typedef compcurs < a …, b …, c … >
given < a >
where ps_query curs_ps_a;

typedef compcurs < a …, b …, c … >
given < b >
where ps_query curs_ps_b;

typedef compcurs < a …, b …, c … >
given < c >
where ps_query curs_ps_c;

Replication of Composite Cursors by Seeding

(a)

(b)

typedef compcurs < a …, b …, c … >
given < a >
where ps_query curs_ps_a;

#define ps_temporal_qual
“$b._ts <= dominant_timestamp
&& $c._ts <= dominant_timestamp”

typedef compcurs < a …, b …, c … >
given < a >
where ps_query && ps_temporal_qual
curs_ps_a;

Figure 7a-b. Rule Translation Step 3:
Addition of Temporal Predicates

(a)

(b)



3.3  Other Issues

There are additional issues regarding the translation of OPS5 rule
sets into P2 programs that are worth mentioning. First, there are
two more translation steps when rule qualifications involve
negated CEs. These steps are no more complicated than the four
defined in the previous section [Bat94a].

Second, when an element is inserted in LEAPS, it is pushed onto a
wait-list stack for subsequent seeding. Composite cursors, whose
execution was suspended, are placed on a join-stack. The stack
whose top element has the most recent timestamp is chosen to be
the dominant object on the next execution cycle. In RL, the wait-
list stack and join stack are unified. This gives a very compact and
elegant representation of the primary cycle loop (see Figure 9a).

Third, the P2 procedures for rule firings are also compact (see Fig-
ure 9b). If a cursor has not yet been created, one is allocated on the
heap, initialized, and positioned on the seeding element. Control
then falls to the foreach statement. If a cursor (whose execution
has been suspended) has been created, control continues at the end
of the foreach statement (where validation tests are performed
by P2). Once an n-tuple is generated, the rule is fired and the pro-
cedure is exited. After all n-tuples have been generated, control
passes to the next rule for possible firing.

Also included in RL are additional LEAPS optimizations: the use
of predicate indices (i.e., linking together all elements of a con-
tainer that satisfy a given predicate), active rule optimizations (i.e.,
skipping rules that are known a priori not to be able to produce n-
tuples), using symbol tables to minimize string comparison times,
inlining of container insertion and deletion operations, plus others.
Overall, RL provided a faithful re-implementation of the LEAPS
algorithms.

4  Results

Three results surprised and impressed our LEAPS colleagues.
First, P2 permitted a clean, high-level specification of the LEAPS
algorithms (i.e., the RL translator and the P2 files it generated).
LEAPS algorithms were previously difficult to explain and com-

typedef compcurs < a …, b …, c … >
given < a >
where ps_query && ps_temporal_qual
curs_ps_a;

#define ps_valid_pred “!deleted($a)
&& !deleted($b)
&& !deleted($c)”

typedef compcurs < a …, b …, c … >
given < a >
where ps_query && ps_temporal_qual

 valid ps_valid_pred
curs_ps_a;

Figure 8a-b. Rule Translation Step 4:
Addition of Validation Predicates

(a)

(b)

prehend because of a lack of high level abstractions appropriate to
express their details. The P2 container and cursor abstractions
served this purpose particularly well. The other two results were
improved performance and productivity. We describe the bench-
marks we used to test our implementation and elaborate on these
results in the following sections.

4.1  The Benchmarks

We tested LEAPS and RL on five rule set benchmarks provided by
our LEAPS colleagues, which they considered a sufficient test for
RL. These benchmarks have been used for years to measure the
performance of rule execution engines, and are typical of LEAPS
applications [Bra91]. Further, these benchmarks were particularly
useful because (unlike some OPS5 rule sets) they required an input
file. We were thus able to run each benchmark with input files of

void seed_rule_ps_a ( void )
{

curs_ps_a *c;
if (fresh) {

c = (curs_ps_a*)
malloc(sizeof(curs_ps_a));

top.curs = (void*) c;
init(*c);
position(c->a, top.cursor_position);

}
else {

c = (curs_ps_a *) top.curs;
goto cnt;

}
foreach(*c) {

fire_rule_ps( c );
return;
cnt:; // perform valid tests here

}
free(c);
fresh = TRUE;
top.current_rule = nextrule;
nextrule();

}

execute_production_system()
{

while(1) {
// Get the top of the stack.
reset_start(top);
if (end_of_container(top)) {

// The stack is empty.
// We’re at a fix-point.
break;

}
else {

// The stack is not empty.
fresh = !top.curs;
dom_timestamp = top.time_stamp;
(*top.current_rule)();

}
}

}

(a)

(b)

Figure 9a-b. Execution Cycle &
Rule Seeding Procedures



various sizes, to better characterize the performance difference
between LEAPS and RL/P2.

The basic_cycle benchmark consists of a single rule. It counts
from 0 to the number specified in its input file. This benchmark is
useful for evaluating the execution-cycle overhead of forward-
chaining inference engines.

The tripl benchmark consists of 2 rules. Given k, the number
specified in the input file, it finds all triples (n1, n2, n3) where n1 <
n2 < n3 ≤ k.

The manners benchmark consists of 8 rules. It finds table seating
arrangements for guests subject to constraints (e.g., the sex and
hobbies of the guests). The input file is a set of guests.

The waltz and waltzdb benchmarks consist of 33 and 38 rules
respectively. Both label two dimensional graphs. waltz labels
junctions of 2 or 3 edges; waltzdb labels junctions of 4 or 5
edges. Although both rule sets are functionally similar, they are
implemented differently and have different execution behaviors.
The input files for both are the graphs to be labeled.

Although the number of rules per rule set seems small, the pro-
grams generated by RL, P2, and LEAPS are substantial (see Table
1). The LEAPS and RL/P2 programs for waltzdb, for example,
exceed 15,000 lines of code.3 To our knowledge, we believe the C
file for waltzdb generated by RL/P2 to be among the largest ever
generated by a data structure compiler.

4.2  Performance Results

The performance of RL/P2 generated programs surprised us and
our LEAPS colleagues. From the beginning, the primary design
goal of LEAPS was performance. Because LEAPS uses data struc-
tures that were carefully optimized and hand-coded by experts,
whereas RL uses generic data structures whose code is generated
automatically by a general-purpose tool (i.e., P2), we expected the
performance of RL/P2 programs to only approach that of LEAPS-
produced programs. Nevertheless, our results show that in all cases
RL/P2 programs are substantially faster than their LEAPS counter-
parts. Speedups ranged from 1.5 (for waltzdb) to 2.5 (for
tripl).

3.  LEAPS generated programs are linked with a 10,000 line run-
time library. Thus, 10,000 lines should be added to the size of
LEAPS-generated files.

Figures 10a through 14a show the running time of the LEAPS and
RL/P2 versions of the benchmarks, and Figures 10b through 14b
show the speedup of the RL generated version relative to the
LEAPS generated version.4

We discovered that the performance improvements of RL/P2 over
LEAPS are largely due to two factors. First, P2 is able to perform
complex code optimizations automatically, while such optimiza-
tions are difficult or impractical to perform by hand. Thus, the first
factor is the high quality of code produced by the P2 compiler.

Second, RL implements the LEAPS functionality more cleanly
than does LEAPS:

4.  These results were obtained on a DECstation 5000/240 using
the gcc 2.5.8 compiler with the -O2 option.

Figure 10a-b. Performance Graphs for the
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basic_cycle Benchmark

Rule Set Rule Set Size
RL-generated
P2 Program Size

P2-generated
C Program Size

LEAPS-generated
C Program Size

manners 8 rules 770 lines 3,300 lines 2,300 + 10,000 lines run-time

waltz 33 rules 2,400 lines 13,600 lines 10,000 + 10,000 lines run-time

waltzdb 38 rules 3,100 lines 15,800 lines 15,000 + 10,000 lines run-time

Table 1: Size of Generated Programs
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Figure 13a-b. Performance Graphs for the waltz Benchmark
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• RL uses a unified wait-list/join stack. This reduces execution
cycle overhead (see the results for the basic_cycle bench-
mark, in particular).

• RL does not replicate predicate indices (also called alpha mem-
ories). This significantly reduces the overhead of element inser-
tions and deletions.

• RL uses a static type system. This reduces the run-time over-
head for element qualification.

• RL does not perform garbage collection. LEAPS performs rudi-
mentary garbage collection, which does not seem to be effec-
tive and has run-time overhead.

It is worth noting that the above four bullet-items were conjectured
to be performance problems by our LEAPS colleagues, but the
complexity of the LEAPS implementation discouraged, if not pre-
cluded, experiments to test these conjectures. Our research con-
firmed their intuition by providing performance numbers. It is only
after we presented our results that the conjectures of our LEAPS
colleagues came to light. We did not take these conjectures into
account in designing RL. Rather, the high-level abstractions pro-
vided by P2 encouraged these design decisions and made it easy
for us to experiment with and finally implement these optimiza-
tions in RL. Thus, the second factor in the performance improve-
ment of RL/P2 over LEAPS is the high level abstractions provided
by P2.

4.3  Productivity Results

Interviews of the LEAPS development team indicated that they
believed that LEAPS experts could build a version of LEAPS
(functionally equivalent to RL) in no less than twelve weeks. They
also believed domain novices such as ourselves (experienced C
programmers, with no expertise in expert system or forward-chain-
ing inference engines) would take at least twice that long. Given
P2, however, coding RL was straightforward. We wrote an initial
prototype of RL within one week, and over the next seven weeks
enhanced it with additional LEAPS optimizations. Thus, P2
reduced the programming time by a factor of three.5 In short, P2
enabled novices (ourselves) to program like domain experts.

The productivity benefits of P2 can also be seen in decreased
source code size. The implementation of LEAPS consists of
approximately 20,000 lines of code. RL consists of approximately
4,000 lines of code. Although it was unnecessary for us to imple-
ment every feature provided by LEAPS (since not all LEAPS fea-
tures were used in by our benchmark set), we estimate that to do so
would require us to add not more than 1,000 lines to RL. Thus, not
only did P2 reduce programming time by a factor of three, it
reduced the total number of lines of code necessary by a factor of
four. Thus, by either measure, P2 affords a large productivity
advantage.

5.  Actually, part of the eight weeks was spent waiting for P2 to be
debugged, so our estimates of how long RL took to develop is con-
servative.

Besides improved productivity, P2 provided other important soft-
ware engineering benefits:

• Initial implementation. Our initial prototype of RL used gen-
eral-purpose components from the P2 library. Thus, P2 permit-
ted us to get an RL prototype up and running very quickly (i.e.,
one week).

• Library Scalability. Two RL-specific components were added
to the P2 library in order to improve the performance of RL/P2
generated code. These components implemented timestamp
ordered lists and predicate indices, and were used in the version
of RL/P2 that we benchmarked. Overall, the number of lines of
code added to the P2 library was minimal (i.e., 335 lines). We
remind readers that these components are GenVoca building
blocks; i.e., they must be composed with other building blocks
for memory allocation, element qualification, etc. (e.g., the
top2ds, qualify, etc. components of Section 2.3) in order
to produce the desired data structure. The size of comparable
components that would have to be added to conventional (tem-
plate) libraries would be considerably larger because they
implement specific compositions of many GenVoca building
blocks.

• Tuning. The P2 separation of data structure abstractions from
data structure implementations enabled us to tune RL-generated
programs easily by altering typex (i.e., component composi-
tion) statements. The complexity of attempting similar optimi-
zations in LEAPS is daunting and would require significant
rewriting and debugging. (We note that changing data struc-
tures in LEAPS was never attempted because of the effort
required; entire rewrites were performed instead).

• Maintenance. Altering typex statements allowed us to imple-
ment enhanced versions of LEAPS (e.g., with persistent con-
tainers) in days [Sir94]. Comparable changes to LEAPS [Bra93,
Bro94] required months of effort.

• Design Scalability. Interviews of the LEAPS development
team indicated that debugging LEAPS was very difficult and
that all of the major problems were caused by errors in data
structures. Developing LEAPS without P2 is a monumental
undertaking. Its complexity discourages attempts at trying dif-
ferent designs and fine-level tuning. We have learned that
abstracting away the voluminous and complex data structure
implementation details of an application promotes clean and
efficient designs. In short, this is an issue of the scalability of
software design; organizing fewer details often leads to better
and more maintainable products.

5  Conclusions

In [Bat93], we presented results that showed that for a simple
application, the performance of P2 generated code was at least as
good as components in popular template libraries. Moreover, we
observed that P2 offered much greater possibilities for software
productivity, because of the uniform and high-level abstractions in
which P2 users would program. These simple test cases, however,
failed to convincingly demonstrate that P2 could scale to address
much larger problems.



In this paper, we report our first major experiment to evaluate P2
on a large and complex application. We reengineered the LEAPS
production system compiler, a performance-driven forward-chain-
ing inference engine that was hand-written and highly-tuned.
LEAPS relies on complex data structures and search algorithms
that, because of their unusual and application-specific nature, were
not offered by available template libraries. Moreover, the retrieval
requirements of LEAPS—specifically those embodied in P2’s
composite cursors—far surpass the capabilities of current and pro-
totype template libraries. We believed that LEAPS would provide
an acid test to evaluate the scalability, productivity, and perfor-
mance advantages of P2.

Our results using P2 surpassed our expectations:

• Only two simple components had to be written to augment the
set of components in the P2 library to implement LEAPS.

• We were able to achieve a clean, compact, and high-level speci-
fication of the LEAPS algorithms.

• P2 reduced by an estimated factor of three the programming
time and by an estimated factor of four the volume of code that
had to be written.

• The performance of RL/P2-generated files for the benchmarks
that we considered was at least 50% faster than those produced
by LEAPS. These results either confirmed suspected perfor-
mance problems in LEAPS or they identified cleaner, more
maintainable ways of implementing future versions of LEAPS.

All of the above was accomplished without expertise in expert sys-
tems or forward-chaining inference engines. In short, P2 enabled
novices (ourselves) to program like domain experts.

Our experiences using P2 have been very encouraging to date.
Other reengineering experiments will be needed to better under-
stand the strengths and limitations of P2. We firmly believe, how-
ever, that scalable data structure compilers like P2 will be valuable
tools of future software engineering environments.
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